

LTE QPSK MODULATION. RB = 1. Offset = 0. BW = 10 MHz

Lowest Channel

Ref Level 39.50 dBm Offset 11.00 dB 👄 RBW 100 kHz 45 dB 👄 SWT 1 s 👄 **VBW** 300 kHz Att Mode Auto Sweep Input 1 AC PS 01Rm View M1[1] -34.44 dBm 823.99830 MHz 30 dBm· 20 dBm-10 dBm· 0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm--40 dBm· -50 dBm-Span 2.0 MHz 600 pts CF 824.0 MHz

LTE QPSK MODULATION. RB = 50. Offset = 0. BW = 10 MHz

Lowest Channel

Ref Level 39.50 dBm Offset 11.00 dB - RBW 100 kHz Att 45 dB 👄 SWT 1 s 👄 **VBW** 300 kHz Mode Auto Sweep Input 1 AC PS ⊖1Rm View -29.71 dBm 823.99830 MHz M1[1] 30 dBm-20 dBm-10 dBm· 0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm--40 dBm--50 dBm-CF 824.0 MHz 600 pts Span 2.0 MHz

				м	1[1]		-3 849.0	3.00 dB 0170 MF
D1 -13.000) dBm							
		the second secon						
			N	1				
	D1 -13.000	D1 -13.000 dBm	D1 -13.000 dBm	D1 -13.000 d8m	D1 -13.000 dBm	D1 -13.000 dBm	D1 -13.000 dBm	M1[1] -3: 849.01

LTE QPSK MODULATION. RB = 1. Offset = 0. BW = 15 MHz

Lowest Channel

LTE QPSK MODULATION. RB = 75. Offset = 0. BW = 15 MHz

Lowest Channel

Ref Level 40.00 dBm Offset 11.00 dB 😑 RBW 200 kHz Att 45 dB 👄 SWT 1 s 👄 VBW 1 MHz Mode Auto Sweep Input 1 AC PS ⊖1Rm View -29.43 dBm 823.99830 MHz M1[1] 30 dBm-20 dBm-10 dBm· 0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 d8m--40 dBm--50 dBm-CF 824.0 MHz 600 pts Span 2.0 MHz

Att PS	45 dB	SWT	1 s 👄	VBW 1M	Hz Mode	e Auto Swee	p Input 1 A	'C	
⊖1Rm View									
					P	M1[1]		-3 849.0	0.56 dBr 1830 MH
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm	-D1 -13.000								
-20 dBm		have							
-30 dBm					M1 T				
-40 dBm									
-50 dBm									
CF 849.0 M	4Hz			600	pts			Span	2.0 MH:

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#01
TEST RESULTS:	PASS

RESULTS

A preliminary scan determined the QPSK 5 MHz bandwidth as the worst case. The configuration of Resource Blocks which is the worst case for conducted power was used.

The following plots show the results for this configuration.

LTE QPSK MODULATION. RB = 1. Offset = 0. BW = 5 MHz

TEST RESULTS (Cont):

Lowest Channel

FREQUENCY RANGE: 30-1000 MHz

Frequency (MHz)	PK+_CLRWR (dBm)	PK+_MAXH (dBm)	Comment
31.261000	-70.78	-65.16	
824.333000	4.81	19.73	Fundamental
871.087000	-40.40	-36.47	

TEST RESULTS (C	ont):			L	owest	Cha	anne				
FREQUENCY RANGE: 1-10 (GHz										
	5112										
	Frequency	PK+_CLRWR		PK+_MAXH							
	3987.500000	0 -38.68		-3	-34.04						
	6951.000000) -26.76 -25.00									
	9097.000000) -29.00 -24.08									
³⁰ Ţ											
20-											
10-											
0									······		
ج 10+			TX	limits to Sj	purious (Emissio	ons FC	2022	. 24,	27	
ଞ୍ଚ .⊑ _2∩+											
							hyden		(hai)		
			الأرادينية		No and State	N.J. Market	hudent	<u>.</u>			
-40+		an geographic and the	AND	a determination de la companya de la							
-50-									······		
-60-											
					ļ	ļ	ļ	-		-	
	26	ن Frequ	encvin Hz	G 5	G 1	0	/ 1	8	9 10	JG	
PK+_M	AXH PK+_	_CLRWR —	— тх	limits to Sp	ourious E	Emissio	ons FC	CC22,	24,	27	

TEST RESULTS (Cont):	Middle Channel

FREQUENCY RANGE: 1-10 GHz

Frequency	PK+_CLRWR	PK+_MAXH				
(MHz)	(dBm)	(dBm)				
2049.800000	-48.98	-42.49				
5969.500000	-32.76	-27.01				
9854.000000	-30.25	-24.43				

TEST RESULTS (Cont):	Highest Channel

FREQUENCY RANGE: 1-10 GHz

Frequency	PK+_CLRWR	PK+_MAXH
(MHz)	(dBm)	(dBm)
2496.400000	-47.73	-42.41
6787.000000	-30.53	-25.58
9136.500000	-28.93	-24.02

