

# MPE REPORT

No. 2013TAR705

for

**GSM** Quad band module

**Model Name: BGS5** 

with

**Hardware Version: B2** 

Software Version: 00.282

Issued Date: Sep 24th, 2013

#### Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

#### **Test Laboratory:**

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com



## **CONTENTS**

| 1.   | TEST LABORATORY                                         | . 3 |
|------|---------------------------------------------------------|-----|
| 1.1. | TESTING LOCATION                                        | . 3 |
| 1.2. | TESTING ENVIRONMENT                                     | . 3 |
| 1.3. | PROJECT DATA                                            | . 3 |
| 1.4. | SIGNATURE                                               | . 3 |
| 2.   | CLIENT INFORMATION                                      | . 4 |
| 2.1. | APPLICANT INFORMATION                                   | . 4 |
| 2.2. | MANUFACTURER INFORMATION                                | . 4 |
| 3.   | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | . 5 |
| 3.1. | ABOUT EUT                                               | . 5 |
| 3.2. | INTERNAL IDENTIFICATION OF EUT                          | . 5 |
| 3.3. | INTERNAL IDENTIFICATION OF AE                           | . 5 |
| 4.   | REFERENCE DOCUMENTS                                     | . 6 |
| 4.1. | REFERENCE DOCUMENTS FOR TESTING                         | . 6 |
| 5.   | RF EXPOSURE LIMIT                                       | . 6 |
| 6.   | FRIIS FORMULA                                           | . 6 |
| 7.   | CLASSIFICATION                                          | . 7 |
| Q    | TEST DESILITS                                           | 7   |



## 1. Test Laboratory

#### 1.1. Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT Address: No 51, Xueyuan Road, Haidian District, Beijing, P.R.China

Postal Code: 100191

Telephone: 00861062304633 Fax: 00861062304793

#### 1.2. <u>Testing Environment</u>

Normal Temperature:  $15-35^{\circ}$ C Relative Humidity: 20-75%

#### 1.3. Project data

Project Leader: Xue Zhen
Testing Start Date: 2013-08-19
Testing End Date: 2013-09-24

#### 1.4. Signature

Xue Zhen

(Prepared this test report)

Song Chongwen

(Reviewed this test report)

Lu Bingsong

**Deputy Director of the laboratory** 

(Approved this test report)



## 2. Client Information

## 2.1. Applicant Information

Company Name: Gemalto M2M GmbH

Address /Post: St.-Martin-Str.60, 81541 München Germany

City: Münche
Postal Code: 81541
Country: Germany

Contact Person: Thorsten.liebig

Contact Email Thorsten.liebig@gemalto.com

Telephone: +49 30 31102-8241 Fax: +49 30 31102-8305

#### 2.2. Manufacturer Information

Company Name: Gemalto M2M GmbH

Address /Post: St.-Martin-Str.60, 81541 München Germany

City: Münche
Postal Code: 81541
Country: Germany
Contact Parage: Thereton li

Contact Person: Thorsten.liebig

Contact Email Thorsten.liebig@gemalto.com

Telephone: +49 30 31102-8241 Fax: +49 30 31102-8305



## 3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

## 3.1. About EUT

Description GSM Quad band module

Model name BGS5

Marketing name Cinterion BGS5

UMTS Frequency Band N/A

GSM Frequency Band 850/900/1800/1900

Power Class GSM850/900/1800/1900: 4/4/1/1

GPRS Class Class 12 EGPRS Class N/A

Extreme Temperature -10/+55℃

Normal Voltage 3.8V Extreme Low Voltage 3.3V Extreme High Voltage 4.5V

Note1: Photographs of EUT are shown in ANNEX A of this test report.

## 3.2. Internal Identification of EUT

| EUT ID | SN or IMEI      | <b>HW Version</b> | SW Version | Date of receipt |
|--------|-----------------|-------------------|------------|-----------------|
| N01    | 004401080937622 | B2                | 00.282     | 2013/06/25      |
| N07    | 004401080934777 | B2                | 00.282     | 2013/06/25      |
| N04    | 004401080936418 | B2                | 00.282     | 2013/06/25      |
| N10    | 004401080937531 | B2                | 00.282     | 2013/06/25      |
| N09    | 004401080935170 | B2                | 01.000     | 2013/09/20      |

<sup>\*</sup>EUT ID: is used to identify the test sample in the lab internally.

