

FCC Test Report

Report No.: AGC00924140103FE08

FCC ID	:	QIFAF-MCB15
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Bluetooth Speaker
BRAND NAME	:	My Music
MODEL NAME	:	AF-MCB15
CLIENT	:	My Music Group Limited
DATE OF ISSUE	:	May 28, 2014
STANDARD(S)	:	FCC Part 15 Rules
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

mplian

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	May 28, 2014	Valid	Original Report

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE 2.GENERAL INFORMATION	6
2.1PRODUCT DESCRIPTION	6
2.2 RELATED SUBMITTAL(S)/GRANT(S)	
2.3TEST METHODOLOGY	
2.4 TEST FACILITY	6
2.5 SPECIAL ACCESSORIES	6
2.6 EQUIPMENT MODIFICATIONS	7
2.7 MEASUREMENT UNCERTAINTY	7
3. SYSTEM TEST CONFIGURATION	8
3.2 EQUIPMENT USED IN TESTED SYSTEM	8
4. SUMMARY OF TEST RESULTS	
5. DESCRIPTION OF TEST MODES 6. ANTENNA REQUIREMENT	
6.1. STANDARD APPLICABLE	
6.2. TEST RESULT	10
7. RADIATED EMISSION	
7.1 MEASUREMENT PROCEDURE	
7.2 TEST SETUP	
7.3 TEST EQUIPMENT	
7.4 LIMITS AND MEASUREMENT RESULT	
7.5 TEST RESULT	13
8. BAND EDGE EMISSION 8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP	26
8.3. TEST RESULT	27
9. 6DB BANDWIDTH 9.1. TEST EQUIPMENT LIST AND DETAILS	
9.2. TEST PROCEDURE	31
9.3. SUMMARY OF TEST RESULTS/PLOTS	31
10. 1. MEASUREMENT PROCEDURE	34
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	34
10.3. LIMITS AND MEASUREMENT RESULT	35
11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	

Report No.: AGC00924140103FE08 Page 4 of 50

APPENDIX A: PHOTOGRAPHS OF TEST SETUP APPENDIX B: PHOTOGRAPHS OF EUT	
12.5 TEST RESULT OF POWER LINE	42
12.4 FINAL TEST PROCEDURE	41
12.3 PRELIMINARY PROCEDURE	41
12.2 TEST SETUP	40
12. FCC LINE CONDUCTED EMISSION TEST 12.1 LIMITS	40
11.4 LIMITS AND MEASUREMENT RESULT	
11.3 MEASUREMENT EQUIPMENT USED	
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
11.1 MEASUREMENT PROCEDURE	

Applicant	My Music Group Limited	
Address	Room 7063, B East, Chengshitiandi PL, JiaBin Road LoWu District Shenzhen, CN	
Manufacturer	Dongguan Fulun Electronic Co., Limited	
Address	4F, Building A, Huangjinye Industrial park, No.216Shaxin Road, Keyuan City, Tangxia, Dongguan.CN	
Product Designation	Bluetooth Speaker	
Brand Name	My Music	
Test Model	AF-MCB15	
Date of test	May 24, 2014 to May 27, 2014	
Deviation	None	
Condition of Test Sample	Normal	
Report Template	AGCRT-US-BLE/RF (2013-03-01)	

1. VERIFICATION OF COMPLIANCE

WE HEREBY CERTIFY THAT:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with requirement of FCC Part 15 Rules requirement.

Prepared By

water 200

Water Zuo May 28, 2014

Checked By

overbron

Forrest Lei May 28, 2014

Authorized By

Soyer 2hang

Solger Zhang May 28, 2014

2.GENERAL INFORMATION 2.1PRODUCT DESCRIPTION

The EUT is designed as a "Bluetooth Speaker". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz	
Bluetooth Version	V4.0	
Modulation	GFSK	
Number of channels	40 Channel(37 Hopping Channel,3 advertising Channel)	
Antenna Designation	PCB Antenna	
Antenna Gain	0.5dBi	
Hardware Version	N/A	
Software Version	N/A	
Power Supply	DC3.7V by Built-in Li-ion Battery	
Note: The USB Port can not be used for communication with PC. It's only for charging.		

The BT can be actived when charging.

2.2 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for **FCC ID: QIFAF-MCB15** filing to comply with Section 15.247of the FCC Part 15, Subpart C Rules.

2.3TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was tested in all three orthogonal planes and the worse case was showed.

2.4 TEST FACILITY

All measurement facilities used to collect the measurement data are located at Attestation of Global Compliance (Shenzhen) Co, Ltd

2/F., Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China.

FCC register No.: 259865

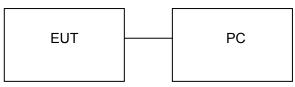
2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.7 MEASUREMENT UNCERTAINTY


Radiation Emission:+/-3.2

Conduction Emission:+/-2.5

3. SYSTEM TEST CONFIGURATION

3.1 CONFIGURATION OF TESTED SYSTEM

Configuration: Normal Operating

Configuration: Continuous TX

EUT	Control box	 PC

3.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	Remark
1	Bluetooth Speaker	My Music	AF-MCB15	EUT
2	Battery	N/A	N/A	Accessory
3	PC	Dell	INSPIRON	A.E
4	Control box	N/A	N/A	A.E

4. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§ 15.203	Antenna Requirement	Compliant
§15.209 §15.247(d)	Radiated Emission	Compliant
§15.247(d)	Band Edges	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247(b)	Conducted Power	Compliant
§15.247(e)	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.207	Line Conduction Emission	Compliant

5. DESCRIPTION OF TEST MODES

The EUT has been operated in one modulation: GFSK .

NO.	TEST MODE DESCRIPTION				
1	Low channel TX				
2	Middle channel TX				
3	High channel TX				
4	Normal Operating (BT)				
Note:					

the report if no any records.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

6. ANTENNA REQUIREMENT

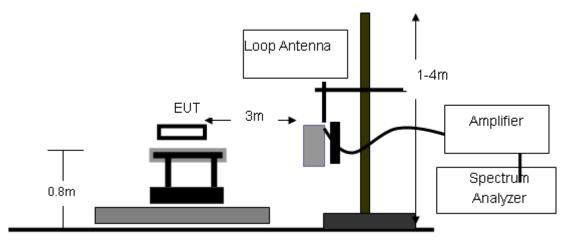
6.1. STANDARD APPLICABLE

According to FCC 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

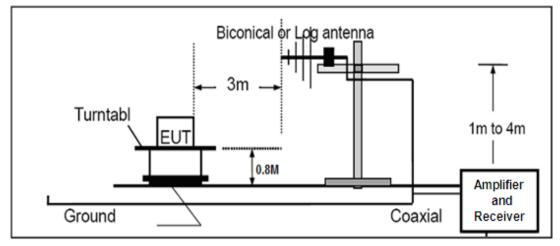
6.2. TEST RESULT

This product has a permanent antenna, fulfill the requirement of this section.

