

InterLab FCC Measurement/Technical Report on

Module EES3

Report Reference: MDE_CINTE_0801_FCCf

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Markus Becker Vorstand • Board: Dr. Hans-Jürgen Meckelburg René Schildknecht

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT Nr: DE 203159652 TAX No. 147/5869/0385

Table of Contents

o Su	ımmary	3
0.1 0.2	Technical Report Summary Measurement Summary	3 4
1 Ad	lministrative Data	5
1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2 Te	estobject Data	6
2.1 2.2 2.3 2.4 2.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	6 7 7 7 8
3 Te	est Results	9
3.1 3.2	RF Power Output Field strength of spurious radiation	9 12
4 Te	est Equipment	15
5 Ph	noto Report	18
6 S e	etup Drawings	21
7 An	nnex	23
Measur	rement Plots	

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for a GSM cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 19 and Parts 20 to 69 (10-1-07 Edition). The following subparts are applicable to the results in this test report.

Part 2

Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output

§ 2.1049 Measurement required: Occupied bandwidth

§ 2.1051 Measurement required: Spurious emissions at antenna terminals

§ 2.1053 Measurement required: Field strength of spurious radiation

§ 2.1055 Measurement required: Frequency stability

§ 2.1057 Frequency spectrum to be investigated

Part 22

Subpart C – Operational and Technical Requirements

§ 22.355 Frequency tolerance

Subpart H - Cellular Radiotelephone Service

§ 22.913 Effective radiated power limits

§ 22.917 Emission limitations for cellular equipment

Summary Test

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

out		
nt was performed ac	cording to FCC §2.1046	10-1-07
Setup	Port	Final Result
Setup_a01	antenna connector	passed
	Setup Setup_a01 Setup_a01 Setup_a01 Setup_a01 Setup_a01 Setup_a01	setup Port Setup Port Setup_a01 antenna connector

Field strength of spurious radiation

The measureme	ent was performed ac	cording to FCC §2.1053	10-1-07
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_a02	enclosure	N/P
op-mode 2	Setup_a02	enclosure	passed
op-mode 3	Setup_a02	enclosure	N/P
op-mode 4	Setup_a02	enclosure	N/P
op-mode 5	Setup_a02	enclosure	passed
op-mode 6	Setup_a02	enclosure	N/P

This test report replaces the 7 layers test report MDE_Cinte_0801_FCCb, dated 2008-08-22.

N/P: not performed

Responsible for Accreditation Scope:

oly

Responsible

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG Address Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716. The test facility is also accredited by the following accreditation organisation: DAR-Registration no. DAT-P-192/99-01 - Deutscher Akkreditierungs Rat Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Report Template Version: 2008-08-06 1.2 Project Data Responsible for testing and report: Dr.-Ing. Michael Küppers Receipt of EUT: 2008-08-12 Date of Test(s): 2008-08-14 to 2008-08-20 Date of Report: 2008-09-04 1.3 Applicant Data Cinterion Wireless Modules GmbH Company Name: Address: Siemensdamm 50 13629 Berlin Germany Contact Person: Mr. Hussein Halawi 1.4 Manufacturer Data Company Name: please see applicant data Address:

Contact Person:

2 Testobject Data

2.1 General EUT Description

Equipment under Test: GSM / EDGE Module

Type Designation: EES3 Module

Kind of Device: GSM 850/900/1800/1900

(optional)

Voltage Type:DCNominal Voltage:4.5 VMaximum Voltage:4.5 VMinimum Voltage:3.2 V

General product description:

The Equipment Under Test (EUT) is a GSM 850/900/1800/1900 module and supports GSM and EDGE.

The manufacturer declared that nominal voltage is equal to high voltage.

In PCS1900 mode the EUT operates in blocks A through F from 1850.2 MHz (lowest channel = 512) to 1909.8 MHz (highest channel = 810).

The EUT provides the following ports:

Ports

antenna connector enclosure

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt		
EUT A	GSM / EDGE	EES 3	IMEI:	B2.0.1	Rev. 00.900	2008-08-12		
(Code:	Module	Module	0044010802		(SVN 01)			
CZ000D01)			10103					
Remark: EUT	Remark: EUT A is equipped with a permanent antenna connector.							

