

TEST REPORT

Test Report No.: 4-3443-01-01/10-A

Testing Laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 – 10
66117 Saarbrücken/Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: info@cetecom.com

Accredited Test Laboratory:

The test laboratory (area of testing) is accredited

according to DIN EN ISO/IEC 17025

DAR registration number: DGA-PL-176/94-D1

Applicant

Cinterion Wireless Modules GmbH

Siemensdamm 50 13629 Berlin/GERMANY

Phone: +49 30 311028 0 Fax: +49 30 31102-8305

Contact: Stefan Ludwig

e-mail: Stefan.Ludwig@cinterion.com

Phone: +49 30 31102-8152

Manufacturer

Cinterion Wireless Modules GmbH

Siemensdamm 50 13629 Berlin/GERMANY

Test Standard/s

ICNIRP Guidelines Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields

(up to 300 GHz)

FCC OET Bulletin 65 Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

AS/NZS 2772.1 Radiofrequency fields, Part 1: Maximum exposure limits - 3 kHz to 300 GHz

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: GSM/GPRS Module
Device type: mobile device

Model name: BG2-W
FCC-ID: QIPBG2

S/N serial number: n.a.

IMEI-Number: 004401-08-040340-1

HW hardware status: B2.1 SW software status: 00.656

Frequency: see technical details
Antenna: external antenna

Exposure category: general population / uncontrolled environment

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test performed:

Test Report authorised:

2010-08-18 Thomas Vogler 2010-08-18 Bernd Rebmann

2010-08-18 Page 1 of 17

1 Table of contents

1	Table	of co	ontents	2
2	Gana	ral inf	formation	4
_				
	2.1	Note	S	3
	2.2		lication details	
	2.3 2.4		ement of compliancenical details	
3	Test s	standa	ard/s:	5
	3.1	Purp	ose of this report	
4	_	-	compliance with requirements for human exposure to EMFs	
_		_		
	4.1		mum permissible exposure (MPE)	
	4.2	LIMI .2.1	ts and normative references	
		.2.1 .2.2	FCC requirements	
		.2.2 .2.3	EN requirementsAustralian requirements	
		_	platform analysis	
		.3.1	Scenario 0 : WWAN stand-alone	
		.3.2	Scenario 1 : WWAN + BT	
		.3.3	Scenario 2 : WWAN + WLAN	
		.3.4	Scenario 3 : WWAN + WLAN + BT	
	4.	.3.5	Scenario 4: WWAN + WiMAX	12
	4.	.3.6	Scenario 5: WWAN + WiMAX + BT	1
		.3.7	Scenario 6: WWAN + WiMAX + WLAN	
	4.	.3.8	Scenario 7 : WWAN + WiMAX + WLAN + BT	12
Anr	nex A:	RF	Exposure assessment	13
	Anne	x A.1:	Individual transmitters	13
	Anne	x A.2:	Collocated transmitters	1
Anr	nex B:	Do	ocument History	17
Anr	nex C:	Fu	rther Information	17

2 General information

2.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2010-07-21
Date of receipt of test item: 2010-07-21
Start of test: 2010-07-27
End of test: 2010-07-27

Person(s) present during the test:

2.3 Statement of compliance

The EMF values found for the BG2-W GSM/GPRS Module are below the maximum allowed levels according to the standards listed in section 3, when used with an antenna with maximum gain as listed in chapter 4.3.