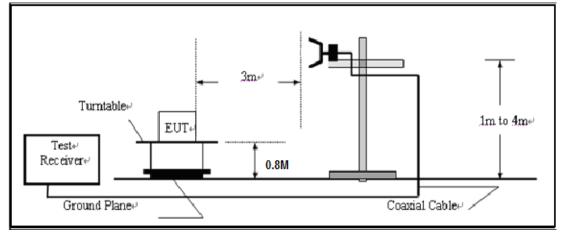
7. RADIATED EMISSION


7.1 MEASUREMENT PROCEDURE

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

7.2 TEST SETUP


RADIATED EMISSION TEST SETUP BELOW 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

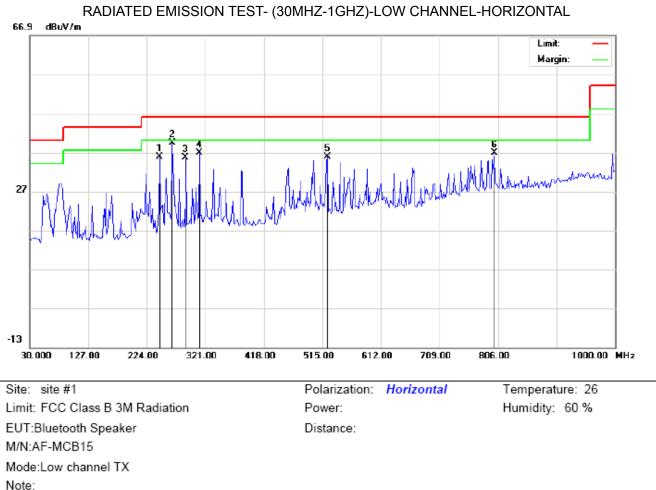
7.3 TEST EQUIPMENT

Description	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Amplifier	EM	EM30180	0607030	02/28/2014	02/27/2015
Horn Antenna	EM	EM-AH-10180	67	04/19/2014	04/18/2015
Horn Antenna	A.H. Systems Inc.	SAS-574		07/17/2013	07/16/2014
EMI Test Receiver	Rohde & Schwarz	ESCI	100694	07/17/2013	07/16/2014
Bilogical Antenna	A.H. Systems Inc.	SAS-521-4	26	06/07/2013	06/06/2014
Loop Antenna	Daze	ZN30900N	SEL0097	07/17/2013	07/16/2014
Isolation Transformer	LETEAC	LTBK		07/17/2013	07/16/2014

7.4 LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

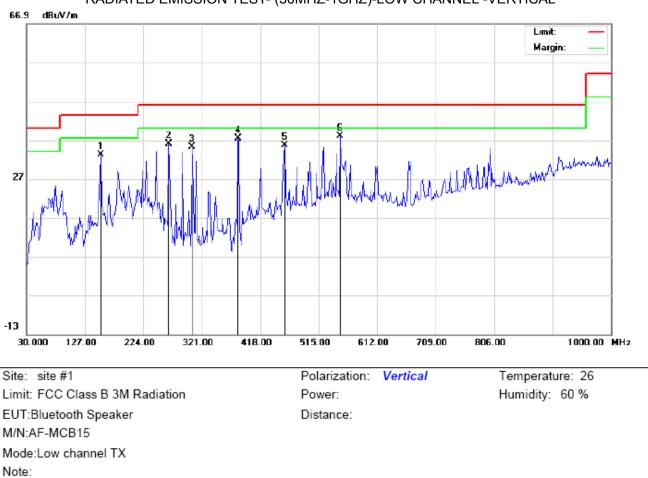
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3


Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

7.5 TEST RESULT

RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

Table Antenna Reading Factor Measurement Limit Over Freq. Mk Height Degree No. Detector Comment MHz dBu∨ dB/m dBuV/m dBuV/m dB degree cm 245.0166 22.06 13.71 35.77 46.00 -10.23 1 peak * 266.0332 25.11 14.38 39.49 46.00 -6.51 2 peak 3 288.6666 20.57 15.07 35.64 -10.36 46.00 peak 4 311.3000 20.72 16.16 36.88 46.00 -9.12 peak 5 523.0833 13.97 21.75 35.72 46.00 -10.28 peak 6 799.5333 9.56 27.31 36.87 -9.13 46.00 peak

RESULT: PASS

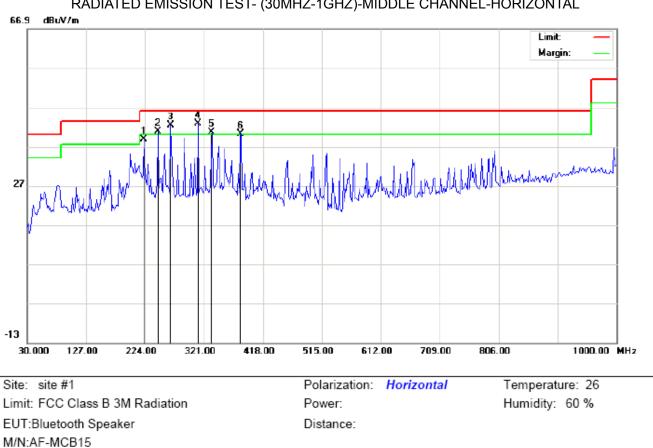
RADIATED EMISSION TEST-	(30MHZ-1GHZ)-LOW CHANNEL -VERTICAL
-------------------------	------------------------------------

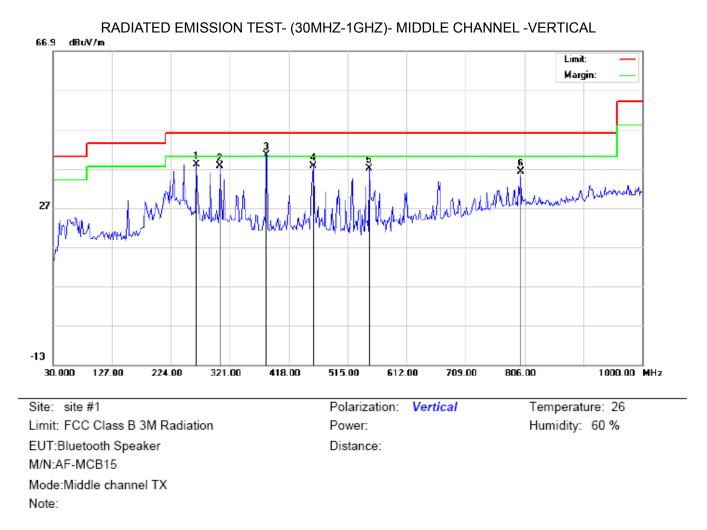
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		152.8667	17.97	15.28	33.25	43.50	-10.25	peak			
2		266.0332	21.71	14.38	36.09	46.00	-9.91	peak			
3		304.8333	19.44	15.73	35.17	46.00	-10.83	peak			
4		380.8167	18.46	18.94	37.40	46.00	-8.60	peak			
5		458.4166	14.88	20.68	35.56	46.00	-10.44	peak			
6	*	550.5666	15.56	22.48	38.04	46.00	-7.96	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.



