

InterLab FCC Measurement/Technical Report on

GSM/UMTS module Siemens Cellular Engine HC28

Report Reference: MDE_Siem_0605_FCCe

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany email: <u>info@7Layers.de</u>

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com

Aufsichtsratsvorsitzender• Chairman of the Supervisory Board: Markus Becker Vorstand• Board: Dr. Hans-Jürgen Meckelburg René Schildknecht Registergericht• registered in: Düsseldorf, HRB 44096 USt-IdNr• VAT Nr: DE 203159652 TAX No. 147/5869/0385

InterLab® is a registered trademark of 7 layers AG

Table of Contents

0	Sur	nmary	3
	0.1 0.2	Technical Report Summary Measurement Summary	3 4
1	Adr	ministrative Data	6
	1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
2	Tes	tobject Data	7
	2.1 2.2 2.3 2.4 2.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	7 8 8 8 9
3	Tes	t Results	10
	3.1 3.2 3.3	RF Power Output Spurious emissions at antenna terminals Emission and Occupied Bandwidth	10 12 15
4	Tes	t Equipment	18
5	Pho	oto Report	22
6	Set	up Drawings	25
7	Anı		27

Measurement Plots

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for a GSM cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 19 and Parts 20 to 69 (10-1-06 Edition). The following subparts are applicable to the results in this test report.

Part 2 Subpart J - Equipment Authorization Procedures, Certification

- § 2.1046 Measurement required: RF power output
- § 2.1049 Measurement required: Occupied bandwidth
- § 2.1051 Measurement required: Spurious emissions at antenna terminals
- § 2.1053 Measurement required: Field strength of spurious radiation
- § 2.1055 Measurement required: Frequency stability
- § 2.1057 Frequency spectrum to be investigated

Part 22

Subpart C – Operational and Technical Requirements

§ 22.355 Frequency tolerance

Subpart H – Cellular Radiotelephone Service

- § 22.913 Effective radiated power limits
- § 22.917 Emission limitations for cellular equipment

Summary Test

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

RF Power Outp	out							
The measureme	The measurement was performed according to FCC §2.1046 10-1-06							
OP-Mode								
op-mode 1	-mode 1 setup_03 a		passed					
op-mode 2	setup_03	antenna connector	passed					
op-mode 3	setup_03	antenna connector	passed					
op-mode 4	setup_03	antenna connector	passed					
op-mode 5	setup_03	antenna connector	passed					
op-mode 6	setup_03	antenna connector	passed					
op-mode 7	setup_03	antenna connector	passed					
op-mode 8	setup_03	antenna connector	passed					
op-mode 9	setup_03	antenna connector	passed					
op-mode 10	setup_01	antenna connector	passed					
op-mode 11	setup_01	antenna connector	passed					
op-mode 12	setup_01	antenna connector	passed					
Frequency stat	5		10.1.0/					
	•	ccording to FCC §2.1055	10-1-06 Final Result					
OP-Mode	P-Mode Setup Port							
-	-	-	N/P					
Spurious emiss	sions at antenna to	erminals						
		ccording to FCC §2.1051	10-1-06					
OP-Mode	Setup	Port	Final Result					
op-mode 2	setup_02	antenna connector	passed					
op-mode 5	setup_02	antenna connector	passed					
op-mode 8	setup_02	antenna connector	passed					
•	· —		•					
	of spurious radiat							
	•	ccording to FCC §2.1053	10-1-06					
OP-Mode	Setup	Port	Final Result					
– – N/P								

Emission and	Occupied Bandwid	th	
The measureme	ent was performed ad	ccording to FCC §2.1049	10-1-06
OP-Mode	Setup	Port	Final Result
op-mode 2	setup_02	antenna connector	passed
op-mode 5	setup_02	antenna connector	passed
op-mode 8	setup_02	antenna connector	passed
Band edge cor	npliance		

The measurement		ed according to FCC §2.1053	10-1-06
OP-Mode	Setup	Port	Final Result
-		-	N/P

not performed N/P

The tests were chosen in agreement with the applicant. This module HC28 is a modification of the module HC25 (FCC ID: QIPHC25).