2010-08-18 Page 3 of 17

2.4 Technical details

Supported frequency bands	Technology	Frequency band	Lowest transmit frequency/MHz	Highest transmit frequency/MHz	Lowest receive Frequency/MHz	Highest receive Frequency/MHz	Kind of modulation	Power Class	Tested power control level	GPRS/EGPRS mobile station class	GPRS/EGPRS multislot class	(E)GPRS voice mode or DTM	Test channel low	Test channel middle	Test channel high	Maximum output power/dBm)*
\boxtimes	GSM	GSM	880.2	914.8	925.2	959.8	GMSK	4	5	В	10	no	975	37	124	32.6
\boxtimes	GSM	DCS	1710.2	1784.8	1805.2	1879.8	GMSK	1	0	В	10	no	512	698	885	30.1
\boxtimes	GSM	cellular	824.2	848.8	869.2	893.8	GMSK	4	5	В	10	no	128	190	251	32.3
\boxtimes	GSM	PCS	1850.2	1909.8	1930.2	1989.8	GMSK	1	0	В	10	no	512	661	810	29.8
	UMTS	FDD I	1922.4	1977.6	2112.4	2167.6	QPSK	3	max				9612	9750	9888	
	UMTS	FDD II	1852.4	1907.6	1982.4	1987.6	QPSK	3	max				9262	9400	9538	
	UMTS	FDD IV	1712.4	1752.6	1807.4	1877.6	QPSK	3	max				1312	1412	1513	
	UMTS	FDD V	826.4	846.6	871.4	891.6	QPSK	3	max				4132	4182	4233	
	UMTS	FDD VIII	882.4	912.6	927.4	957.6	QPSK	3	max	-			2712	2787	2863	
	WLAN	ISM	2412	2472	2412	2472	CCK OFDM		max	1			1	7	13	
	WLAN US	ISM	2412	2462	2412	2462	CCK OFDM	1	max	1			1	6	11	
	ВТ	ISM	2412	2462	2412	2462	GFSK	3	max				0	39	78	

^{)*:} slotted peak power for GSM, averaged max. RMS power for UMTS, WLAN and BT.

2010-08-18 Page 4 of 17

3 Test standard/s:

Test Standard	Version	Test Standard Description
ICNIRP Guidelines	1998-04	Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)
FCC OET Bulletin 65	1997-01	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields
AS/NZS 2772.1	1998-01	Radiofrequency fields, Part 1: Maximum exposure limits - 3 kHz to 300 GHz
1999/519/EC	1999-07	Council Recommendation 1999/519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz) (Official Journal L 197 of 30 July 1999)

3.1 Purpose of this report

The purpose of this report is to show the compliance of certain simultaneous transmission configurations for use in mobile exposure conditions.

In addition to basic requirements of the standards listed above (including FCC Part 22 H and Part 24 E) the following requirements have been taken into account:

- The module must be categorically excluded by FCC 47 CFR § 2.1091 (c) and the antenna separation distance and MPE compliance boundary requirements that enable all simultaneous transmitting antennas incorporated within the host shall comply with MPE limits as specified in FCC 47 CFR § 1.1310.

(see chapter 8 of FCC KDB 447498 D01 Mobile Portable RF Exposure)

If these requirements are kept the module can be incorporated in mobile host devices without further testing or certification.

2010-08-18 Page 5 of 17

4 Evaluating compliance with requirements for human exposure to EMFs

4.1 Maximum permissible exposure (MPE)

Fixed/mobile exposure conditions of multiple transmitters installed in different hosts represent the most difficult situation in terms of the determination of minimum safety distances.

While EMF measurements most often only refer to a single configuration with only one transmitter or with multiple co-located transmitters a general approach is needed to determine a worst case condition under which several transmitters and their antennas can be installed to prevent additional SAR testing for each host

This test report illustrates different scenarios how radio modules can be integrated in notebook hosts without the need of further testing.

The target is to determine a maximum EIRP or antenna gain for a WWAN module using GSM and/or UMTS frequencies, which is used stand-alone or collocated with other antennas for WLAN, Bluetooth, WiMAX etc.

The background of the calculation is a minimum distance of 20 cm between antenna(s) and user (mobile exposure condition), and the compliance with the requirements of chapter 3.1.

4.2 Limits and normative references

There is a number of international and national regulations, standards and guidelines for exposure to electromagnetic fields. For the evaluations in this report the following reference levels have been applied.

4.2.1 FCC requirements

Frequency range	E-field strengt (V/m)	H-field strength (A/m)	B-field strength (μT)	Power density (mW/cm²)
300 – 1500 MHz				f(MHz) / 1500
1.5 – 100 GHz				1.0

Categorically exclusion per § 2.1091 (c) : - below 1.5 GHz : avg. ERP < 1.5 W (= 33.9 dBm EIRP) - above 1.5 GHz : avg. ERP < 3 W (= 36.9 dBm EIRP)

Part 22 H ERP limit : max. 7 W (38.45 dBm) burst power (= 40.6 dBm EIRP)