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1	DSB75 Evaluation Board	DSB75_B1_00 05			A5B009001 50933	-
AE2	DSB75 flex cable					
AE3	Laptop	Lifebook S7020		Win XP	YBBY01774	
AE4	External antenna	Skycross WBA ELEMENT 2-2645				

2.4 EUT Setups

This chapter describes the combination of EUT's and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
setup_a01	EUT A + AE1 + AE2 +	setup for conducted tests
	AE3	
setup_a02	EUT A + AE1 + AE2 +	setup for radiated tests
•	AE4	

2.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
	PCS call	
op-mode 1	Call established on Traffic Channel (TCH) 128, Carrier	128 is the lowest channel
-	Frequency 824.2 MHz	PCS data call
op-mode 2	Call established on Traffic Channel (TCH) 190, Carrier	190 is a mid channel
	Frequency 836.6 MHz	PCS data call
op-mode 3	Call established on Traffic Channel (TCH) 251, Carrier	251 is the highest channel
	Frequency 848.8 MHz	PCS data call
	EDGE call	
op-mode 4	Call established on Traffic Channel (TCH) 128, Carrier	128 is the lowest channel
•	Frequency 824.2 MHz	EDGE data call
op-mode 5	Call established on Traffic Channel (TCH) 190, Carrier	190 is a mid channel
	Frequency 836.6 MHz	EDGE data call
op-mode 6	Call established on Traffic Channel (TCH) 251, Carrier	251 is the highest channel
	Frequency 848.8 MHz	EDGE data call

3 Test Results

3.1 RF Power Output

Standard FCC Part 22, 10-1-07

Subpart H

The test was performed according to: FCC §2.1046, 10-1-07

3.1.1 Test Description

- 1) The EUT was coupled to the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for RF Path 1 and RF Path 2 were measured. The values were used to correct the readings from the R&S Spectrum Analyser and the R&S CMU200 Digital Communication Tester.
- 3) A call was established on a Traffic Channel (TCH) between the EUT and the base station simulator (R&S CMU200 Digital Communication Tester). Important Settings:
- Discontinuous Transmission: OFF
- Modulation Signal: PSR16-1 (Pseudo Random Sequence)
- Channel (Frequency): Varied during measurements
- 4) The transmitted power of the EUT was measured by using a spectrum analyser.

3.1.2 Test Requirements / Limits

- §2.1046 Measurements Required: RF Power Output
- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated. §22.913 Effective radiated power limits
- (a) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

3.1.3 Test Protocol

Temperature: 27°C Air Pressure: 1015 hPa Humidity: 34%

Op. Mode Setup Port

op-mode 1 setup_a01 antenna connector

Output power Measured (dBm) 32.48

Remark: The ERP including antenna gain (-0.49 dBD = 1.65 dBi -2.14) is 31.99dBm.

Op. Mode Setup Port

op-mode 2 setup_a01 antenna connector

Output power Measured (dBm) 32.21

Remark: The ERP including antenna gain (-0.49 dBD = 1.65 dBi -2.14) is 31.72 dBm.

Op. Mode Setup Port

op-mode 3 setup_a01 antenna connector

Output power Measured (dBm) 32.03

Remark: The ERP including antenna gain (-0.49 dBD = 1.65 dBi -2.14) is 31.54dBm.

Op. ModeSetupPortop-mode 4setup_a01antenna connector

Output power Measured (dBm) 29.95

Remark: The ERP including antenna gain (-0.49 dBD = 1.65 dBi -2.14) is 29.46dBm.

Op. Mode Setup Port

op-mode 5 setup_a01 antenna connector

Output power Measured (dBm) 29.81

Remark: The ERP including antenna gain (-0.49 dBD = 1.65 dBi -2.14) is 29.32dBm.

Op. ModeSetupPortop-mode 6setup_a01antenna connector

Output power Measured (dBm) 29.58

Remark: The ERP including antenna gain (-0.49 dBD = 1.65 dBi -2.14) is 29.09dBm.

3.1.4 Test result: RF Power Output

FCC Part 22, Subpart H

Result
passed

3.2 Field strength of spurious radiation

Standard FCC Part 22, 10-1-07

Subpart H

The test was performed according to: FCC §2.1053, 10-1-07

3.2.1 Test Description

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to the R&S CMU200 Digital Communication Tester which was located outside the chamber via coaxial cable.
- 2) A call was established on a Traffic Channel (TCH) between the EUT and the base station simulator (R&S CMU200 Digital Communication Tester). Important Settings:
- Discontinuous Transmission: OFF
- Modulation Signal: PSR16-1 (Pseudo Random Sequence)
- Output Power: Maximum
- Channel: Varied during measurements