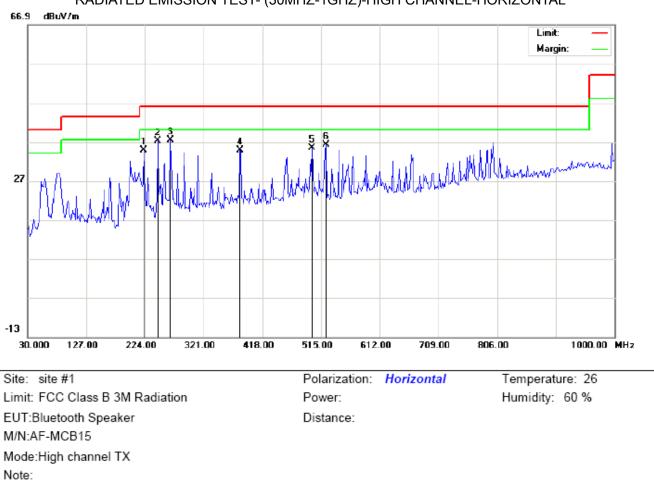

Table Antenna Over Reading Factor Measurement Limit Mk Freq. Height No. Detector Degree Comment MHz dBu∨ dB/m dBuV/m dBu∀/m dB degree cm 1 222.3832 26.05 12.85 38.90 46.00 -7.10 peak 27.06 2 245.0166 13.71 40.77 46.00 -5.23 peak L 3 İ 266.0332 28.11 14.38 42.49 46.00 -3.51 peak * 311.3000 26.72 16.16 42.88 -3.12 4 46.00 peak 5 22.85 40.52 -5.48 333.9332 17.67 46.00 ļ peak 6 380.8167 21.34 18.94 40.28 46.00 -5.72 ļ peak

RESULT: PASS

Mode:Middle channel TX

Note:

RADIATED EMISSION TEST- (30MHZ-1GHZ)-MIDDLE CHANNEL-HORIZONTAL

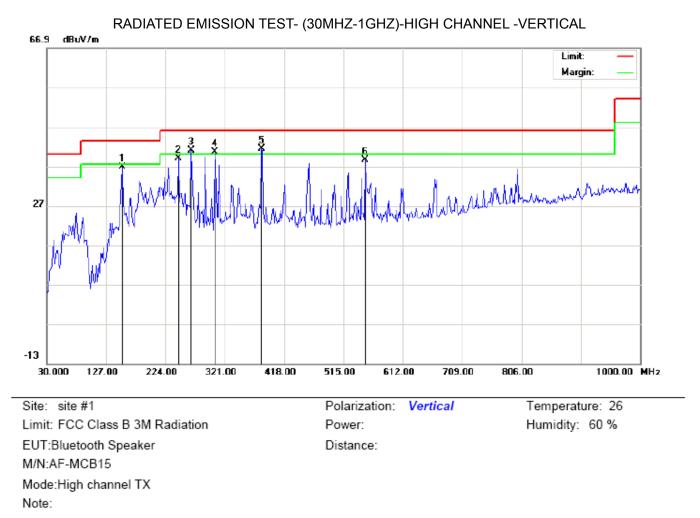


N	lo.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBu∨	dB/m	dBu\//m	dBuV/m	dB		cm	degree	
	1		266.0332	23.71	14.38	38.09	46.00	-7.91	peak			
Γ	2		304.8333	21.94	15.73	37.67	46.00	-8.33	peak			
	3	*	380.8167	21.46	18.94	40.40	46.00	-5.60	peak			
	4		458.4166	16.88	20.68	37.56	46.00	-8.44	peak			
	5		550.5666	14.56	22.48	37.04	46.00	-8.96	peak			
	6		799.5333	8.94	27.31	36.25	46.00	-9.75	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.



RADIATED EMISSION T	EST- (30MHZ-1GHZ)-HIGH	I CHANNEL-HORIZONTAL
---------------------	------------------------	----------------------

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		222.3832	22.05	12.85	34.90	46.00	-11.10	peak			
2		245.0166	23.56	13.71	37.27	46.00	-8.73	peak			
3	*	266.0332	23.11	14.38	37.49	46.00	-8.51	peak			
4		380.8167	15.84	18.94	34.78	46.00	-11.22	peak			
5		500.4499	14.24	21.14	35.38	46.00	-10.62	peak			
6		523.0833	14.47	21.75	36.22	46.00	-9.78	peak			

RESULT: PASS

Comment

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	
	-	MHz	dBu∨	dB/m	dBu∨/m	dBuV/m	dB		cm	degree	
1		152.8667	21.47	15.28	36.75	43.50	-6.75	peak			
2		245.0166	25.68	13.41	39.09	46.00	-6.91	peak			
3	İ	266.0332	26.71	14.38	41.09	46.00	-4.91	peak			
4	İ	304.8333	24.94	15.73	40.67	46.00	-5.33	peak			
5	*	380.8167	22.46	18.94	41.40	46.00	-4.60	peak			Γ

38.54

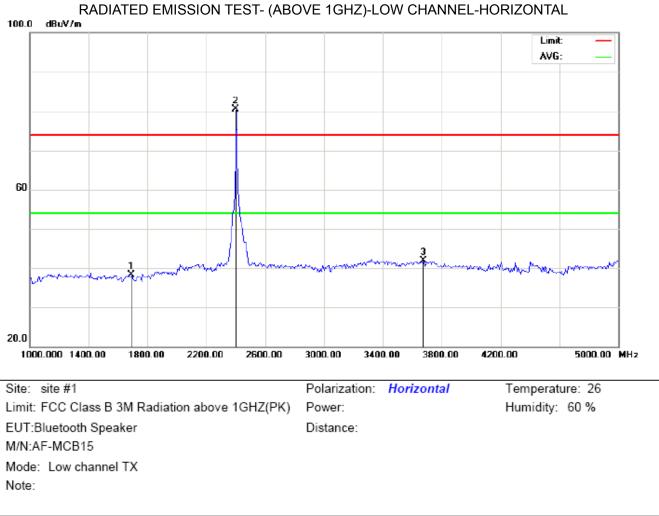
RESULT: PASS

550.5666

16.06

6

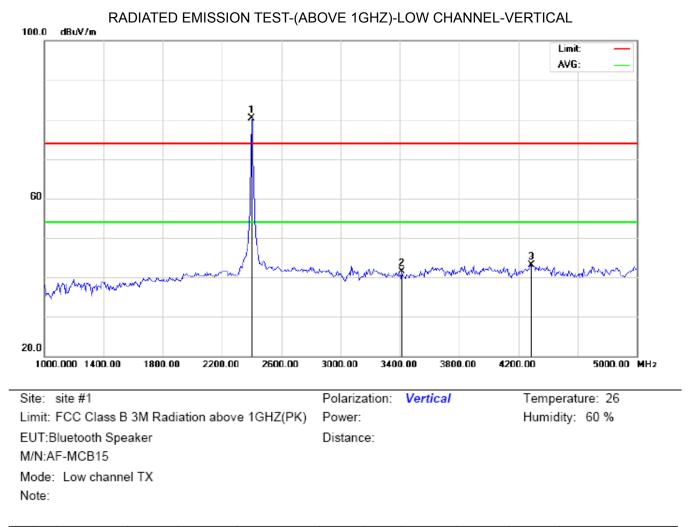
Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.