> layers 7 layers AG, Borsigstr. 11

40880 Ratingen, Germany Phone +49 (0)2102 749 0

Responsible for Accreditation Scope:

Machules Responsible for Test Report:

61

1 Administrative Data

1.1 Testing Laboratory

Address

7 Layers AG

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the	following accreditation organisation:
- Deutscher Akkreditierungs Rat	DAR-Registration no. DAT-P-192/99-01

Responsible for Accreditation Scope:

Report Template Version:

1.2 Project Data

Responsible for testing and report: Receipt of EUT: Date of Test(s): Date of Report: Dipl.-Ing. Andreas Petz 2007-08-14 2007-08-22 to 2007-09-11 2007-09-17

Dipl.-Ing. Bernhard Retka Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell

1.3 Applicant Data

Company Name:

Address:

Siemens AG

Siemensdamm 50

2007-08-29

13629 Berlin Germany Mr. Hussein Halawi

1.4 Manufacturer Data

Company Name:

Contact Person:

please see applicant data

Address:

Contact Person:

2 Testobject Data

2.1 General EUT Description

Equipment under Test: Type Designation:	GSM/UMTS module Siemens Cellular Engine HC28
Kind of Device:	GSM 850/900/1800/1900 + UMTS FDD I/II/V
(optional)	module
Voltage Type:	DC
Nominal Voltage:	4.2 V
Maximum Voltage:	4.2 V
Minimum Voltage:	3.5 V

General product description:

The Equipment Under Test (EUT) is a GSM 850/900/1800/1900 module and supports EDGE and FDD I/II/V with HSDPA.

The manufacturer declared that nominal voltage is equal to high voltage.

In GSM 850 mode the EUT operates in channel blocks A and B from 824.2 MHz (lowest channel = 128) to 848.8 MHz (highest channel = 251).

In FDD V mode the EUT operates in channel blocks A and B from 826.4 MHz (lowest channel = 4132) to 846.6 MHz (highest channel = 4233).

The EUT provides the following ports:

Ports antenna connector (permanent) enclosure data port

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: 01901DE02)	GSM/UMTS module	Siemens Cellular Engine HC28	011777	B2.10	revision 00.070	2007-08-14
EUT B (Code: 01901DH02)	GSM/UMTS module	Siemens Cellular Engine HC28	013430	B2.10	revision 00.070	2007-08-28
EUT C (Code: 01901DO03)	GSM/UMTS module	Siemens Cellular Engine HC28	013310	B2.11	revision 00.080	2007-09-11

Remark: The EUTs are equipped with a permanent antenna connector.

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1	Develop- ment Board DSB3	DSB75	DSB75_B1.1	-	GBI: ICM- 100012-03	-
AE2	Adapter Board	Quinn DSB75 Adapter A1	-	_	Q_DSB75_A 1_309	-

2.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No. Combination of EUTs		Description		
setup_01	EUT A + AE1 + AE2	setup for conducted tests		
setup_02	EUT B + AE1 + AE2	setup for conducted tests		
setup_03	EUT C + AE1 + AE2	setup for conducted tests		