Part 24 E EIRP limit: max. 2 W (33.0 dBm) burst power

4.2.2 EN requirements

Frequency range	E-field strength	H-field strength	B-field strength	Power density
	(V/m)	(A/m)	(µT)	(mW/cm ²)
400 – 2000 MHz	1.375*f(MHz) ^{1/2}	0.0037*f(MHz) ^{1/2}	0.0046*f(MHz) ^{1/2}	f(MHz) / 2000
2 – 300 GHz	61	0.16	0.2	1.0

4.2.3 Australian requirements

Frequency range	E-field strength	H-field strength	B-field strength	Power density
	(V/m)	(A/m)	(µT)	(mW/cm ²)
400 – 2000 MHz	1.375*f(MHz) ^{1/2}	0.0037*f(MHz) ^{1/2}	0.0046*f(MHz) ^{1/2}	f(MHz) / 2000
2 – 300 GHz	61	0.16	0.2	1.0

Reference levels are provided for exposure assessment to determine whether the basic restrictions on exposure of humans to electromagnetic fields are exceeded. The basic restrictions on exposure to electromagnetic fields are based directly on established health effects and biological considerations.

2010-08-18 Page 6 of 17

4.3 Host platform analysis

The MPE calculation has been performed for different scenarios of stand-alone and co-located operation of the WWAN module described below and generic radio modules with different communication systems.

WWAN module :		Notes:
type:	GSM/GPRS module	
model:	BG2-W	
FCC-ID:	QIPBG2	
IC-ID:	7830A-BG2	
Maximum antenna gain < 1 GHz	6.84 dBi	limitation when used stand-alone
Maximum antenna gain < 1 GHz	6.1 dBi	limitation when used in collocated scenarios
Maximum antenna gain > 1.7 GHz	3.2 dBi	limitation by FCC Part 24 E EIRP limit

The table below lists the calculated maximum EIRP values which represent the worst case condition of all standards and limits listed in chapter 4.2.

a) Maximum antenna gain determination in stand-alone situation. For details see annex A.1.

Communication system	Mode	Frequency (MHz)	Conducted power (dBm) *	Antenna gain (dBi)	Duty Cycle (%)	PAR (dB)	EIRP (dBm)**	EIRP (mW)**
GSM 850	GSM/GPRS	824.2 - 848.8	32.30	6.84	25	6	33.14	2060.63
E-GSM 900	GSM/GPRS	880.2 - 914.8	32.60	6.84	25	6	33.44	2208.00
DCS 1800	GSM/GPRS	1710.2 - 1784.8	30.10	12.23	25	6	36.33	4295.36
PCS 1900	GSM/GPRS	1850.2 - 1909.8	29.80	12.23	25	6	36.03	4008.67

b) Maximum antenna gain determination in collocated scenarios. For details see annex A.1 and A.2.

Communication system	Mode	Frequency (MHz)	Conducted power (dBm) *	Antenna gain (dBi)	Duty Cycle (%)	PAR (dB)	EIRP (dBm)**	EIRP (mW)**
GSM 850	GSM/GPRS	824.2 - 848.8	32.30	6.10	25	6	32.40	1737.80
E-GSM 900	GSM/GPRS	880.2 - 914.8	32.60	6.10	25	6	32.70	1862.09
DCS 1800	GSM/GPRS	1710.2 - 1784.8	30.10	11.50	25	6	35.60	3630.78
PCS 1900	GSM/GPRS	1850.2 - 1909.8	29.80	11.50	25	6	35.30	3388.44

For the generic communication systems the following worst case technical data have been assumed.

			Conducted		Duty			
Communication		Frequency	power	Antenna	Cycle	PAR	EIRP	EIRP
system	Mode	(MHz)	(dB) *	gain (dBi)	(%)	(dB)	(dBm)**	(mW)**
Bluetooth		2.4 GHz Range	20.0	0.00	76	1.2	18.80	75.86
WLAN		2.4 /5 GHz Range	23.0	0.00	100	0	23.00	199.5
WiMAX		various	27.0	0.00	100	0	27.00	501.2

2010-08-18 Page 7 of 17

c) Maximum antenna gain with ERP Limitation by FCC 47 CFR § 2.1091 (c)