22.48

2. The "Factor" value can be calculated automatically by software of measurement system.

46.00

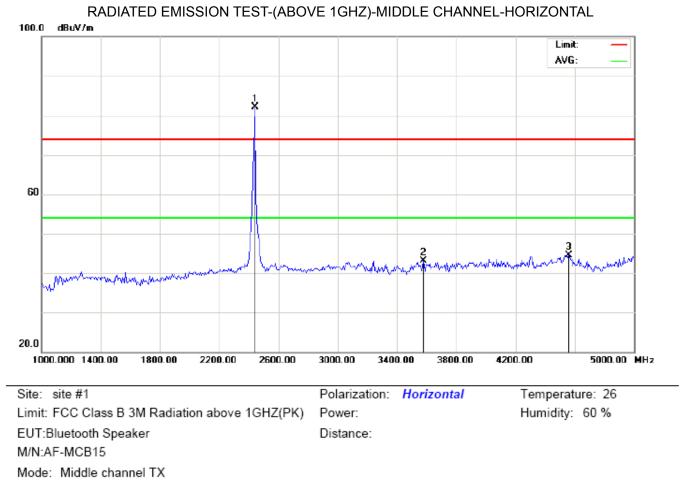
-7.46


peak

RADIATED EMISSION ABOVE 1GHZ

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu\//m	dBuV/m	dB		cm	degree	
1		1693.333	51.63	-13.35	38.28	74.00	-35.72	peak			
2	*	2402.000	90.11	-9.68	80.43	74.00	6.43	peak			
3		3673.333	48.68	-6.82	41.86	74.00	-32.14	peak			

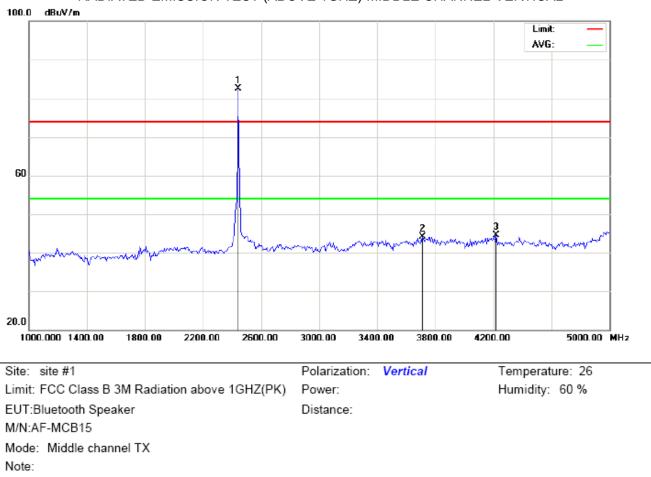
RESULT: PASS



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2402.000	89.95	-9.68	80.27	74.00	6.27	peak			
2		3413.333	49.39	-7.97	41.42	74.00	-32.58	peak			
3		4286.667	46.95	-3.84	43.11	74.00	-30.89	peak			

RESULT: PASS

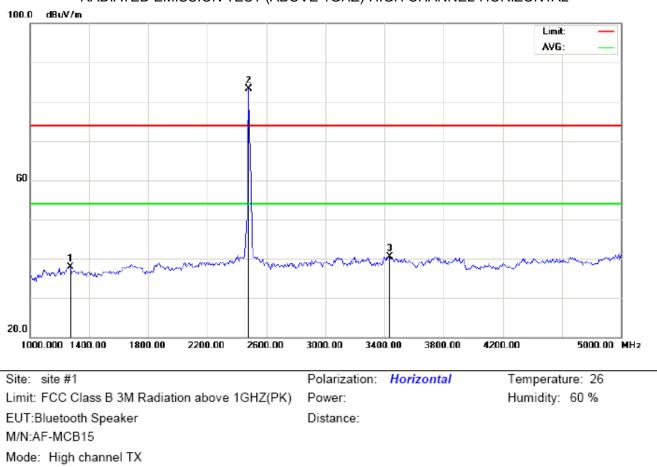
Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.


2. The "Factor" value can be calculated automatically by software of measurement system.

Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2440.000	91.76	-9.64	82.12	74.00	8.12	peak			
2		3580.000	50.46	-7.40	43.06	74.00	-30.94	peak			
3		4560.000	47.55	-2.95	44.60	74.00	-29.40	peak			

RESULT: PASS

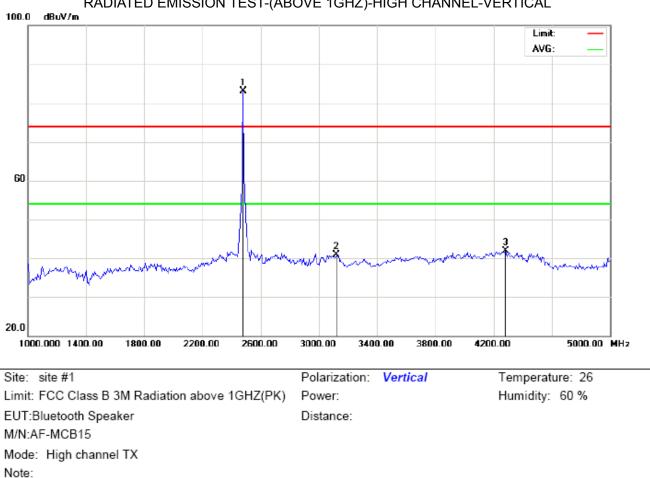

RADIATED EMISSION TEST-(ABOVE 1GHZ)-MIDDLE CHANNEL-VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2440.000	92.17	-9.64	82.53	74.00	8.53	peak			
2		3713.333	50.72	-6.58	44.14	74.00	-29.86	peak			
3		4220.000	48.53	-4.06	44.47	74.00	-29.53	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.



