

ACCREDITED Test Lab Cert 2764.01	FCC LISTED, REGISTRATION NUMBER: 2764.01Test report No:ISED LISTED REGISTRATION NUMBER: 23595-12456ERM.003A1		
Test report REFERENCE STANDARD: USA FCC Part 24 CANADA ISED RSS-133			
Identification of item tested	Wireless Module		
Trademark	Cinterion ALAS5-W		
Model and /or type reference	ALAS5-W		
Other identification of the product	FCC ID: QIPALAS5-W IC: 7830A-ALAS5W		
Features	Wireless Module supporting 2G, 3G and 4G Cellular Technologies		
Manufacturer	Gemalto M2M GmbH Werinherstr. 81, 81541 Munich, Germany.		
Test method requested, standard	USA FCC Part 24 10-1-18 Edition CANADA IC RSS-133 Issue 6, Jan. 2013 (Amendmen January 2018); Measurement Guidance 971168 D01 v02r02 for certification of Licensed Digital Transmitters. ANSI C63.26 – 2015.		
Summary	IN COMPLIANCE		
Approved by (name / position & signature)	Domingo Galvez EMC&RF Lab Manager		
Date of issue	04-10-2019		
Report template No	FDT08_21		

Index

Competences and guarantees	3
General conditions	3
Uncertainty	3
Data provided by the client	4
Usage of samples	4
Test sample description	5
Identification of the client	5
Testing period and place	6
Document history	6
Environmental conditions	7
Remarks and comments	7
Testing verdicts	8
Summary	8
List of equipment used during the test	9
Appendix A: Test Results for FCC Part 24/ IC RSS-133	10

Competences and guarantees

DEKRA Certification Inc. is a testing laboratory accredited by A2LA (The American Association for Laboratory Accreditation), to perform the tests indicated in the Certificate 2764.01.

DEKRA Certification Inc. is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA Certification Inc. has a calibration and maintenance program for its measurement equipment.

DEKRA Certification Inc. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Certification at the time of performance of the test.

DEKRA Certification Inc. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Certification Inc.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Certification Inc.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Certification Inc. and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Certification internal document PODT000.

Frequency (MHz)	U(k=2)	Units
30-180	3.82	dB
180-1000	2.61	dB
1000-18000	2.92	dB
18000-40000	2.15	dB

Data provided by the client

Wireless Module supporting 2G,3G and 4G Cellular Technologies.

DEKRA declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by: The client.

Sample S/01 is composed of the following elements:

Control N⁰	Description	Model	Serial N ^o	Date of reception
2456.03	Cinterion® ALAS5	ALAS5-W	004401083195152	2/7/2019
2456.04	GPS Antenna	AA62	162CT15170382	2/7/2019
2456.05	Antenna	Panorama_LPBEM-7-27	-	2/7/2019
2456.06	Antenna	Panorama_LPBEM-7-27	-	2/7/2019

1. Sample S/01 was used for the following test(s):

All conducted and radiated tests indicated in appendix A.

Test sample description

Ports:			Cable	
	Port name and description	Specified length [m]	Attached during test	Shielded
	No Data Provided			
Supplementary information to the ports:	No Data Provided			
Rated power supply:	Voltage and Frequency		Reference poles	3
		L1 L2		N PE
	AC: 230Vac / 50Hz.			
	DC: 3.8V			
Rated Power:	No Data Provided			
Clock frequencies:	No Data Provided			
Other parameters:	No Data Provided			
Software version:	Rev. 00.030			
Hardware version:	Rev2.14a			
Dimensions in cm (L x W x D):	40mm x 36mm x 3mm			
Mounting position	Table top equipment			
	Wall/Ceiling mounted equip	ment		
	Floor standing equipment			
	Hand-held equipment			
	Other:			
Modules/parts:	Module/parts of test item		Type M	lanufacturer
	No Data provided			

Accessories (not part of the test item):	Description	Туре	Manufacturer
Documents as provided by the applicant	Description	File name	Issue date
	Equipment	FDT30_15_Declaration_Equipment_	2019-03-14
	declaration data	Data_Gemalto_ALAS5-W_signed	
	Copy of marki	ng plate:	
	CINTE Made in Germany 530960-55950-A100 Mot fo Hw Revz 004401 08 3195	Model: ALAS5-W IT Sale	

Identification of the client

Gemalto M2M GmbH Werinherstr. 81, 81541 Munich, Germany

Testing period and place

Test Location	DEKRA Certification, Inc.
Date (start)	02-13-2019
Date (finish)	04-08-2019

Document history

Report number	Date	Description
2456ERM.003	03-18-2019	First release
2456ERM.003A1	04-10-2019	Second Release

Modifications to the reference test report

It was introduced the following modifications in respect to the test report number 2456ERM.003 related with the same samples, in the next clauses and sub-clauses:

Clauses/ Sub-Clauses	wodilication	Justilication
Page 40-45 /A.7. Radiated	18-20 GHz plots were added	To show the measurement results
emissions	18-20 GHZ plots were added	up to 10th harmonic frequencies
Page:23-30/A.4: Occupied	Occupied Bandwidth and -26db	The plots were updated with new
Bandwidth	Bandwidth plots were modified	Resolution bandwidth values.

This modification test report cancels and replaces the test report 2456ERM.003

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the semi anechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the chamber for conducted measurements, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 60 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

Remarks and comments

The tests have been performed by the technical personnel: Sravani Gollamudi and Koji Nishimoto.

Testing verdicts

Not applicable :	N/A
Pass :	Ρ
Fail :	F
Not measured :	N/M

Summary

FCC 24 Spec Clause	RSS Spec Clause	Test Description		
		ause Test Description		Remark
§2.1046 and §24.232	RSS-133 Clause 6.4	RF Output power	Р	N/A
§2.1047	RSS-133 Clause 6.2	Modulation characteristics	Р	N/A
§2.1055 and § 24.235	RSS-133 Clause 6.3	Frequency stability	Р	N/A
§ 2.1049	RSS-133 Clause 2.3	Occupied Bandwidth	Р	N/A
§2.1051 and §24.238	RSS-133 Clause 6.5	Spurious emissions at antenna terminals	Р	N/A
§24.238	RSS-133 Clause 6.5	Spurious emissions at antenna terminals at Block edges	Р	N/A
§2.1053 and §24.238	RSS-133 Clause 6.5	Radiated emissions	Р	N/A
Supplementary information and remarks:				
N/A				
	2.1047 2.1055 and § 4.235 2.1049 2.1051 and 24.238 24.238 24.238 24.238	24.232 RSS-133 Clause 6.2 2.1047 RSS-133 Clause 6.2 2.1055 and § RSS-133 Clause 6.3 4.235 RSS-133 Clause 2.3 2.1049 RSS-133 Clause 2.3 2.1051 and RSS-133 Clause 6.5 24.238 RSS-133 Clause 6.5 24.238 RSS-133 Clause 6.5 2.1053 and RSS-133 Clause 6.5	24.232RSS-133 Clause 6.2Modulation characteristics2.1047RSS-133 Clause 6.2Modulation characteristics2.1055 and § (4.235)RSS-133 Clause 6.3Frequency stability2.1049RSS-133 Clause 2.3Occupied Bandwidth2.1051 and 24.238RSS-133 Clause 6.5Spurious emissions at antenna terminals24.238RSS-133 Clause 6.5Spurious emissions at antenna terminals at Block edges2.1053 and 24.238RSS-133 Clause 6.5Radiated emissions	24.232RSS-133 Clause 6.2Modulation characteristicsP2.1047RSS-133 Clause 6.2Modulation characteristicsP2.1055 and § 4.235RSS-133 Clause 6.3Frequency stabilityP2.1049RSS-133 Clause 2.3Occupied BandwidthP2.1051 and 24.238RSS-133 Clause 6.5Spurious emissions at antenna terminalsP24.238RSS-133 Clause 6.5Spurious emissions at antenna terminals at Block edgesP2.1053 and 24.238RSS-133 Clause 6.5Radiated emissionsP