Communication system	Mode	Frequency (MHz)	Conducted power (dBm) *	Antenna gain (dBi)	Duty Cycle (%)	PAR (dB)	EIRP (dBm)**	EIRP (mW)**
GSM 850	GSM/GPRS	824.2 - 848.8	32.30	7.60	25	6	33.90	2454.71
PCS 1900	GSM/GPRS	1850.2 - 1909.8	29.80	13.10	25	6	36.90	4897.79

d) Maximum antenna gain with E(I)RP Limitation by FCC Part 22 H and Part 24 E

Communication system	Mode	Frequency (MHz)	Conducted power (dBm) *	Antenna gain (dBi)	Duty Cycle (%)	PAR (dB)	EIRP (dBm)**	EIRP (mW)**
GSM 850	GSM/GPRS	824.2 - 848.8	32.30	8.30	25	6	34.60	2884.03
PCS 1900	GSM/GPRS	1850.2 - 1909.8	29.80	3.20	25	6	27.00	501.19

^{*:} slotted peak power of 1 time slot for GSM, maximum RMS for all other communication systems

Additional illustration:

- Table a) shows the maximum antenna gain for the WWAN module so that the worst case power density limits are met in stand-alone configuration.
- Table b) shows the maximum antenna gain for the WWAN module so that the worst case power density limits are met in all collocated scenarios.
- Table c) shows the maximum antenna gain of the WWAN module so that FCC ERP limits for time based averaged power are met.
- Table d) shows the maximum antenna gain of the WWAN module so that FCC E(I)RP limits for burst power are met.

The lowest calculated antenna gain values (shown in bold letters) determine the highest allowed antenna gain of the WWAN module in stand-alone and collocated scenarios.

Antenna configuration for all scenarios:

Important note: this notebook configuration is an example. Different applications (e.g. M2M) are also possible as long as the same antenna-to-antenna and antenna-to-user distances are respected.

2010-08-18 Page 8 of 17

^{**:} time based averaged power for 2 timeslots without power reduction.

4.3.1 Scenario 0: WWAN stand-alone

This scenario covers the following combination of collocated radio modules:

Transmitter	primary
communication	WWAN
system	(GSM/GPRS)
type	Cinterion
model	BG2-W
FCC-ID	QIPBG2
max. EIRP (mW)	see chapter 4.3
max.antenna gain	6.84 dBi/3.2 dBi

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm)

4.3.2 Scenario 1: WWAN + BT

This scenario covers the following combination of collocated radio modules:

Transmitter	primary	secondary
communication	WWAN	BT
system	(GSM/GPRS)	
type	Cinterion	any
model	BG2-W	any
FCC-ID	QIPBG2	any
max. EIRP (mW)	see chapter 4.3	76.43
max.antenna gain	6.1 dBi/3.2 dBi	nn

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above
- the averaged EIRP of the BT module does not exceed the value listed above
- the distance between WWAN and BT antennas is 0 cm or larger

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm)

2010-08-18 Page 9 of 17

4.3.3 Scenario 2: WWAN + WLAN

This scenario covers the following combination of collocated radio modules:

Transmitter	primary	secondary
communication	WWAN	WLAN
system	(GSM/GPRS)	
type	Cinterion	any
model	BG2-W	any
FCC-ID	QIPBG2	any
max. EIRP (mW)	see chapter 4.3	200
max.antenna gain	6.1 dBi/3.2 dBi	nn

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above
- the averaged EIRP of the WLAN module does not exceed the value listed above
- the distance between WWAN and WLAN antennas is 0 cm or larger

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm).

4.3.4 Scenario 3: WWAN + WLAN + BT

This scenario covers the following combination of collocated radio modules:

Transmitter	primary	secondary		
communication	WWAN	BT	WLAN	
system	(GSM/GPRS)			
type	Cinterion	any	any	
model	BG2-W	any	any	
FCC-ID	QIPBG2	any	any	
max. EIRP (mW)	see chapter 4.3	76.43	200	
max.antenna gain	6.1 dBi/3.2 dBi	nn	nn	

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above
- the averaged EIRP of the WLAN module does not exceed the value listed above
- the averaged EIRP of the BT module does not exceed the value listed above
- the distance between WWAN, WLAN and BT antennas is 0 cm or larger

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm)

2010-08-18 Page 10 of 17

4.3.5 Scenario 4: WWAN + WiMAX

This scenario covers the following combination of collocated radio modules:

Transmitter	primary	secondary
communication	WWAN	WiMAX
system	(GSM/GPRS)	
type	Cinterion	any
model	BG2-W	any
FCC-ID	QIPBG2	any
max. EIRP (mW)	see chapter 4.3	500
max.antenna gain	6.1 dBi/3.2 dBi	nn

