FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10:2013 TEST REPORT

For

Smart Energy Wireless Router

Model: Billion SG600R2

Data Applies To: Please refer to section 2 (altogether 9 series models)

Trade Name: Billion, BEC

Issued for

Billion Electric Co., Ltd.

8F., No.192, Sec. 2, Zhongxing Rd., Xindian Dist., New Taipei City 231, Taiwan (R.O.C.)

Issued by

Compliance Certification Services Inc. Hsinchu Lab. No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.) TEL: +886-3-5921698 FAX: +886-3-5921108

> http://www.ccsrf.com E-Mail: service@ccsrf.com

Issued Date: December 16, 2016

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Page 1 / 101

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	12/13/2016	Initial Issue	All Page 101	Dola Hsieh
01	12/16/2016	Add Measurement Uncertainty	P.10	Gloria Chang

TABLE OF CONTENTS

TIT	ΓLΕ		PAGE NO.
1.	TES	T REPORT CERTIFICATION	4
2.	EUT	DESCRIPTION	5
3.	DES	CRIPTION OF TEST MODES	7
4.	TES	T METHODOLOGY	9
5.	FAC	ILITIES AND ACCREDITATION	9
	5.1	FACILITIES	9
	5.2	ACCREDITATIONS	9
	5.3	MEASUREMENT UNCERTAINTY	10
6.	SET	UP OF EQUIPMENT UNDER TEST	11
7.	FCC	PART 15.247 REQUIREMENTS	13
	7.1	DUTY CYCLE CORRECTION FACTOR	13
	7.2	6dB BANDWIDTH	14
	7.3	MAXIMUM PEAK OUTPUT POWER	24
	7.4	AVERAGE POWER	28
	7.5	POWER SPECTRAL DENSITY	31
	7.6	CONDUCTED SPURIOUS EMISSION	43
	7.7	RADIATED EMISSION	56
	7.8	CONDUCTED EMISSION	91
8.	APP	ENDIX I CO-LOCATION	96
9.	APP	PENDIX II SETUP PHOTOS	97

1. TEST REPORT CERTIFICATION

Applicant	:	Billion Electric Co., Ltd.
Address	:	8F., No.192, Sec. 2, Zhongxing Rd., Xindian Dist., New Taipei City 231, Taiwan (B O C)
Equipmont Under Test	•	Smart Enorgy Wireless Pouter
Equipment onder rest	•	Small Energy Wheless Houler
Model	:	Billion SG600R2
Data Applies To	:	Please refer to section 2
		(altogether 9 series models)
Trade Name	:	Billion, BEC
Tested Date	:	October 20 ~ December 05, 2016

APPLICABLE STANDARD		
Standard	Test Result	
FCC Part 15 Subpart C AND	DASS	
ANSI C63.10:2013	FASS	

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

. In

Sb. Lu Sr. Engineer

Reviewed by:

an L.

Gundarn Lin Sr. Engineer

Page 4 / 101

2. EUT DESCRIPTION

Product Name Smart Energy Wireless Router	
Model Number	Billion SG600R2
Data Applies ToPlease refer to section 2 (altogether 9 series models)	
Identify Number	T161020S01
Received Date	October 20, 2016
Frequency Range	IEEE 802.11b/g, 802.11gn HT20 Mode: 2412MHz ~ 2462MHz IEEE 802.11gn HT40 Mode: 2422MHz ~ 2452MHz
Transmit Power	IEEE 802.11b Mode: 20.41 dBm (0.1099 W) IEEE 802.11g Mode: 25.44 dBm (0.3499 W) IEEE 802.11gn HT20 MCS0 Mode: 24.82 dBm (0.3034 W) IEEE 802.11gn HT40 MCS0 Mode: 24.77 dBm (0.2999 W)
Channel Spacing IEEE 802.11b/g, 802.11gn HT20/HT40 : 5MHz	
Channel Number	IEEE 802.11b/g, 802.11gn HT20 Mode: 11 Channels IEEE 802.11gn HT40 Mode: 7 Channels
Transmit Data Rate	IEEE 802.11b Mode: up to 11 Mbps IEEE 802.11g Mode: up to 54 Mbps IEEE 802.11gn HT20 Mode (800ns GI): up to 65.00 Mbps IEEE 802.11gn HT20 Mode (400ns GI): up to 72.20 Mbps IEEE 802.11gn HT40 Mode (800ns GI): up to 135.0 Mbps IEEE 802.11gn HT40 Mode (400ns GI): up to 150.00 Mbps
Type of Modulation	IEEE 802.11b Mode: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g Mode: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11gn HT20/40 Mode: OFDM (64QAM, 16QAM, QPSK, BPSK)
Antenna Type	WiFi Dipole Antenna× 1, Antenna Gain: 1.8 dBi
Power Rating	12Vdc
Test Voltage 120Vac, 60Hz	
DC Power Cable Type	Non-shielded cable, 1.5 m × 1 (Non-detachable)
I/O Port	LAN Port × 1, WAN Port × 1, USB Port × 1, Power Port × 1

ELERF Compliance Certification Services Inc. FCC ID: QI3BIL-SG600R2

Power Adapter:

No.	Manufacturer	Model No.	Power Input	Power Output
1	BILLION	BA018-120100AXU	100-240Vac, 0.5A, 50/60Hz	12Vdc, 1.0A

The difference of the series model

Model Number	Difference		
Model Number	Brand	Color	Housing
Billion SG600R2		White	D2
Billion SG600 R2NXL-Std		White	D2
Billion SG600 R2NX-Std	Billion	Blue	D2
Billion SG600 R2NXL-SDK		White	D2
Billion SG600 R2NX-SDK		Blue	D2
BEC SG600R2		White	D2 / B2
BEC SG600 R2NXL-Std		White	D2 / B2
BEC SG600 R2NX-Std	BEC	Blue	D2 / B2
BEC SG600 R2NXL-SDK		White	D2 / B2
BEC SG600 R2NX-SDK		Blue	D2 / B2
Note: "O" means all the same, and "X" means the difference			

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: QI3BIL-SG600R2 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 4. The model Billion SG600R2 was considered the main model for testing.

3. DESCRIPTION OF TEST MODES

The EUT (Smart Energy Wireless Router) is an 802.11b/g/n transceiver. For IEEE 802.11b/g, 802.11gn HT20/HT40 Mode: 1TX / 1RX

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test mode
1	TX Mode
2	Normal Mode

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test mode		
Emission	Radiated Emission	Mode 1
	Conducted Emission	Mode 2

Remark: Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Conducted / Radiated Emission Test (Above 1 GHz) IEEE 802.11b/g, 802.11gn HT20 Mode:

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b Mode: 1Mbps data rate (worst case) was chosen for full testing.

IEEE 802.11g Mode: 6Mbps data rate (worst case) was chosen for full testing.

IEEE 802.11gn HT20 MCS0 Mode: 6.5Mbps data rate (worst case) was chosen for full testing.

IEEE 802.11gn HT40 Mode:

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11gn HT40 MCS0 Mode: 13.5Mbps data rate (worst case) was chosen for full testing.

Remark: The field strength of spurious emission was measured in the following position: EUT stand-up position(Y axis), lie-down position(X, Z axis). The worst emission was found in stand-up position(Y axis) and the worst case was recorded.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10:2013 and FCC CFR 47, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.10:2013 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	INDUSTRY CANADA
Japan	VCCI
Taiwan	BSMI
USA	FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Remark: FCC Designation Number TW1027.