2.5 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
	PCS data call	
op-mode 1	Call established on Traffic Channel (TCH) 128, Carrier	128 is the lowest channel
	Frequency 824.2 MHz	PCS data call
op-mode 2	Call established on Traffic Channel (TCH) 190, Carrier	190 is a mid channel
	Frequency 836.6 MHz	PCS data call
op-mode 3	Call established on Traffic Channel (TCH) 251, Carrier	251 is the highest channel
	Frequency 848.8 MHz	PCS data call
	EDGE data call	
op-mode 4	Call established on Traffic Channel (TCH) 128, Carrier	128 is the lowest channel
	Frequency 824.2 MHz	EDGE data call
op-mode 5	Call established on Traffic Channel (TCH) 190, Carrier	190 is a mid channel
	Frequency 836.6 MHz	EDGE data call
op-mode 6	Call established on Traffic Channel (TCH) 251, Carrier	251 is the highest channel
	Frequency 848.8 MHz	EDGE data call
	FDD V data call	
op-mode 7	Call established on Traffic Channel (TCH) 4132, Carrier	4132 is the lowest channel
	Frequency 826.4 MHz	FDD V data call
op-mode 8	Call established on Traffic Channel (TCH) 4183, Carrier	4183 is a mid channel
	Frequency 836.6 MHz	FDD V data call
op-mode 9	Call established on Traffic Channel (TCH) 4233, Carrier	4233 is the highest channel
-	Frequency 846.6 MHz	FDD V data call
	FDD V data call (HSDPA)	
op-mode 10	Call established on Traffic Channel (TCH) 4133, Carrier	4133 is a low channel
	Frequency 826.6 MHz	FDD V HSDPA data call
op-mode 11	Call established on Traffic Channel (TCH) 4175, Carrier	4175 is a mid channel
	Frequency 835.0 MHz	FDD V HSDPA data call
op-mode 12	Call established on Traffic Channel (TCH) 4232, Carrier	4232 is a high channel
	Frequency 846.4 MHz	FDD V HSDPA data call

HSDPA Subtests: (see Annex C of 3GPP TS 34.121, Table C.10.1.4)

Sub-test	рс	bd	bd (SF)	bc/bd	bHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 1: P_{ACK} , P_{NACK} and $P_{CQI} = 30/15$ with $\boldsymbol{b}_{hs} = 30/15 * \boldsymbol{b}_c$. Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, P_{ACK}							
	and ? _{NACK} = 30/15 with \boldsymbol{b}_{hs} = 30/15 * \boldsymbol{b}_{c} , and ? _{CQI} = 24/15 with \boldsymbol{b}_{hs} = 24/15 * \boldsymbol{b}_{c} .						
Note 3:	23: CM = 1 for β _c /β _d =12/15, β _{hs} /β _c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.						
Note 4:	For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.						

3 Test Results

3.1 RF Power Output

Standard FCC Part 22, 10-1-06 Subpart H

The test was performed according to: FCC §2.1046, 10-1-06

3.1.1 Test Description

 The EUT was coupled to the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
 The total insertion losses for RF Path 1 and RF Path 2 were measured. The values were used to correct the readings from the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester.

3) A call was established on a Traffic Channel (TCH) between the EUT and the base station simulator (R&S CMU200 Digital Communication Tester).

Important Settings:

- Discontinuous Transmission: OFF

- Modulation Signal: PSR16-1 (Pseudo Random Sequence)
- Output Power: Varied during measurements
- Channel (Frequency): Varied during measurements

4) The transmitted power of the EUT was recorded for all possible power control level by using an internal measurement function of the CMU200.

5) During this test the Spectrum Analyser was used to check if the results are comprehensible.

The test system TS8950 GW by Rohde & Schwarz was used to perform the output power measurement in the mode HSDPA , which is a validated platform according to the PTCRB certification requirements.

The measured output power is an RMS value according to 3GPP requirements for 3G devices and was measured at the antenna connector of the EUT.

3.1.2 Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated.

§22.913 Effective radiated power limits

(a) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

3.1.3 Test Protocol

Temperature:	24 °C
Air Pressure:	1008 1020 hPa
Humidity:	40 42 %

Op. Mode	Setup	Port		
see below	see below	antenna	connector	
Op. Mode	Setup	HSDPA Subtest	Output power Measured (dBm)	Remark
1	setup_03	_	32.4	_
2	setup_03	_	32.5	_
3	setup_03	_	32.4	_
4	setup_03	_	28.1	_
5	setup_03	_	28.1	_
6	setup_03	_	28.0	_
7	setup_03	_	26.6	_
8	setup_03	_	26.6	_
9	setup_03	_	26.4	_
10	setup_01	1	20.6	*
10	setup_01	2	20.5	*
10	setup_01	3	20.4	*
10	setup_01	4	20.3	*
11	setup_01	1	20.5	*
11	setup_01	2	20.3	*
11	setup_01	3	19.9	*
11	setup_01	4	19.8	*
12	setup_01	1	20.4	*
12	setup_01	2	20.4	*
12	setup_01	3	20.0	*
12	setup_01	4	20.1	*