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above
- the averaged EIRP of the WiMAX module does not exceed the value listed above
- the distance between WWAN and WiMAX antennas is 0 cm or larger

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm)

4.3.6 Scenario 5: WWAN + WIMAX + BT

This scenario covers the following combination of collocated radio modules:

Transmitter	primary	secondary			
communication	WWAN	BT	WiMAX		
system	(GSM/GPRS)				
type	Cinterion	any	any		
model	BG2-W	any	any		
FCC-ID	QIPBG2	any	any		
max. EIRP (mW)	see chapter 4.3	76.43	500		
max.antenna gain	6.1 dBi/3.2 dBi	nn	nn		

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above
- the averaged EIRP of the WiMAX module does not exceed the value listed above
- the averaged EIRP of the BT module does not exceed the value listed above
- the distance between WWAN, WiMAX and BT antennas is 0 cm or larger

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm)

2010-08-18 Page 11 of 17

4.3.7 Scenario 6: WWAN + WIMAX + WLAN

This scenario covers the following combination of collocated radio modules:

Transmitter	primary	secondary		
communication	WWAN	WLAN	WiMAX	
system	(GSM/GPRS)			
type	Cinterion	any	any	
model	BG2-W	any	any	
FCC-ID	QIPBG2	any	any	
max. EIRP (mW)	see chapter 4.3	200	500	
max.antenna gain	6.1 dBi/3.2 dBi	nn	nn	

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above
- the averaged EIRP of the WiMAX module does not exceed the value listed above
- the averaged EIRP of the WLAN module does not exceed the value listed above
- the distance between WWAN, WiMAX and WLAN antennas is 0 cm or larger

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm)

4.3.8 Scenario 7: WWAN + WIMAX + WLAN + BT

This scenario covers the following combination of collocated radio modules:

Transmitter	primary	secondary					
communication	WWAN	BT	BT WLAN				
system	(GSM/GPRS)						
type	Cinterion	any	any	any			
model	BG2-W	any	any	any			
FCC-ID	QIPBG2	any	any	any			
max. EIRP (mW)	see chapter 4.3	76.43	200	500			
max.antenna gain	6.1 dBi/3.2 dBi	nn	nn	nn			

This scenario covers the following conditions:

- the antenna-to-user distance of all transmitters listed above is 20 cm or larger
- the maximum antenna gain of the WWAN transmitters does not exceed the values listed above
- the averaged EIRP of the WiMAX module does not exceed the value listed above
- the averaged EIRP of the WLAN module does not exceed the value listed above
- the averaged EIRP of the BT module does not exceed the value listed above
- the distance between WWAN, WiMAX, WLAN and BT antennas is 0 cm or larger

Note: other antennas for different communication systems may be installed in the host platform as long as they are not collocated to the WWAN antenna (distance > 20 cm)

2010-08-18 Page 12 of 17

Annex A: RF Exposure assessment

Annex A.1: Individual transmitters

The table on the following page lists all calculated power density values in relation to the limits defined in different standards, calculated for a distance of 20 cm from the antenna(s).

Fundamental data for calculating worst case EIRP of the primary and secondary transmitters are listed in chapter 4.3.

Power density at a distance of 20 cm is calculated by using the following formula:

$$S_{eq} = P \cdot G / 4\pi \cdot r^2$$
 with P*G = EIRP and r = 20 cm

Then the ratio $\frac{S_{\it eq}}{S_{\it lim}}$ is calculated for all applied limits.

During calculation the maximum EIRP of the primary transmitter is optimized so that the ratio S_{eq} / S_{lim} does not exceed a value of 1 for all applied limits for a comprehensive coverage of all relevant standards.

The calculation of S_{eq} / S_{lim} with reference to a certain standard is limited to those frequency bands that are generally used in regions where this standard is applied.

standard	EN	FCC	AUS/NZ
region	Europe	USA,Canada	Australia
			New Zealand
GSM 850		Х	
UMTS FDD V		Х	Х
(E)GSM 900	Х		Х
UMTS FDD VIII	X		
DCS 1800	Х		X
UMTS FDD IV		Х	
PCS 1900		Х	
UMTS FDD II		Х	
UMTS FDD I	X		Х
ISM (WLAN/BT)	Х	Х	Х
WiMAX	Х	Х	Х

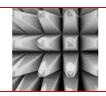
Note:

For frequencies above 2 GHz the limit is constant for all standards.

