

Test report No.: 2330006R-RFUSV03S-A

TEST REPORT

Product Name	5G Enterprise Router
Trademark	BEC, Billion
Model and /or type reference	AirConnect® 8112, BEC AirConnect® 8112, BEC 8112
FCC ID	QI3BEC-8112
Applicant's name / address	Billion Electric Co., Ltd. 8F., No.192, Sec. 2, Zhongxing Rd., Xindian Dist., New Taipei City 231, Taiwan (R.O.C.)
Manufacturer's name	Billion Electric Co., Ltd.
Test method requested, standard	FCC CFR Title 47 Part 15 Subpart E ANSI C63.4: 2014, ANSI C63.10: 2013 KDB Publication 789033
Verdict Summary	IN COMPLIANCE
Documented By (Supervisor / Jinn Chen)	Tim Chen
Tested By (Senior Engineer / Ivan Chuang)	Jim Chen Ivan Chuang
Approved By (Senior Engineer / Jack Hsu)	Jack Hsu
Date of Receipt	2023/03/01
Date of Issue	2023/06/21
Report Version	V1.0

INDEX

		Page			
1.	GENERAL INFORMATION	5			
	1.1. EUT Description	5			
	1.2. Tested System Datails				
	1.3. Configuration of tested System				
	1.4. EUT Exercise Software				
	1.5. Test Facility				
	1.6. List of Test Equipment				
	1.7. Uncertainty				
2.	Conducted Emission	11			
	2.1. Test Setup	11			
	2.2. Limits	11			
	2.3. Test Procedure	12			
	2.4. Test Result of Conducted Emission	13			
3.	Maximun conducted output power	14			
	3.1. Test Setup	14			
	3.2. Limits	15			
	3.3. Test Procedure	16			
	3.4. Test Result of Maximum conducted output power	17			
4.	Maximun Power Spectral Density				
	4.1. Test Setup	21			
	4.2. Limits	21			
	4.3. Test Procedure	22			
	4.4. Test Result of Maximun Power Spectral Density	23			
5.	Radiated Emission	31			
	5.1. Test Setup	31			
	5.2. Limits	32			
	5.3. Test Procedure	33			
	5.4. Test Result of Radiated Emission	35			
6.	Band Edge	47			
	6.1. Test Setup	47			
	6.2. Limits	47			
	6.3. Test Procedure				
	6.4. Test Result of Band Edge	49			
7	Occupied Bandwidth	66			

Report No.: 2330006R-RFUSV03S-A

7.1. Test Setup	66
7.2. Limits	66
7.3. Test Procedure	66
7.4. Test Result of Occupied Bandwidth	67
Duty Cycle	71
8.1. Test Setup	71
8.2. Test Procedure	71
8.3. Test Result of Duty Cycle	72
	7.1. Test Setup

Appendix 1: EUT Test Photographs

Appendix 2: Product Photos-Please refer to the file: 2330006R-Product Photos

Revision History

Report No.	Version	Description	Issued Date
2330006R-RFUSV03S-A	V1.0	Initial issue of report.	2023/06/21

1. General Information

1.1. EUT Description

Product Name	5G Enterprise Router
Trademark	BEC, Billion
Model and /or type	AirConnect® 8112, BEC AirConnect® 8112, BEC 8112
reference	
EUT Rated Voltage	AC 100-240V / 50-60Hz
EUT Test Voltage	AC 120V / 60Hz
Frequency Range	802.11a/n/ac-20 MHz: 5180-5240 MHz, 5745-5825 MHz
	802.11n/ac-40 MHz: 5190-5230 MHz, 5755-5795 MHz
	802.11ac-80 MHz: 5210 MHz, 5775 MHz
Number of Channels	802.11a/n/ac-20 MHz: 9CH, 802.11n/ac-40 MHz: 4CH
	802.11ac-80 MHz: 2CH
Data Rate	802.11a: 6-54 Mbps, 802.11n: up to 600 MHz
	802.11ac: up to 1733.3 MHz
Type of Modulation	OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM
Channel Control	Auto
Adapter	MFR: BILLION, M/N: PA1024-150HUB200
Input: AC 100-240V~0.6A 50-60Hz	
	Output: 15V==2A 30W
	Cable out: Non-shielded, 1.5 m

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	GRAND-TEK	OA-5G-EB-01-BL (ANT5)	PCB	4.0 dBi for 5150-5250 MHz
	TECHNOLOGY CO.,LTD			4.5 dBi for 5725-5850 MHz
2	GRAND-TEK	OA-5G-EB-01-BL (ANT6)	PCB	3.6 dBi for 5150-5250 MHz
	TECHNOLOGY CO.,LTD			4.3 dBi for 5725-5850 MHz
3	GRAND-TEK	OA-5G-EB-01-BL (ANT7)	PCB	2.8 dBi for 5150-5250 MHz
	TECHNOLOGY CO.,LTD			3.1 dBi for 5725-5850 MHz
4	GRAND-TEK	OA-5G-EB-01-BL (ANT8)	PCB	2.3 dBi for 5150-5250 MHz
	TECHNOLOGY CO.,LTD			3.1 dBi for 5725-5850 MHz

Note: The antenna of EUT is conform to FCC 15.203.

802.11a/n/ac-20 MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)		(MHz)		(MHz)
36	5180	40	5200	44	5220	48	5240
149	5745	153	5765	157	5785	161	5805
165	5825						

802.11n/ac-40 MHz Center Working Frequency of Each Channel:

Channel	Frequency (MHz)						
38	5190	46	5230	151	5755	159	5795

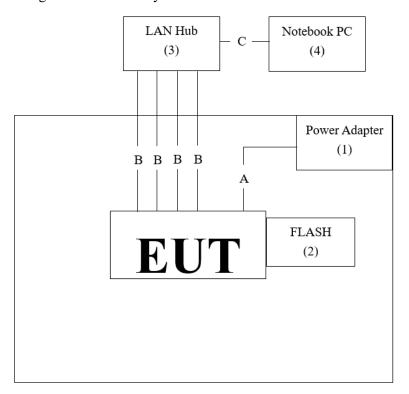
802.11ac-80 MHz Center Working Frequency of Each Channel:

Channel	Frequency (MHz)	Channel	Frequency (MHz)		 	
42	5210	155	5775	-	 -	-

Note:

- 1. This device is a 5G Enterprise Router with built-in WLAN, this report for 5GHz WLAN.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest data rates are tested in each mode. Only worst case is shown in the report.
- 4. (802.11a is 6Mbps \cdot 802.11ac-20 MHz/40 MHz/80 MHz is MCS0)
- 5. The spectrum plot against conducted item only shows the worst case.
- 6. It's declared by manufacture about all models are electrically identical, different model names for marketing purpose.
- 7. These tests were conducted on a sample for the purpose of demonstrating compliance of 802.11a/n/ac transmitter with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.

	N 1 1	Transmit (802.11a)
		Transmit (802.11ac-20 MHz)
Test Mode 1	Mode I	Transmit (802.11ac-40 MHz)
		Transmit (802.11ac-80 MHz)
	Mode 2	Co-location


1.2. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	oduct	Manufacturer	Model No.	Serial No.	Power Cord
1	Power Adapter	BILLION	PA1024-150HUB200	N/A	N/A
2	FLASH	Kingston	DT100G3/8GB	N/A	N/A
3	LAN Hub	TP-LINK	TL-SG108	2161597000480	Non-shielded, 1.5m
4	Notebook PC	Lenovo	TP00067C	PF-0EW0C3	N/A

Cable Type		Cable Description
A	Power Cable	Non-shielded, 1.5m
В	LAN Cable	Non-shielded, 3m, 4 PCS.
C	LAN Cable	Non-shielded, 2m

1.3. Configuration of tested System

1.4. EUT Exercise Software

Setup the EUT as shown in Section 1.3.
 Execute software "QATool Version 0.0.1.71" on the Notebook PC.
 Configure the test mode, the test channel, and the data rate.
 Press "OK" to start the continuous Transmit.
 Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
Condenda 1 Emiliaria	Temperature (°C)	10~40 °C	21.5 ℃
Conducted Emission	Humidity (%RH)	10~90 %	47.6 %
D 1' 4 1E ' '	Temperature (°C)	10~40 °C	23.5 °C
Radiated Emission	Humidity (%RH)	10~90 %	65.3 %
Conductive	Temperature (°C)	10~40 °C	22.0 °C
	Humidity (%RH)	10~90 %	55.0 %

USA	FCC Registration Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.	
	Linkou Laboratory	
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C.	
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.	
Phone Number	+886-3-275-7255	
Fax Number	+886-3-327-8031	

1.6. List of Test Equipment

For Conduction Measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	EMI Test Receiver	R&S	ESR7	101601	2022/06/23	2023/06/22
V	Two-Line V-Network	R&S	ENV216	101306	2022/05/23	2023/05/22
V	Two-Line V-Network	R&S	ENV216	101307	2022/07/04	2023/07/03
V	Coaxial Cable	SUHNER	RG400_BNC	RF001	2022/05/24	2023/05/23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: e3 210616 dekra V9.