Remarks:

The highest ERP including antenna gain (1.65 dBi = -0.49 dBD) is 32.0 dBm. * tested at TS8950 GW (RMS value)

3.1.4 Test result: RF Power Output

	•	
FCC Part 22, Subpart H	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 4	passed
	op-mode 5	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed
	op-mode 9	passed
	op-mode 10	passed
	op-mode 11	passed
	op-mode 12	passed

3.2 Spurious emissions at antenna terminals

Standard FCC Part 22, 10-1-06 Subpart H

The test was performed according to FCC §2.1051, 10-1-06

3.2.1 Test Description

1) The EUT was coupled to the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for RF Path 1 and RF Path 2 were measured. The values were used to correct the readings from the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester.

3) A call was established on a Traffic Channel (TCH) between the EUT and the base station simulator (R&S CMU200 Digital Communication Tester). Important Settings:

- Discontinuous Transmission: OFF
- Modulation Signal: PSR16-1 (Pseudo Random Sequence)
- Output Power: Maximum
- Channel: Varied during measurements

4) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the GSM-Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used c) [1 MHz / 3 MHz] otherwise

- Sweep Time: Calculated by using a formula given in the Product Standard "GSM 11.10-1 edition 4" for spurious emissions measurements (depending on the transmitting signal, the span and the resolution bandwidth)

5) The spurious emissions (peak) were measured in the frequency range from 9 kHz to 10 GHz (up to the 10th harmonic) during the call is established on the lowest channel

3.2.2 Test Requirements / Limits

§ 2.1051 Spurious emissions at antenna terminals

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

(1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Remark of the test laboratory: This is calculated to be -13 dBm.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

3.2.3 Test Protocol

Temperature:	26 °C
Air Pressure:	1020 hPa
Humidity:	34 %

Op. Mode	Setup	Port
op-mode 2	setup_02	antenna connector

Frequency	Bandwidth	Measured Level	Limit
MHz	kHz	dBm	dBm
_	-	_	-13.0

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

Op. Mode	Setup	Port		
op-mode 5	setup_02	antenna cor	nnector	
Frequency	Bandwidth	Measured Level	Limit	
MHz	kHz	dBm	dBm	
_	_	_	-13.0	

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

Op. Mode	Setup	Port
op-mode 8	setup_02	antenna connector

Frequency	Bandwidth	Measured Level	Limit
MHz	kHz	dBm	dBm
-	-	-	-13.0

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

3.2.4 Test result: Spurious emissions at antenna terminals

•		
FCC Part 22, Subpart H	Op. Mode	Result
	op-mode 2	passed
	op-mode 5	passed
	op-mode 8	passed

3.3 Emission and Occupied Bandwidth

Standard FCC Part 22, 10-1-06 Subpart H

The test was performed according to: FCC §2.1049, 10-1-06

3.3.1 Test Description

1) The EUT was coupled to the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for RF Path 1 and RF Path 2 were measured. The values were used to correct the readings from the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester.

3) A call was established on a Traffic Channel (TCH) between the EUT and the base station simulator (R&S CMU200 Digital Communication Tester). Important Settings:

- Discontinuous Transmission: OFF

- Modulation Signal: PSR16-1 (Pseudo Random Sequence)
- Output Power: Maximum
- Channel: Varied during measurements

4) Important Analyser Settings:

- Resolution Bandwidth: 3 kHz (1% of the manufacturers stated occupied bandwidth)
- Video Bandwidth: 10 kHz (three times the Resolution Bandwidth)
- Sweep Span: 1 MHz (at least 250% of the emission bandwidth)

5) The maximum spectral level of the modulated signal was recorded as the reference.

6) The emission bandwidth is measured as follows:

the two furthest frequencies above and below the frequency of the maximum reference level where the spectrum is -26 dB down have to be found.

