

FCC Part 15.249

TEST REPORT

For

PENPOWER TECHNOLOGY LTD.

7F, NO.47, Lane 2, Sec.2, Kuang-Fu Rd.,, Hsinchu City, 300 Taiwan

FCC ID: QIC-JLMT001

Report Type: Original Report	Product Type: PenPower EZGoRF Jr.DONGLE
Report Producer : Coco I	in
Report Number : <u>RXZ2</u>	31003013RF04
Report Date : <u>2024-0</u>	4-22
Reviewed By: <u>Andy S</u>	Shih Andy. Shih
Prepared By: Bay Area Co	mpliance Laboratories Corp.
(New Taipei I	Laboratory)
70, Lane 169,	Sec. 2, Datong Road, Xizhi Dist.,
New Taipei C	ity 22183, Taiwan, R.O.C.
Tel: +886 (2)	2647 6898
Fax: +886 (2)	2647 6895
www.bacl.com	n.tw

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ231003013	RXZ231003013RF04	2024-04-22	Original Report	Coco Lin

TABLE OF CONTENTS

1	Gen	eral Information	4
	1.1	Product Description for Equipment under Test (EUT)	4
	1.2	Objective	. 5
	1.3	Related Submittal(s)/Grant(s)	
	1.4	Test Methodology	
	1.5	Statement	
	1.6	Measurement Uncertainty	6
	1.7	Environmental Conditions	6
	1.8	Test Facility	6
2	Syst	em Test Configuration	7
	21	Description of Test Configuration	7
	2.2	Equipment Modifications	7
	2.3	EUT Exercise Software	7
	2.4	Support Equipment List and Details	7
	2.5	External Cable List and Details	7
	2.6	Block Diagram of Test Setup	8
3	Sun	amary of Tost Results	10
5	Sun	iniary of rest results	10
4	Test	Equipment List and Details	11
5	FCO	2 81.1307(b)(3)(i) – RF EXPOSURE	12
U			
	5.1	Applicable Standard	12
	5.2	RF Exposure Evaluation Result	13
6	FCC	C §15.203 – Antenna Requirements	14
	6.1	Applicable Standard	14
	6.2	Antenna Information	14
7	FCC	C §15.207(a) – AC Line Conducted Emissions	15
	7.1	Applicable Standard	15
	7.2	EUT Setup	15
	7.3	EMI Test Receiver Setup	16
	7.4	Test Procedure	16
	7.5	Factor & Over Limit	16
	7.6	Test Results	17
8	FCC	C §15.209, §15.205 , §15.249 - Radiated Emissions	18
	8.1	Applicable Standard	18
	8.2	EUT Setup	18
	8.3	EMI Test Receiver & Spectrum Analyzer Setup	20
	8.4	Test Procedure	20
	8.5	Factor & Over Limit	20
	8.6	Test Results	21
9	FCC	C §15.215(c) –20 dB Bandwidth Testing	27
	9.1	Applicable Standard	27
	9.1 9.2	Applicable Standard Test Procedure	27 27
	9.1 9.2 9.3	Applicable Standard Test Procedure Test Results	27 27 27

1 **General Information**

1.1	Product Descrip	otion for Ec	uinment un	der Test ((EUT)
1.1	I I UUUCI DESCI I		լությունը սո	uci icst	(ĽUI)

	PENPOWER TECHNOLOGY LTD.
Applicant	7F, NO.47, Lane 2, Sec.2, Kuang-Fu Rd.,, Hsinchu City, 300
	Taiwan
Brand(Trade) Name	PenPower
Product (Equipment)	PenPower EZGoRF Jr.DONGLE
Main Model Name	JLMT-001
Frequency Range	2408~2474 MHz
Modulation Technique	GFSK
Power Operation (Voltage Range)	 AC Adapter By AC Power Cord PoE ✓ DC Type 5V Battery DC Power Supply External from USB Cable External DC Adapter Host System
Received Date	2023/10/04
Date of Test	2023/10/11 ~ 2024/04/20

*All measurement and test data in this report was gathered from production sample serial number: RXZ231003013-11 (Assigned by BACL, New Taipei Laboratory).

1.2 Objective

This report is prepared on behalf of *PENPOWER TECHNOLOGY LTD*. in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules.

1.3 Related Submittal(s)/Grant(s)

N/A.