For Conducted Measurements / HY-SR02

		Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
,	V	Spectrum Analyzer	R&S	FSV30	103466	2022/12/22	2023/12/21
,	V	Peak Power Analyzer	KEYSIGHT	8990B	MY51000539	2022/05/27	2023/05/26
,	V	Power Sensor	KEYSIGHT	N1923A	MY59240002	2022/05/19	2023/05/18
,	V	Power Sensor	KEYSIGHT	N1923A	MY59240003	2022/05/19	2023/05/18

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: RF Conducted Test Tools R3 V3.0.0.14.

For Radiated Measurements / HY-CB03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Loop Antenna	AMETEK	HLA6121	56736	2022/05/14	2023/05/13
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021/08/11	2023/08/10
V	Horn Antenna	Com-Power	AH-840	101100	2021/10/04	2023/10/03
V	Horn Antenna	RF SPIN	DRH18-E	210508A18ES	2022/06/08	2023/06/07
V	Horn Antenna	RF SPIN	DRH18-E	210507A18ES	2023/05/11	2024/05/10
V	Pre-Amplifier	SGH	0301	20211007-10	2023/01/10	2024/01/09
V	Pre-Amplifier	SGH	PRAMP118	20200701	2023/01/10	2024/01/09
V	Pre-Amplifier EMCI		EMC05820SE	980310	2023/01/10	2024/01/09
	Pre-Amplifier	EMCI	EMC184045SE	980369	2023/01/10	2024/01/09
	Coaxial Cable	EMCI	EMC102-KM-K	1160314		
V			M-600			
	Coaxial Cable	EMCI	EMC102-KM-K	170242		
			M-7000			
	Filter	MICRO TRONICS	BRM50702	G269	2023/01/05	2024/01/04
V	Filter	MICRO TRONICS	BRM50716	G196	2023/01/05	2024/01/04
V	EMI Test Receiver	R&S	ESR3	102793	2022/12/05	2023/12/04
V	Spectrum Analyzer	R&S	FSV3044	101114	2023/02/16	2024/02/15
	Coaxial Cable	SGH	SGH18	2021005-1	2023/01/10	2024/01/09
$ _{\mathbf{V}}$	Coaxial Cable	SGH	SGH18	202108-4		
ľ	Coaxial Cable	SGH	SGH18	GD20110223-1		
	Coaxial Cable	SGH	HA800	GD20110222-3		

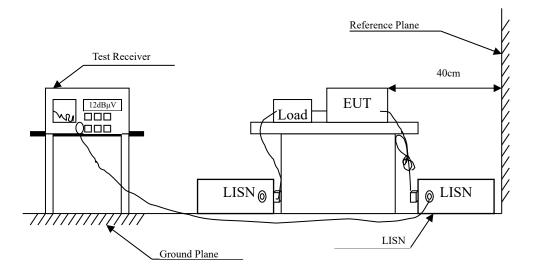
Note:

- 1. Bi-Log Antenna and Horn Antenna(AH-840) is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: E3 210616 dekra V9.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Item	Uncertainty		
Conducted Emission	±3.50 dB		
Mariana and hatal autout a area	Spectrum Analyzer: ±2.14 dB		
Maximun conducted output power	Power Meter: ±1.05 dB		
Maximun Power Spectral Density	±2.14 dB		
	9 kHz~30 MHz: ±3.88 dB		
	30 MHz~1 GHz: ±4.42 dB		
Radiated Emission	1 GHz~18 GHz: ±4.28 dB		
	18 GHz~40 GHz: ±3.90 dB		
	9 kHz~30 MHz: ±3.88 dB		
5 151	30 MHz~1 GHz: ±4.42 dB		
Band Edge	1 GHz~18 GHz: ±4.28 dB		
	18 GHz~40 GHz: ±3.90 dB		
Occupied Bandwidth	±1580.61 Hz		
Duty Cycle	±0.53 %		

2. Conducted Emission

2.1. Test Setup

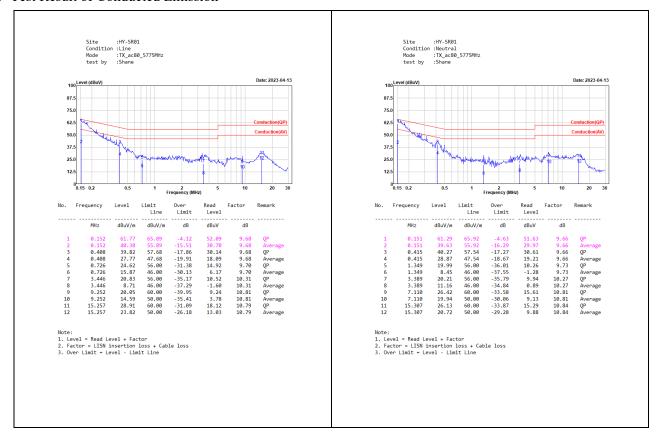
2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit					
Frequency	Limits				
MHz	QP	AV			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

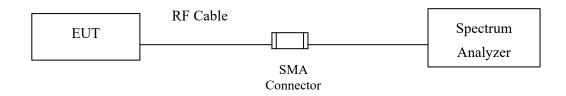
The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm $/50\mu H$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm $/50\mu H$ coupling impedance with 50 ohm termination. (Please refers to the block diagram of the test setup and photographs.)


Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement.

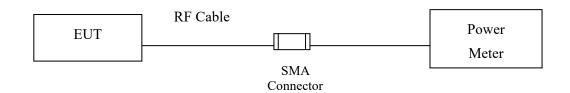
Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

Page: 12 of 74

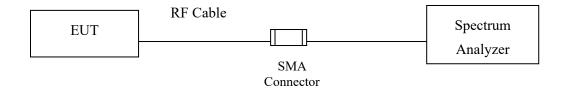
2.4. Test Result of Conducted Emission



3. Maximun conducted output power


3.1. Test Setup

26dB Occupied Bandwidth



Conduction Power Measurement

Conduction Power Measurement (for 802.11an)

Conduction Power Measurement (for 802.11ac)

Page: 14 of 74

3.2. Limits

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 99% emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3. Test Procedure

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater the 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

802.11an (BW ≤ 40MHz) Maximum conducted output power using KDB 789033 section E)3)b) Method PM-G (Measurement using a gated RF average power meter)

Note: the power meter have a video bandwidth that is greater than or equal to the measurement bandwidth, (Anritsu/MA2411B video bandwidth: 65MHz)

802.11ac (BW=80MHz) Maximum conducted output power using KDB 789033 section E)2)b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep).

When transmitted signals consist of two or more non-contiguous spectrum segments (e.g., 80+80 MHz mode) or when a single spectrum segment of a transmission crosses the boundary between two adjacent U-NII bands, KDB 644545 D03 section D) procedure is used for measurements.

3.4. Test Result of Maximum conducted output power

Product : 5G Enterprise Router

Test Item : Maximum conducted output power

Test Mode : Transmit (802.11a)

Test Date : 2023/04/12

Channel No.	Frequency (MHz)	Output Power (dBm)	Output Power Limit (dBm)
36	5180	22.77	30
44	5220	24.61	30
48	5240	24.26	30
149	5745	21.52	30
157	5785	27.08	30
165	5825	25.98	30

Test Item : Maximum conducted output power

Test Mode : Transmit (802.11ac-20 MHz)

Test Date : 2023/04/12

Channel No.	Frequency	Chain A Power	Chain B Power	Chain C Power	Chain D Power	Output Power	Output Power Limit
110.	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
36	5180	20.27	20.86	21.09	21.14	20.37	30
44	5220	21.24	20.98	20.69	19.77	24.07	30
48	5240	22.03	21.79	21.55	20.69	24.64	30
149	5745	23.39	23.37	22.89	23.22	24.26	30
157	5785	23.87	24.16	23.69	23.91	24.22	30
165	5825	23.18	23.42	23.24	23.06	24.21	30

Note:

1. Output Power (dBm) = 10*LOG (Chain A(mW) + Chain B(mW) + Chain C(mW) + Chain C(mW))

Page: 18 of 74

Test Item : Maximum conducted output power

Test Mode : Transmit (802.11ac-40 MHz)

Test Date : 2023/04/12

Channel	Fraguency	Chain A	Chain B	Chain C	Chain D	Output	Output
No.	Frequency	Power	Power	Power	Power	Power	Power Limit
No.	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
38	5190	17.89	18.52	18.95	18.99	24.63	30
46	5230	18.63	18.05	18.06	17.02	24.00	30
151	5755	21.66	21.54	21.26	21.56	27.53	30
159	5795	23.70	23.92	23.56	23.89	29.79	30

Note:

Page: 19 of 74

^{1.} Output Power (dBm) = 10*LOG (Chain A(mW) + Chain B(mW) + Chain C(mW) + Chain C(mW))

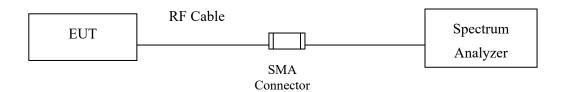
Test Item : Maximum conducted output power

Test Mode : Transmit (802.11ac-80 MHz)

Test Date : 2023/04/12

Channel No.	Frequency	Chain A Power	Chain B Power	Chain C Power	Chain D Power	Output Power	Output Power Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
42	5210	14.84	14.42	14.56	13.31	20.34	30
155	5775	14.92	14.88	14.72	14.89	20.87	30

Note:


Page: 20 of 74

^{1.} Output Power (dBm) = 10*LOG (Chain A(mW) + Chain B(mW) + Chain C(mW) + Chain C(mW))

4. Maximun Power Spectral Density

4.1. Test Setup

4.2. Limits

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

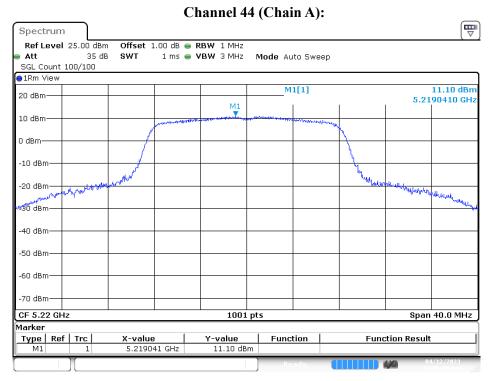
4.3. Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The Peak Power Spectral Density using KDB 789033 section F) procedure, Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer.