List of equipment used during the test

Conducted Measurements

CONTROL NUMBER	DESCRIPTION	LAST CALIBRATION	NEXT CALIBRATION
1039	Signal analyzer Rohde & Schwarz FSV40	2018/03	2020/03
1149	Wideband Radio Communication Tester Rohde & Schwarz CMW 500	2018/07	2020/07
1041	EMI Test Receiver Rohde & Schwarz ESR 7	2017/04	2019/03
101	Climatic chamber Espec	2019/10	2020/10

Radiated Measurements

CONTROL NUMBER	DESCRIPTION	LAST CALIBRATION	NEXT CALIBRATION
1179	Semi anechoic Absorber Lined Chamber Frankonia SAC 3 plus "L"	N/A	N/A
1064	BiconicalLog antenna ETS LINDGREN 3142E	2017/03	2020/03
1057	Double-ridge Waveguide Horn antenna 1-18 GHz	2017/03	2020/03
1012	Spectrum analyzer Rohde & Schwarz ESR26	2018/09	2020/09
1014	Spectrum analyzer Rohde & Schwarz FSV40	2017/03	2019/03
1015,1017, 1019, 1020	Rohde & Schwarz EMC32 software	N/A	N/A

Appendix A: Test Results for FCC Part 24/ IC RSS-133

Appendix A Content

PRODUCT INFORMATION	12
DESCRIPTION OF TEST CONDITIONS	13
TEST A.1: RF OUTPUT POWER	14
TEST A.2: MODULATION CHARACTERISTICS	19
TEST A.3: FREQUENCY STABILITY	21
TEST A.4: OCCUPIED BANDWIDTH	23
TEST A.5: SPURIOUS EMISSIONS AT ANTENNA TERMINALS	30
TEST A.6: SPURIOUS EMISSIONS AT ANTENNA TERMINALS AT BLOCK EDGES	35
TEST A.7: RADIATED EMISSIONS	39

PRODUCT INFORMATION

The following information is provided by the client

Information	Description
Modulation	GPRS, EDGE
Maximum RF Output Power	30 dBm
Operation mode:	
- Operating Frequency Range	Band 1900: 1850-1910 MHz
- Nominal Channel Bandwidth	Band 1900: 200-300 KHz
Extreme operating conditions	
- Temperature range	$T_{nom} = +15 \text{ to } + 35$ $T_{min} = -30$ $T_{max} = +50$
Antenna type	External attachable Antenna.
Antenna gain	4 dBi
Nominal Voltage	
- Supply Voltage	3.8 Vdc
- Type of power source	DC voltage from power supply.

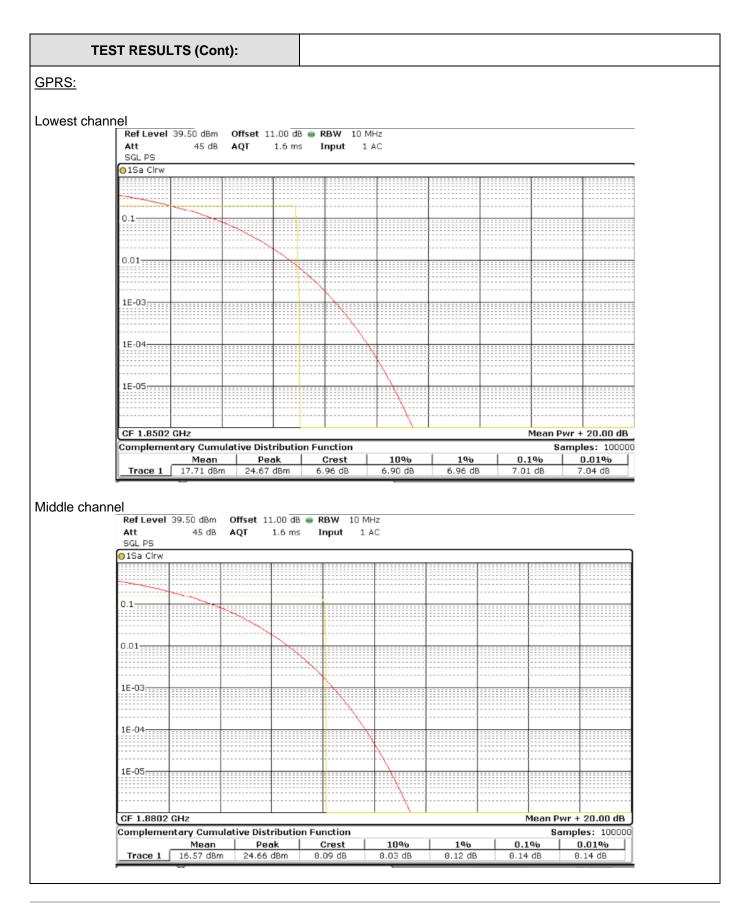
DESCRIPTION OF TEST CONDITIONS

The worst case was found when positioned as the table below. Following channel(s) was (were selected for the final test as listed below:

TEST CONDITIONS	DESCRIPTION				
	<u>Power supply (V):</u> V _{nominal} = 3.8 Vdc				
	Test Frequencies for Conducted tests:				
	-Lowest Channel: 512 (1850.2 MHZ) -Middle Channel: 662 (1880.2 MHz) -Highest Channel: 810 (1909.8 MHz)				
	Test Frequencies for Radia				
	Available Frequencies	Tested Frequency	Channel Bandwidth	Modulation	
TC#01 Band 1900	1850 to 1910 MHz	1850.2 MHz 1880.2 MHz	200 KHz	GPRS	
	1909.8 MHz Note: This device was tested under all channels and modulations. The worst case found in GPRS modulation.				