RADIATED EMISSION TEST-(ABOVE 1GHZ)-HIGH CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		1273.333	53.47	-15.48	37.99	74.00	-36.01	peak			
2	*	2480.000	92.96	-9.59	83.37	74.00	9.37	peak			
3		3433.333	48.51	-7.95	40.56	74.00	-33.44	peak			

RESULT: PASS

Note:

RADIATED EMISSION TEST-(ABOVE 1GHZ)-HIGH CHANNEL-VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1	*	2480.000	92.77	-9.59	83.18	74.00	9.18	peak			
2		3120.000	49.11	-8.25	40.86	74.00	-33.14	peak			
3		4280.000	45.84	-3.86	41.98	74.00	-32.02	peak			

RESULT: PASS

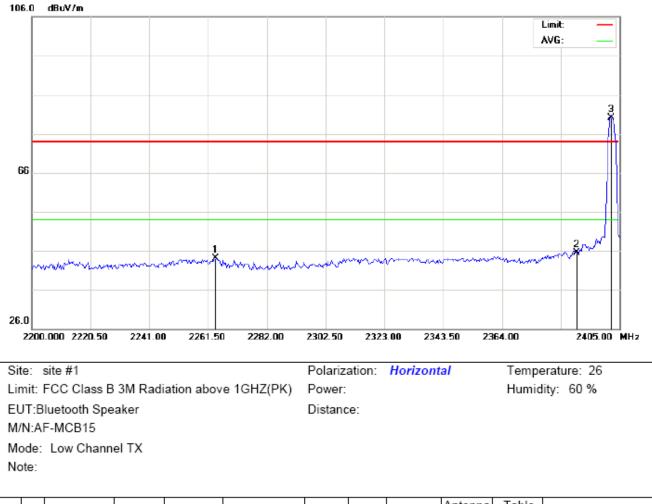
Note: 5~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor+ Cable loss-Amplifier gain,

Margin=Measurement-Limit.

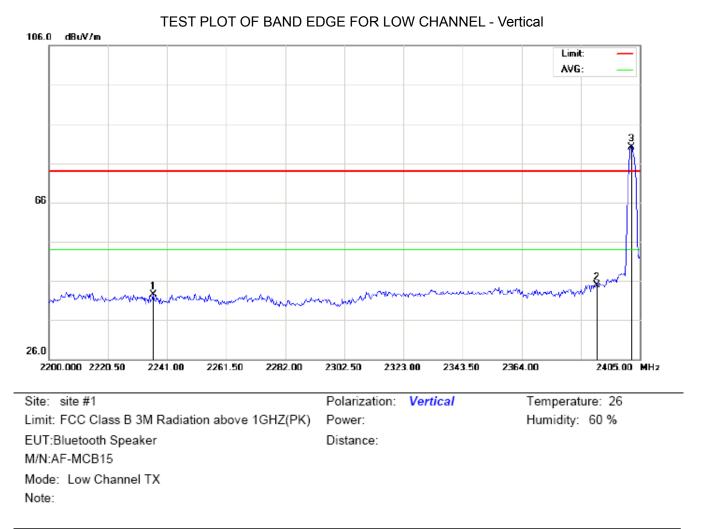
The "Factor" value can be calculated automatically by software of measurement system.

8. BAND EDGE EMISSION

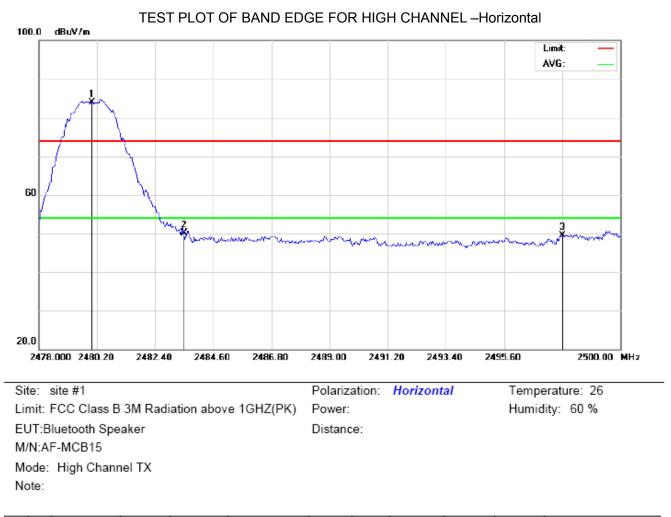

8.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the bottom operation frequency individually.
- 2. Set Span = 2MHz, RBW>=100 KHz, VBW>=3RBW, Center frequency =Operation frequency
- 3. The band edges was measured and recorded.

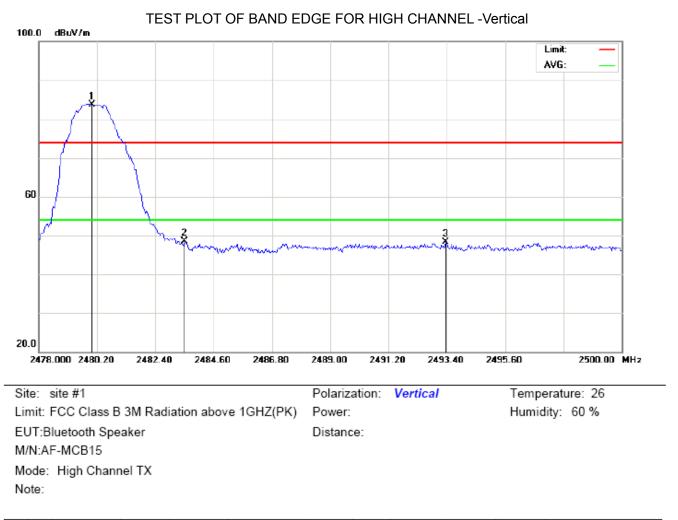
8.2. TEST SET-UP


Radiated same as 7.2

8.3. TEST RESULT


TEST PLOT OF BAND EDGE FOR LOW CHANNEL -Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2264.233	53.89	-9.83	44.06	74.00	-29.94	peak			
2		2390.000	55.26	-9.69	45.57	74.00	-28.43	peak			
3	*	2402.000	89.87	-9.68	80.19	74.00	6.19	peak			



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu\//m	dBu∨/m	dB		cm	degree	
1		2236.217	52.31	-9.86	42.45	74.00	-31.55	peak			
2		2390.000	54.56	-9.69	44.87	74.00	-29.13	peak			
3	*	2402.000	89.87	-9.68	80.19	74.00	6.19	peak			