SA-1 method is selected to run the test.

4.4. Test Result of Maximun Power Spectral Density

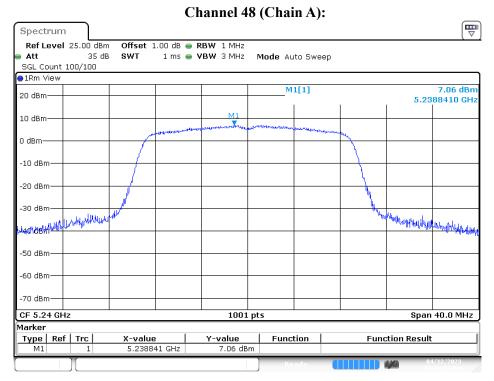

Product : 5G Enterprise Router

Test Item : Maximun Power Spectral Density

Test Mode : Transmit (802.11a)

Channel No.	Frequency	Data Rate	Chain	PPSD/MHz	Duty factor	Total PPSD/MHz	Limit	Result
	(MHz)	(Mbps)		(dBm)	(dB)	(dBm)	(dBm)	
36	5180	6	A	9.31	1.36	10.67	17	Pass
44	5220	6	A	11.10	1.36	12.46	17	Pass
48	5240	6	A	10.36	1.36	11.72	17	Pass
149	5745	6	A	7.80	1.36	9.16	30	Pass
157	5785	6	A	10.34	1.36	11.70	30	Pass
165	5825	6	A	9.26	1.36	10.62	30	Pass

Date: 12.APR.2023 03:26:01

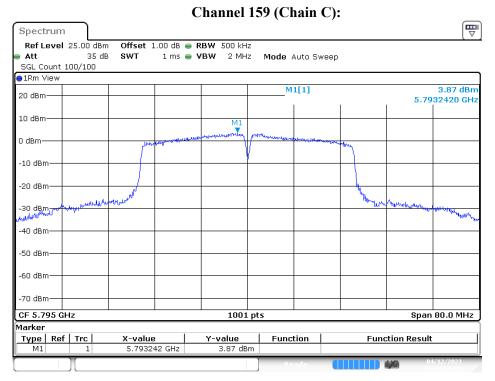


Test Item : Maximun Power Spectral Density
Test Mode : Transmit (802.11ac-20 MHz)

Channel No.	Frequency	Data Rate	Chain	PPSD/MHz	Duty factor	Total PPSD/MHz	Limit	Result
	(MHz)			(dBm)	(dB)	(dBm)	(dBm)	
			A	6.26	1.20	13.48	17	Pass
26	7100	MCS0	В	6.88	1.20	14.10	17	Pass
36	5180		С	6.64	1.20	13.86	17	Pass
			D	6.63	1.20	13.85	17	Pass
			A	6.01	1.20	13.23	17	Pass
44	5220	MCS0	В	6.09	1.20	13.31	17	Pass
44	3220		С	6.04	1.20	13.26	17	Pass
			D	5.35	1.20	12.57	17	Pass
	5240	MCS0	A	7.06	1.20	14.28	17	Pass
40			В	6.93	1.20	14.15	17	Pass
48			С	6.93	1.20	14.15	17	Pass
			D	5.92	1.20	13.14	17	Pass
	5745	MCS0	A	5.11	1.20	12.33	30	Pass
149			В	5.27	1.20	12.49	30	Pass
149			С	5.35	1.20	12.57	30	Pass
			D	5.69	1.20	12.91	30	Pass
			A	5.87	1.20	13.09	30	Pass
157	5705	MCS0	В	5.99	1.20	13.21	30	Pass
157	5785		С	6.29	1.20	13.51	30	Pass
			D	6.23	1.20	13.45	30	Pass
		MCS0	A	4.83	1.20	12.05	30	Pass
165	5925		В	5.33	1.20	12.55	30	Pass
165	5825		С	5.53	1.20	12.75	30	Pass
			D	5.12	1.20	12.34	30	Pass

Note: The quantity 10*log 4 (four antennas) is added to the spectrum peak value according to document 662911 D01.

Date: 12.APR.2023 03:38:37

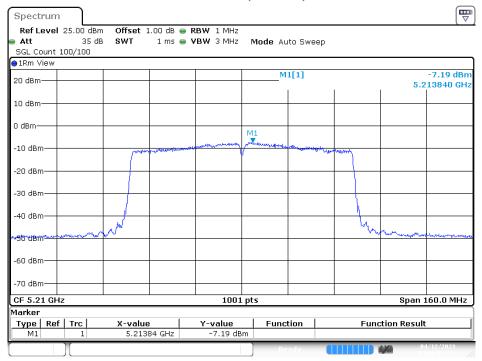


Test Item : Maximun Power Spectral Density
Test Mode : Transmit (802.11ac-40 MHz)

Channel No.	Frequency	Data Rate	Chain	PPSD/MHz	Duty factor	Total PPSD/MHz	Limit	Result
	(MHz)			(dBm)	(dB)	(dBm)	(dBm)	
		MCS0	A	0.07	1.79	7.88	17	Pass
20	£100		В	0.16	1.79	7.97	17	Pass
38	5190		С	1.22	1.79	9.03	17	Pass
			D	0.74	1.79	8.55	17	Pass
	5230	MCS0	A	0.32	1.79	8.13	17	Pass
4.6			В	-0.18	1.79	7.63	17	Pass
46			С	-0.09	1.79	7.72	17	Pass
			D	-0.66	1.79	7.15	17	Pass
	5755	MCS0	A	1.11	1.79	8.92	30	Pass
151			В	0.62	1.79	8.43	30	Pass
151			C	0.43	1.79	8.24	30	Pass
			D	1.00	1.79	8.81	30	Pass
	5795	MCS0	A	2.96	1.79	10.77	30	Pass
150			В	3.09	1.79	10.90	30	Pass
159			С	3.87	1.79	11.68	30	Pass
			D	3.42	1.79	11.23	30	Pass

Note: The quantity 10*log 4 (four antennas) is added to the spectrum peak value according to document 662911 D01.

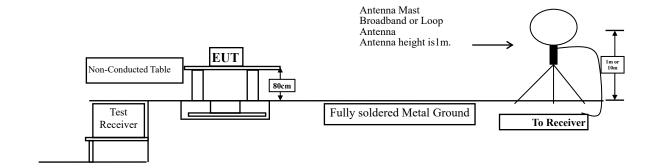
Date: 12.APR.2023 04:02:53

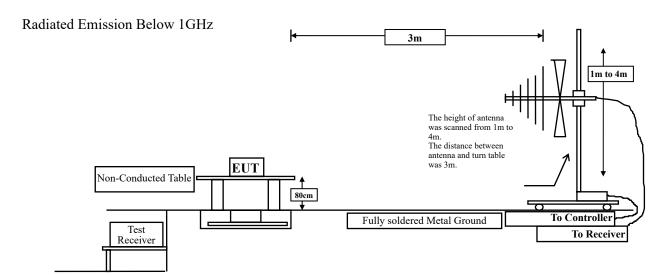

Test Item : Maximun Power Spectral Density
Test Mode : Transmit (802.11ac-80 MHz)

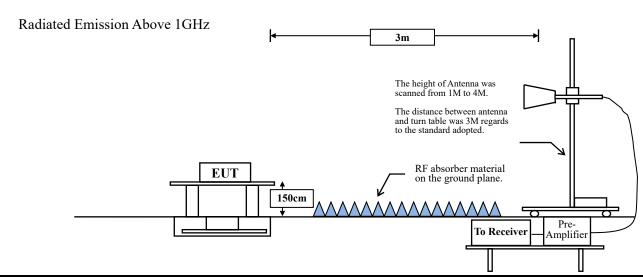
Channel No.	Frequency	Data Rate	Chain	PPSD/MHz	Duty factor	Total PPSD/MHz	Limit	Result
	(MHz)			(dBm)	(dB)	(dBm)	(dBm)	
	5210	MCS0	A	-7.19	3.60	2.43	17	Pass
42			В	-7.88	3.60	1.74	17	Pass
42			C	-7.76	3.60	1.86	17	Pass
			D	-8.52	3.60	1.10	17	Pass
	5775	MCS0	A	-9.63	3.60	-0.01	30	Pass
155			В	-10.14	3.60	-0.52	30	Pass
155			C	-10.31	3.60	-0.69	30	Pass
			D	-9.91	3.60	-0.29	30	Pass

Note: The quantity 10*log 4 (four antennas) is added to the spectrum peak value according to document 662911 D01.