7) The occupied bandwidth (99% Bandwidth) is measured as follows:

the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power.

3.3.2 Test Requirements / Limits

§ 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions (as applicable):

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

3.3.3 Test Protocol

Temperature:	26 °C
Air Pressure:	1020 hPa
Humidity:	34 %

Op. Mode	Setup	Port
op-mode 2	setup_02	antenna connector

Bandwidth kHz	Remarks			
316.6	please see annex			
Remark: The give	Remark: The given value is the result of the 26dB bandwidth measurement.			

The 99% Bandwidth is 244.5 kHz.

Op. Mode	Setup	Port	
op-mode 5	setup_02	antenna connector	
Bandwidth		Remarks	
kHz			
304.6		please see annex	
Remark: The give	n value is the result of	the 26dB bandwidth measurement.	
The 99%	6 Bandwidth is 258 5 k	Hz	

The 99% Bandwidth is 258.5 kHz.

Op. Mode	Setup	Port	
op-mode 8	setup_02	antenna connector	
	-		
Bandwidth		Remarks	
kHz			
4669.3		please see annex	
Remark: The give	en value is the result of	the 26dB bandwidth measurement.	

The 99% Bandwidth is 4188.4 kHz.

3.3.4 Test result: Emission and Occupied Bandwidth

FCC Part 22, Subpart H	Op. Mode	Result
	op-mode 2	passed
	op-mode 5	passed
	op-mode 8	passed

4 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer
Digital Radio	CMD 55	831050/020	Rohde & Schwarz
Communication Tester			
Signalling Unit for Bluetooth Spurious Emissions	PTW60	100004	Rohde & Schwarz
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz

EMI Test System

Equipment	Туре	Serial No.	Manufacturer
Comparison Noise	CNE III	99/016	York
Emitter			
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32	849785	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35	896037	Miteq
Broadband Amplifier 45MHz-27GHz	JS4-00102600-42	619368	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2 + W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A + UFB293C	W18.02-2 + W38.02-2	Rosenberger-Microcoax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna	Model 3160-09	9910-1184	EMCO

26.5 GHz

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist.	1506A / 93459	LM390	Weinschel
Power Divider N			
Broadband Resist.	1515 / 93459	LN673	Weinschel
Power Divider SMA			
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link	FO RS232 Link	182-018	Pontis
Transceiver			
I/Q Modulation	AMIQ-B1	832085/018	Rohde & Schwarz
Generator			
Notch Filter ultra stable	WRCA800/960-6E	24	Wainwright
Spectrum Analyzer 9	FSP3	838164/004	Rohde & Schwarz
kHz to 3 GHz			
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro	Opus10 THI (8152.00)	7482	Lufft Mess- und
Datalogger 03			Regeltechnik GmbH

Anechoic Chamber

Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	CO 2000	CO2000/328/12470406 /L	Innco innovative constructions GmbH
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

7 layers Bluetooth™ Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer
10 MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