(lowest channel: 128, mid channel: 190 and highest channel: 251)

- 3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lamda/2 dipole).
- 4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antennas for the frequency range of 30 MHz to 10 GHz (up to the 10th harmonic of the transmit frequency).
- 5) Important Analyser Settings
- [Resolution Bandwidth / Video Bandwidth]:
- a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the GSM-Band.
- b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used c) [1 MHz / 3 MHz] otherwise
- Sweep Time: Calculated by using a formula given in the Product Standard "GSM 11.10-1 edition 4" for spurious emissions measurements (depending on the transmitting signal, the span and the resolution bandwidth)
- 6) The spurious emissions (peak) were measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel (128), mid channel (190) and on the highest channel (251).

3.2.2 Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of Sec. 2.1049, as appropriate.

Test report Reference: MDE_CINTE_0801_FCCf

For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

- (b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
- (2) All equipment operating on frequencies higher than 25 MHz.
- § 2.1057 Frequency spectrum to be investigated.
- (a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
- (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
- (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
- (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.
- § 22.917 Emission limitations for cellular equipment
- (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dBµV/m (field strength) in a distance of 3 m.

- (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].
- (d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

3.2.3 Test Protocol

Temperature: 24°C Air Pressure: 1006 hPa Humidity: 41%

Op. Mode	Setup	Port	
op-mode 2	setup_a02	enclosure	

Frequency	Antenna	Bandwidth	Measured Level	Limit
MHz	Polarisation	kHz	dBm	dBm
-	-	-	-	-13.0

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

Op. Mod	de Setup	Port	
op-mode	e 5 setup_	a02 enclosure	

Frequency	Antenna	Bandwidth	Measured Level	Limit
MHz	Polarisation	kHz	dBm	dBm
-	-	-	-	-13.0

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

3.2.4 Test result: Field strength of spurious radiation

FCC Part 22, Subpart H	Op. Mode	Result
	op-mode 2	passed
	op-mode 5	passed

4 Test Equipment

EUT Digital Signalling System

Equipment	Type	Serial No.	Manufacturer	Last Cal	Next cal
Digital Radio	CMD 55	831050/020	Rohde & Schwarz	01.12.05	01.12.08
Communication Tester					
Signalling Unit for Bluetooth	PTW60	100004	Rohde & Schwarz	-	-
Universal Radio Communication Tester	CMU200	102366	Rohde & Schwarz	22.09.07	22.09.09

EMI Test System

Equipment	Туре	Serial No.	Manufacturer	Last Cal	Next cal
Comparison Noise	CNE III	99/016	York	-	-
Emitter					
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz	06.12.07	06.12.09
Signal Generator	SMR 20	846834/008	Rohde & Schwarz	05.12.07	05.12.09
AC Power Source	6404	64040000B04	Croma ATE INC.	01.06.08	N/A the parameters will be checked before testing
Spectrum Analyzer 9 kHz to 3 GHz	FSP3	838164/004	Rohde & Schwarz	25.11.05	25.11.08

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer	Last Cal	Next cal
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel	-	=
Biconical dipole	VUBA 9117	9117108	Schwarzbeck	02.07.03	02.10.08
Broadband Amplifier 18MHz-26GHz	JS4- 18002600 -32	849785	Miteq	06.02.08	06.10.08
Broadband Amplifier 30MHz-18GHz	JS4- 00101800 -35	896037	Miteq	06.02.08	06.10.08
Broadband Amplifier 45MHz-27GHz	JS4- 00102600 -42	619368	Miteq	06.02.08	06.10.08
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2 W38.01-2	Kabel Kusch	06.02.08	06.10.08
Cable "ESI to Horn Antenna"	UFB311A UFB293C	W18.02-2 W38.02-2	Rosenberger- Microcoax	06.02.08	06.10.08
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz	12.05.06	12.10.08
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz	20.01.04	N/A – spare antenna
High Pass Filter	5HC3500/ 12750- 1.2-KK	200035008	Trilithic	06.02.08	06.10.08
High Pass Filter	5HC2700/ 12750- 1.5-KK	9942012	Trilithic	06.02.08	06.10.08
High Pass Filter	4HC1600/ 12750- 1.5-KK	9942011	Trilithic	06.02.08	06.10.08
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz	17.05.06	17.05.09
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz	19.08.02	N/A – only used for pre-testing
Pyramidal Horn Antenna 26.5 GHz	Model 3160-09	9910-1184	EMCO	06.02.08	06.10.08