RESULT: PASS

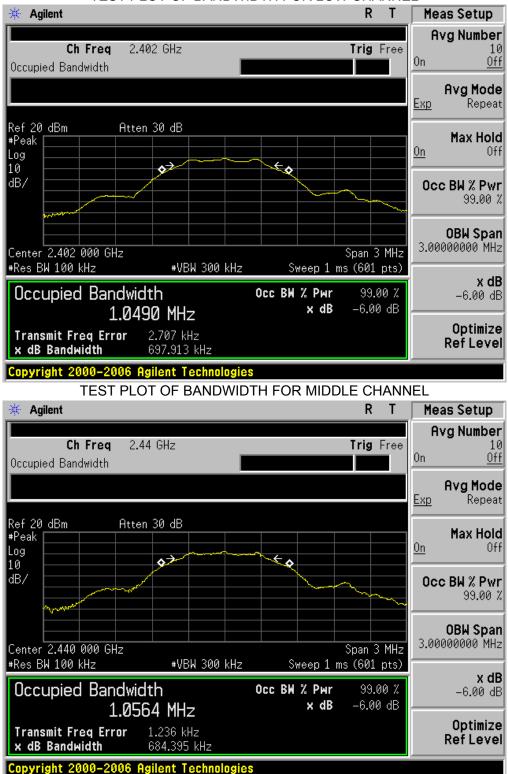
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	93.54	-9.59	83.95	74.00	9.95	peak			
2		2483.500	59.60	-9.59	50.01	74.00	-23.99	peak			
3		2497.800	59.09	-9.57	49.52	74.00	-24.48	peak			

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	93.31	-9.59	83.72	74.00	9.72	peak			
2		2483.500	58.08	-9.59	48.49	74.00	-25.51	peak			
3		2493.363	57.95	-9.58	48.37	74.00	-25.63	peak			

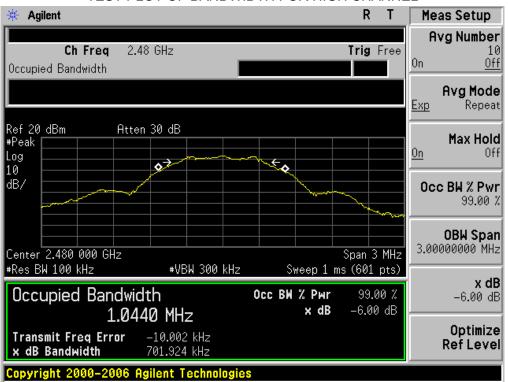
RESULT: PASS

9.6DB BANDWIDTH

9.1. TEST EQUIPMENT LIST AND DETAILS


Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	US41421290	07/17/2013	07/16/2014
RECEIVER ANTENNA	ETS	2175	57337	07/17/2013	07/16/2014

9.2. TEST PROCEDURE


- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥3*RBW.
- 4. Set SPA Trace 1 Max hold, then View.

9.3. SUMMARY OF TEST RESULTS/PLOTS

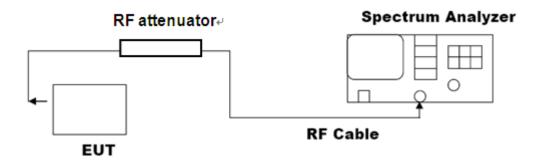
Channel	6dB Bandwidth (KHz)	Minimum Limit (KHz)	Pass/Fail
Low	698		Pass
Middle	684	500KHz	Pass
High	702		Pass

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

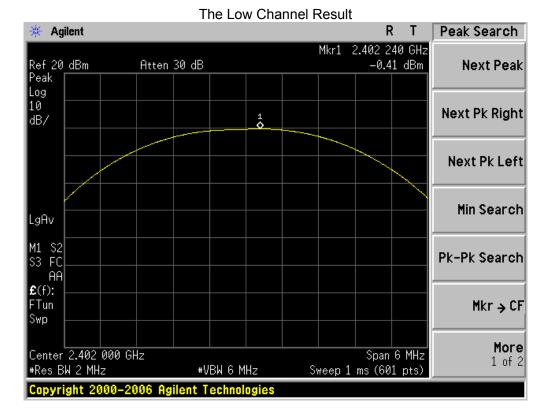
10. CONDUCTED OUTPUT POWER 10.1. MEASUREMENT PROCEDURE

For peak power test:


- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 4. Use the following spectrum analyzer settings:
- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ 3 RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.
- 5. Allow the trace to stabilize.
- 6. Record the result form the Spectrum Analyzer.

For average power test:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to power probe through an RF attenuator.
- 3. Connect the power probe to the PC.
- 4. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 5. Record the maximum power from the software.
- 6. The maximum peak power shall be less 1W (30dBm).


Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements

10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

10.3. LIMITS AND MEASUREMENT RESULT

Channel	Average Power (dBm)	Peak Power (dBm)	Applicable Limits (dBm)	Pass/Fail
Low Channel	-2.26	-0.41	30	Pass
Middle Channel	0.56	2.45	30	Pass
High Channel	1.51	3.42	30	Pass

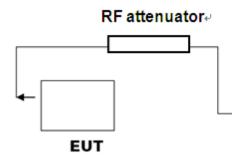
Agilent				RI	F Peak Search
			Mkr1	2.440 150 0	
f 20_dBm	Atten 30 dl	3		2.45 dE	8m Next Peal
ak g					
9		1			
2					Next Pk Righ
					Next Pk Lef
					Nextrkler
					×
					Min Searcl
Av					
~					
\$2 FC					Pk-Pk Searcl
AA					
f):					
un					Mkr→C
p					
					More
nter 2.440 000				Span 6 M	Hz 1 of
AC KU Z MHZ			<u> </u>	(0.01 .	
es BW 2 MHz		⊭VBW 6 MHz	Sweep 1	ms (601 pt	
	-2006 Agilent	Technologies			
pyright 2000-	-2006 Agilent				s)
pyright 2000- Agilent	-2006 Agilent	Technologies	annel Result	R	s) Torr
pyright 2000- Agilent	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Torr F Peak Search SHz
pyright 2000 Agilent f 20 dBm	-2006 Agilent	Technologies The High Cha	annel Result	R	s) Torr F Peak Search SHz
pyright 2000 - Agilent f 20 dBm ak	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Torr F Peak Search SHz
pyright 2000- Agilent f 20 dBm ak	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) From From From From From From From From
pyright 2000- Agilent f 20 dBm ak	-2006 Agilent	Technologies The High Cha 3	annel Result	R 1 2.479 880 0	s) From From From From From From From From
pyright 2000- Agilent f 20 dBm ak	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) From From From From From From From From
pyright 2000- Agilent f 20 dBm ak	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Bm Next Peal Next Pk Righ
pyright 2000- Agilent f 20 dBm ak	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Bm Next Peal Next Pk Righ
pyright 2000- Agilent f 20 dBm ak	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Mext Peal Next Pk Righ
pyright 2000- Agilent f 20 dBm ak g /	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Mext Peal Next Pk Righ Next Pk Lef
pyright 2000- Agilent f 20 dBm ak g /	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Mext Peal Next Pk Righ Next Pk Lef
Agilent Agilent f 20 dBm ak g / Av	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Mext Pea Next Pk Righ Next Pk Lef
Agilent	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search H2 Mext Peal Next Pk Righ Next Pk Lef Min Search
Pyright 2000- Agilent Image: Constraint of the second se	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search H2 Mext Peal Next Pk Righ Next Pk Lef Min Search
Pyright 2000- Agilent - f 20 dBm ak - - g - - / - - Av - - S2 - - FC - - AA - -	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Next Peal Next Pk Righ Next Pk Lef Min Search Pk-Pk Search
Pyright 2000- Agilent - f 20 dBm ak - - g - - / - - Av - - S2 - - FC - - AA - -	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search Hz Next Peal Next Pk Righ Next Pk Lef Min Search Pk-Pk Search
Agilent Agilent f 20 dBm ak g / Av S2 FC	-2006 Agilent	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Torr F Peak Search SHz
Pyright 2000- Agilent - f 20 dBm ak - - g - - / - - Av - - Av - - S2 - - AA - - f): - - un - -	Atten 30 dl	Technologies The High Cha	annel Result	R 1 2.479 880 0	s) Peak Search HZ Next Peal Next Pk Righ Next Pk Lef Min Search Pk-Pk Search Mkr → Cl