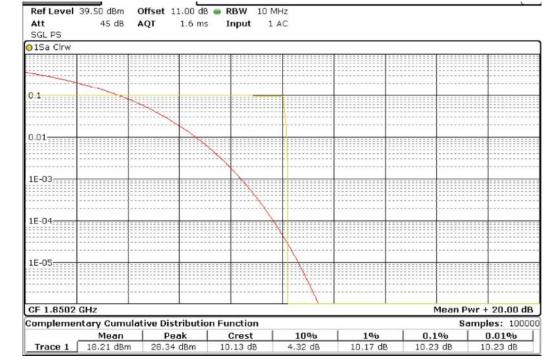
TEST A.1: RF OUT	FPUT POWER	
	Product standard:	FCC Part 24 / IC RSS-133
LIMITS:	Test standard:	FCC §2.1046 and §24.232 / RSS-133 Clause 6.4
LIMITS		
maximum antenna heig employ a means for lim	ght of 10 meters aboven titing power to the min	ons are limited to 2-watt EIRP (30 dBm). Fixed stations are limited to a e ground. Mobile and portable stations operating in these bands must imum necessary for successful communications. mission shall not exceed 13 dB.
		e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510. g in the band 1930-1995 MHz shall not have output power exceeding
		power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the est PAPR during periods of continuous transmission.
TEST SETUP		
EUT Attenuator Prower devider Signalling Unit		

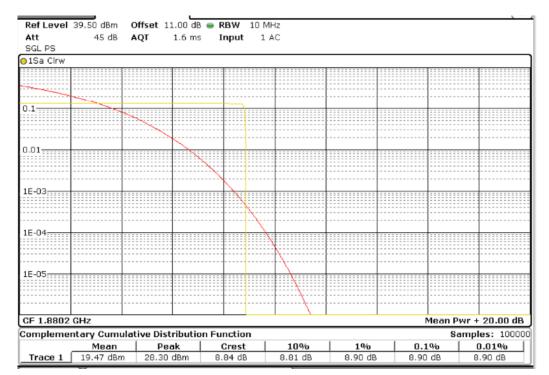
TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#01
TEST RESULTS:	PASS


GPRS Modulation:

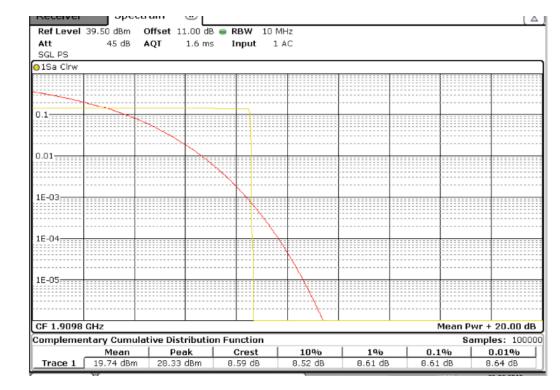
Channel	Average power at antenna port (dBm)	Maximum declared antenna gain (dBi)	Maximum E.I.R.P. average power (dBm)	PAPR (dB)
Lowest	28.96	4.0	32.96	7.01
Middle	28.90	4.0	32.90	8.14
Highest	28.91	4.0	32.91	8.14
Measurement uncertainty (dB)			<±0.95	

Edge Modulation:

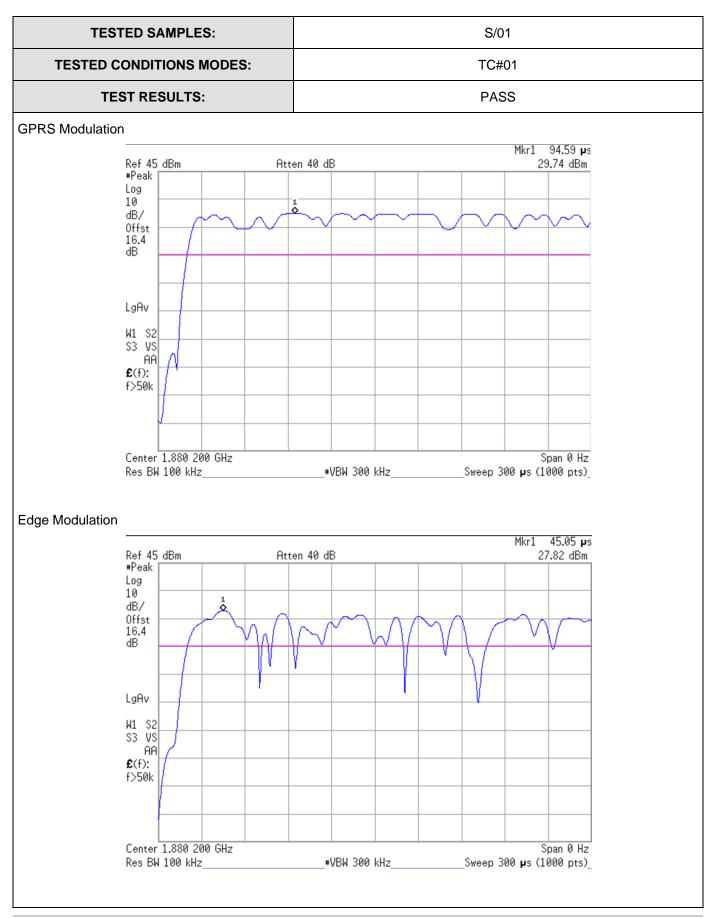

Channel	Average power at antenna port (dBm)	Maximum declared antenna gain (dBi)	Maximum E.I.R.P. average power (dBm)	PAPR (dB)
Lowest	24.65	4.0	28.65	10.23
Middle	24.87	4.0	28.87	8.90
Highest	24.63	4.0	28.63	8.61
Measurement uncertainty (dB)			<±0.95	



TEST RESULTS (Cont): Highest channel Ref Level 39.50 dBm Offset 11.00 dB - RBW 10 MHz Att 45 dB AQT 1.6 ms Input 1 AC SGL PS 1Sa Clrw 0.1 0.01 1E-03; 1E-04= 1E-05; CF 1.9098 GHz Mean Pwr + 20.00 dB Samples: 100000 Complementary Cumulative Distribution Function Peak 0.01% Mean Crest 10% 1% 0.1% Trace 1 16.52 dBm 24.67 dBm 8.09 dB 8.14 dB 8.15 dB 8.14 dB 8.20 dB EDGE: Lowest channel



Middle channel


Highest channel

TEST A.2: MODUL		TERISTICS
	Product standard:	FCC Part 24 / IC RSS-133
LIMITS:	Test standard: FCC §2.1047 / RSS-133 Clause 6.3	
<u>LIMITS</u>		
A curve or equivalent under which the equipr The devices shall emp	ment is to be licensed.	at the equipment will meet the modulation requirements of the rules echniques.
TEST S	ETUP	
EUT	r	r Power devider Signalling Unit

TEST A.3: FREQU	ENCY STABILITY	,
	Product standard:	FCC Part 24 / IC RSS-133
LIMITS:	Test standard:	FCC §2.1055 and § 24.235 / RSS-133 Clause 6.3
LIMITS The frequency stability of operation.	shall be enough to er	nsure that the fundamental emissions stay within the authorized bands
TEST S	ETUP	
The frequency tolerand	e measurements over	temperature variations were made over the temperature range of
-30°C to +50°C. The steps from -30°C up to		e a climatic chamber and the temperature was raised hourly in 10°C
The supply voltage was	s varied between 85%	and 115% of nominal voltage.
		ddle channel using the Universal Radio Communication tester R&S was measured using the built-in calibrated frequency meter.
	Equino	ant Ser