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48
6dB Bandwidth, Conducted	+/- 2.6906*10 ⁻⁵
RF Output Power, Conducted	+/- 1.3860
Power Spectral Density, Conducted	+/- 2.5290
Conducted Spurious Emission	+/- 2.2727

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.
1	Notebook PC	TOSHIBA	PORTEGE R30-A	7F097011H
2	Notebook PC	TOSHIBA	PORTEGE R30-A	1E101235H
3	Notebook PC	TOSHIBA	PORTEGE R30-A	7F096978H
4	Flash Disk	Kingston	DTSE9H/8GB	
5	Zigbee TX	BILLION	SG200	

No.	Signal	Cable	Description
-----	--------	-------	-------------

1 Non-shielded RJ-45 cable, 12m × 2

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

WiFi Mode:

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. TX mode:
 - ⇒ Data Rate: 1Mbps Bandwidth 20 (IEEE 802.11b Mode)
 - 6Mbps Bandwidth 20 (IEEE 802.11g Mode)
 - 6.5Mbps Bandwidth 20 (IEEE 802.11gn HT20 MCS0 Mode)
 - 13.5Mbps Bandwidth 40 (IEEE 802.11gn HT40 MCS0 Mode)

⇒ Power control

Mode	Channel	Frequency (MHz)	Power Set
	Low	2412	12
IEEE 802.11b	Middle	2437	18
	High	2462	19
	Low	2412	1F
IEEE 802.11g	Middle	2437	1F
	High	2462	1D
	Low	2412	1E
IEEE 802.11gn H120 MCS0	Middle	2437	1F
MOOD	High	2462	1C
	Low	2422	18
IEEE 802.11gn H140 MCS0	Middle	2437	1F
MCSO	High	2452	15

- 3. All of the functions are under run.
- 4. Start test.

Normal Mode

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Turn on the power of all equipments.
- 3. Notebook PC 1 connect to EUT with LAN and setup a static IP(192.168.5.100).
- 4. Notebook PC 1 ping 192.168.5.254(EUT IP).
- 5. Notebook PC 2 connect to EUT with WAN and setup a static IP(192.168.1.101).
- 6. Notebook PC 2 ping 192.168.1.100(EUT IP).
- 7. Notebook PC 3 link to EUT with WiFi 2.4G (DHCP).
- 8. Notebook PC 1~3 ping eachother.
- 9. EUT USB 2.0 Port link to USB flash disks.
- 10.Zigbee connect to EUT with SG200
- 11. All of the functions are under run.
- 12. Start test

Page 12 / 101

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

7. FCC PART 15.247 REQUIREMENTS

7.1 DUTY CYCLE CORRECTION FACTOR

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model Billion SG600R2		Test Date	2016/11/03
Test Mode TX Mode		Temp. & Humidity	17°C, 50%

Mode	TX on (ms)	TX on + off (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)
IEEE 802.11b	1.000	1.000	100.00%	0.00	0.010
IEEE 802.11g	1.000	1.000	100.00%	0.00	0.010
IEEE 802.11gn HT20	1.000	1.000	100.00%	0.00	0.010
IEEE 802.11gn HT40	1.000	1.000	100.00%	0.00	0.010

7.2 6dB BANDWIDTH

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

TEST EQUIPMENT

Name of Equipment Manufacturer		Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/15/2017
Test S/W	N/A			

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. The transmitter output was connected to a spectrum analyzer.
- 2. Set RBW = 100 kHz.
- 3. Set the video bandwidth (VBW) \ge 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST RESULTS

Product Name	Product Name Smart Energy Wireless Router		Davis Tseng
Test Model	Billion SG600R2	Test Date	2016/11/23
Test Mode	TX Mode	Temp. & Humidity	23°C, 73%

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Result
Low	2412	12.10	500	PASS
Middle	2437	12.08	500	PASS
High	2462	12.09	500	PASS

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Result
Low	2412	16.54	500	PASS
Middle	2437	16.51	500	PASS
High	2462	16.56	500	PASS

IEEE 802.11gn HT20 MCS0 Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Result
Low	2412	17.71	500	PASS
Middle	2437	17.65	500	PASS
High	2462	17.71	500	PASS

IEEE 802.11gn HT40 MCS0 Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Result
Low	2422	36.38	500	PASS
Middle	2437	36.37	500	PASS
High	2452	36.39	500	PASS

6dB BANDWIDTH

CH Middle (IEEE 802.11b Mode)

CH High (IEEE 802.11b Mode)

Page 17 / 101 This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

CH Low (IEEE 802.11g Mode)

CH Middle (IEEE 802.11g Mode)

CH High (IEEE 802.11g Mode)

CH Low (IEEE 802.11gn HT20 MCS0 Mode)

CH Middle (IEEE 802.11gn HT20 MCS0 Mode)

CH High (IEEE 802.11gn HT20 MCS0 Mode)

CH Low (IEEE 802.11gn HT40 MCS0 Mode)

CH Middle (IEEE 802.11gn HT40 MCS0 Mode)

CH High (IEEE 802.11gn HT40 MCS0 Mode)

Page 23 / 101 This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

7.3 MAXIMUM PEAK OUTPUT POWER LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following:

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§ KDB 662911:

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \ge 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with N_{ANT} \ge 5.

If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream:

Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain; or,

$$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2495A	1149001	12/08/2016
Power Sensor	Anritsu	MA2411B	1126148	12/08/2016
Test S/W	N/A			

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the power meter. The power meter is set to the peak power detection.

TEST RESULTS

Product Name	Smart Energy Wireless Router	Test By	Davis Tseng
Test Model	Billion SG600R2	Test Date	2016/11/23
Test Mode	TX Mode	Temp. & Humidity	23°C, 73%

IEEE 802.11b Mode

Channel	Channel Frequency	Maximum F Pov	Peak Output wer	Lir	nit	Result
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2412	17.56	0.0570	30	1.000	PASS
Middle	2437	20.08	0.1019	30	1.000	PASS
High	2462	20.41	0.1099	30	1.000	PASS

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 2.22 dBi which is less than 6dBi, the limit should be 1 W.

IEEE 802.11g Mode

Channel	Channel Frequency	Maximum Peak Output Power		Lir	nit	Result
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2412	25.18	0.3296	30	1.000	PASS
Middle	2437	25.44	0.3499	30	1.000	PASS
High	2462	24.88	0.3076	30	1.000	PASS

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 2.22 dBi which is less than 6dBi, the limit should be 1 W.

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Channel	Channel Frequency	Maximum Peak Output Power		Lir	nit	Result
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2412	24.17	0.2612	30	1.000	PASS
Middle	2437	24.82	0.3034	30	1.000	PASS
High	2462	23.44	0.2208	30	1.000	PASS

IEEE 802.11gn HT20 MCS0 Mode

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 2.22 dBi which is less than 6dBi, the limit should be 1 W.

Channel	Channel Frequency	Maximum F Pov	Peak Output wer	Lii	nit	Result
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2422	22.05	0.1603	30	1.000	PASS
Middle	2437	24.77	0.2999	30	1.000	PASS
High	2452	21.51	0.1416	30	1.000	PASS

IEEE 802.11gn HT40 MCS0 Mode

Remark:

1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 2.22 dBi which is less than 6dBi, the limit should be 1 W.

7.4 AVERAGE POWER LIMITS

None: For reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2495A	1149001	12/08/2016
Power Sensor	Anritsu	MA2411B	1126148	12/08/2016
Test S/W	N/A			

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the power meter. The power meter is set to the average power detection.

TEST RESULTS

Product Name	Smart Energy Wireless Router	Test By	Davis Tseng
Test Model	Billion SG600R2	Test Date	2016/11/23
Test Mode	TX Mode	Temp. & Humidity	23°C, 73%

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	15.12
Middle	2437	17.84
High	2462	18.05

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	17.04
Middle	2437	17.12
High	2462	16.35

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11gn HT20 MCS0 Mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	16.79
Middle	2437	17.14
High	2462	16.12

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11gn HT40 MCS0 Mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2422	14.62
Middle	2437	17.26
High	2452	13.08

Remark:

1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

7.5 POWER SPECTRAL DENSITY LIMITS

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

§ KDB 662911:

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream:

Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain; or,

Directional Gain =
$$10 \cdot \log \left| \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right|$$

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/15/2017
Test S/W	N/A			

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set analyzer center frequency to DTS channel center frequency.
- 3. Set the span to 1.5 times the DTS channel bandwidth.
- 4. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 5. Set the VBW \geq 3 x RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST RESULTS

Product Name	Smart Energy Wireless Router	Test By	Davis Tseng
Test Model	Billion SG600R2	Test Date	2016/11/23
Test Mode	TX Mode	Temp. & Humidity	23°C, 73%

IEEE 802.11b Mode

Channel	Channel Frequency	Final RF Power Level in 3KHz BW (dBm)		Result
	(MHz)	Measured Value	Limit	
Low	2412	-8.88	8	PASS
Middle	2437	-5.94	8	PASS
High	2462	-6.28	8	PASS

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The directional gain is 2.22 dBi which is less than 6dBi, the limit should be 8 dBm.