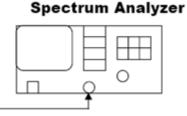
Copyright 2000-2006 Agilent Technologies

11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 11.1 MEASUREMENT PROCEDURE

(1). The EUT was placed on a turn table which is 0.8m above ground plane.

(2). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator

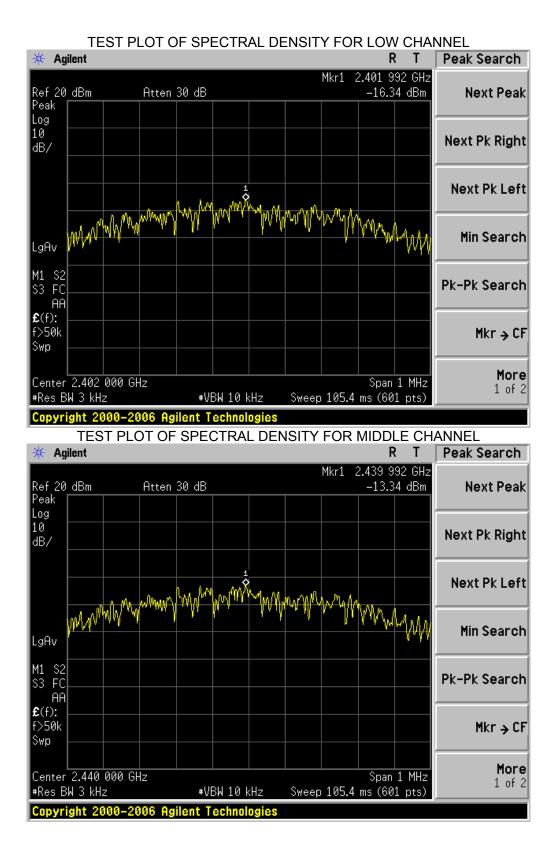

(3). Set the EUT Work on the top, the middle and the bottom operation frequency individually.

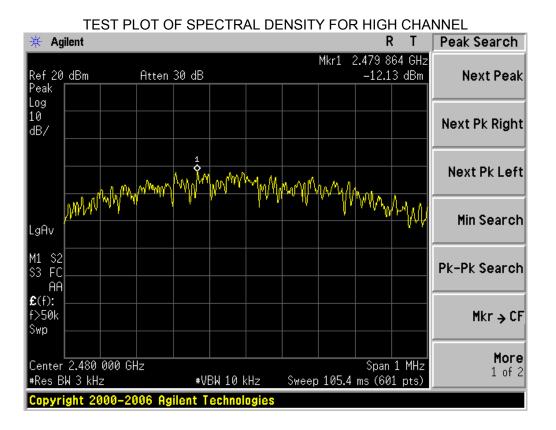

(4). Set the span to 1.5times the DTS bandwidth, RBW: 3kHz<=RBW<=100KHz, VBW>=3*RBW

(5). Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)


RF Cable

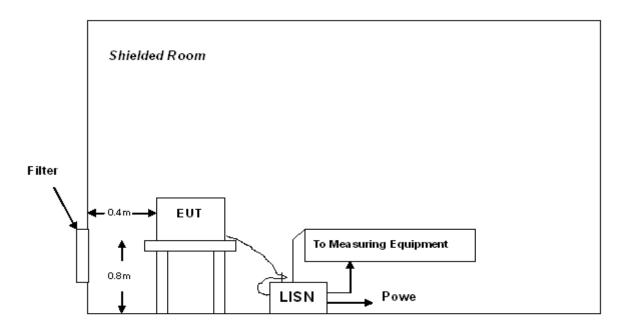

11.3 MEASUREMENT EQUIPMENT USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due	
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	US41421290	07/17/2013	07/16/2014	
RECEIVER ANTENNA	ETS	2175	57337	07/17/2013	07/16/2014	

11.4 LIMITS AND MEASUREMENT RESULT

Channel No.	PSD (dBm)	Limit (dBm)	Result
Low Channel	-16.34	8	Pass
Middle Channel	-13.34	8	Pass
High Channel	-12.13	8	Pass

12. FCC LINE CONDUCTED EMISSION TEST


12.1 LIMITS

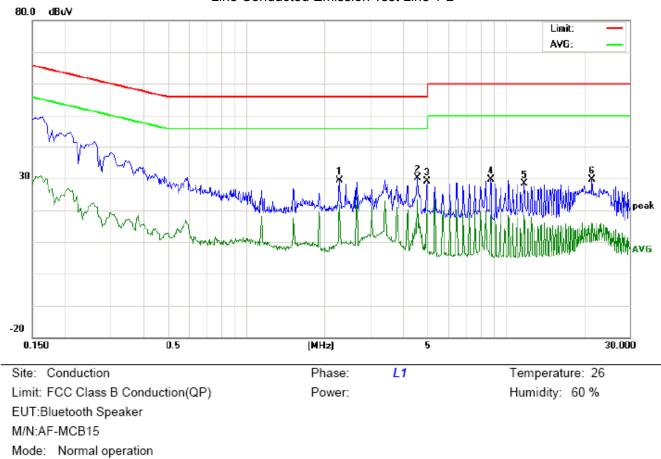
Fraguanay	Maximum RF Line Voltage							
Frequency	Q.P.(dBuV)	Average(dBuV)						
150kHz~500kHz	66-56	56-46						
500kHz~5MHz	56	46						
5MHz~30MHz	60	50						

**Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2 TEST SETUP

A: Powered through filter

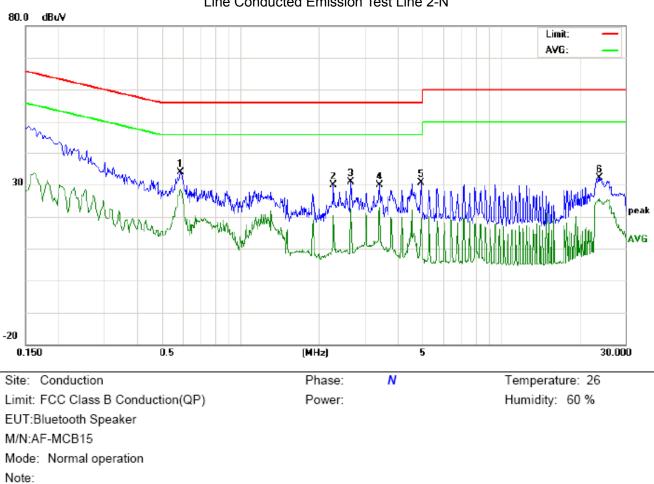

12.3 PRELIMINARY PROCEDURE

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.4.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4) All support equipments received AC120V/60Hz power from a LISN, if any.
- 5) The EUT received power by PC which received power by a LISN.
- 6) The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 FINAL TEST PROCEDURE

- 10) EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 11) 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 12) 3) The test data of the worst case condition(s) was reported on the Summary Data page.