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.5 Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

1.6 Measurement Uncertainty

Parameter		Uncertainty
AC Mains		+/- 2.53 dB
Emissions Bandwidth		+/- 0.09 %
Emissions, radiated	9 kHz~30 MHz	+/- 3.54 dB
	30 MHz~1 GHz	+/- 4.99 dB
	1 GHz~18 GHz	+/- 7.56 dB
	18 GHz~40 GHz	+/- 5.06 dB
Temperature		+/- 0.79 °C
Humidity		+/- 0.44 %

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty

1.7 Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	Test Engineer
AC Line Conducted Emissions	2023/10/11	24.8	64	Jing Chang
Radiation Spurious Emissions	2024/01/19~2024/04/20	21.7~23.8	66~68	Jim Chen
20 dB Emission Bandwidth	2024/01/12	20.7	49	Jim Chen

1.8 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

2 System Test Configuration

2.1 Description of Test Configuration

Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2408	12	2432	24	2456
1	2410	13	2434	25	2458
2	2412	14	2436	26	2460
3	2414	15	2438	27	2462
4	2416	16	2440	28	2464
5	2418	17	2442	29	2466
6	2420	18	2444	30	2468
7	2422	19	2446	31	2470
8	2424	20	2448	32	2472
9	2426	21	2450	33	2474
10	2428	22	2452	/	/
11	2430	23	2454	/	/

Tested with channel 0, 16 and 33.

2.2 Equipment Modifications

No modification was made to the EUT.

2.3 EUT Exercise Software

The test software was used "RF TEST & EMI MODE V1.0.0.3"

The system was configured for testing in engineering mode, which was provided by manufacturer.

Test Frequency	Low	Middle	High
Power Level Setting	Default	Default	Default

2.4 Support Equipment List and Details

Description	Manufacturer	Model Number
NB	DELL	E6410
Writing Pad	PenPower	EZGoW01

2.5 External Cable List and Details

Cable Description	Length (cm)	From	То
USB Cable	25	NB	EUT

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 7 of 29

2.6 Block Diagram of Test Setup

See test photographs attached in setup photos for the actual connections between EUT and support equipment.

Radiation:

Below 1GHz:

Above 1GHz:

No.: RXZ231003013RF04

Conduction

Conducted

Summary of Test Results 3

FCC Rules	Description of Test	Results
§1.1307(b)(3)(i)	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209,§15.249	Radiated Emissions	Compliance
§15.215 (c)	20 dB Emission Bandwidth	Compliance

4 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date			
		AC Line Conduction	Room (CON-A)	1	1			
LISN	Rohde & Schwarz	ENV216	101612	2023/2/2	2024/2/1			
EMI Test Receiver	Rohde & Schwarz	ESW8	100947	2023/5/22	2024/5/20			
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2023/5/18	2024/5/16			
RF Cable	EMEC	EM-CB5D	1	2023/6/6	2024/6/4			
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R			
		Radiation 3M R	oom (966-A)					
Active Loop Antenna	ETS-Lindgren	6502	35796	2024/3/27	2025/3/26			
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI- CIRCUITS	JB6/UNAT-6+	A050115/15542_ 01	2023/1/31	2024/1/30			
Horn Antenna	EMCO	SAS-571	1020	2023/5/18	2024/5/17			
Horn Antenna	ETS-Lindgren	3116	62638	2023/8/25	2024/8/24			
Preamplifier	Sonoma	310N	130602	2023/6/16	2024/6/15			
Preamplifier	Channel	ERA-100M-18G- 01D1748	EC2300051	2023/4/1	2024/3/31			
Preamplifier	A.H. Systems	PAM-1840VH	174	2023/3/24	2024/3/23			
Spectrum	Rohde &	ESVAO	101020	2024/3/23	2024/3/23			
Analyzer	Schwarz	F5V40	101939	2024/3/27	2025/3/27			
EMI Test Receiver	Rohde & Schwarz	ESR3	102099	2023/6/16	2024/6/15			
Micro flex	UTIELEV	UFB197C-1-2362-	225757 001	2023/1/24	2024/1/23			
Cable	UTIFLEX	70U-70U	225/5/-001	2024/1/23	2025/1/23			
Coaxial Cable	COMMATE	PEWC	8Dr	2023/12/23	2024/12/22			
a 1011		UFB311A-Q-	220,400,000	2023/1/24	2024/1/23			
Coaxial Cable	UTIFLEX	1440-300300	220490-006	2024/1/23	2025/1/23			
Coaxial Cable	JUNFLON	J12J102248-00-B- 5	AUG-07-15-044	2023/12/23	2024/12/22			
G 11	E) (C	EMC105-SM-SM-	201002	2023/1/24	2024/1/23			
Cable	EMC	10000	201003	2024/1/23	2025/1/23			
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2023/1/24	2024/1/23			
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2023/2/1	2024/1/31			
Software	AUDIX	E3	18621a	N.C.R	N.C.R			
		Conducted	l Room					
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2023/2/9	2024/2/8			
Cable	UTIFLEX	UFA210A	9435	2023/10/2	2024/10/1			

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

5 FCC §1.1307(b)(3)(i) – RF EXPOSURE

5.1 Applicable Standard

According to subpart 15.249 and subpart §1.1307(b)(3)(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (*i.e.*, any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);

(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold *Pth* (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). *Pth* is given by:

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

5.2 **RF Exposure Evaluation Result**

Calculate the ERP from the radiated field strength in the far field using Equation

 $EIRP = E_{Meas} + 20\log(d_{Meas}) - 104.7$ EIRP= $82.81 \text{ dB}\mu\text{V/m} - 95.2 = -12.39 \text{ dBm}$ ERP = EIRP - 2.15 dB

Project info

Freq	EIRP	ERP	ERP
(MHz)	(dBm)	(dBm)	(mW)
2408~2474	-12.39	-14.54	0.04

§ 1.1307(b)(3)(i)(A)

The available maximum time-averaged power is no more than 1 mW

Result: The device meets the exemption requirement.