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer	Last Cal	Next cal
Cable "LISN to ESI"	RG214	W18.03+W48.	Huber+Suhner	06.02.08	06.10.08
		03			
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz	01.11.05	01.11.08
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz	-	-

Auxiliary Test Equipment – calibration not applicable; spare equipment

Equipment	Туре	Serial No.	Manufacturer	Last Cal	Next cal
Broadband Resist.	1506A /	LM390	Weinschel	-	-
Power Divider N	93459				
Broadband Resist.	1515 /	LN673	Weinschel	-	-
Power Divider SMA	93459				
Digital Multimeter 01	Voltcraft	IJ096055	Conrad	-	-
	M-3860M				
Digital Multimeter 02	Voltcraft	IJ095955	Conrad	-	-
	M-3860M				
Digital Oscilloscope	TDS 784C	B021311	Tektronix	-	-
Fibre optic link	FO RS232	181-018	Pontis	-	-
Satellite	Link				
Fibre optic link	FO RS232	182-018	Pontis	-	-
Transceiver	Link				
I/Q Modulation	AMIQ-B1	832085/018	Rohde & Schwarz	-	-
Generator					
Notch Filter ultra	WRCA800	24	Wainwright	-	-
stable	/960-6E				
Temperature Chamber	VT 4002	585660021500	Vötsch	-	-
		10			
Temperature Chamber	KWP	592260121900	Weiss	-	-
	120/70	10			
ThermoHygro	Opus10	7482	Lufft Mess- und	-	-
Datalogger 03	THI		Regeltechnik		
	(8152.00)		GmbH		

Anechoic Chamber – calibration not applicable

Equipment	Туре	Serial No.	Manufacturer	Last Cal	Next cal
Air Compressor (pneumatic)			Atlas Copco	-	-
Controller	CO 2000	CO2000/328/1 2470406/L	Innco innovative constructions GmbH	-	-
EMC Camera	CE-CAM/1		CE-SYS	-	-
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi	-	-
Filter ISDN	B84312- C110-E1		Siemens & Matsushita	-	-
Filter telephone systems / modem	B84312- C40-B1		Siemens & Matsushita	-	-
Filter Universal 1A	B84312- C30-H3		Siemens & Matsushita	-	-
Fully/Semi AE Chamber	10.58x6.3 8x6		Frankonia	-	-
Turntable	DS 420S	420/573/99	HD GmbH, H.Deisel	-	-
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H.Deisel	-	-

7 layers Bluetooth™ Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz	17.06.08	15.06.09
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz	18.06.08	17.06.09
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz	18.06.08	17.06.09
Power Supply	E3632A	MY40003776	Agilent	-	-
Power Supply	PS-2403D	-	Conrad	-	-
Rubidium Frequency Normal	MFS	002	Efratom	18.06.08	17.06.09
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz	23.08.07	23.08.09
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz	04.07.06	04.07.09
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz	04.07.06	04.07.09
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz	24.05.07	24.05.10
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz	-	-
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz	-	-
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz	-	-

5 Photo Report

Photo 1: EUT (front side)

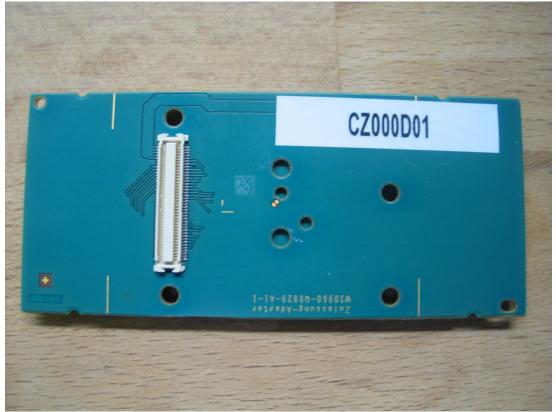


Photo 2: EUT (rear side)