ncy stability over temperature variations									
TEST RESULTS: PASS MODULATION. ncy stability over temperature variations Temperature (°C) Frequency Error (Hz) Frequency Error (ppm) Frequency Error (%) 50 25.56 0.0136 0.00000136 40 20.31 0.0108 0.00000108 30 21.5 0.0114 0.00000114 20 11.49 0.0061 0.0000061	TESTED S	SAMPLES:		S/01					
MODULATION. ncy stability over temperature variations remperature (°C) Frequency Error (Hz) Frequency Error (ppm) Frequency Error (%) 50 25.56 0.0136 0.00000136 40 20.31 0.0108 0.00000108 30 21.5 0.0114 0.00000114 20 11.49 0.0061 0.0000061	TESTED COND	TIONS MODES:		TC#01					
Fermerature (°C) Frequency Error (Hz) Frequency Error (ppm) Frequency Error (%) 50 25.56 0.0136 0.00000136 40 20.31 0.0108 0.00000108 30 21.5 0.0114 0.00000114 20 11.49 0.0061 0.0000061	TEST RE	ESULTS:		PASS					
Temperature (°C)Frequency Error (Hz)Frequency Error (ppm)Frequency Error (%)5025.560.01360.000001364020.310.01080.000001083021.50.01140.000001142011.490.00610.0000061	RS MODULATION.								
(°C) (Hz) (ppm) Frequency Error (%) 50 25.56 0.0136 0.00000136 40 20.31 0.0108 0.00000108 30 21.5 0.0114 0.00000114 20 11.49 0.0061 0.0000061				1					
50 0				Frequency Error (%)					
30 21.5 0.0114 0.00000114 20 11.49 0.0061 0.0000061	50	25.56		0.00000136					
20 11.49 0.0061 0.0000061	40	20.31	0.0108	0.00000108					
	30	21.5	0.0114	0.00000114					
10 20.05 0.0107 0.00000107	20	11.49	0.0061	0.0000061					
	10	20.05	0.0107	0.00000107					
0 22.79 0.0121 0.00000121	0	22.79	0.0121	0.00000121					
-10 22.86 0.0122 0.00000122	-10	22.86	0.0122	0.00000122					
-20 18.98 0.0101 0.00000101	-20	18.98	0.0101	0.00000101					

Frequency stability over voltage variations

21.15

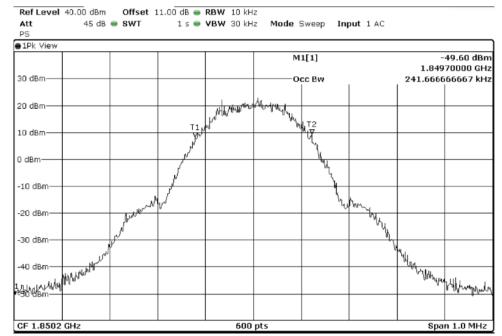
-30

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	4.37	20.7	0.0110	0.00000110
Vmin	3.23	19.76	0.0105	0.00000105

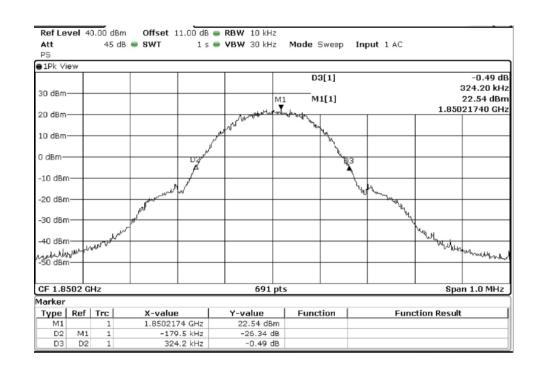
0.0112

0.00000112

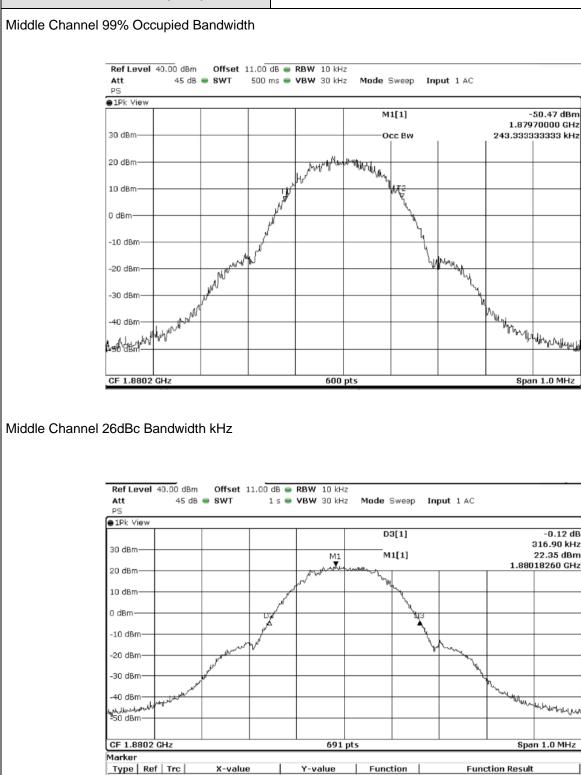
П



	Droduct stor derd			SS 122
LIMITS:	Product standard:		FCC Part 24 / IC R	
	Test standard:	FCC	\$ § 2.1049 / RSS-133	3 Clause 2.3
<u>LIMITS</u>				
Reference only.				
TEST S	SETUP			
R&S CMW500 sele	cting maximum transm dwidth and the -26 dBo spectrum analyzer.	ission power of the E	EUT and different m easured directly usin Spectrum Analyser	
	Power supply		Signalling Unit	
TESTED				
	supply		Unit	
TESTED COND	supply SAMPLES:		Unit S/01	
TESTED COND TEST R	SAMPLES: DITIONS MODES: ESULTS:		S/01 TC#01	
TESTED COND TEST R GPRS MODULATION	SAMPLES: DITIONS MODES: ESULTS:	Lowest	S/01 TC#01	Highest
TESTED COND TEST R GPRS MODULATION	SAMPLES: DITIONS MODES: ESULTS:	Lowest 241.67	S/01 TC#01 PASS	
TESTED COND TEST R GPRS MODULATION	SAMPLES: DITIONS MODES: ESULTS: Channel		Unit S/01 TC#01 PASS Middle	Highest
TESTED COND TEST R GPRS MODULATION	SAMPLES: DITIONS MODES: ESULTS: Channel ied bandwidth (kHz)	241.67	Unit S/01 TC#01 PASS Middle 243.33	Highest 245.00
TESTED COND TEST R GPRS MODULATION 99% Occupi -26 dBc	SAMPLES: PITIONS MODES: ESULTS: Channel ied bandwidth (kHz) bandwidth (kHz)	241.67	Unit S/01 TC#01 PASS Middle 243.33	Highest 245.00
TESTED COND TEST R GPRS MODULATION 99% Occupi -26 dBc EDGE MODULATION	SAMPLES: DITIONS MODES: ESULTS: Channel ied bandwidth (kHz) bandwidth (kHz) Channel	241.67 324.20 Lowest	Unit S/01 TC#01 PASS Middle 243.33 316.90 Middle	Highest 245.00 322.70 Highest
TESTED COND TEST R GPRS MODULATION 99% Occupi -26 dBc EDGE MODULATION	suppy SAMPLES: DITIONS MODES: ESULTS: Channel ied bandwidth (kHz) bandwidth (kHz)	241.67 324.20	S/01 TC#01 PASS Middle 243.33 316.90	Highest 245.00 322.70



GPRS MODULATION.