IEEE 802.11g Mode

Channel	Channel Frequency	Final RF Power Level in 3KHz BW (dBm)		Result
	(MHz)	Measured Value	Limit	
Low	2412	-4.86	8	PASS
Middle	2437	-4.63	8	PASS
High	2462	-4.74	8	PASS

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The directional gain is 2.22 dBi which is less than 6dBi, the limit should be 8 dBm.

IEEE 802.11gn HT20 MCS0 Mode

Channel	Channel Frequency	Final RF Power Level in 3KHz BW (dBm)		Result
	(MHz)	Measured Value	Limit	
Low	2412	-4.34	8	PASS
Middle	2437	-3.59	8	PASS
High	2462	-5.13	8	PASS

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The directional gain is 2.22 dBi which is less than 6dBi, the limit should be 8 dBm.

Channel	Channel Frequency	Final RF Power Level in 3KHz BW (dBm)		Result
	(MHz)	Measured Value	Limit	
Low	2422	-6.77	8	PASS
Middle	2437	-5.08	8	PASS
High	2452	-6.89	8	PASS

IEEE 802.11gn HT40 MCS0 Mode

Remark:

1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The directional gain is 2.22 dBi which is less than 6dBi, the limit should be 8 dBm.

POWER SPECTRAL DENSITY

CH Middle (IEEE 802.11b Mode)

CH High (IEEE 802.11b Mode)
02:14:13 PM Nov 23, 2016 ALIGNAUTO Avg Type: Log-Pwr Center Freq 2.412000000 GHz Trig: Free Run Atten: 30 dB PNO: Fast 😱 IFGain:Low DET P N N N N Mkr1 2.411 992 6 GHz Ref Offset 10.5 dB Ref 30.50 dBm -4.86 dBm 10 dB/div 20. ********** Span 24.82 MHz Sweep 237 ms (40001 pts) Center 2.41200 GHz #Res BW 10 kHz #VBW 30 kHz sg 🕸 File <11G-Low-PSD-FCC.Png> saved STATUS

CH Low (IEEE 802.11g Mode)

CH Middle (IEEE 802.11g Mode)

CH High (IEEE 802.11g Mode)

CH Low (IEEE 802.11gn HT20 MCS0 Mode)

CH Middle (IEEE 802.11gn HT20 MCS0 Mode)

CH High (IEEE 802.11gn HT20 MCS0 Mode)

Page 40 / 101 This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

CH Low (IEEE 802.11gn HT40 MCS0 Mode)

CH Middle (IEEE 802.11gn HT40 MCS0 Mode) rum Analyzer - Swept SA RF 50 Q DC 02:42:33 PM req 2.4370000000 GHz Trace Avg Type: Log-Pwr Trace

CH High (IEEE 802.11gn HT40 MCS0 Mode)

Page 42 / 101 This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

7.6 CONDUCTED SPURIOUS EMISSION LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/15/2017			
Test S/W	N/A						

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST RESULTS

Product Name	Smart Energy Wireless Router	Test By	Davis Tseng
Test Model	Billion SG600R2	Test Date	2016/11/23
Test Mode	TX Mode	Temp. & Humidity	23°C, 73%

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode)

CH Low (30MHz ~ 26.5GHz / IEEE 802.11b Mode)

CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode)

CH Middle (30MHz ~ 26.5GHz / IEEE 802.11b Mode)

CH High (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode)

CH High (30MHz ~ 26.5GHz / IEEE 802.11b Mode)

CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11g Mode)

CH Low (30MHz ~ 26.5GHz / IEEE 802.11g Mode)

Agilent Spec	trum Analyz	er - Swept SA								
L <mark>XI</mark> RL	RF	50 Q DC			SENSE:INT	AL	IGNAUTO		02:14:4	4 PM Nov 23, 2016
Center	Freq 13.	2650000	00 GHz		Tria: Free (Pup	Avg Type:	Log-Pwr	TF	CACE 1 2 3 4 5 6
			1	PNO:Fast 🖵	Atten: 30 d	B				DET P N N N N N
10 dD/diu	Ref Off	set 10.5 dB	1							
Log	Kei Ji	J.30 GBM		1				1		
20.5										
10.5										
0.500										
9.50										
-9.50										-17.39 dBm
-19.5										
-29.5										
-39.5								lar a		والمتعالية والمتعادية والمتعاد
-49.5		No. And No.	Loss Mobel and All	and the set of encoderated	ويتعاليه المطلبان	a president de la Mary de Marine de la Mary de	and the second second second		And a second	China Constant and a line
-59.5	A CARACTER IN CO.			a contraction of the last of the						
Start 30	MHz	_		<i>4</i> 0 (5)				-	Stop	26.50 GHz
#Res BV	V 100 KH	z		#VB	W 300 KHZ			SWe	ep 2.53 s	(40001 pts)
MKR MODE	TRC SCL	×		Y	FUNC	TION FUNCT	TION WIDTH	FL	INCTION VALUE	
1										
3										
4										
6										
7										
9										
10										
11										
	110			in the second			07.0710			
MSG 🛶 File	e <11G-LOV	N-30M 26.5	ьG(20авс).Р	ng> saved			STATUS			

CH Middle (30MHz ~ 26.5GHz / IEEE 802.11g Mode)

Agilent Spect	rum Analyzer - Swept S/	A I							
LXI RL	RF 50 Ω DC			SENSE:INT	A	LIGNAUTO		02:11:1	9 PM Nov 23, 2016
Center F	req 13.265000	<u>)00 GHz</u> ₽ ⊮	'NO: Fast 🖵 Gain:Low) Trig: Free l Atten: 30 d	Run 18	Avg type:	Log-Pwr	11	TYPE MWWWWWW DET P N N N N N
10 dB/div	Ref Offset 10.5 dE Ref 30.50 dBm	3 1							
20.5									
10.5									
0.500									
-9.50									-17.20 dBm
-19.5									
-29.5									
-39.5	All advards to an			.	Localization of the state	an an an an an an airte	al desident des la sub		ander andere filmet
-49.5							le tribune de la companie de la comp	a design of the second s	and the second
-59.5									
Start 30 I #Res BW	VIHz 100 kHz		#VB	W 300 kHz			Swe	Stop ep 2.53 s	26.50 GHz (40001 pts)
	RC SCL >	×	Y	FUNC	CTION FUNC	CTION WIDTH	FL	JNCTION VALUE	
3									
4 5									
6									
8									
10									
11									
мsg 🔱 File	<11G-Mid-30M~26.5	5G(20dBc).Pn	g> saved			STATUS			

Page 48 / 101 This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

CH High (2.38GHz ~ 2.5GHz / IEEE 802.11g Mode)

CH High (30MHz ~ 26.5GHz / IEEE 802.11g Mode)