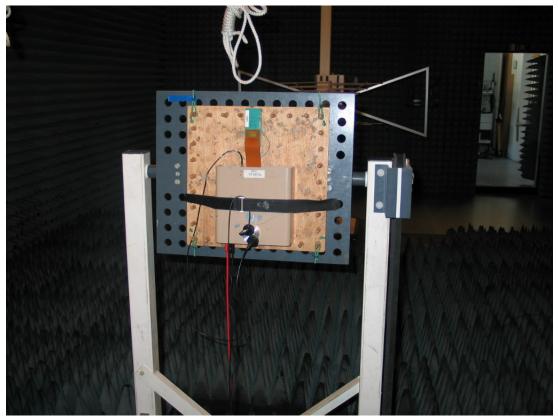
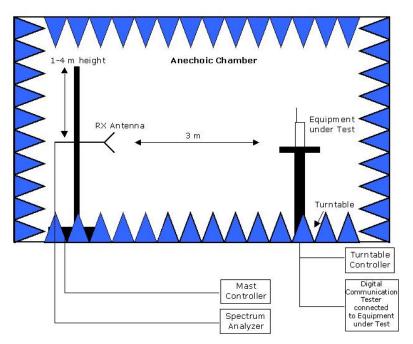
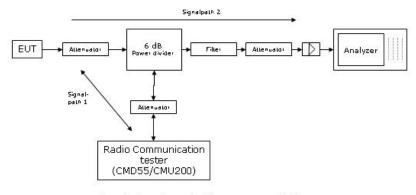



Photo 3: Setup for radiated tests

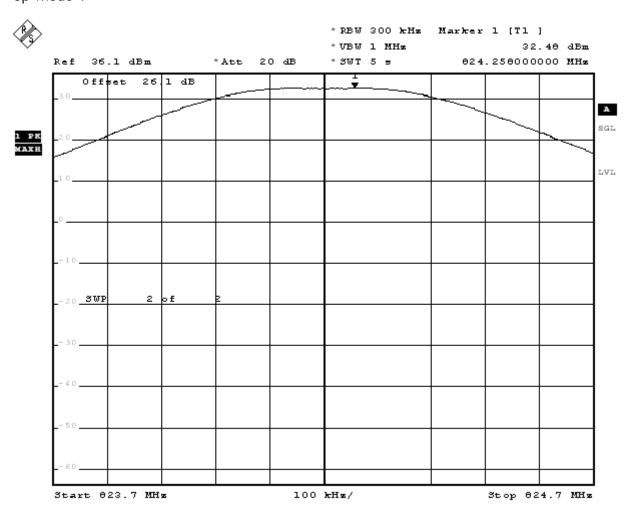

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Principle setup for radiated measurements.

Remark: Depending on the frequency range suitable attenuators and/or filters and/or amplifiers are used.

Drawing 2: Principle setup for conducted measurements under nominal conditions



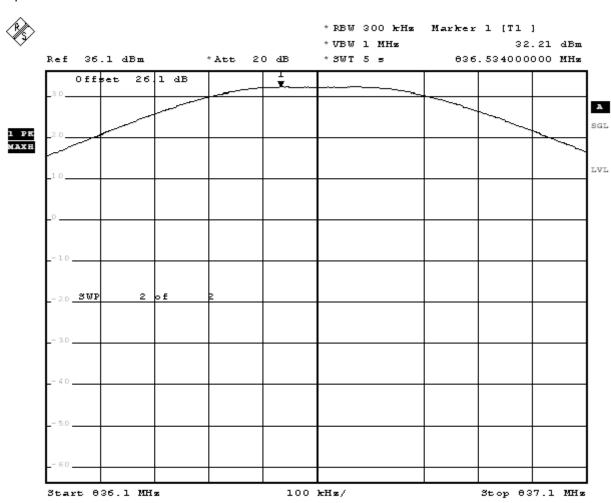
7 Annex

Measurement Plots

Op. Mode

op-mode 1

Comment: GSM call, output power, op-mode 1, channel 128

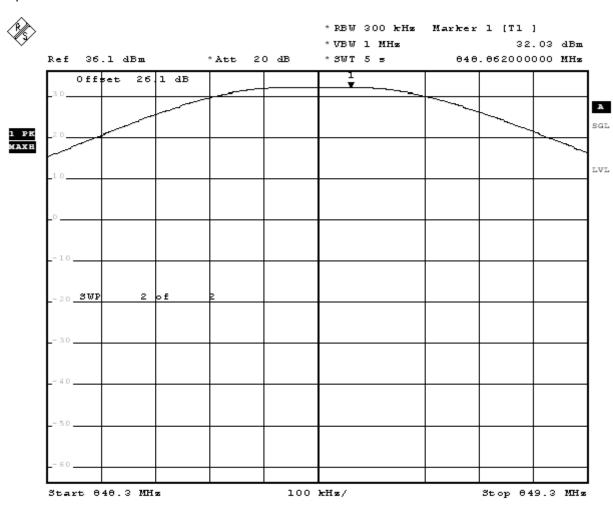

Comment: (824.2MHz)