TS8950 GW

Name of Device	Type	Serial Number	Manufacturer
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG:
Dual Channel Power meter	NRVD	100668	Rohde & Schwarz GmbH & Co.KG:
Diode Power Sensor	NRV-Z1	100149	Rohde & Schwarz GmbH & Co.KG:
Diode Power Sensor	NRV-Z1	100052	Rohde & Schwarz GmbH & Co.KG:
Signal Generator	SMP02	100129	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	101698	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	101699	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	100580	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	100582	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	100583	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	832492/061	Rohde & Schwarz GmbH & Co.KG:
GSM Signaling Unit	CRTU-G	100025	Rohde & Schwarz GmbH & Co.KG:
W-CDMA Signaling Unit	CRTU-W	100033	Rohde & Schwarz GmbH & Co.KG:
Power Supply	NGSM 32/10 DC	100043	Rohde & Schwarz GmbH & Co.KG:
System Controler	TS-PC 36	100016	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU850	100009	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU900	100015	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU1800	100023	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU1900	100018	Rohde & Schwarz GmbH & Co.KG:
Fading Simulator	ABFS	100041	Rohde & Schwarz GmbH & Co.KG:
Fading Simulator	ABFS	100047	Rohde & Schwarz GmbH & Co.KG:
Protocol Unit W-CDMA	CRTU-PU	100046	Rohde & Schwarz GmbH & Co.KG:
Industrial System Controler (spare)	PSL3		Rohde & Schwarz GmbH & Co.KG:
Industrial System Controler	PSL3	100035	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU FDD I+II	100002	Rohde & Schwarz GmbH & Co.KG:
Radio Unit W-CDMA	CRTU-RU	100035	Rohde & Schwarz GmbH & Co.KG:
Signal Switching and Conditioning Unit	SSCU-GW	100020	Rohde & Schwarz GmbH & Co.KG:
Fading Simulator	ABFS	100040	Rohde & Schwarz GmbH & Co.KG:
Distribution Unit		100025	Rohde & Schwarz GmbH & Co.KG:
Spectrum Analyser	FSU26	100090	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMU200A	101498	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMU200A	101499	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU FDD V	100014	Rohde & Schwarz GmbH & Co.KG:
SSCU Signal switching and conditioning	SSCU-EXT	100010	Rohde & Schwarz GmbH & Co.KG:
TS-COMB Combiner Box	TS-COMB	100004	Rohde & Schwarz GmbH & Co.KG:
CS-HUB Ethernet Hub / Optical Output	CS-HUB	100028	Rohde & Schwarz GmbH & Co.KG:
CS-TRIGA Trigger amplifier	CS-TRIGA	100041	Rohde & Schwarz GmbH & Co.KG:
ADU 200 Relay Box 5	Relay Box	A04388	Ontrak Control Systems Inc.: Mr. Fortir
Radio Unit W-ĆDMA	CRTU-RU	100212	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU IV-IX	100009	Rohde & Schwarz GmbH & Co.KG:

5 Photo Report

Photo 1: EUT (front side)

Photo 2: EUT (rear side)

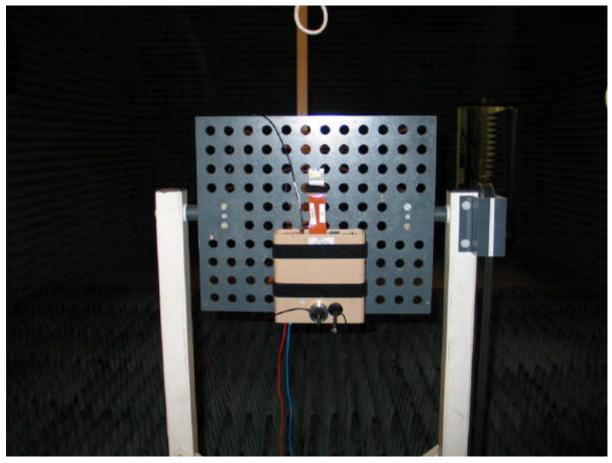
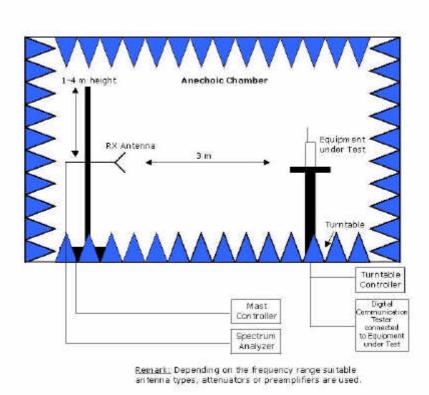
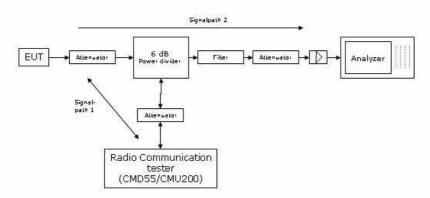
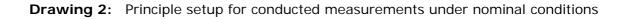