Lowest Channel 99% Occupied Bandwidth

Lowest Channel -26dBc Bandwidth kHz

X-value

1.8801826 GHz

-140.4 kHz

316.9 kHz

M1

D2

D3 D2

M1

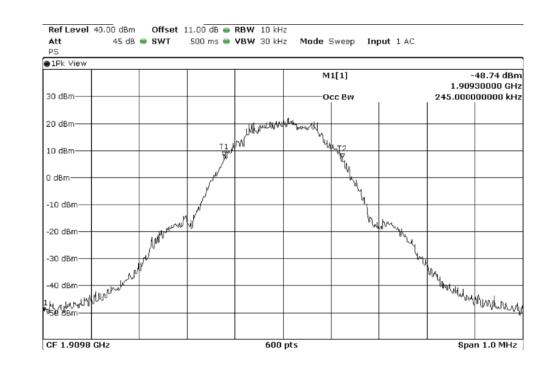
1

1

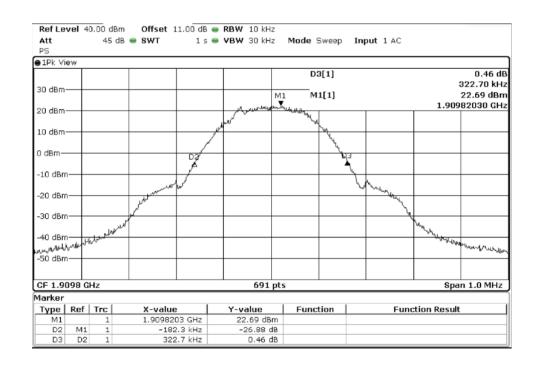
Y-value

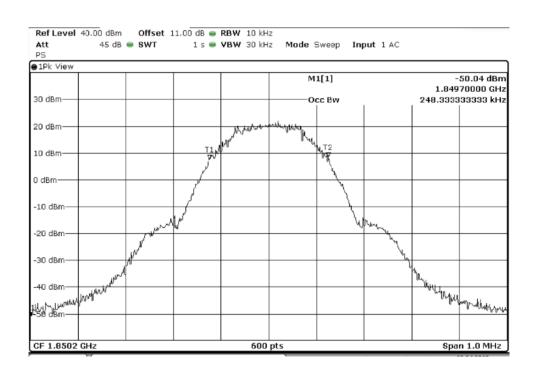
22.35 dBm

-26.08 dB

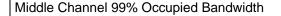

-0.12 dB

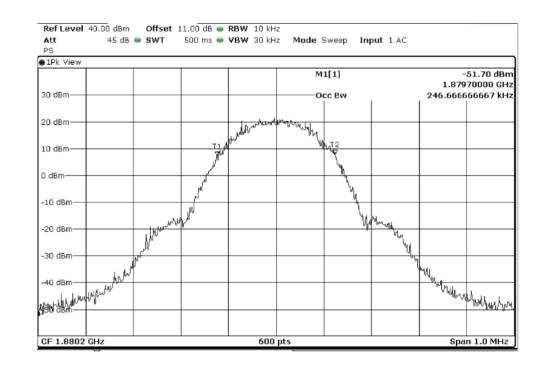
Function


Function Result

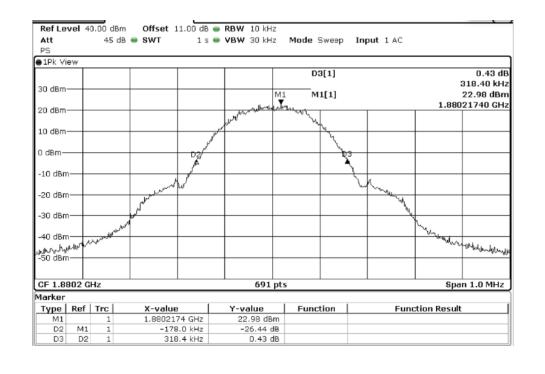

Highest Channel 26dBc Bandwidth kHz

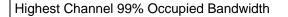
EDGE MODULATION.


Lowest Channel 99% Occupied Bandwidth

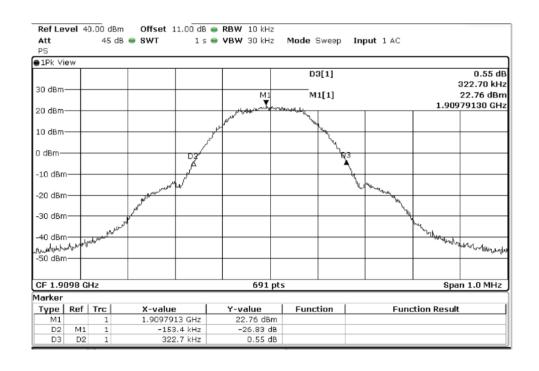


Lowest Channel -26dBc Bandwidth kHz


	ew									
30 dBm						M1 N	93[1] 11[1]			0.02 dE 321.30 kHz 22.57 dBn
20 dBm	+				and a grad as had s	elevelation of the			1.85	022750 GH
10 dBm	_				July and a start of the start o		H.			
0 dBm-	_		_	Da	<i>w</i>		- ¹ Q3-			
-10 dBn	-						└ `			
-20 dBn	-		and and a second	w.v ^r				where and		
-30 dBn	-		- rahi					- Mu	h	
-40 dBn	<u> </u>	the start	UMAY						mar and a	<u> </u>
,,4/Խ.4Խ -50 dBn									10-464	Nortunkown
CF 1.8	502 G	Hz			691	nts			Sn	an 1.0 MHz
1arker					0,71					210
Type	Ref	Trc	X-value	e	Y-value	Fund	ction	Fund	tion Resu	t
M1		1	1.85022	75 GHz	22.57 dB	m				
D2	M1	1	-18	6.7 kHz	-26.56	HB B				
D3	D2	1	32	1.3 kHz	0.02	1B				

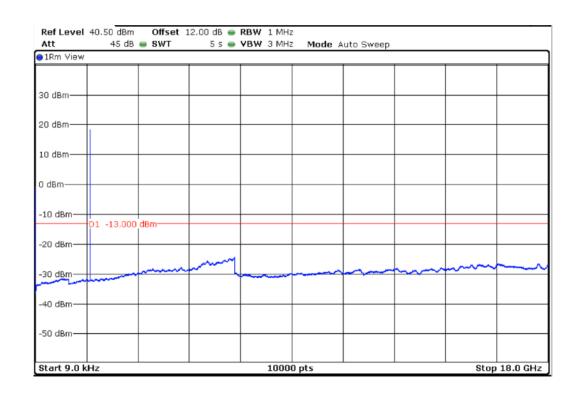


Middle Channel 26dBc Bandwidth kHz



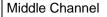
Highest Channel 26dBc Bandwidth kHz

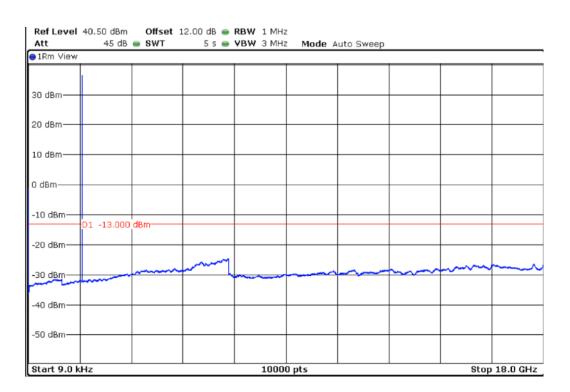
TEST A.5: SPUR	IOUS EMISSIONS	AT ANTENNA TERMINALS
	Product standard:	FCC Part 24 / IC RSS-133
LIMITS:	Test standard:	FCC §2.1051 and § 24.238 / RSS-133 Clause 6.5
factor of at least 43 + At Po transmitting po the level in dBm relat	- 10 log (P) dB. P in wa ower of 2 watts (33 dBm	n), the specified minimum attenuation becomes 43+10log (Po). and
TEST	SETUP	
Tester R&S CMW50 using a 50-ohm atten The reading of the sp	00 (selecting maximum nuator and a power spli	ted to a spectrum analyzer and to the Universal Radio Communication transmission power of the EUT and different modes of modulation) tter. rrected with the attenuation loss of connection between output terminal
	EUT Attenu Power supply	ator Power devider Signalling Unit


TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#01
TEST RESULTS:	PASS
Frequency range 9 KHz – 18 GHz	
GPRS MODULATION.	
Lowest Channel No spurious signal was found at less than 10 d	B respect to the limit in the frequency range.
Middle Channel No spurious signal was found at less than 10 d	B respect to the limit in the frequency range.
Highest Channel No spurious signal was found at less than 10 d	IB respect to the limit in the frequency range.
EDGE MODULATION. Lowest Channel No spurious signal was found at less than 10 d	IB respect to the limit in the frequency range
Middle Channel No spurious signal was found at less than 10 d	
Highest Channel No spurious signal was found at less than 10 d	B respect to the limit in the frequency range.

TEST RESULTS (Cont.): GPRS MODULATION. Lowest Channel Ref Level 40.50 dBm Offset 12.00 dB 👄 RBW 1 MHz Att 45 dB 😑 SWT 5 s 👄 VBW 3 MHz Mode Auto Sweep ●1Rm View 30 dBm-20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm--40 dBm--50 dBm-Start 9.0 kHz 10000 pts Stop 18.0 GHz Middle Channel Ref Level 40.50 dBm Offset 12.00 dB 👄 RBW 1 MHz Att 45 dB 👄 SWT 5 s 👄 VBW 3 MHz Mode Auto Sweep ●1Rm View 30 dBm-20 dBm· 10 dBm· 0 dBm· -10 dBm D1 -13.000 dBm--20 dBm -30 dBm -40 dBm -50 dBm-Start 9.0 kHz 10000 pts Stop 18.0 GHz

Highest Channel




EDGE MODULATION.

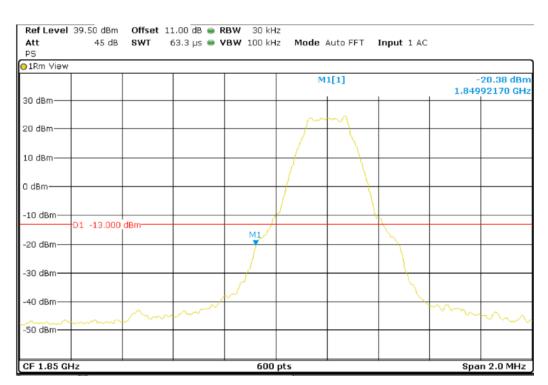
Lowest Channel

Ref Level 40. Att	50 dBm 45 dB 👄		12.00 dB 👄	RBW 1 MHz VBW 3 MHz		Auto Sweep			
1Rm View	10 GD 🥌	0111			. Houe a	ato Sweep			
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
D1	-13.000 dE	3m							
-20 dBm									
-30 dBm			~~~~				~~~~	$\sim\sim\sim\sim\sim$	
-40 dBm									
-+0 ubiii									
-50 dBm									
-30 ubiii									
Start 9.0 kHz				1000	D pts			Stop	18.0 GHz

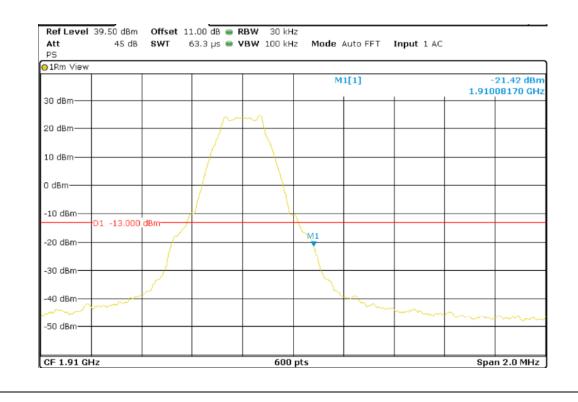
Highest Channel

Att 1Rm View		● SWT		VBW 3 MHz	Houe A	uto Sweep		
30 dBm								
20 dBm								
10 dBm								
0 dBm								
-10 dBm	D1 -13.000	dBm						
-20 dBm—	01 10.000							
-30 dBm—			m	~~~~~			~~~~	
-40 dBm—								
-50 dBm								
Start 9.0 k				10000				18.0 GH

TEST A.6: SPURIO	OUS EMISSIONS A	AT ANTENNA TERMINALS AT BLOCK EDGES
LIMITS:	Product standard:	FCC Part 24 / IC RSS-133
	Test standard:	FCC § 24.238 / RSS 133- Clause 6.5
factor of at least 43 + 1	I0 log (P) dB. P in watt rer of 2 watts (33 dBm) re to Po becomes:	, the specified minimum attenuation becomes 43+10log (Po). and
TEST S	SETUP	
	(selecting maximum	ed to a spectrum analyzer and to the Universal Radio Communication transmission power of the EUT and different modes of modulation) er.
The reading of the spe of EUT and input of the		ected with the attenuation loss of connection between output terminal
For LTE mode the con	figuration of modulation	n which is the worst case for conducted power was used.
	ution bandwidth of at	nds immediately outside and adjacent to the licensee's frequency least one percent of the emission bandwidth of the fundamental
	EUT Attenuat	tor Power devider Signalling Unit