#### 3.3. Internal Identification of AE

| AE ID* | Description | SN |
|--------|-------------|----|
| AE1    | RF cable    |    |
| AE2    | Charger     |    |

<sup>\*</sup>AE ID: is used to identify the test sample in the lab internally.



## 4. Reference Documents

#### 4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

**ANSI C95.1–1999:** IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

**OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01):** Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

**447498 23 D01 General RF Exposure Guidance v05:** Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies

**Canadian RSS-102** standard for uncontrolled environment requires the RF-exposure value in W/m<sup>2</sup> unit, therefore the MPE limit value determined in mW/cm<sup>2</sup> unit, should be multiplied by 10 to have the required unit. The MPE limits are the same like on FCC § 1.1301 at table 1.

## 5. RF Exposure Limit

#### **Limits for General Population/Uncontrolled Exposure**

| Frequency<br>Range<br>(MHz) | Electric Field Strength (E) (V/m) | Magnetic Field<br>Strength (H)<br>(A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Time $ E ^2$ , $ H ^2$ or S (minutes) |
|-----------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|
| 0.3-1.34                    | 614                               | 1.63                                    | (100)*                                  | 30                                              |
| 1.34-30                     | 824/f                             | 2.19/f                                  | $(180/f^2)*$                            | 30                                              |
| 30-300                      | 27.5                              | 0.073                                   | 0.2                                     | 30                                              |
| 300-1500                    |                                   |                                         | f/1500                                  | 30                                              |
| 1500-100,000                |                                   |                                         | 1.0                                     | 30                                              |

f = frequency in MHz \*Plane-wave equivalent power density

## 6. Friis Formula

Friis transmission formula :  $Pd = (Pout*G) / (4*Pi*r^2)$ 

where

 $Pd = power density in W/m^2$ 

**Pout** = output power to antenna in **W** 

**G** = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in **m**Pd is the limit of MPE. If we know the maximum Gain of the antenna and the



total power input to the antenna, through the calculation, we will know the MPE value at distance 20cm.

## 7. Classification

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as Mobile Device.

## 8. Test Results

## 8.1. the maximum antenna gain

The reference antenna gain for external antenna is

GSM 850: 2.15 dBi GSM1900: 2.15 dBi

#### 8.2. Output Power Into Antenna & RF Exposure value at distance 20cm

Conducted Output power calculation:

| mode      | timeslot | Duty cycle | Peak Output | Average    |
|-----------|----------|------------|-------------|------------|
|           |          |            | Power       | Output     |
|           |          |            | (dBm)       | Power(dBm) |
| GSM 850   | 1 slot   | 12.5%      | 33.7        | 24.67      |
| GPRS 850  | 1 slot   | 12.5%      | 34          | 24.97      |
| GPRS 850  | 2 slots  | 25%        | 32.86       | 26.84      |
| GPRS 850  | 3 slots  | 37.5%      | 31.49       | 27.23      |
| GPRS 850  | 4 slots  | 50%        | 30.23       | 27.22      |
| GSM 1900  | 1 slot   | 12.5%      | 29.7        | 20.67      |
| GPRS 1900 | 1 slot   | 12.5%      | 29.83       | 20.80      |
| GPRS 1900 | 2 slots  | 25%        | 27.47       | 21.45      |
| GPRS 1900 | 3 slots  | 37.5%      | 26.38       | 22.12      |
| GPRS 1900 | 4 slots  | 50%        | 24.86       | 21.85      |

So the worst cases for each frequency band are:

| 1 7       |            |           |                       |                       |
|-----------|------------|-----------|-----------------------|-----------------------|
| Frequency | Average    | Antenna   | Power Density         | Limit of Power        |
| band      | Output     | gain(dBi) | (mW/cm <sup>2</sup> ) | Density               |
|           | Power(dBm) |           |                       | (mW/cm <sup>2</sup> ) |
| GSM 850   | 27.23      | 2.15      | 0.17                  | 0.57                  |
| GSM 1900  | 22.12      | 2.15      | 0.05                  | 1                     |

So the limit is kept.