Therefore no frequency dependent differentiation is needed for radio technologies in this frequency band.

2010-08-18 Page 13 of 17


Stand-alone power density overview and limit reference of WWAN communication systems :


Comm. System	Mode	Reference Frequency	EIRP (dBm)	Distance (cm)	Power Density Seq (mW/cm²)	MPE Limit (mW/cm²) EN	S _{eq} / S _{Lim}	MPE Limit (mW/cm²) FCC	S _{eq} / S _{Lim} FCC	MPE Limit (mW/cm²) AUS	S _{eq} / S _{Lim}
GSM 850	GSM/GPRS	847,8	2060,63	20	0,4099	0,4239		0,5652	0,7253	0,4239	
E-GSM 900	GSM/GPRS	880,2	2208,005	20	0,4393	0,4401	0,9981	0,5868		0,4401	0,9981
DCS 1800	GSM/GPRS	1710,2	4295,364	20	0,8545	0,8551	0,9993	1,0000		0,8551	0,9993
PCS 1900	GSM/GPRS	1909,8	4008,667	20	0,7975	0,9549		1,0000	0,7975	0,9549	

Stand-alone power density overview and limit reference of WWAN communication systems and possible collocated transmitters :

Comm. System	Mode	Reference Frequency	EIRP (mW)	Distance (cm)	Power Density Seq (mW/cm²)	MPE Limit (mW/cm²) EN	S _{eq} / S _{Lim}	MPE Limit (mW/cm²) FCC	S _{eq} / S _{Lim} FCC	MPE Limit (mW/cm²) AUS	S _{eq} / S _{Lim}
GSM 850	GSM/GPRS	847.8	1737.801	20	0.3457	0.4239		0.5652	0.6117	0.4239	
E-GSM 900	GSM/GPRS	880.2	1862.087	20	0.3705	0.4401	0.8417	0.5868		0.4401	0.8417
DCS 1800	GSM/GPRS	1710.2	3630.781	20	0.7223	0.8551	0.8447	1.0000		0.8551	0.8447
PCS 1900	GSM/GPRS	1909.8	3388.442	20	0.6741	0.9549		1.0000	0.6741	0.9549	
worst case S_{eq} / S_{Lim} EN 0.8447 FCC 0.6741 AUS 0.8447 Collocated transmitters:											
Bluetooth		2450	75.86	20	0.0151	1	0.0151	1	0.0151	1	0.0151
WLAN	·	2450	199.53	20	0.0397	1	0.0397	1	0.0397	1	0.0397
WiMax		2300	501.19	20	0.0997	1	0.0997	1	0.0997	1	0.0997

Annex A.2: Collocated transmitters

When transmitters with collocated antennas are active simultaneously a worst case assessment is necessary which takes additive effects into account.

In this case it must be insured that the sum of all worst case power densities of all active transmitters (according to the different scenarios) do not exceed the limits even if they are far below the limits for the single transmitter.

$$\sum_{1}^{n} \frac{S_{eqn}}{S_{\lim n}} = \frac{S_{eq1}}{S_{\lim 1}} + \frac{S_{eq2}}{S_{\lim 2}} + \dots + \frac{S_{eqn}}{S_{\lim n}} \le 1$$

The following tables show the results separated for different limits according to the standards listed in chapter 4.2.

The sum that comes closest to 1 represents the worst case and limits the antenna gain that is allowed for the WWAN module.