Agilent Sp	oectrum Ana	alyzer - Swept SA	l							
LXI RL	RF	50 Ω DC			SENSE:INT	Al	IGN AUTO	and a set Draw	02:07:0	5 PM Nov 23, 2016
Cente	r Freq 1	13.2650000	JOU GHZ	PNO: East	Trig: Free	Run	AVgiyp	e: Log-Pwr		
			, I	FGain:Low	Atten: 30	βB				DET P NNNNN
	Ref	Offset 10.5 dF	3							
10 dB/d	iv Ref	30.50 dBm	ī							
20.5										
10.5										
0.500										
0.500										
-9.50										-18.18 dBm
-19.5										
-29.5										
-39.5		يريدان والقور بمعراقه		مريد المراجع			فمبلعات والمعادية	and the second	الامريكيل أألعسم مريناته	modes be dealers
-49.5				dente de la contraction de		and a standard state of the state		and a state of the	a series and the series of the series of the	
-59.5										
Start 3	0 MHz		1						Stop	26.50 GHz
#Res E	3W 100 I	kHz		#VB	W 300 kHz			Swe	ep 2.53 s	(40001 pts)
MKR MOD	E TRC SCL	×	<	Y	FUN	CTION FUNC	TION WIDTH	E	JNCTION VALUE	
1										
3										
4										
6										
8										
9										
11										
12										
мsg 🍑 F	ile <11G-	High-30M~26	.5G(20dBc).P	'ng> saved			STATUS			

CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

CH Low (30MHz ~ 26.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

Agilent Sp	ectrum Ar	alyzer - Swept S/	A							
LXI RL	RF	- 50 Ω DC			SENSE:INT	AL	IGN AUTO		02:19:4	1 PM Nov 23, 2016
Center	r Freq	13.265000	000 GHz		Tria: Eroo	Dun	Avg Type	: Log-Pwr	т	RACE 1 2 3 4 5 6
				PNO:Fast 🕞	Atten: 30 d	B				DET P N N N N N
10 dB/di	iv Ref	f Offset 10.5 di f 30.50 dBn	3 1							
Log										
20.5										
10.5										
0.500										
-9.50										-17.83 dBm
-19.5										
-29.5										
-39.5		1							الأرباطية والمتحد	And the second s
-49.5	and the second		delet dependently	د. مراجع محمو بالارد المرود بالأمام مدر وارد المرب بالمناطق محمو الأرام		and the second second second				a hile 6 a rile of any 16 and 16 little for
-59.5	Judge and Party									
	0.0411-								01.0	06 50 OU-
#Res B	W 100	kHz		#VB	W 300 kHz			Swe	ep 2.53 s	(40001 pts)
MKR MODE	e trc sci		×	Y	FUN	CTION FUNC	TION WIDTH	EL	JNCTION VALUE	
1										
3										
4										
6										
8										
9										
11										
12										
мsg 倝 F	ile <n20< td=""><td>-Low-30M~26.</td><td>5G(20dBc).P</td><td>ng> saved</td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></n20<>	-Low-30M~26.	5G(20dBc).P	ng> saved			STATUS			

CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

CH Middle (30MHz ~ 26.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

Agilent Spe	ctrum Analyzer	- Swept SA								
L <mark>XI</mark> RL	RF	50Ω DC			SENSE:INT	AL	IGN AUTO		02:23:5	8 PM Nov 23, 2016
Center	Freq 13.2	650000	00 GHz		Tria: Free	Run	Avg Typ	e: Log-Pwr	TI	
			II II	FRU: Fast 🖵 Gain:Low	Atten: 30 d	зB				DET P N N N N N
10 dB/div	Ref Offse Ref 30.5	t 10.5 dB 50 dBm								
Log										
20.5										
10.5										
0.500										
-9.50										
-19.5										-16.99 dBm
10.0										
-20.0										
-39.5	A				1	والمتلفية والمتلاوم		والمراغمة بالمأطور مرو	أسليه والمستحد والتعمير المر	a la sine di Suda Sula Sula
-49.5					and the second se		the strength of the strength		And the second secon	
-59.5										
Start 30	MH7								Ston	26 50 CHz
#Res B	N 100 kHz			#VB	W 300 kHz			Swe	ep 2.53 s	(40001 pts)
MKBI MODEL	TRO SOL			×	FUN	CTION FUNC	IIDN WIDTH	FI	INCTION VALUE	
1	110 302								Inchion valoe	
2										
4										
5										
7										
8										
10										
11										
12										
мsg 🍑 Fil	e <n20-mid-3< th=""><th>0M~26.50</th><th>G(20dBc).Pn</th><th>g> saved</th><th></th><th></th><th>STATUS</th><th></th><th></th><th></th></n20-mid-3<>	0M~26.50	G(20dBc).Pn	g> saved			STATUS			

CH High (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

CH High (30MHz ~ 26.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

Agilent Spe	ectrum Ar	alyzer - Swept S/	١							
LXI RL	RF	- 50 Ω DC			SENSE:INT	A	LIGN AUTO		02:27:5	7 PM Nov 23, 2016
Center	Freq	13.2650000	000 GHz	DNO: Fart	Tria: Free	Run	Avg Typ	e: Log-Pwr	T	TYPE M WANNAAA
			1	FGain:Low	Atten: 30	dB				DET P NNNNN
	Det		,							
10 dB/di	v Re	f 30.50 dBm	5 1							
Log										
20.5										
10.5										
0.500										
-9.50										1010.0
-19.5										-19.12 dBm
-29.5										
-39.5										a second s
-49.5	and a start of the start of the		And an entering	- Harroral Gardalog		 A second standard stand standard standard stand standard standard stand standard standard stand standard standard stand standard standard stand standard standard standard				I marked a large for the second
-59.5		a constant of the second se			a second s					
Start 3	0 MHz	LU-		-43.75	W 200 KU-			C	Stop	26.50 GHz
#Res B	W 100	KHZ		#VE	W JUU KHZ			Swe	eep 2.53 s	(40001 pts)
MKR MODE	TRC SCL		×	Y	FUN	CTION FUNC	TION WIDTH	F	UNCTION VALUE	
2										
3										
5										
6										
8										
9										
11										
12										
мsg 🔱 Fi	le <n20< td=""><td>-High-30M~26</td><td>.5G(20dBc).F</td><td>Png> saved</td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></n20<>	-High-30M~26	.5G(20dBc).F	Png> saved			STATUS			

CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

CH Low (30MHz ~ 26.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

Agilent Spect	rum Analyzer -	Swept SA								
LXIRL	RF 50	DQ DC		SENS	E:INT	β	LIGNAUTO		02:32:3	1 PM Nov 23, 2016
Center F	req 13.26	5000000 C	SHz PNO: Fast IFGain:Lov	,	'rig: Free F Atten: 20 d	Run IB	Avg Type	Log-Pwr	T	TYPE M WWWWWW DET P N N N N N
10 dB/div	Ref Offset Ref 20.5	10.5 dB 0 dBm								
10.5										
0.500										
-9.50										
-19.5										-22.99 dBm
-29.5										
-39.5										
-49.5	. Alda	و مر الدلار		and the case	a da altan a		a treatment of the second s		and and and the part of	All the state of t
-59.5				Contraction Contraction	the design of the start of the		a an			
00.0										
Start 30 I #Res BW	VIHz 100 kHz			#VBW 3	00 kHz			Swe	Stop ep 2.53 s	26.50 GHz (40001 pts)
MKR MODE T	RC SCL	×		Y	FUNC	TION FUNC	TION WIDTH	FL	JNCTION VALUE	
2										
4										
6										
7 8										
9 10										
11 12										
мsg 🔱 File	<n40-low-30< td=""><td>)M~26.5G(20</td><td>dBc).Png> save</td><td>ed</td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></n40-low-30<>)M~26.5G(20	dBc).Png> save	ed			STATUS			

CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

CH Middle (30MHz ~ 26.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

Agilen	Agilent Spectrum Analyzer - Swept SA										
LXI RI		RF	50 Ω DC			SENSE:INT		ALIGNAUTO		02:43:0	3 PM Nov 23, 2016
Cen	ter Fr	eq 13.	.2650000	100 GHz	PNO: Fast G FGain:Low	Trig: Free Atten: 20	Run dB	Avg Typ	e: Log-Pwr	T	RACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN
10 di	3/div	Ref Of Ref 2	fset 10.5 dB 0.50 dBm								
10.5											
0.500											
-9.50											
-19.5											-20.29 dBm
-29.5											
-39.5	1										
-49.5			and the second second	والمتعادية والمسالية والمسالية	والناصور إسريا أحراره الكافر		و المعالية الم	والالبارية والالدارية أسروها	والمربعة الملاطعا وأمري	It light and the state	
-69.5			in the second second	a a tha an		en liketen der eine der gescherten					
Star #Re	t 30 M s BW 1	Hz I 00 kH	z		#VI	BW 300 kHz	2		Sw	Stop eep 2.53 s	26.50 GHz (40001 pts)
MKR	NODE TRI	SCL	×	:	Y	FU	ICTION	FUNCTION WIDTH	i i i	UNCTION VALUE	
2											
4											
6											
8											
9 10											
11 12											
MSG 🤇	File <	N40-Mi	d-30M~26.5	G(20dBc).Pr	ng> saved			STATUS			