Channel 42 (Chain A):


Date: 12.APR.2023 04:06:03




5. Radiated Emission

5.1. Test Setup

Radiated Emission Under 30MHz

Page: 31 of 74

5.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	Field strength (microvolts/meter)	Measurement distance (meter)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above 960	500	3						

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength $(\mu V/m)$.

5.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9 kHz and 30 MHz~1 GHz is 120 kHz and above 1 GHz is 1 MHz.

Radiated emission measurements below 30 MHz are made using Loop Antenna and 30 MHz~1 GHz are made using broadband Bilog antenna and above 1 GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range form 9 kHz - 10 th Harmonic of fundamental was investigated.

RBW and **VBW** Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz.

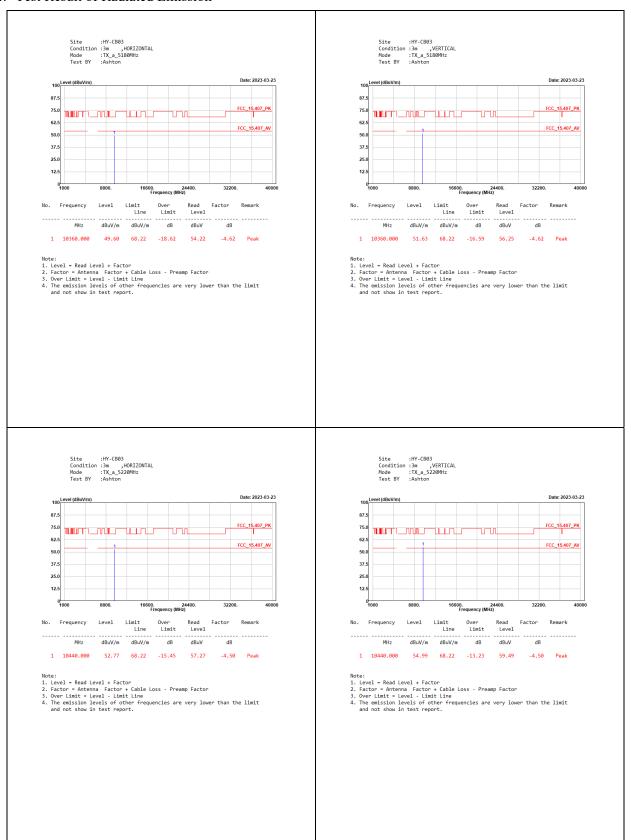
 $VBW \ge 3MHz$.

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

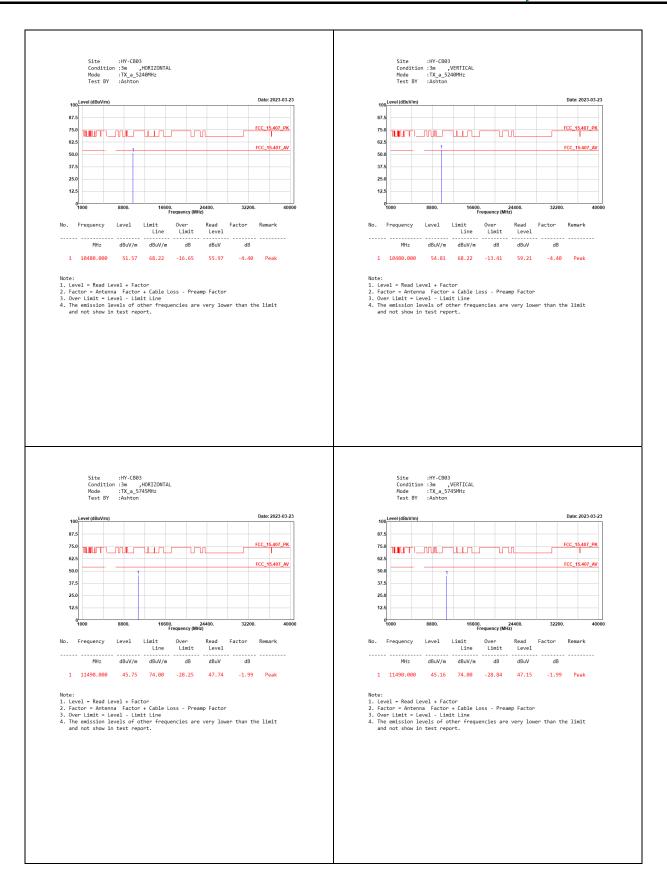
RBW = 1MHz.