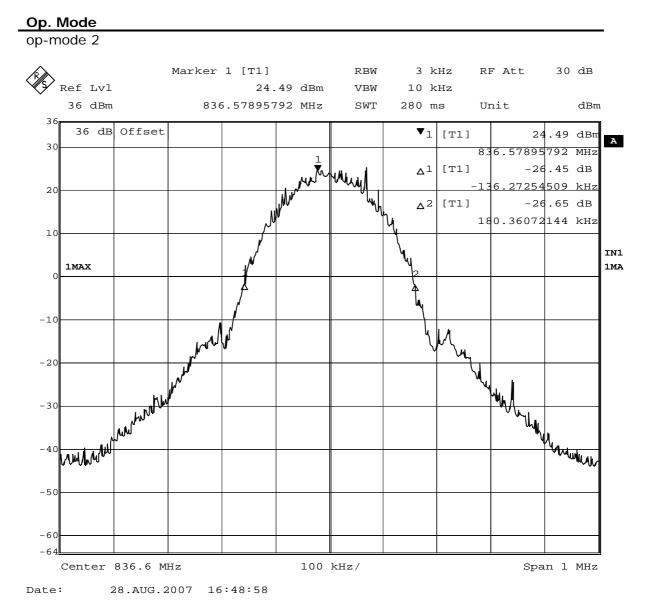
Photo 3: Setup for radiated tests

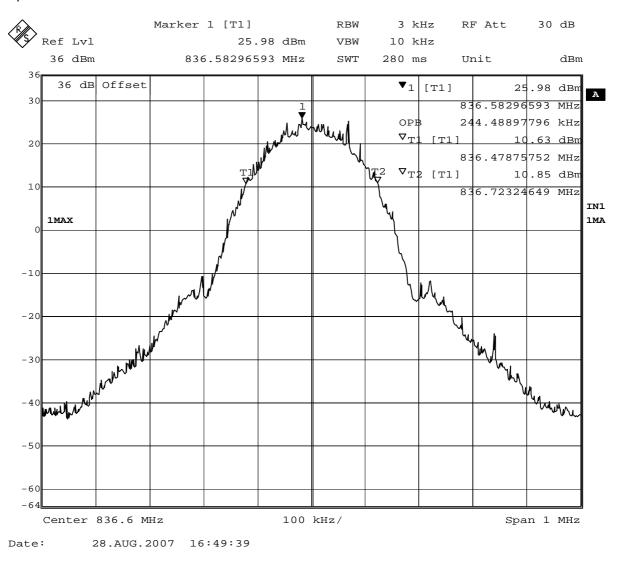


6 Setup Drawings

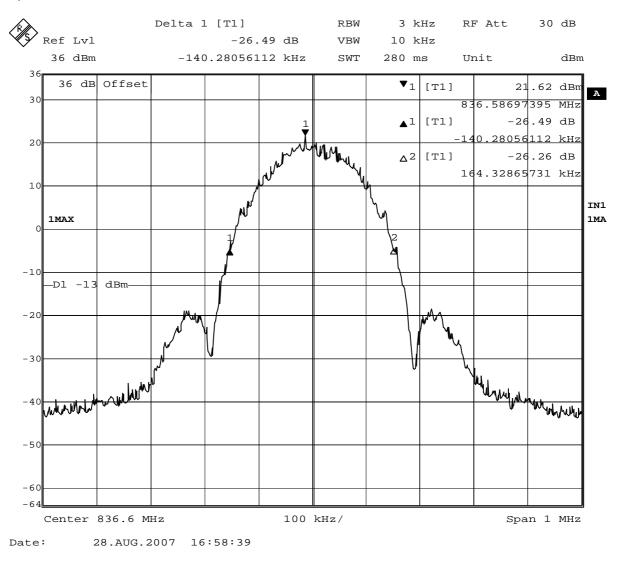


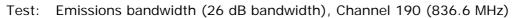
Drawing 1: Principle setup for radiated measurements.