6 FCC §15.203 – Antenna Requirements

6.1 Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by theresponsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

6.2 Antenna Information

Manufacturer	Model	Туре	Antenna Gain			
MOSART	PCB(Dongle)	РСВ	-1.5532 dBi			

The antenna is permanently attached to the device.

Result: Compliance.

FCC §15.207(a) – AC Line Conducted Emissions 7

7.1 **Applicable Standard**

According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15-0.5	66 to 56 Note 1	56 to 46 Note 1					
0.5-5	56	46					
5-30	60	50					

Note 1: Decreases with the logarithm of the frequency.

7.2 **EUT Setup**

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

7.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

7.4 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

7.5 Factor & Over Limit

The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit line. For example, an over limit of -7 dB means the emission is 7 dB below the limit line. The equation for Over Limit calculation is as follows:

Over Limit = Result – Limit Line

No.: RXZ231003013RF04

7.6 Test Results

Test Mode: Transmitting

Main: AC120 V, 60 Hz

Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

8 FCC §15.209, §15.205, §15.249 - Radiated Emissions

8.1 Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (millivolts/meter)				
920-928 MHz	50	500				
2400-2483.5 MHz	50	500				
5725-5875 MHz	50	500				
24.0-24.25 GHz	250	2500				

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to ANSI C63.10-2013, section 5.3.3

Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field, and the emissions to be measured can be detected by the measurement equipment (see 4.3.4). Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. Measurements from 18 GHz to 40 GHz are typically made at distances significantly less than 3 m from the EUT. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements or inverse of linear distance-squared for power-density measurements).

8.2 EUT Setup

9kHz-30MHz:

No.: RXZ231003013RF04

30MHz-1GHz:

1-18 GHz:

18-26.5 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.249 limits.

8.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	VBW	Measurement method
9 kHz - 150 kHz	300 Hz	1 kHz	QP/AV
150 kHz - 30 MHz	10 kHz	30 kHz	QP/AV
30-1000 MHz	120 kHz	300 kHz	QP
Above 1 GHz	1 MHz	3 MHz	РК
Above 1 GHz	1 MHz	10 Hz	AVG

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

8.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in Quasi-peak and average detector mode from 9 kHz to 30 MHz, Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

8.5 Factor & Over Limit

The Factor is calculated by adding the Antenna Factor and Cable Loss, and Amplifier Gain from the Meter Reading. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss + Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit line. For example, The Over Limit of -7 dB means the emission is 7 dB below the limit line. The equation for margin calculation is as follows:

Margin = Level - Limit

No.: RXZ231003013RF04

8.6 Test Results

Test Mode: Transmitting

(Pre-scan with three orthogonal axis, and worse case as Z axis.)

9kHz-30MHz:

(worst case is low channel)

(Prescan using three directional polarities, worst case parallel.)

30MHz-1GHz:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 21 of 29

No.: RXZ231003013RF04

No.: RXZ231003013RF04

Band-Edge:

No.: RXZ231003013RF04

(Worst case mode is high channel)

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 24 of 29

No.: RXZ231003013RF04

18GHz-26.5GHz:

Note:

Level = Reading + Factor.

Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

For 18-26.5GHz Convert the test distance limit of 3 meters to a limit of 1 meter:

Conversion factor = 20 log (1m/3m) = 9.5 dB , Limit = 54+9.5 = 63.50 dBuV/m @ 1m

Above 1GHz

	Low channel																
			Hor	izonta	1							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin H	Height (Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
2382.540 2382.540 2408.000 2408.000	42.68 63.65 48.75 88.74	-11.19 -11.19 -11.10 -11.10	31.49 52.46 37.65 77.64	54.00 74.00 94.00 114.00	-22.51 -21.54 -56.35 -36.36	132 132 132 132	183 183 183 183	Average Peak Average Peak	2385.430 2385.430 2408.000 2408.000	41.16 63.76 45.03 89.99	-11.18 -11.18 -11.10 -11.10	29.98 52.58 33.93 78.89	54.00 74.00 94.00 114.00	-24.02 -21.42 -60.07 -35.11	148 148 148 148	294 294 294 294	Average Peak Average Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degre	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MEZ	abuv	06/11	abuv/m	ubuv/m	uв	(Cm)	0		MHZ	abuv	ab/m	abuv/m	abuv/m	ab	(cm)	(-)	
4816.000	32.43	-4.97	27.46	54.00	-26.54	100	293	Average	4816.000	32.73	-4.97	27.76	54.00	-26.24	109	250	Average
4816.000 7224.000 7224.000	57.24 29.54 42.29	-4.97 0.04 0.04	29.58 42.33	74.00 54.00 74.00	-21.73 -24.42 -31.67	100 152 152	293 56 56	o Peak Average o Peak	7224.000 7224.000	29.47 43.28	0.04 0.04	29.51 43.32	54.00 74.00	-24.49 -30.68	152 152	250 95 95	Average Peak
									1								

	Middle channel																
			Hori	zontal								Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height I	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
2440.000 2440.000	48.92 93.87	-11.06 -11.06	37.86 82.81	94.00 114.00	-56.14 -31.19	133 133	187 187	Average Peak	2440.000 2440.530	45.06 77.48	-11.06 -11.06	34.00 66.42	94.00 114.00	-60.00 -47.58	145 145	289 289	Average Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degre	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	n Height	: Degree	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBu\	dB/m	dBuV/m	dBuV/n	n di	3 (cm)	(°)	
4880.000 4880.000 7320.000 7320.000	32.83 55.15 29.53 42.54	-4.89 -4.89 0.02 0.02	27.94 50.26 29.55 42.56	54.00 74.00 54.00 74.00	-26.06 -23.74 -24.45 -31.44	125 125 154 154	298 298 0 0	Average Peak Average Peak	4880.000 4880.000 7320.000 7320.000	31.51 49.27 29.61 42.87	-4.89 -4.89 0.02 0.02	26.62 44.38 29.63 42.89	54.00 74.00 54.00 74.00	-27.38 -29.62 -24.37 -31.13	3 124 2 124 7 152 1 152	259 259 243 243	Average Peak Average Peak

High channel

Horizontal										Ve	rtical						
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
2474.000 2474.000 2486.510 2486.510	48.42 93.32 42.48 59.99	-10.72 -10.72 -10.55 -10.55	37.70 82.60 31.93 49.44	94.00 114.00 54.00 74.00	-56.30 -31.40 -22.07 -24.56	135 135 135 135	234 234 234 234	Average Peak Average Peak	2474.000 2474.000 2486.320 2486.320	44.61 83.77 40.92 55.13	-10.72 -10.72 -10.55 -10.55	33.89 73.05 30.37 44.58	94.00 114.00 54.00 74.00	-60.11 -40.95 -23.63 -29.42	142 142 142 142	290 290 290 290	Average Peak Average Peak
Freq	. Reading	g Factor	Level	Limit	Margin	Height	Degree	Remark	Freq. 	Reading 	Factor 	Level	Limit dBuV/m	Margin dB	Height (cm)	Degree	Remark
4948.00 4948.00 7422.00 7422.00 17813.00 17813.00	0 34.10 0 57.00 0 30.01 0 42.23 0 30.51 0 43.70	-4.63 -4.63 -4.63 0.37 0.37 13.01 13.01	29.47 52.37 30.38 42.60 43.52 56.71	54.00 74.00 54.00 74.00 54.00 74.00	-24.53 -21.63 -23.62 -31.40 -10.48 -17.29	142 142 149 149 150 150	14 14 229 229 236 236	Average Peak Average Peak Average Peak	4948.000 4948.000 7422.000 7422.000 17779.000 17779.000	31.21 48.27 29.50 42.40 29.92 43.62	-4.66 -4.66 0.37 0.37 12.86 12.86	26.55 43.61 29.87 42.77 42.78 56.48	54.00 74.00 54.00 74.00 54.00 74.00	-27.45 -30.39 -24.13 -31.23 -11.22 -17.52	151 151 145 145 150 150	150 150 346 346 197 197	Average Peak Average Peak Average Peak

Note:

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

9 FCC §15.215(c) –20 dB Bandwidth Testing

9.1 Applicable Standard

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

9.2 Test Procedure

According to ANSI C63.10-2013 Section 6.9.2

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
 Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level.

Record the frequency difference as the emission bandwidth.

4. Repeat above procedures until all frequencies measured were complete.

Channel	Frequency	20 dB Emission Bandwidth				
Channel	(MHz)	(MHz)				
Low	2408	2.06				
Middle	2440	2.06				
High	2474	2.06				

9.3 Test Results

Please refer to the following plots

20 dB Emission Bandwidth

Low Channel

Date: 12.JAN.2024 10:54:46

Middle Channel

Date: 12.JAN.2024 10:58:25

High Channel

Date: 12.JAN.2024 10:56:36

***** END OF REPORT *****