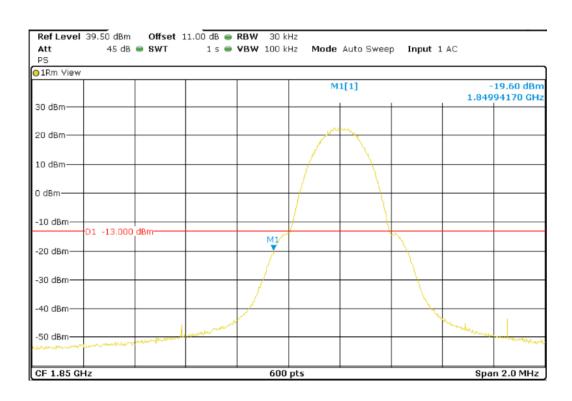


TESTED CONDITIONS MODES:TC#01TEST RESULTS:PASSGPRS MODULATIONRB=1 Offset =0 BW = 5 MHzRB=1 Offset =0 BW = 10 MHzMaximum measured level at lowest Block Edge at antenna port (dBm)-20.38-19.6EDGE MODULATIONRB=25 Offset =0 BW = 5 MHzRB=50 Offset =0 BW = 10 MHzMaximum measured level at lowest Block Edge at antenna port (dBm)RB=25 -21.42RB=50 BW = 10 MHzMaximum measured level at lowest Block Edge at antenna port (dBm)-21.42-18.9	TESTED SAMPLES:			S/01
GPRS MODULATIONRB=1 Offset =0 BW = 5 MHzRB=1 Offset =0 BW = 10 MHzMaximum measured level at lowest Block Edge at antenna port (dBm)-20.38-19.6EDGE MODULATIONRB=25 Offset =0 BW = 5 MHzRB=50 Offset =0 BW = 10 MHzMaximum measured level at lowest Block Edge at at lowest Block Edge at Offset =0-21.42-18.9	TESTED CONDITIONS MODES:			TC#01
Offset =0 BW = 5 MHzOffset =0 BW = 10 MHzMaximum measured level at lowest Block Edge at antenna port (dBm)-20.38-19.6EDGE MODULATIONRB=25 Offset =0 BW = 5 MHzRB=50 Offset =0 BW = 10 MHzMaximum measured level at lowest Block Edge at at lowest Block Edge at-21.42-18.9	TEST RESULTS:			PASS
BW = 5 MHzBW = 10 MHzMaximum measured level at lowest Block Edge at antenna port (dBm)-20.38-19.6EDGE MODULATIONRB=25RB=50Offset =0Offset =0Offset =0BW = 5 MHzBW = 10 MHzBW = 10 MHzMaximum measured level at lowest Block Edge at-21.42-18.9	GPRS MODULA	TION	RB=1	RB=1
at lowest Block Edge at antenna port (dBm)-20.38-19.6EDGE MODULATIONRB=25RB=50Offset =0Offset =0BW = 5 MHzBW = 10 MHzMaximum measured level at lowest Block Edge at-21.42-18.9	Movimum mooouro			
Descrive outputOffset =0Offset =0BW = 5 MHzBW = 10 MHzMaximum measured level at lowest Block Edge at-21.42-18.9	at lowest Block Ed	dge at	-20.38	-19.6
Maximum measured level at lowest Block Edge at -21.42 -18.9	EDGE MODULA	ΓΙΟΝ	Offset =0	Offset =0
		dge at		-18.9



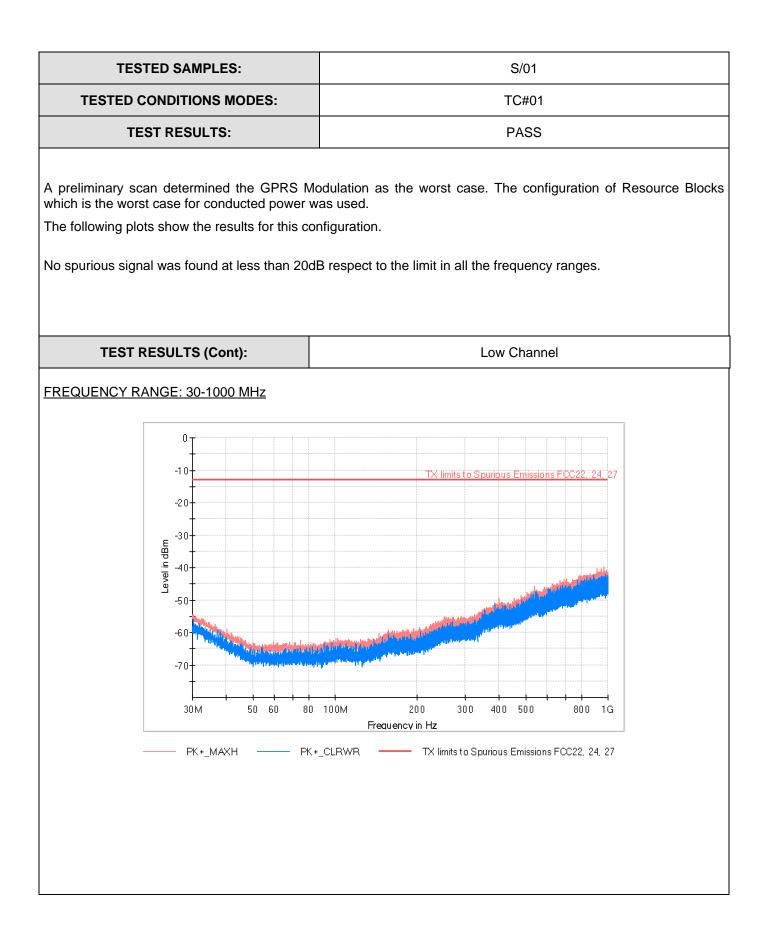
GPRS MODULATION.

Lowest Channel

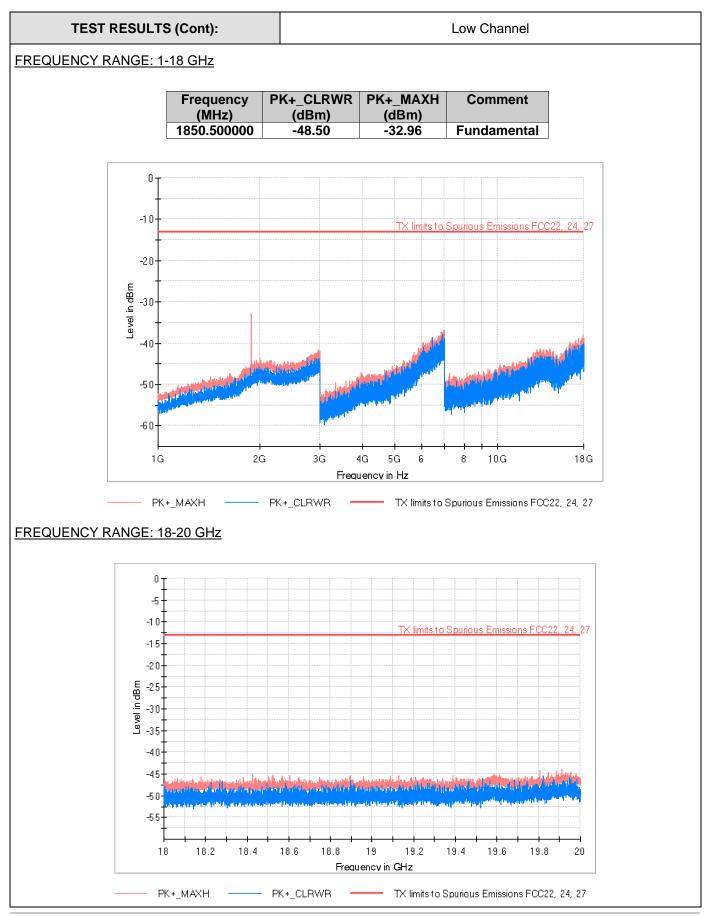

Highest Channel

EDGE MODULATION.