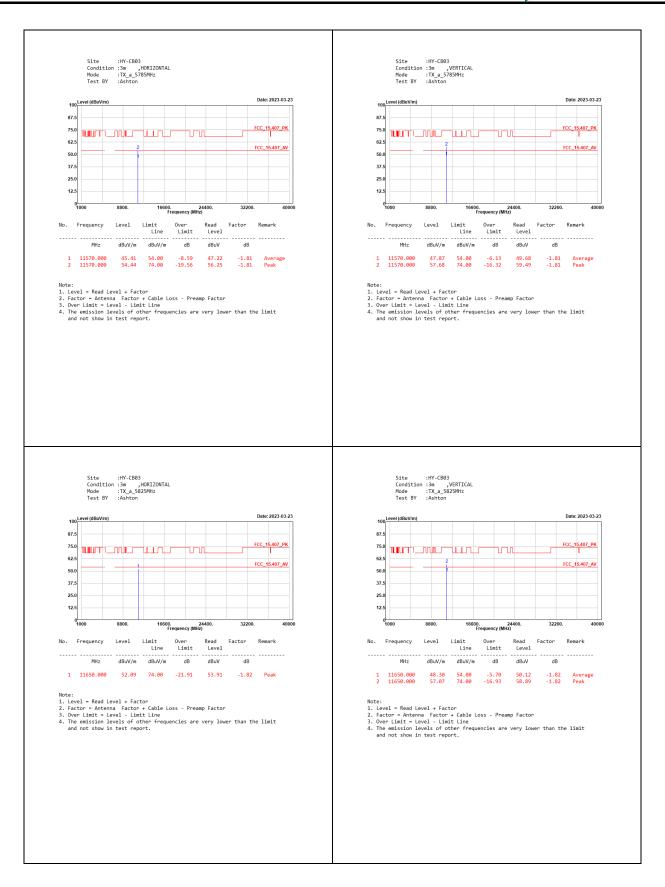
VBW = 10Hz, when duty cycle \geq 98 %

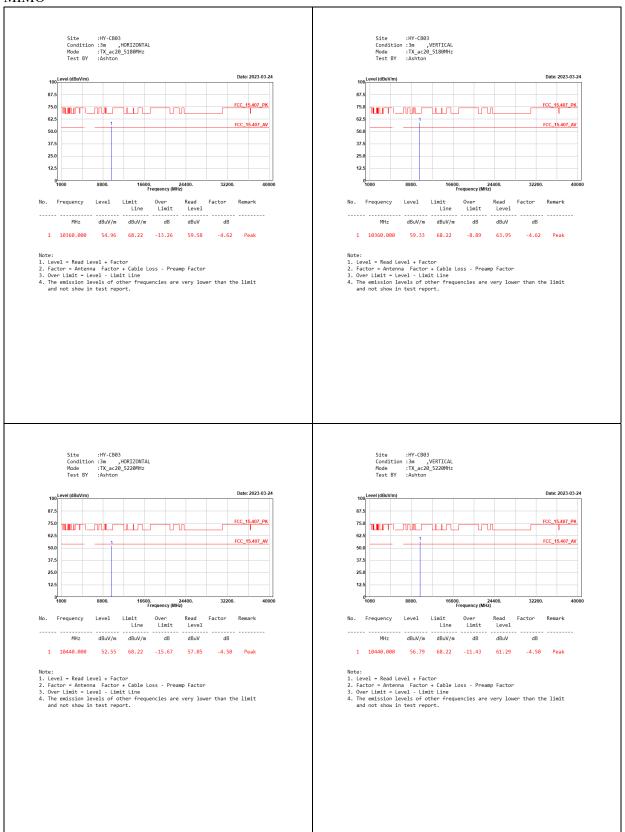
VBW \geq 1/T, when duty cycle \leq 98 %

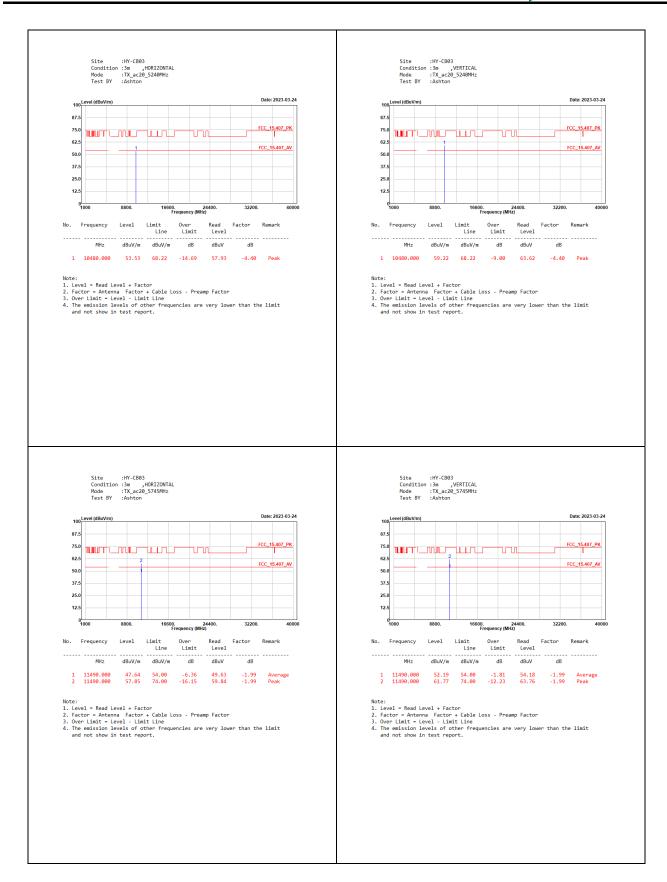

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

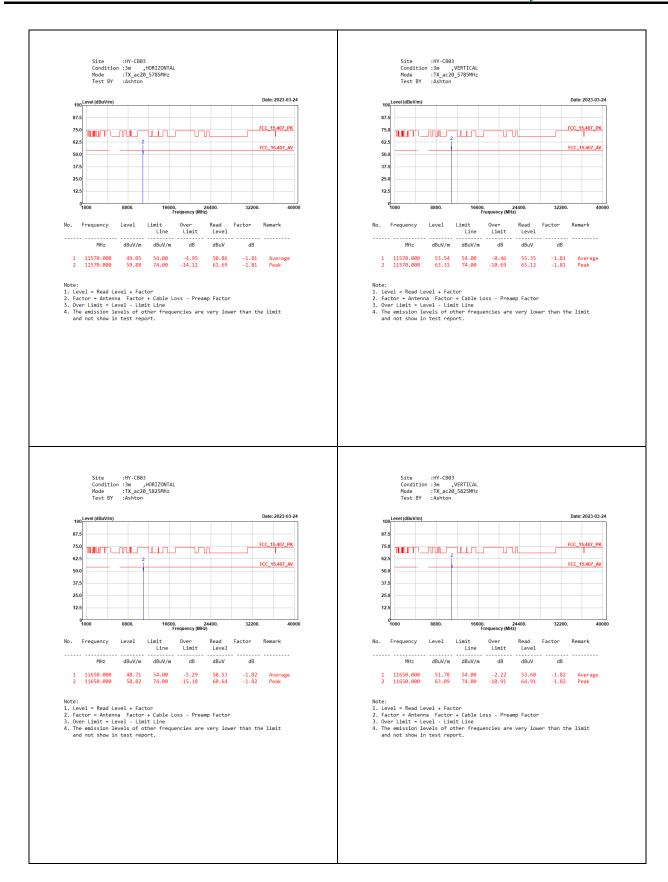
5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	73.11	1.4000	714	1000
802.11ac-20 MHz	75.77	1.3100	763	1000
802.11ac-40 MHz	66.16	0.6550	1527	2000
802.11ac-80 MHz	43.59	0.3230	3096	5000

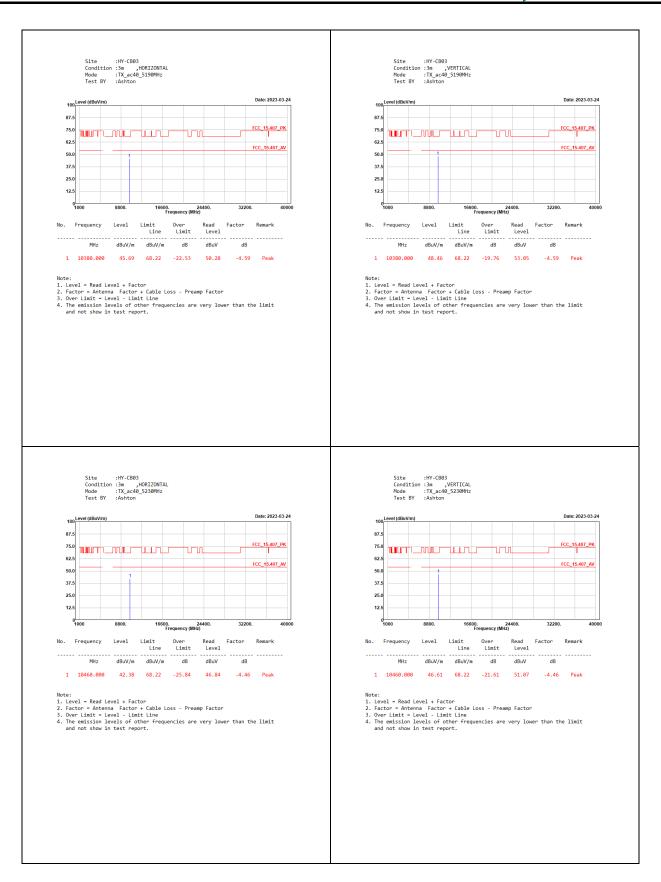

Note: Duty Cycle Refer to Section 8.