CH High (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

CH High (30MHz ~ 26.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

Agilent Sp	ectrum Analyzer - Sw	rept SA							
LXI RL	RF 50 Ω	DC		SENSE:INT	AL	IGNAUTO		02:46:4	7 PM Nov 23, 2016
Center	r Freq 13.2650	000000 GH	Z PNO: Fast G IFGain:Low	Trig: Free F Atten: 20 d	Run IB	Avg Type:	Log-Pwr	T	RACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN
10 dB/d	Ref Offset 10).5 dB dBm							
10.5									
0.500									
-9.50	 								
-19.5									-22.20 dBm
-29.5									
-39.5									
-49.5			au .				وروي والتلف والمتحد	المحمطة ويتعين إلى	
-59.5		A second s		And a second second second				1	and the second
-69.5									
Start 3 #Res E	0 MHz SW 100 kHz		#VB	W 300 kHz			Swe	Stop ep 2.53 s	26.50 GHz (40001 pts)
MKR MOD	e tro sol	×	Y	FUNC	TION FUNCT	ION WIDTH	Fi	JNCTION VALUE	
2									
4									
6									
7 8									
9 10									
11									
MSG 🕕 F	ile <n40-high-30n< td=""><td>/~26.5G(20dB</td><td>c).Png> saved</td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></n40-high-30n<>	/~26.5G(20dB	c).Png> saved			STATUS			

7.7 RADIATED EMISSION LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

1. ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2. ² Above 38.6

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENT

Radiated Emission / 966Chamber_C

Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY48250064	04/21/2017
EMI Test Receiver	Rohde & Schwarz	ESCI	101387	10/04/2017
Bi-log Antenna	TESEQ	CBL 6112D	35404	07/22/2017
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-285	04/17/2017
Pre-Amplifier	EMCI	EMC001625	980243	04/11/2017
Pre-Amplifier	COM-POWER	PAM-118A	551043	04/11/2017
Double Ridged Guide Horn Antenna	ETS · LINDGREN	3117	00078732	07/10/2017
Horn Antenna	COM-POWER	AH-840	03077	12/01/2017
Loop Antenna	COM-POWER	AL-130	121060	05/23/2017
Test S/W		E3.815206a	a	

Remark: Each piece of equipment is scheduled for calibration once a year.

Radiated Emission / 966Chamber_B

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY46180323	04/12/2017
EMI Test Receiver	Rohde & Schwarz	ESCI	100221	04/26/2017
Bi-log Antenna	TESEQ	CBL 6112D	35403	07/02/2017
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-778	07/14/2017
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078733	11/16/2017
Pre-Amplifier	Agilent	8447D	2944A10052	07/12/2017
Pre-Amplifier	Agilent	8449B	3008A01916	07/12/2017
Test S/W		E3.815206a	a	

Remark: Each piece of equipment is scheduled for calibration once a year.

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission below 1GHz.

9kHz ~ 30MHz

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 and 1.5 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/04
Test Mode	Mode 1	Temp. & Humidity	17°C, 50%

966Chamber_C at 3Meter / Horizontal

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
G4 A2	55 04	-21 19	34 .05	43 50	-9.45	130	200	Peak
239.52	55.24	-18.31	34.53	45.00	-11.47	307	150	Peak
542.16	52.50	-11.02	41.48	46.00	-4.52	2	150	Peak
600.36	47.53	-10.24	37.29	46.00	-8.71	327	150	Peak
720.64	46.78	-9.14	37.64	46.00	-8.36	164	100	Peak
780.78	45.59	-8.45	37.14	46.00	-8.86	164	100	Peak
96 0. 23	45.21	-6.81	38.40	54.00	-15.60	156	150	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
31.94	46.47	-12.36	34.11	40.00	-5.89	181	100	Peak
60.07	59.26	-24.52	34.74	40.00	-5.26	261	150	Peak
68.80	59.40	-24.21	35.19	40.00	-4.81	360	100	QP
76.56	59.54	-23.59	35.95	40.00	-4.05	210	150	Peak
480.08	45.15	-11.96	33.19	46.00	-12.81	176	100	Peak
6 00. 36	47.01	-10.24	36.77	46.00	-9.23	138	100	Peak

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) – PreAmp.Gain (dB)

3. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)

4. Margin (dB) = Remark result (dBuV/m) - Quasi-peak limit (dBuV/m).

Above 1 GHz

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/03
Test Mode	IEEE 802.11b Mode / TX / CH Low	Temp. & Humidity	17 [°] C, 50%

966Chamber_C at 3Meter / Horizontal

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2494.00	47.98	-0.06	47.92	74.00	-26.08	259	150	Peak
2656.00 3975.00	49.35 39.46	0.45 3.23	49.80 42.69	74.00 74.00	-24.20 -31.31	231 133	150 150	Peak Peak
4824.00	42.71	5.74	48.45	74.00	-25.55	226	100	Peak
6252.00	42.23	2.63	44.86	74.00	-29.14	127	100	Peak
7068.00	44.08	2.84	46.92	74.00	-27.08	11	200	Peak
7812.00	43.60	3.37	46.97	74.00	-2 7.0 3	213	100	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2496.00	49.80	-0.06	49.74	74.00	-24.26	З	150	Peak
2666.00	43.59	0.48	44.07	54.00	-9.93	76	150	Average
2666.00	52.14	0.48	52.62	74.00	-21.38	76	150	Peak -
3216. 00	40.80	1.77	42.57	74.00	-31.43	338	100	Peak
4824.00	47.31	5.74	53.05	54.00	-0.95	306	200	Average
4824.00	49.42	5.74	55.16	74.00	-18.84	306	200	Peak –
6444.00	41.93	2.99	44.92	74.00	-29.08	187	200	Peak
6972.00	43.54	2.81	46.35	74.00	-27.65	263	100	Peak
7704.00	43.81	3.30	47.11	74.00	-26.89	56	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/03
Test Mode	IEEE 802.11b Mode / TX / CH Middle	Temp. & Humidity	17°C, 50%

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2328.00	49.98	-0.74	49.24	74.00	-24.76	237	200	Peak
2486.00	48.31	-0.10	48.21	74.00	-25.79	44	100	Peak
2612.00	48.33	0.31	48.64	74.00	-25.36	221	100	Peak
3024.00	38.83	1.57	40.40	74.00	-33.60	0	150	Peak
4875.00	42.34	5.89	48.23	74.00	-25.77	326	150	Peak
6444.00	41.74	2.99	44.73	74.00	-29.27	283	150	Peak
7032.00	44.22	2.81	47.03	74.00	-26.97	153	200	Peak
7764.00	44.62	3.34	47.96	74.00	-26 .0 4	283	100	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2384.00	40.26	-0.51	39.75	54.00	-14.25	104	150	Average
2384.00	51.22	-0.51	50.71	74.00	-23.29	104	150	Peak
2500.00	42.05	-0.04	42.01	54.00	-11.99	7	150	Average
2500.00	52.51	-0.04	52.47	74.00	-21.53	7	150	Peak
2690.00	48.31	0.56	48.87	54.00	-5.13	62	150	Average
2690.00	54.83	0.56	55.39	74.00	-18.61	62	150	Peak
3249.00	40.10	1.81	41.91	74.00	-32.09	327	100	Peak
4875.00	47.66	5.89	53.55	54.00	-0.45	163	150	Average
4875.00	47.90	5.89	53.79	74.00	-20.21	163	150	Peak
6120.00	41.69	2.39	44.08	74.00	-29.92	360	200	Peak
6984.00	43.84	2.80	46.64	74.00	-27.36	246	200	Peak
7308.00	45.58	3.02	48.60	74.00	-25.40	325	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Smart Energy Wireless Router	Test By	Allen Liu	
Test Model	Billion SG600R2	Test Date	2016/11/03	
Test Mode	IEEE 802.11b Mode / TX / CH High	Temp. & Humidity	17°C, 50%	

