RF Exposure Evaluation declaration

Product Name : GigaConnect® Smart Gateway
Model No. : EG-210N
FCC ID : Q13BEC-EG210N

Applicant : Billion Electric Co., Ltd.
Address : 8F., No.192, Sec. 2, Zhongxing Rd., Xindian Dist.,
New Taipei City 231, Taiwan (R.O.C.)

Date of Receipt : Jun. 27, 2019
Date of Declaration: Jul. 30, 2019
Report No. : 1960404R-SAUSP03V00
Report Version : V1.0

The test results relate only to the samples tested.
The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.
This report must not be used to claim product endorsement by TAF or any agency of the government.
The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Issued Date: Jul. 30, 2019
Report No.: 1960404R-SAUSP03V00

D DEKRA

Product Name	GigaConnect® Smart Gateway
Applicant	Billion Electric Co., Ltd.
Address	8F., No.192, Sec. 2, Zhongxing Rd., Xindian Dist., New Taipei City 231,
Taiwan (R.O.C.)	
Manufacturer	Billion Electric Co., Ltd.
Model No.	EG3BEC-EG210N
FCC ID.	BEC, Billion
Trade Name	FCC 47 CFR 1.1310
Applicable Standard	
Test Result	Complied
Documented By	: Adm. Assistant / Ida Tuns)

Approved By :

(Director / Vincent Lin)

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	GigaConnect® Smart Gateway
Model No.	EG-210N
Trade Name	BEC, Billion
FCC ID	QI3BEC-EG210N
Frequency Range	$2412-2462 \mathrm{MHz}$ for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}-20 \mathrm{BW}, 2422-2452 \mathrm{MHz}$ for $802.11 \mathrm{n}-40 \mathrm{BW}$
Number of Channels	$802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}-20 \mathrm{MHz}: 11, \mathrm{n}-40 \mathrm{MHz}: 7$
Data Speed	$802.11 \mathrm{~b}: 1-11 \mathrm{Mbps}, 802.11 \mathrm{~g}: 6-54 \mathrm{Mbps}, 802.11 \mathrm{n}:$ up to 300 Mbps
Channel separation	$802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}: 5 \mathrm{MHz}$
Type of Modulation	$802.11 \mathrm{~b}: \mathrm{DSSS}$ (DBPSK, DQPSK, CCK) $802.11 \mathrm{~g} / \mathrm{n}:$ OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type	Dipole
Antenna Gain	Refer to the table "Antenna List"
Channel Control	Auto

1.2. Antenna List :

No	Manufacturer	Part No	Antenna Type	Peak Gain
1	WHA YU INDUSTRIAL CO,. LTD	C942-510009-A	Dipole	1.8 dBi for 2.4 GHz

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b).

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength $(\mathrm{V} / \mathrm{m})$	Strength $(\mathrm{A} / \mathrm{m})$	$\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	(Minutes)

(A) Limits for Occupational/ Control Exposures

$300-1500$	--	--	F/300	6
$1500-100,000$	--	--	5	6

(B) Limits for General Population/ Uncontrolled Exposures

$300-1500$	--	--	$F / 1500$	30
$1500-100,000$	--	--	1	30

$\mathrm{F}=$ Frequency in MHz

Friis Formula

Friis transmission formula: $\mathrm{Pd}=(\operatorname{Pout} * \mathrm{G}) /\left(4 * \mathrm{Pi}^{*} \mathrm{R}^{2}\right)$

Where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout $=$ output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$\mathrm{R}=$ distance between observation point and center of the radiator in cm
2.2. Test Result of RF Exposure Evaluation

Product	$:$	GigaConnect $®$ Smart Gateway
Test Item	$:$	RF Exposure Evaluation
Test Site	$:$	N/A

WLAN Peak Gain for 2.4G: 1.8dBi

Band	Frequency	Maximum Conducted Peak Power (dBm)	Worst case Duty Cycle $(\%)$	Output Power to Antenna (mW)	Power Density at $\mathrm{R}=20 \mathrm{~cm}\left(\mathrm{~mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mWc} / \mathrm{m}^{2}\right)$	Pass/Fail
2.4 G	2437	25.10	61.96	522.3	0.157	1	Pass

Note: The conducted output power is refer to report No.: 1960404R-RFUSP26V00 from the DEKRA.