Date: 14.AUG.2008 18:01:25

Test: Output Power, Channel 128 (824.2 MHz)

op-mode 2

Comment: GSM call, output power, op-mode 2, channel 190

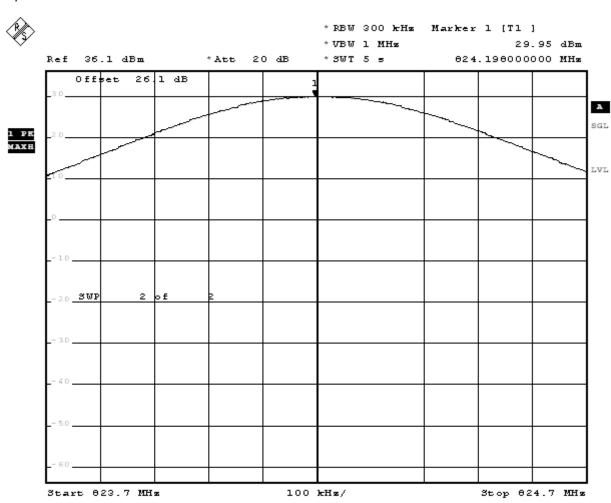

Comment: (836.6MHz)

Date: 14.AUG.2008 18:02:45

Test: Output Power, Channel 190 (836.6 MHz)

op-mode 3

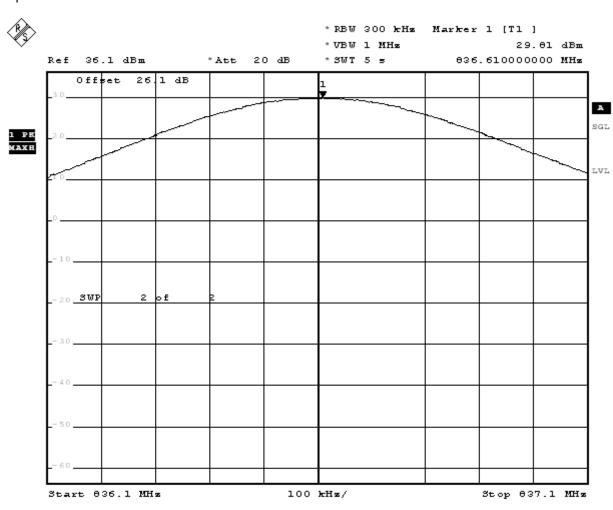
Comment: GSM call, output power, op-mode 3, channel 251


Comment: (848.8MHz)

Date: 14.AUG.2008 18:03:22

Test: Output Power, Channel 251 (848.8 MHz)

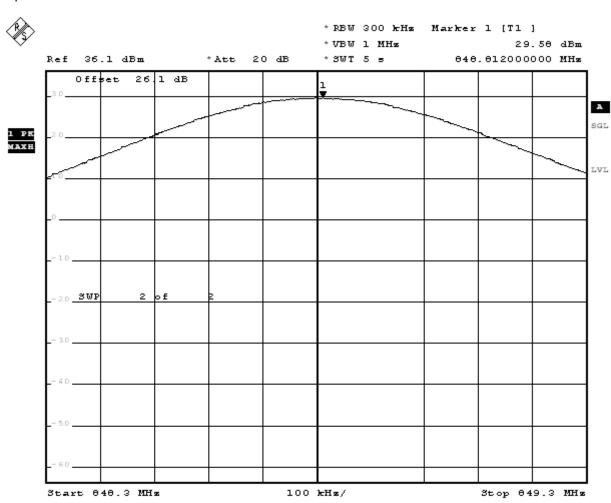
op-mode 4


Comment: EDGE data call, output power, op-mode 4,

Comment: channel 120 (024.2MHz)
Date: 20.AUG.2000 13:27:49

Test: Output Power, Channel 128 (824.2 MHz)

op-mode 5


Comment: EDGE data call, output power, op-mode 5,

Comment: channel 190 (836.6MHz)
Date: 20.AUG.2008 13:26:57

Test: Output Power, Channel 190 (836.6 MHz)

op-mode 6

Comment: EDGE data call, output power, op-mode 6,

Comment: channel 251 (040.0MHz)
Date: 20.AUG.2000 13:31:12

Test: Output Power, Channel 251 (848.8 MHz)