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1000.00	53 52	7	40.00	74 00	04 07	1.65	100	Deele
1020.00	55.50	-4.47	49.03	74.00	-24.97	165	100	Реак
1858.00	52.56	-2.42	50.14	74.00	-23.86	256	200	Peak
2376.00	49.81	-0.55	49.26	74.00	-24.74	338	150	Peak
3282.00	39 .0 2	1.84	40.86	74.00	-33.14	158	150	Peak
4923.00	44.36	6.03	50.39	74.00	-23.61	334	200	Peak
6528.00	41.76	3.08	44.84	74.00	-29.16	153	100	Peak
6960.00	44.11	2.81	46.92	74.00	-27.08	9	200	Peak
7716.00	44.20	3.31	47.51	74.00	-26.49	124	150	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1136.00	53.55	-4.18	49.37	74.00	-24.63	266	200	Peak
2210.00	40.81	-1.22	39.59	54.00	-14.41	124	200	Average
2210.00	52.50	-1.22	51.28	74.00	-22.72	124	200	Peak
2362.00	39.37	-0.60	38.77	54.00	-15.23	З	200	Average
2362.00	51.69	-0.60	51.09	74.00	-22.91	З	200	Peak
3282.00	39.93	1.84	41.77	74.00	-32.23	332	100	Peak
4923.00	47.52	6.03	53.55	54.00	-0.45	315	200	Average
4923.00	48.11	6.03	54.14	74.00	-19.86	315	200	Peak
6456.00	41.98	3.02	45.00	74.00	-29.00	166	150	Peak
6924.00	43.87	2.84	46.71	74.00	-27.29	0	100	Peak
7380.00	44.49	3.07	47.56	74.00	-26.44	ø	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Smart Energy Wireless Router	Wireless Test By	
Test Model	Billion SG600R2	Test Date	2016/11/03
Test Mode	IEEE 802.11g Mode / TX / CH Low	Temp. & Humidity	17°C, 50%

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2494.00	48.61	-0.06	48.55	74.00	-25.45	22	200	Peak
2514.00	49.10	0.00	49.10	74.00	-24.90	130	150	Peak
3216.00	38.22	1.77	39.99	74.00	-34.01	227	100	Peak
4824.00	42.65	5.74	48.39	74.00	-25.61	217	150	Peak
6432.00	41.60	2.97	44.57	74.00	-29.43	3	150	Peak
7044.00	44.06	2.82	46.88	74.00	-27.12	63	100	Peak
7224.00	44.62	2.96	47.58	74.00	-26.42	102	200	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2488.00	42.43	-0.09	42.34	54.00	-11.66	330	200	Average
2488.00	53.95	-0.09	53.86	74.00	-20.14	330	200	Peak
2516.00	43.10	0.01	43.11	54.00	-10.89	70	150	Average
2516.00	55.10	0.01	55.11	74.00	-18.89	70	150	Peak
2664.00	44.34	0.48	44.82	54.00	-9.18	123	150	Average
2664.00	54.92	0.48	55.40	74.00	-18.60	123	150	Peak
3216 .00	41.26	1.77	43.03	74.00	-30.97	336	100	Peak
4821.00	36.88	5.73	42.61	54.00	-11.39	220	200	Average
4821.00	50.19	5.73	55.92	74.00	-18.08	220	200	Peak –
6300.00	42.31	2.72	45.03	74.00	-28.97	50	100	Peak
6996.00	44.58	2.79	47.37	74.00	-26.63	180	150	Peak
7236.00	39.28	2.96	42.24	54.00	-11.76	338	150	Average
7236 .00	53.06	2.96	56. 0 2	74.00	-17.98	338	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Smart Energy Wireless Router	Test By	Allen Liu	
Test Model	Billion SG600R2	Test Date	2016/11/03	
Test Mode	IEEE 802.11g Mode / TX / CH Middle	Temp. & Humidity	17°C, 50%	

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1862.00	52.04	-2.41	49.63	74.00	-24.37	267	150	Peak
232 0.00	49.55	-0.77	48.78	74.00	-25.22	350	100	Peak
2492.00	49.35	-0.07	49.28	74.00	-24.72	200	100	Peak
3030.00	39.34	1.57	40.91	74.00	-33.09	82	100	Peak
4875.00	40.36	5.89	46.25	74.00	-27.75	342	200	Peak
6528.00	41.71	3.08	44.79	74.00	-29.21	349	100	Peak
6912 .00	43.99	2.84	46.83	74.00	-27.17	142	100	Peak
7596.00	44.05	3.23	47.28	74.00	-26.72	118	150	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2384.00	44.36	-0.51	43.85	54.00	-10.15	173	150	Average
2384.00	54.69	-0.51	54.18	74.00	-19.82	173	150	Peak
2490.00	48.98	-0.08	48.90	54.00	-5.10	349	200	Average
2490.00	56.85	-0.08	56.77	74.00	-17.23	349	200	Peak
2690.00	44.60	0.56	45.16	54.00	-8.84	126	200	Average
2690.00	56.53	0.56	57.09	74.00	-16.91	126	200	Peak
3249.00	41.79	1.81	43.60	74.00	-30.40	329	100	Peak
4875.00	34.24	5.89	40.13	54.00	-13.87	163	150	Average
4875.00	46.02	5.89	51.91	74.00	-22.09	163	150	Peak
6300.00	42.18	2.72	44.90	74.00	-29.10	169	200	Peak
7044.00	44.10	2.82	46.92	74.00	-27.08	173	150	Peak
7308.00	36.71	3.02	39.73	54.00	-14.27	357	150	Average
7308.00	50.63	3.02	53.65	74.00	-20.35	357	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/03
Test Mode	IEEE 802.11g Mode / TX / CH High	Temp. & Humidity	17 [°] C, 50%

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1440.00	52.99	-3.43	49.56	74.00	-24.44	11	200	Peak
1544.00	52.95	-3.17	49.78	74.00	-24.22	334	200	Peak
2312.00	50.01	-0.81	49.20	74.00	-24.80	307	150	Peak
3360.00	37.80	1.93	39.73	74.00	-34.27	218	150	Peak
4932.00	39.28	6.05	45.33	74.00	-28.67	340	200	Peak
6396 .00	42.04	2.90	44.94	74.00	-29.06	78	150	Peak
6972.00	44.22	2.81	47.03	74.00	-26.97	111	100	Peak
7788.00	43.21	3.36	46.57	74.00	-27.43	81	100	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1100.00	53.92	-4.27	49.65	74.00	-24.35	53	100	Peak
1134.00	53.77	-4.19	49.58	74.00	-24.42	143	150	Peak
2382.00	38.89	-0.52	38.37	54.00	-15.63	259	200	Average
2382.00	51.79	-0.52	51.27	74.00	-22.73	259	200	Peak
3282.00	41.30	1.84	43.14	74.00	-30.86	333	100	Peak
4926.00	43.33	6.04	49.37	74.00	-24.63	299	200	Peak
6504.00	42.08	3.10	45.18	74.00	-28.82	138	200	Peak
7044.00	44.65	2.82	47.47	74.00	-26.53	261	150	Peak
7392.00	35.33	3.08	38.41	54.00	-15.59	65	150	Average
7392 .00	50. 96	3.08	54.04	74.00	-19.96	65	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/16
Test Mode	IEEE 802.11gn HT20 MCS0 Mode / TX / CH Low	Temp. & Humidity	17°C, 50%