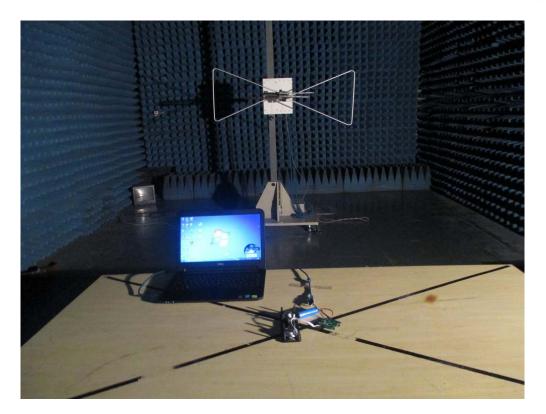


12.5 TEST RESULT OF POWER LINE

Line Conducted Emission Test Line 1-L

Note:

No.	No. Freq.		Reading_Lev (dBuV)		Correct Factor	Me	asuren (dBuV)		1	nit uV)	Mai (d	rgin IB)	P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	2.2860	18.98		11.16	10.34	29.32		21.50	56.00	46.00	-26.68	-24.50	Р	
2	4.5658	19.82		11.54	10.21	30.03		21.75	56.00	46.00	-25.97	-24.25	Р	
3	4.9579	18.90		10.39	10.24	29.14		20.63	56.00	46.00	-26.86	-25.37	Р	
4	8.7619	19.40		8.16	10.27	29.67		18.43	60.00	50.00	-30.33	-31.57	Р	
5	11.7898	18.19		8.17	10.13	28.32		18.30	60.00	50.00	-31.68	-31.70	Р	
6	21.5940	19.61		5.64	10.12	29.73		15.76	60.00	50.00	-30.27	-34.24	Ρ	


Line Conducted	Emission	lest Line 2-N

No.	Freq.				Correct Factor	Me	easuren (dBuV)			nit uV)	Mai (d	rgin IB)	P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.5899	23.47		18.27	10.32	33.79		28.59	56.00	46.00	-22.21	-17.41	Р	
2	2.2780	19.55		10.07	10.34	29.89		20.41	56.00	46.00	-26.11	-25.59	Р	
3	2.6579	20.37		11.83	10.47	30.84		22.30	56.00	46.00	-25.16	-23.70	Р	
4	3.4180	19.39		12.25	10.52	29.91		22.77	56.00	46.00	-26.09	-23.23	Р	
5	4.9339	20.47		9.44	10.24	30.71		19.68	56.00	46.00	-25.29	-26.32	Р	
6	23.7658	22.05		15.41	10.11	32.16		25.52	60.00	50.00	-27.84	-24.48	Р	

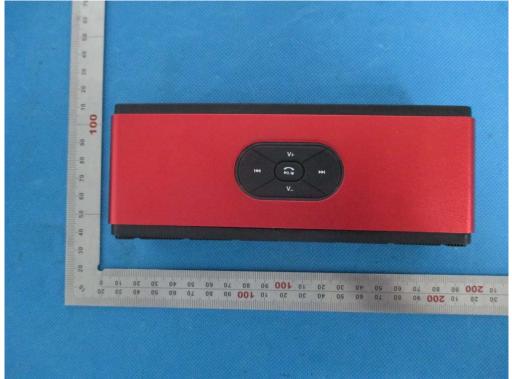
APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

Report No.: AGC00924140103FE08 Page 45 of 50

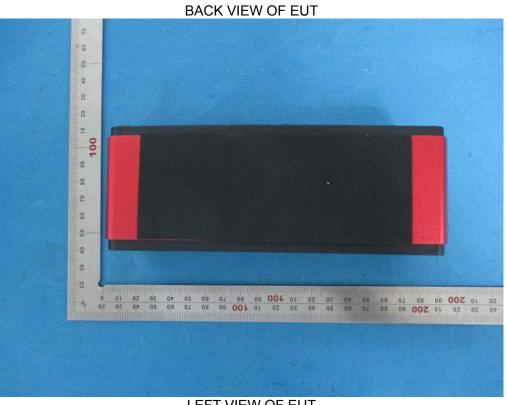
APPENDIX B: PHOTOGRAPHS OF EUT

All VIEW OF EUT

TOP VIEW OF EUT



Report No.: AGC00924140103FE08 Page 47 of 50



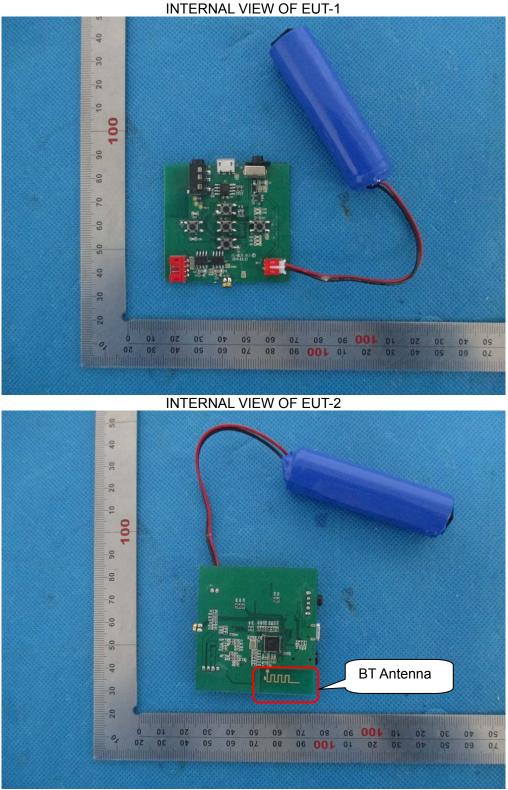
BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Report No.: AGC00924140103FE08 Page 48 of 50

LEFT VIEW OF EUT

Report No.: AGC00924140103FE08 Page 49 of 50



RIGHT VIEW OF EUT

OPEN VIEW OF EUT

Report No.: AGC00924140103FE08 Page 50 of 50

----END OF REPORT----