a) Simultaneous Exposure according to FCC limits

Scenario	Combina	tion	worst case Seq / SLim	Sum	Compliance	
Scenario 1	Primary Tx	WWAN	0.6741	0.6892	PASS	
Scenario i	Secondary Tx	Bluetooth	0.0151	0.0092	F A33	
Scenario 2	Primary Tx	WWAN	0.6741	0.7138	PASS	
Scenario 2	Secondary Tx	WLAN	0.0397	0.7 130	F A33	
	Primary Tx	WWAN	0.6741			
Scenario 3	Secondary Tx	WLAN	0.0397	0.7289	PASS	
	Secondary Tx	Bluetooth	0.0151			
Scenario 4	Primary Tx	WWAN	0.6741	0.7738	PASS	
Scenario 4	Secondary Tx	WiMAX	0.0997	0.7736		
	Primary Tx	WWAN	0.6741			
Scenario 5	Secondary Tx	WiMAX	0.0997	0.7889	PASS	
	Secondary Tx	Bluetooth	0.0151			
	Primary Tx	WWAN	0.6741			
Scenario 6	Secondary Tx	WLAN	0.0397	0.8135	PASS	
	Secondary Tx	WiMAX	0.0997			
	Primary Tx	WWAN	0.6741			
Scenario 7	Secondary Tx	WLAN	0.0397	0.8286	PASS	
Scenario /	Secondary Tx	WiMAX	0.0997	0.0200	FASS	
	Secondary Tx	Bluetooth	0.0151			

2010-08-18 Page 15 of 17

b) Simultaneous Exposure according to EN limits

Scenario	Combina	tion	worst case Seq / SLim	Sum	Compliance
Scenario 1	Primary Tx	WWAN	0.8447	0.8598	PASS
ocenano i	Secondary Tx	Bluetooth	0.0151		
Scenario 2	Primary Tx	WWAN	0.8447	0.8844	PASS
Scenario 2	Secondary Tx	WLAN	0.0397		
	Primary Tx	WWAN	0.8447	0.8995	PASS
Scenario 3	Secondary Tx	WLAN	0.0397		
	Secondary Tx	Bluetooth	0.0151		
Scenario 4	Primary Tx	WWAN	0.8447	0.9444	PASS
Scenario 4	Secondary Tx	WiMAX	0.0997		
Scenario 5	Primary Tx	WWAN	0.8447	0.9595	PASS
	Secondary Tx	WiMAX	0.0997		
	Secondary Tx	Bluetooth	0.0151		
	Primary Tx	WWAN	0.8447	0.9841	PASS
Scenario 6	Secondary Tx	WLAN	0.0397		
	Secondary Tx	WiMAX	0.0997		
Scenario 7	Primary Tx	WWAN	0.8447	0.9992	PASS
	Secondary Tx	WLAN	0.0397		
	Secondary Tx	WiMAX	0.0997		
	Secondary Tx	Bluetooth	0.0151		

c) Simultaneous Exposure according to AUS/NZ limits

Scenario	Combina	tion	worst case Seq / SLim	Sum	Compliance
Scenario 1	Primary Tx	WWAN	0.8447	0.8598	PASS
ocenano i	Secondary Tx	Bluetooth	0.0151		
Scenario 2	Primary Tx	WWAN	0.8447	0.8844	PASS
Scenario 2	Secondary Tx	WLAN	0.0397		
	Primary Tx	WWAN	0.8447		PASS
Scenario 3	Secondary Tx	WLAN	0.0397	0.8995	
	Secondary Tx	Bluetooth	0.0151		
Scenario 4	Primary Tx	WWAN	0.8447	0.9444	PASS
Scenario 4	Secondary Tx	WiMAX	0.0997		
	Primary Tx	WWAN	0.8447	0.9595	PASS
Scenario 5	Secondary Tx	WiMAX	0.0997		
	Secondary Tx	Bluetooth	0.0151		
	Primary Tx	WWAN	0.8447	0.9841	PASS
Scenario 6	Secondary Tx	WLAN	0.0397		
	Secondary Tx	WiMAX	0.0997		
	Primary Tx	WWAN	0.8447	0.9992	PASS
Scenario 7	Secondary Tx	WLAN	0.0397		
	Secondary Tx	WiMAX	0.0997		
	Secondary Tx	Bluetooth	0.0151		

2010-08-18 Page 16 of 17

Annex B: Document History

Version	Applied Changes	Date of Release
	Initial Release	2010-07-27
А	Chapter 3.1 added (Purpose of the report)	2010-08-18
	Chapter 4.1 general information updated	
	Chapter 4.2 and 4.3 updated with FCC E(I)RP limits and corresponding calculations.	
	Chapter 4.3 and Annex A.1 stand-alone situation added	
	Chapter 4.3 GSM/GPRS power reduction information added	

Annex C: Further Information

Glossary

DUT - Device under Test
EMF - Electromagnetic Fields
EUT - Equipment under Test

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - not applicable
S/N - Serial Number
SW - Software

2010-08-18 Page 17 of 17