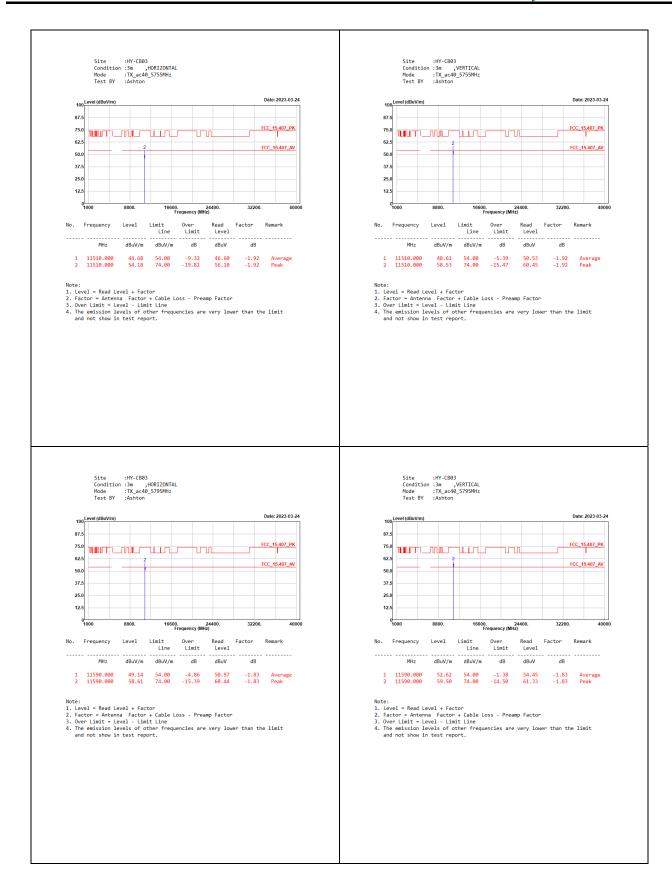

5.4. Test Result of Radiated Emission

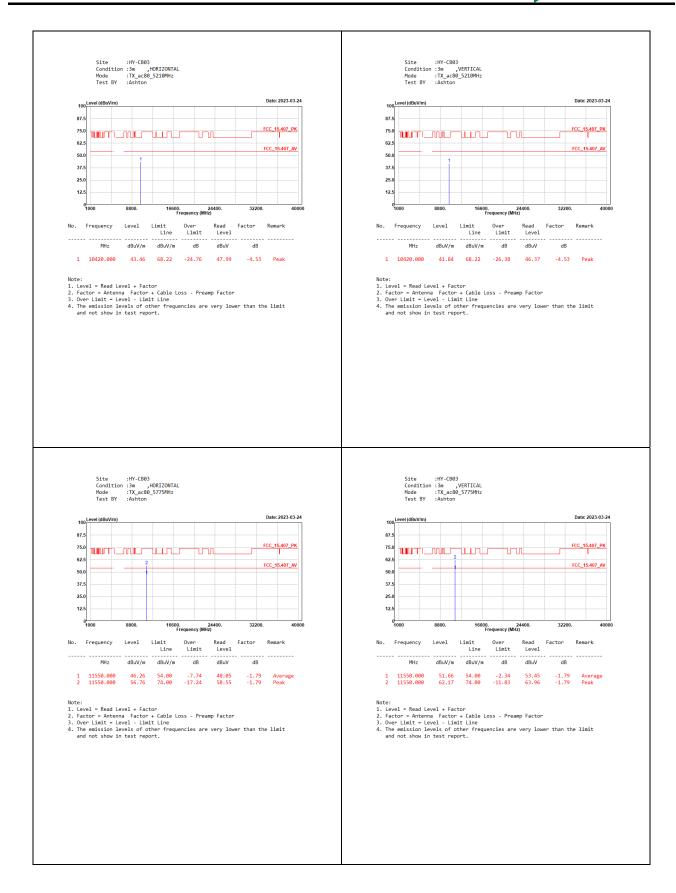


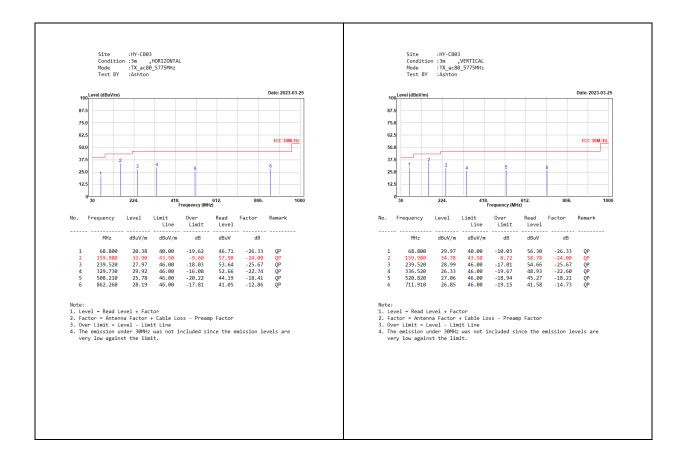


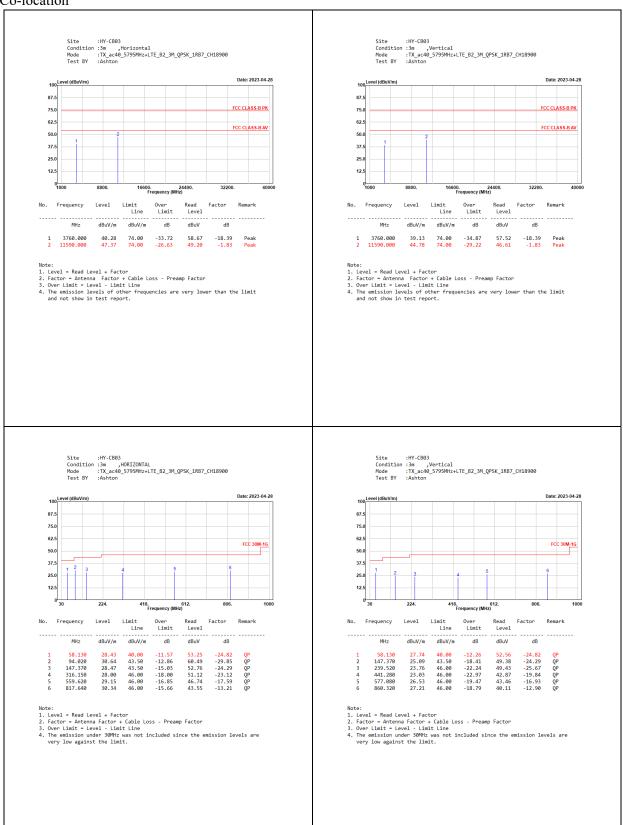

MIMO

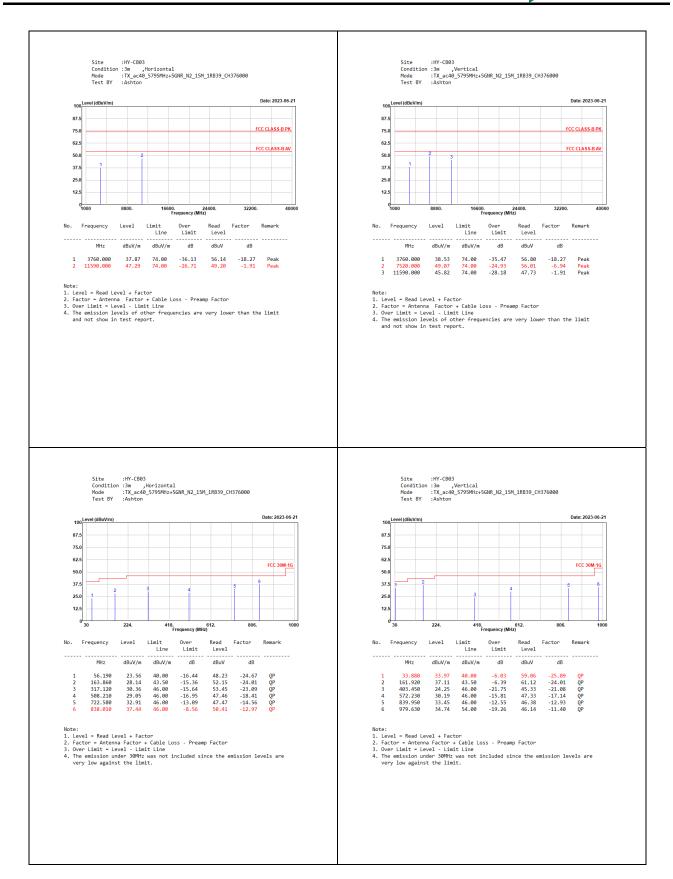




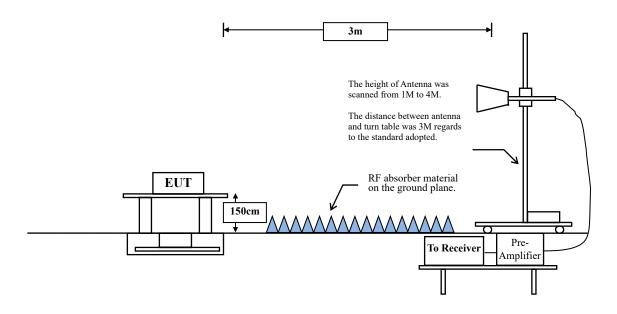








Co-location



6. Band Edge

6.1. Test Setup

RF Radiated Measurement:

6.2. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section. Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	μV/m @3m	dBμV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks:

- 1. RF Voltage (dB μ V) = 20 log RF Voltage (μ V).
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

6.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

RBW and **VBW** Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz.

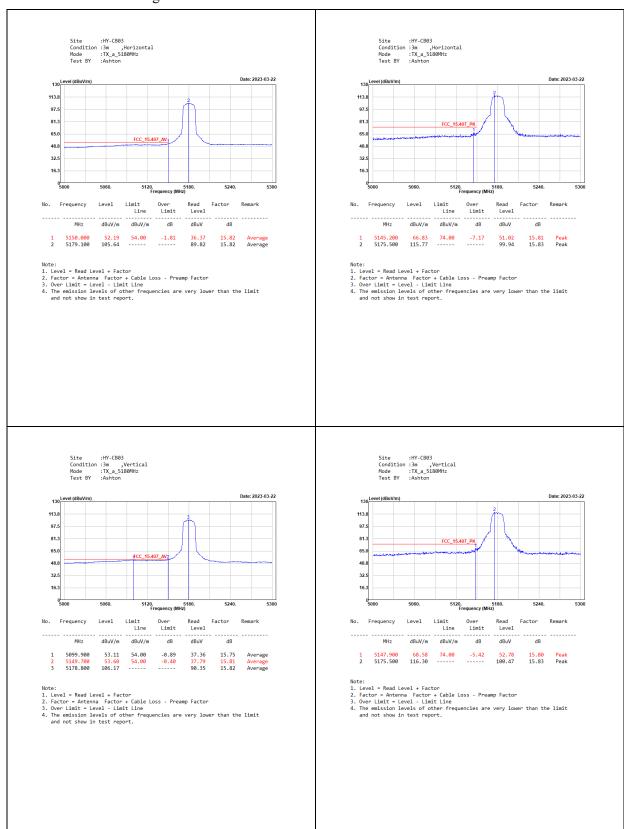
 $VBW \ge 3MHz$.

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

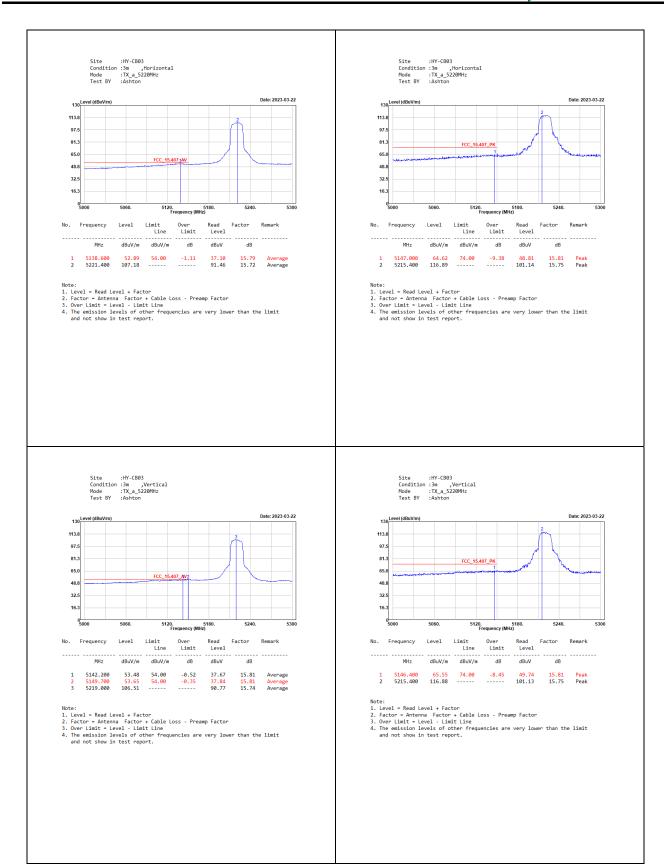
RBW = 1MHz.

