

RADIO FREQUENCY EXPOSURE

<u>LIMIT</u>

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	4G/LTE VoIP Wireless-N VPN Broadband Router							
Model	BIPAC 6300VNOZ							
Data Applies To	Please refer to section 2 (altogether 11 series models)							
Frequency band (Operating)	 802.11b/g/n HT20: 2.412GHz ~ 2.462GHz 802.11n HT40: 2.422GHz ~ 2.452GHz Others 							
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others 							
Exposure classification	 Occupational/Controlled exposure (S = 5mW/cm²) General Population/Uncontrolled exposure (S=1mW/cm²) 							
Antenna Specification	2.4GHz: PCB Antenna Gain 2.36 dBi (Numeric gain 1.72) 2.4GHz: PCB Antenna Gain 2.36 dBi (Numeric gain 1.72)							
Maximum Average output power	IEEE 802.11b Mode: 20.45 dBm (110.917 mW) IEEE 802.11g Mode: 25.61 dBm (363.915 mW) IEEE 802.11n HT 20 Mode 23.76 dBm (237.684 mW) IEEE 802.11n HT 40 Mode 25.46 dBm (351.560 mW)							
Evaluation applied	 MPE Evaluation* SAR Evaluation N/A 							

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	2015/04/02	Initial Issue	ALL	Michelle Chiu
01	2015/04/15	Revised	P.1	Michelle Chiu

.

TEST RESULTS

No non-compliance noted.

Given
$$E = \frac{\sqrt{30 \times P \times G}}{d}$$
 & $S = \frac{E^2}{3770}$
Where $E = Field$ strength in Volts / meter
 $P = Power$ in Watts
 $G = Numeric$ antenna gain
 $d = Distance$ in meters
 $S = Power$ density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

P(mW) = P(W) / 1000 and d(cm) = d(m) / 100

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm^2

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

IEEE 802.11b mode:

Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
2437	110.917	1.72	20	0.0380	1

IEEE 802.11g mode:

Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
2437	363.915	1.72	20	0.1246	1

IEEE 802.11n HT20 mode:

Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
2462	237.684	1.72	20	0.0814	1

IEEE 802.11n HT40 mode:

Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
2437	351.560	1.72	20	0.1203	1