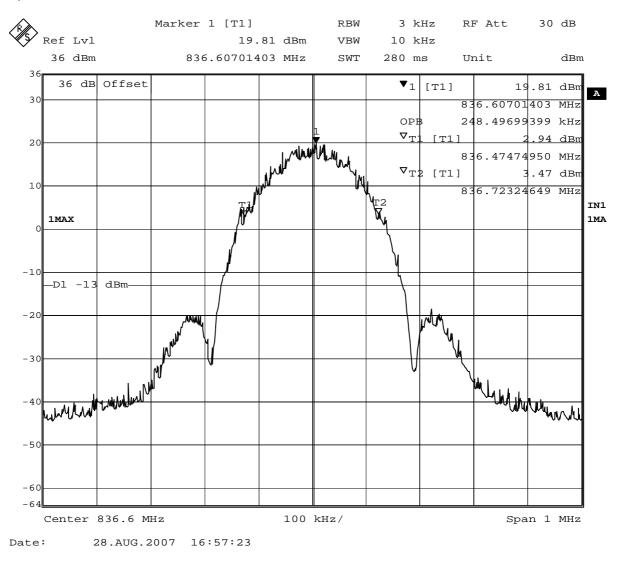

<u>Remark:</u> Depending on the frequency range suitable attenuators and/or filters and/or amplifiers are used.

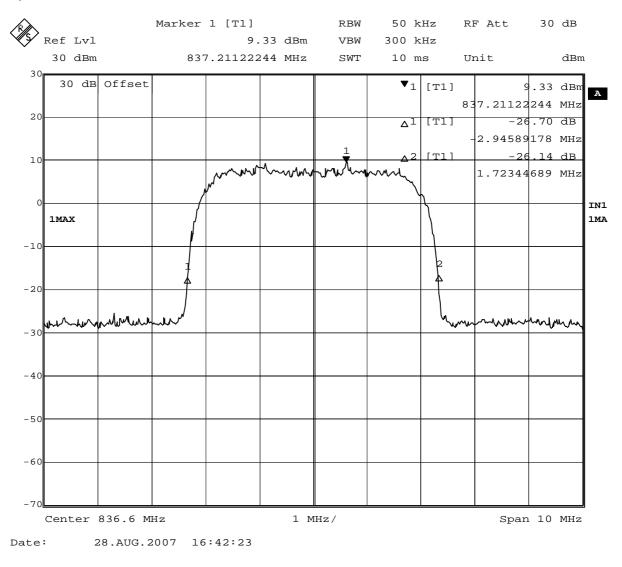

7 Annex

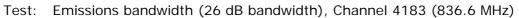
Measurement plots Emission and Occupied Bandwidth

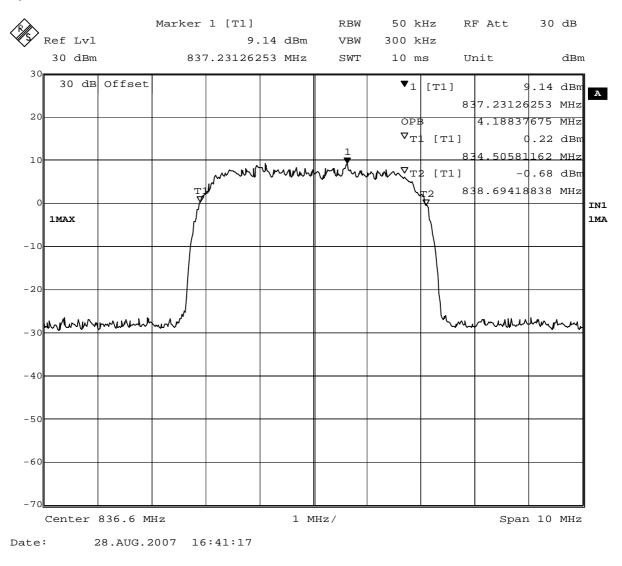

Test: Emissions bandwidth (26 dB bandwidth), Channel 190 (836.6 MHz)




Test: Occupied bandwidth, Channel 190 (836.6 MHz)






Test: Occupied bandwidth, Channel 190 (836.6 MHz)