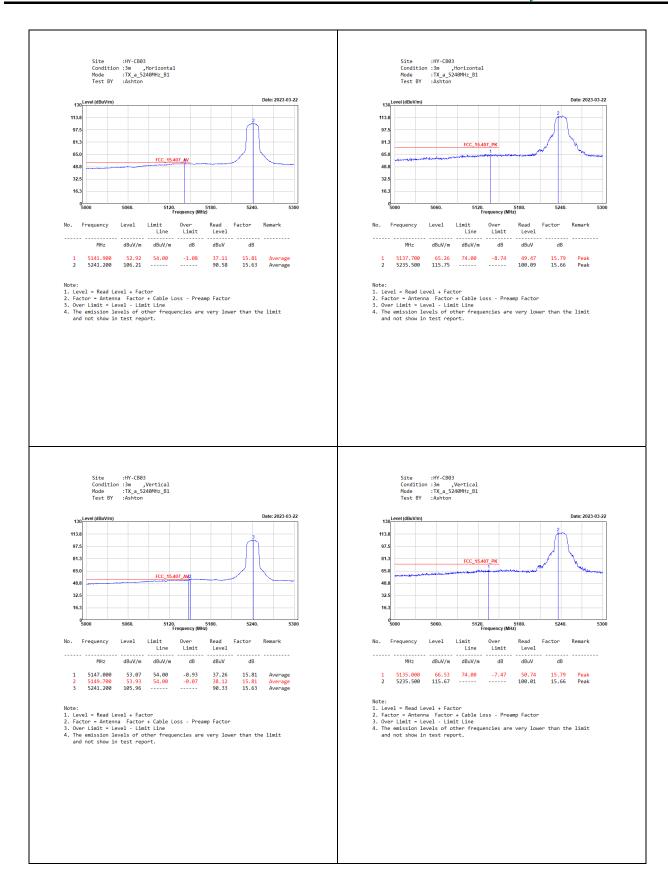
VBW = 10Hz, when duty cycle \geq 98 %

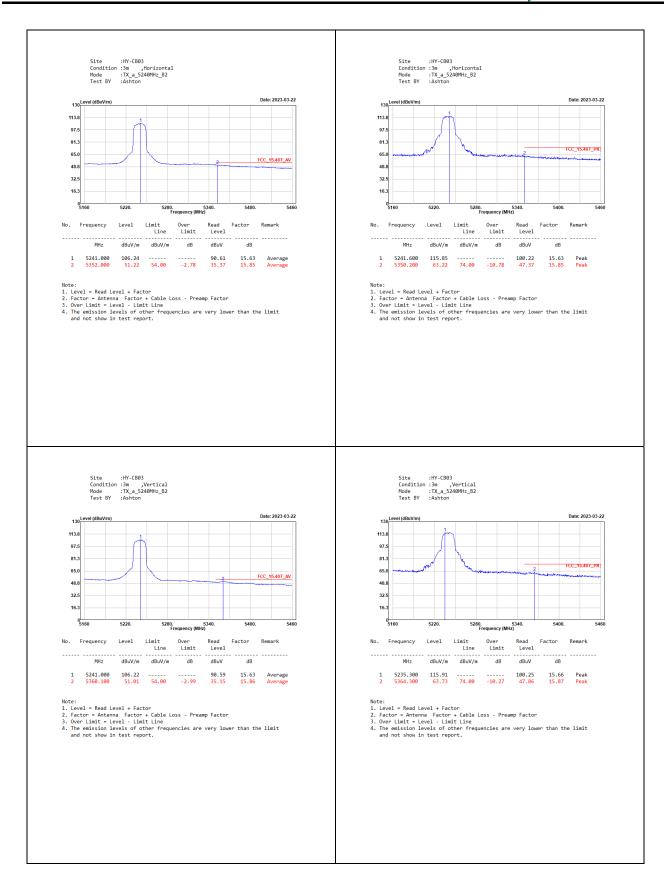
VBW $\geq 1/T$, when duty cycle $\leq 98 \%$

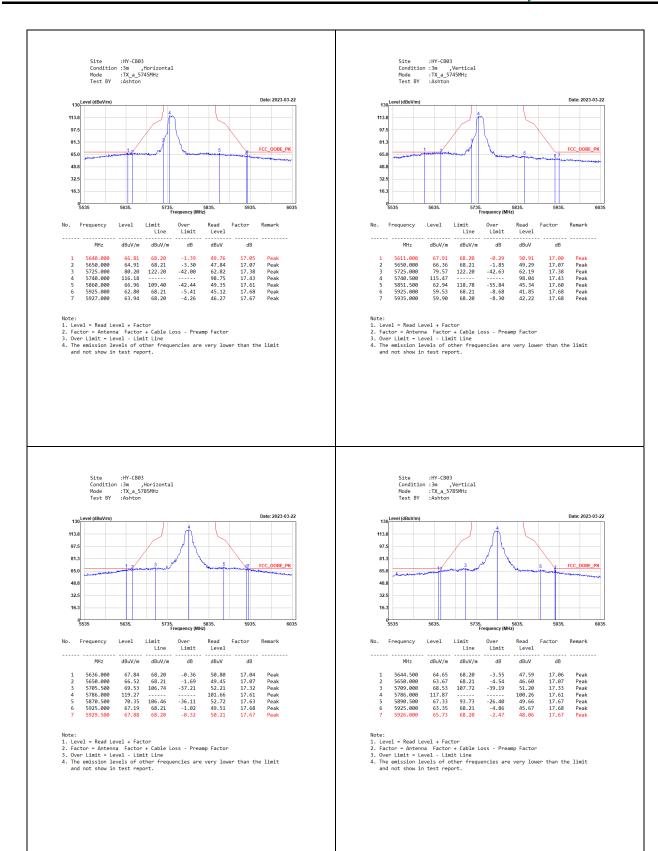

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

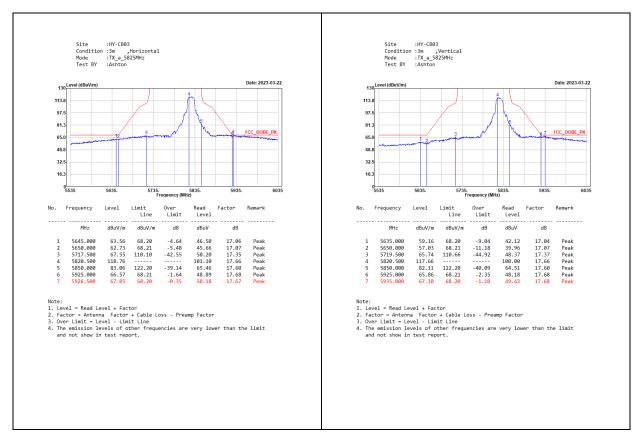
5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	73.11	1.4000	714	1000
802.11ac-20 MHz	75.77	1.3100	763	1000
802.11ac-40 MHz	66.16	0.6550	1527	2000
802.11ac-80 MHz	43.59	0.3230	3096	5000

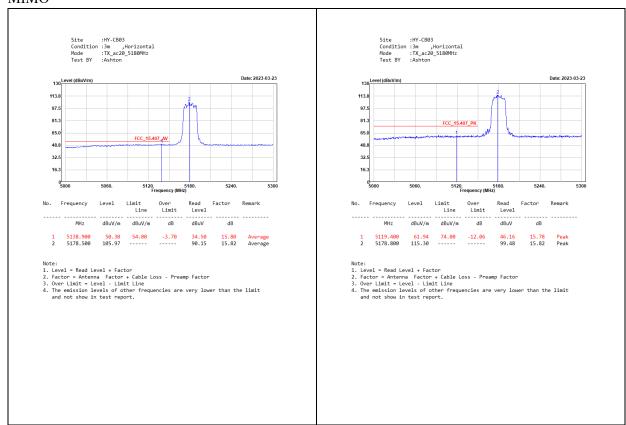

Note: Duty Cycle Refer to Section 8.