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1420.00	53.45	-3.48	49.97	74.00	-24.03	96	200	Peak
1860.00	39.53	-2.42	37.11	54.00	-16.89	153	100	Average
1860.00	54.01	-2.42	51.59	74.00	-22.41	153	100	Peak
2666.00	48.88	0.48	49.36	74.00	-24.64	158	150	Peak
3216.00	39.00	1.77	40.77	74.00	-33.23	39	100	Peak
4821.00	41.68	5.73	47.41	74.00	-26.59	221	150	Peak
6552.00	41.99	3.07	45.06	74.00	-28.94	340	200	Peak
6972.00	43.30	2.81	46.11	74.00	-27.89	53	200	Peak
7716.00	44.03	3.31	47.34	74.00	-26.66	313	150	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2492.00	42.32	-0.07	42.25	54.00	-11.75	99	200	Average
2492.00	54.80	-0.07	54.73	74.00	-19.27	99	200	Peak
2530.00	43.52	0.05	43.57	54.00	-10.43	68	200	Average
2530.00	55.24	0.05	55.29	74.00	-18.71	68	200	Peak
2664.00	43.12	0.48	43.60	54.00	-10.40	352	200	Average
2664.00	54.90	0.48	55.38	74.00	-18.62	352	200	Peak
3216 .00	40.33	1.77	42.10	74.00	-31.90	338	100	Peak
4824.00	36.24	5.74	41.98	54.00	-12.02	242	200	Average
4824.00	50.37	5.74	56.11	74.00	-17.89	242	200	Peak -
6396 .00	42.01	2.90	44.91	74.00	-29.09	76	200	Peak
6960.00	43.45	2.81	46.26	74.00	-27.74	220	150	Peak
7224.00	38.62	2.96	41.58	54.00	-12.42	6	150	Average
7224.00	51.10	2.96	54.06	74.00	-19.94	6	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Product Name Smart Energy Wireless Router		Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/16
Test Mode	IEEE 802.11gn HT20 MCS0 Mode / TX / CH Middle	Temp. & Humidity	17°C, 50%

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1858.00	52.95	-2.42	50.53	74.00	-23.47	148	200	Peak
2350.00	49.46	-0.65	48.81	74.00	-25.19	132	150	Peak
2488.00	40.37	-0.09	40.28	54.00	-13.72	202	100	Average
2488.00	51.29	-0.09	51.20	74.00	-22.80	202	100	Peak
3249.00	39.35	1.81	41.16	74.00	-32.84	171	150	Peak
4869.00	41.29	5.87	47.16	74.00	-26.84	327	200	Peak
6432.00	41.38	2.97	44.35	74.00	-29.65	141	100	Peak
6972.00	43.92	2.81	46.73	74.00	-27.27	358	200	Peak
7644.00	43.89	3.26	47.15	74.00	-26.85	209	100	Peak

966Chamber_C at 3Meter / Vertical

Freq.	Reading	C.F.	Result	Limit	Margin	Azimuth	Height	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	deg	cm	
2386.00 2386.00 2488.00 2488.00 2692.00 2692.00 3249.00	44.79 54.45 48.79 58.39 44.17 55.41 41.77	-0.51 -0.51 -0.09 -0.09 0.57 0.57 1.81	44.28 53.94 48.70 58.30 44.74 55.98 43.58	54.00 74.00 54.00 74.00 54.00 54.00 74.00 74.00	-9.72 -20.06 -5.30 -15.70 -9.26 -18.02 -30.42	346 346 192 192 323 323 347	200 200 200 200 200 200 200 200 100	Average Peak Average Peak Average Peak Peak Peak
4869.00	34.08	5.87	39.95	54.00	-14.05	318	200	Average
4869.00	46.69	5.87	52.56	74.00	-21.44	318	200	Peak
6480.00	42.19	3.06	45.25	74.00	-28.75	248	100	Peak
7020.00	43.77	2.80	46.57	74.00	-27.43	289	200	Peak
7308.00	35.69	3.02	38.71	54.00	-15.29	360	150	Average
7308.00	50.40	3.02	53.42	74.00	-20.58	360	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	Product Name Smart Energy Wireless Router		Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/03
Test Mode	IEEE 802.11gn HT20 MCS0 Mode / TX / CH High	Temp. & Humidity	17°C, 50%

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1140 00	53 05	-4 17	40.78	74 00	-24 22	21.2	200	Posk
1800.00	52.53	-2.56	49.97	74.00	-24.03	315	200	Peak
2316.00	49.98	-0.79	49.19	74.00	-24.81	353	100	Peak
3033.00	39.36	1.58	40.94	74.00	-33.06	205	200	Peak
4926.00	39.91	6.04	45.95	74.00	-28.05	340	150	Peak
6372.00	42.22	2.86	45.08	74.00	-28.92	302	150	Peak
7032.00	43.57	2.81	46.38	74.00	-27.62	146	100	Peak
7728.00	43.79	3.32	47.11	74.00	-26.89	65	100	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBu∀/m	Margin dB	Azimuth deg	Height cm	Remark
1722.00	53.10	-2.75	50.35	74.00	-23.65	27	200	Peak
2390.00	51.10	-0.49	50.61	74.00	-23.39	177	150	Peak
3282.00	42.06	1.84	43.90	74.00	-30.10	334	100	Peak
4926.00	44.75	6.04	50.79	74.00	-23.21	323	200	Peak
6480.00	42.19	3.06	45.25	74.00	-28.75	327	200	Peak
7008.00	44.17	2.80	46.97	74.00	-27.03	119	200	Peak
7392.00	36.80	3.08	39.88	54.00	-14.12	347	150	Average
7392 .00	49.94	3.08	53.02	74.00	-2 0. 98	347	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/16
Test Mode	IEEE 802.11gn HT40 MCS0 Mode / TX / CH Low	Temp. & Humidity	17 [°] C, 50%

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1858.00	43.28	-2.42	40.86	54.00	-13.14	281	200	Average
1858.00	53.59	-2.42	51.17	74.00	-22.83	281	200	Peak
2488.00	47.88	-0.09	47.79	74.00	-26.21	79	150	Peak
3228.00	39.31	1.79	41.10	74.00	-32.90	169	150	Peak
4845.00	36.28	5.80	42.08	74.00	-31.92	318	200	Peak
6360.00	42.72	2.84	45.56	74.00	-28.44	ø	150	Peak
6972.00	44.25	2.81	47.06	74.00	-26.94	343	100	Peak
7788.00	43.74	3.36	47.10	74.00	-26.90	61	100	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2488.00	41.09	-0.09	41.00	54.00	-13.00	65	200	Average
2488.00	52.57	-0.09	52.48	74.00	-21.52	65	200	Peak
2526.00	44.56	0.04	44.60	54.00	-9.40	187	150	Average
2526.00	56.28	0.04	56.32	74.00	-17.68	187	150	Peak
3228.00	41.18	1.79	42.97	74.00	-31.03	146	100	Peak
4845.00	42.01	5.80	47.81	74.00	-26.19	30	150	Peak
6516.00	41.60	3.09	44.69	74.00	-29.31	39	150	Peak
7020.00	44.17	2.80	46.97	74.00	-27.03	98	200	Peak
7728.00	43.94	3.32	47.26	74.00	-26.74	68	100	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
| Product Name | Smart Energy Wireless
Router | Test By | Allen Liu |
|--------------|--|------------------|------------|
| Test Model | Billion SG600R2 | Test Date | 2016/11/16 |
| Test Mode | IEEE 802.11gn HT40 MCS0
Mode / TX / CH Middle | Temp. & Humidity | 17°C, 50% |