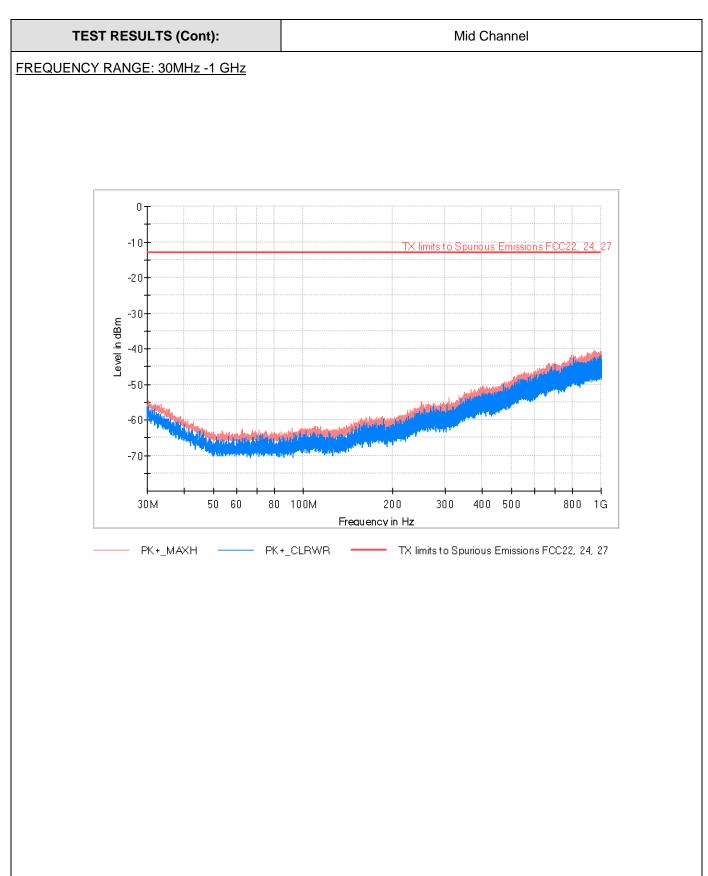
Lowest Channel

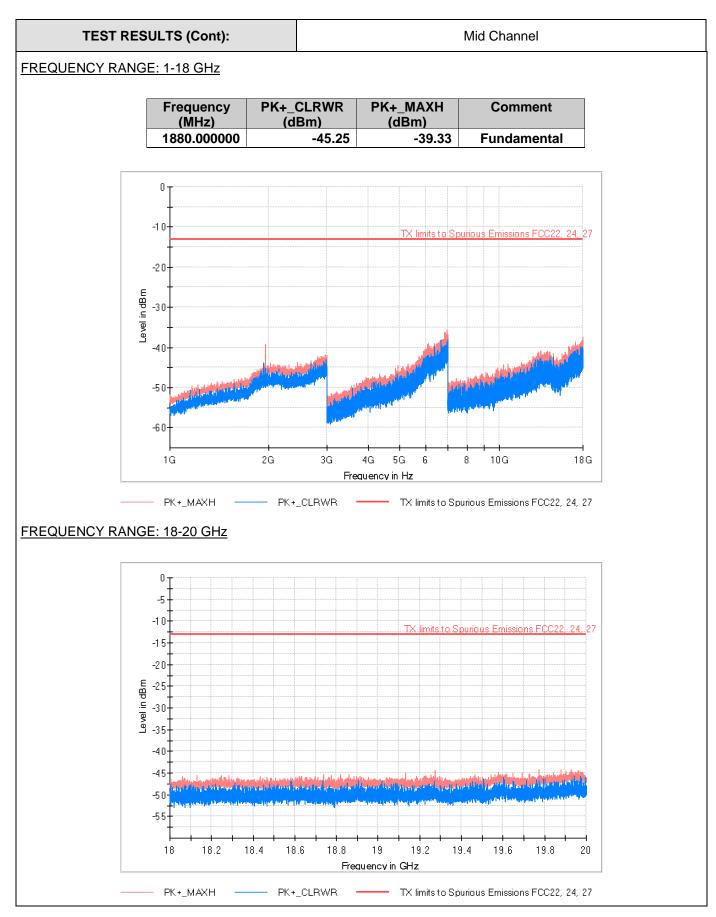

Highest Channel

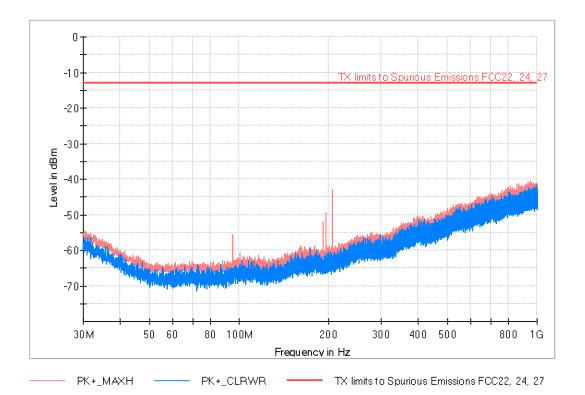
PS							
⊖1Rm Yiew				м	1[1]		18.90 dB
30 dBm			M				
20 dBm							
10 dBm			-/				
0 dBm			/				
-10 dBm—	D1 -13.000	dBm		M1			
-20 dBm—							
-30 dBm—							
-40 dBm	~~~~				- m	 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-50 dBm—							



TEST A.7: RADIATED EMISSIONS				
LIMITS:	Product standard:	FCC Part 24 / IC RSS-133		
	Test standard:	FCC §2.1053 and §24.238 /RSS-133 Clause 6.5		
LIMITS According to specification, the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. P in watts. At Po transmitting power of 2 watts (33 dBm), the specified minimum attenuation becomes 43+10log (Po). and the level in dBm relative to Po becomes: Po (dBm) – [43 + 10 log (Po in watts)] = -13 dBm The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment. The EUT was placed on a non-conductive stand at a 3-meter distance from the measuring antenna for measurements below 1 GHz and at 1-meter distance for measurements above 1 GHz.				
Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum reading was recorded. Radiated measurements < 1GHz				
	EUT	3m 1~4m Reference point 1~4m Reference point 1~4m Reference point 1~4m Reference point 1~4m Cable Cable Cable Cable Compone Comp		
Radiated measuremen	ts > 1GHz	Antenna tower Horn		
	EUT 4m -	antenna Spectrum analyzer Im 30cm Pre-amp Control room		



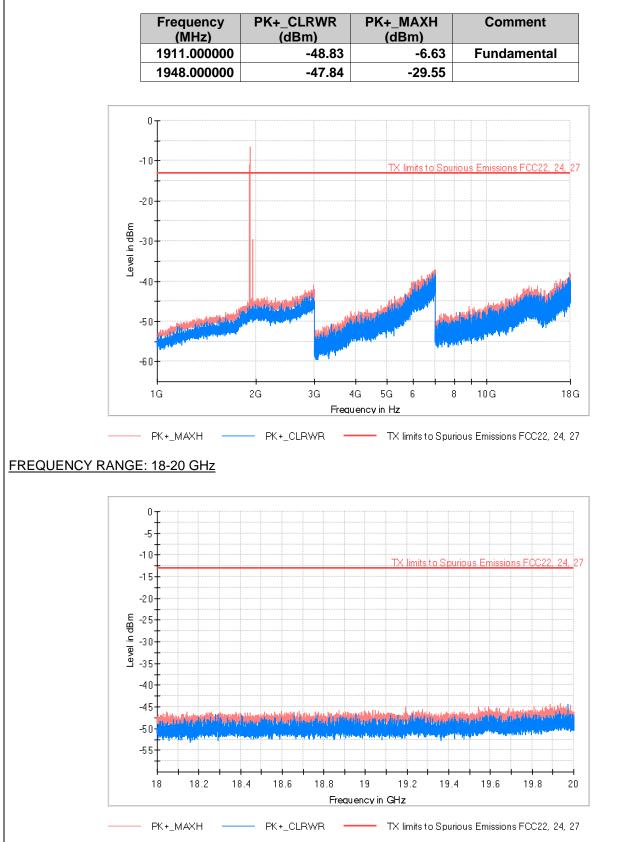




High Channel

FREQUENCY RANGE: 30MHz-1 GHz

Frequency	PK+_CLRWR	PK+_MAXH
(MHz)	(dBm)	(dBm)
95.313333	-66.09	-55.60
190.793667	-63.97	-51.90
195.449667	-64.34	-49.23
206.119667	-64.17	-42.79



TEST RESULTS(Cont.):

High Channel