966Chamber_C at 3Meter / Horizontal

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1860.00	42.58	-2.42	40.16	54.00	-13.84	25 0	100	Average
1860.00	53.98	-2.42	51.56	74.00	-22.44	250	100	Реак
2390.00	41.77	-0.49	41.28	54.00	-12.72	93	200	Average
239 0.00	55.49	-0.49	55.00	74.00	-19.00	93	200	Peak
2484.00	43.43	-0.11	43.32	54.00	-10.68	190	100	Average
2484.00	54.74	-0.11	54.63	74.00	-19.37	190	100	Peak
3171.00	38.58	1.72	40.30	74.00	-33.70	9	100	Peak
4878.00	38.86	5.90	44.76	74.00	-29.24	337	150	Peak
6360.00	42.13	2.84	44.97	74.00	-29 .0 3	282	200	Peak
6996.00	44.18	2.79	46.97	74.00	-27.03	259	200	Peak
7764.00	43.68	3.34	47.02	74.00	-26.98	132	100	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
2390.00	50.07	-0.49	49.58	54.00	-4.42	355	100	Average
2390.00	66.54	-0.49	66.05	74.00	-7.95	355	100	Peak -
2484.00	52.86	-0.11	52.75	54.00	-1.25	5	200	Average
2484.00	69.62	-0.11	69.51	74.00	-4.49	5	200	Peak
2540.00	48.23	0.09	48.32	54.00	-5.68	349	150	Average
2540.00	58.30	0.09	58.39	74.00	-15.61	349	150	Peak
3249.00	41.20	1.81	43.01	74.00	-30.99	341	100	Peak
4872.00	44.14	5.88	50.02	74.00	-23.98	283	200	Peak
6444.00	42.41	2.99	45.40	74.00	-28.60	221	100	Peak
7044.00	43.77	2.82	46.59	74.00	-27.41	153	200	Peak
7308.00	46.76	3.02	49.78	74.00	-24.22	8	150	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

Product Name	Smart Energy Wireless Router	Test By	Allen Liu
Test Model	Billion SG600R2	Test Date	2016/11/03
Test Mode	IEEE 802.11gn HT40 MCS0 Mode / TX / CH High	Temp. & Humidity	17°C, 50%

966Chamber_C at 3Meter / Horizontal

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1856.00	50.73	-2.43	48.30	74.00	-25.70	35	100	Peak
2264.00	46.31	-1.00	45.31	74.00	-28.69	277	100	Peak
2360.00	45.11	-0.61	44.50	74.00	-29.50	155	100	Peak
3033.00	39.03	1.58	40.61	74.00	-33.39	263	150	Peak
4908.00	36.38	5.99	42.37	74.00	-31.63	181	200	Peak
6456.00	41.72	3.02	44.74	74.00	-29.26	79	150	Peak
6888.00	44.18	2.86	47.04	74.00	-26.96	214	200	Peak
7836.00	43.95	3.39	47.34	74.00	-26.66	86	150	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1166.00	48.91	-4.11	44.80	74.00	-29.20	104	150	Peak
1638.00	47.91	-2.95	44.96	74.00	-29.04	23	100	Peak
2348.00	48.52	-0.66	47.86	74.00	-26.14	178	150	Peak
3270.00	41.47	1.83	43.30	74.00	-30.70	323	100	Peak
4908.00	36.97	5.99	42.96	74.00	-31.04	93	150	Peak
6444.00	42.42	2.99	45.41	74.00	-28.59	360	150	Peak
7056.00	43.46	2.83	46.29	74.00	-27.71	323	200	Peak
7764.00	43.69	3.34	47.03	74.00	-26.97	315	200	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

Restricted Band Edges

Remark: Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK)

Remark: Result = Reading + Correction Factor Margin = Result – Limit Remark AVG = Result(AV) – Limit(AV)

Remark: Result = Reading + Correction Factor Margin = Result – Limit Remark AVG = Result(AV) – Limit(AV)

7.8 CONDUCTED EMISSION LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)			
(MHz)	Quasi-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5.00	56	46		
5.00 - 30.0	60	50		

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
L.I.S.N	Schwarzbeck	NSLK 8127	8127465	07/28/2017		
L.I.S.N	Schwarzbeck	NSLK 8127	8127473	03/10/2017		
EMI Test Receiver	Rohde & Schwarz	ESHS 30	838550/003	10/25/2017		
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100111	06/27/2017		
Test S/W	E3.815206a					

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.10:2013.

The test procedure is performed in a $4m \times 3m \times 2.4m$ (L×W×H) shielded room. The EUT along with its peripherals were placed on a 1.0m (W) × 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	Smart Energy Wireless Router	Test By	Gill Yeh
Test Model	Billion SG600R2	Test Date	2016/11/09
Test Mode	Mode 2	Temp. & Humidity	21.9°C, 53%

LINE

Remark:

1. Correction Factor = Insertion loss + Cable loss

2. Result level = Reading Value + Correction factor

3. Margin value = Result level – Limit value

Product Name	Smart Energy Wireless Router	Test By	Gill Yeh
Test Model	Billion SG600R2	Test Date	2016/11/09
Test Mode	Mode 2	Temp. & Humidity	21.9°C, 53%

NEUTRAL

Remark:

1. Correction Factor = Insertion loss + Cable loss

2. Result level = Reading Value + Correction factor

3. Margin value = Result level – Limit value

8. APPENDIX I CO-LOCATION

Product Name	Smart Energy Wireless Router	Test By	Gill Yeh
Test Model	Billion SG600R2	Test Date	2016/11/24
Test Mode	Mode 2	Temp. & Humidity	25°C, 56%

966Chamber_B at 3Meter / Horizontal

Freq. MHz	Reading dBuV	C.F. dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
216 0.00 2615.00	43.04 42.78	-3.56 -1.86	39.48 40.92	74.00 74.00	-34.52 -33.08	162 360	100 100	Peak Peak
3245.00	44.24	-0.10	44.14	74.00	-29.86	89	100	Peak
4650.00	41.63	4.79	46.42	74.00	-27.58	360	300	Peak
5440.00 7188.00	40.61 37.62	6.69 12.36	47.30 49.98	74.00 74.00	-26.70 -24.02	288 360	200 100	Peak Peak
8100.00	36.68	13.14	49.82	74.00	-24.18	1	400	Peak
9624.00	36.67	14.51	51.18	74.00	-22.82	301	100	Peak
10452.00	35.94	16.35	52.29	74.00	-21.71	189	300	Peak
11724.00	22.14	18.96	41.10	54.00	-12.90	106	200	Average
11724.00	35.67	18.96	54.63	74.00	-19.37	106	200	Peak –
12276.00	21.93	19.77	41.70	54.00	-12.30	124	300	Average
12276.00	35.21	19.77	54.98	74.00	-19.02	124	300	Peak

966Chamber_B at 3Meter / Vertical

MHz dBuV dB/m dBuV/m	Limit dBu∀/m	Margin dB	Azimuth deg	Height cm	Remark
1680.00 44.35 -5.40 38.95	74.00	-35.05	128	200	Peak
2145.00 42.38 -3.62 38.76	74.00	-35.24	218	200	Peak
2580.00 42.40 -1.96 40.44	74.00	-33.56	222	100	Peak
3245.00 48.60 -0.10 48.50	74.00	-25.50	12	100	Peak
4040.00 41.87 2.73 44.60	74.00	-29.40	283	300	Peak
5100.00 41.72 5.93 47.65	74.00	-26.35	6	100	Peak
5500.00 39.79 6.83 46.62	74.00	-27.38	31	400	Peak
6456.00 37.18 11.13 48.31	74.00	-25.69	93	200	Peak
7212.00 37.77 12.38 50.15	74.00	-23.85	199	200	Peak
9336.00 37.53 14.10 51.63	74.00	-22.37	118	200	Peak
11280.00 21.03 18.15 39.18	54.00	-14.82	205	400	Average
11280.00 36.13 18.15 54.28	74.00	-19.72	205	400	Peak
11532.00 21.58 18.70 40.28	54.00	-13.72	338	200	Average
11532.00 36.28 18.70 54.98	74.00	-19.02	338	200	Peak -
12456.00 22.27 20.06 42.33	54.00	-11.67	360	100	Average
12456.00 35.21 20.06 55.27	74.00	-18.73	360	100	Peak

Remark:

- 1. Average test would be performed if the peak result were greater than the average limit.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)