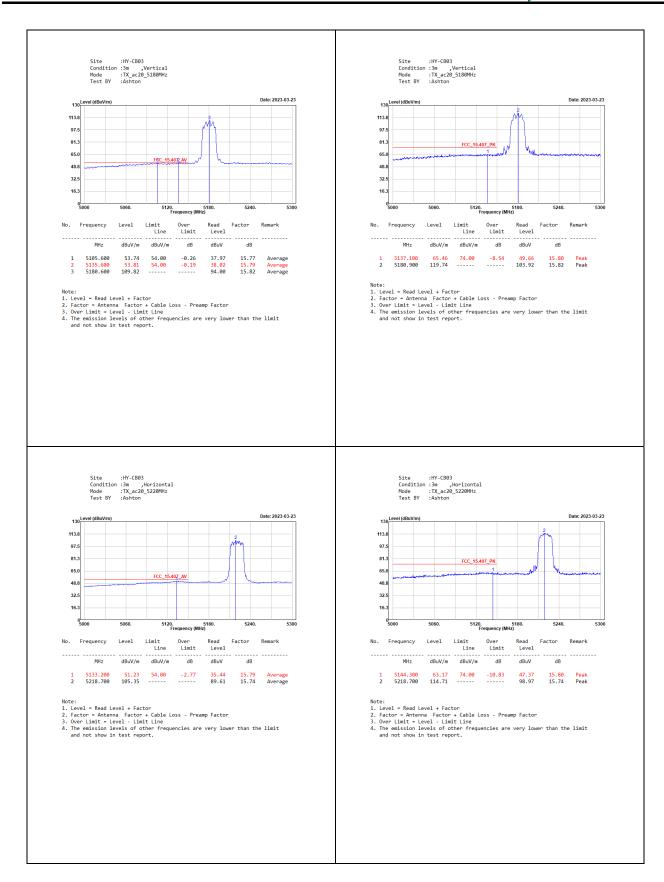

6.4. Test Result of Band Edge

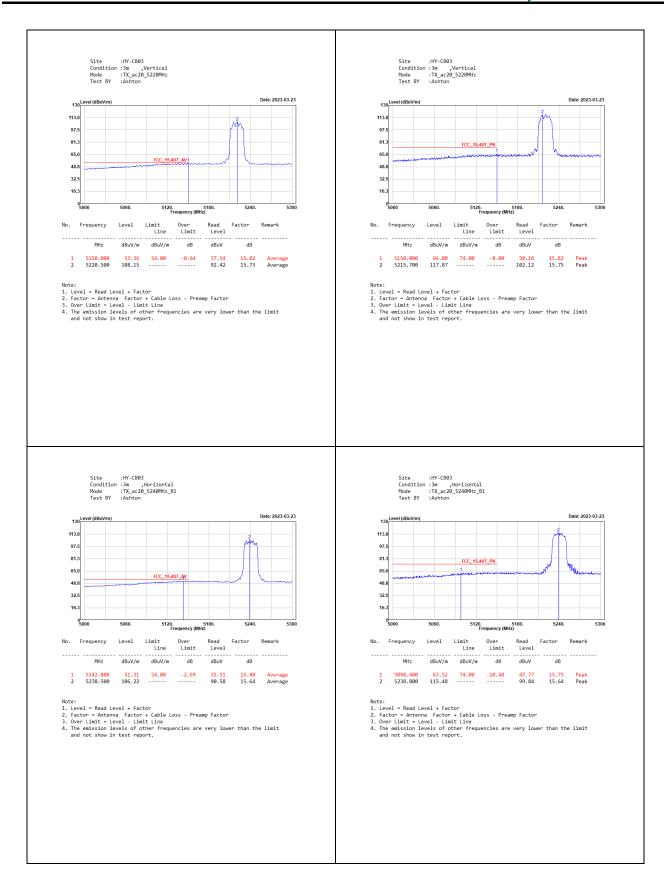


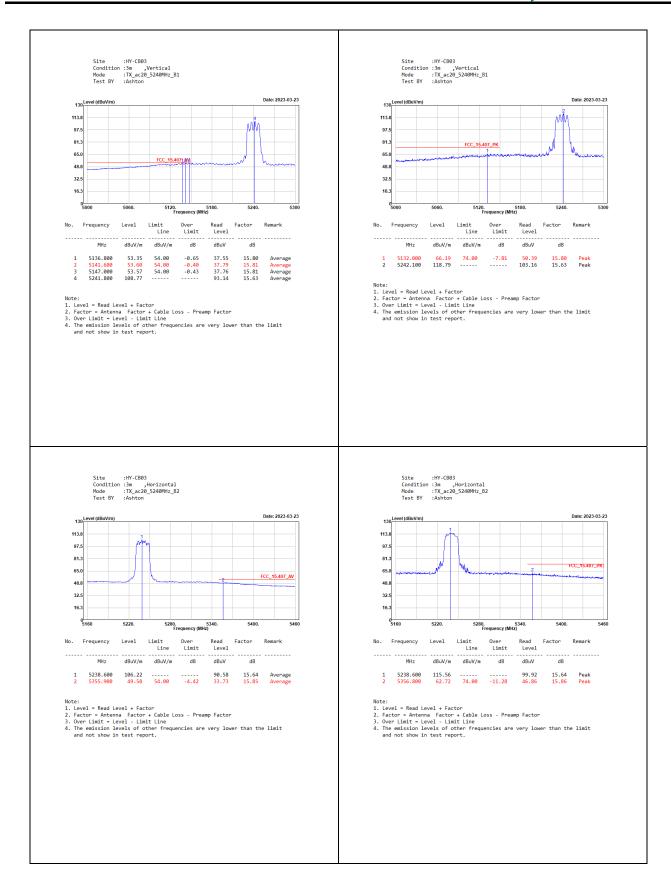


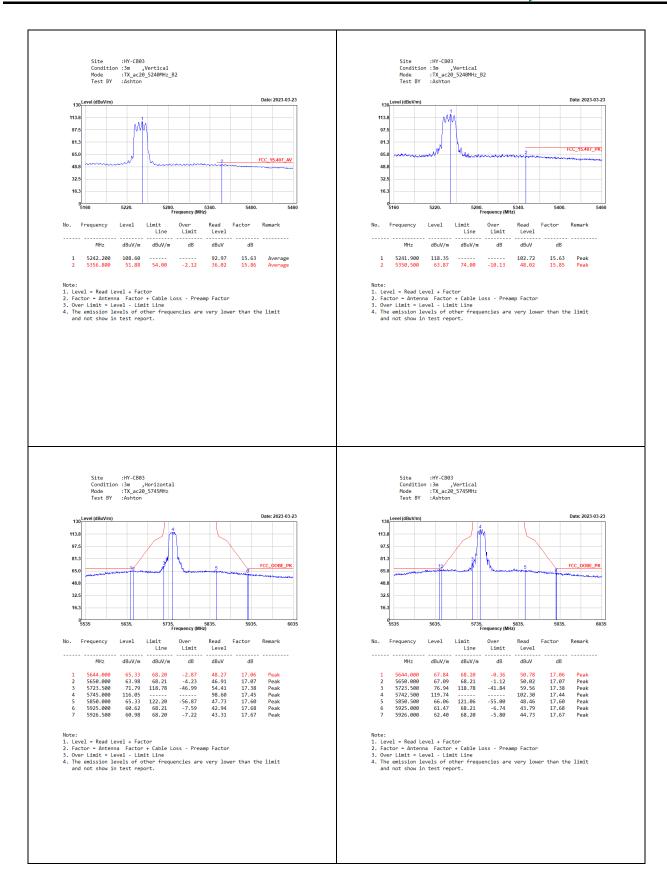


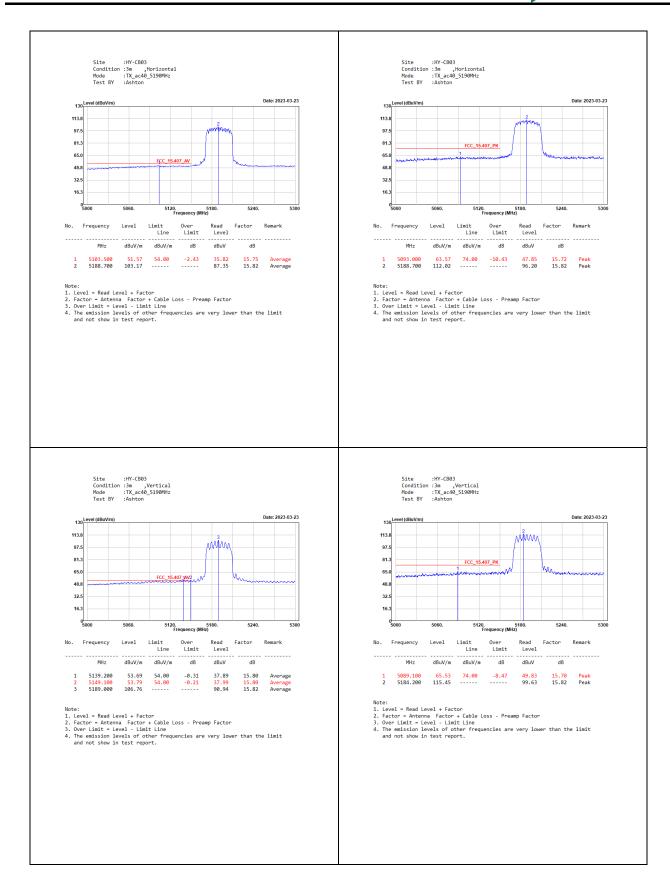


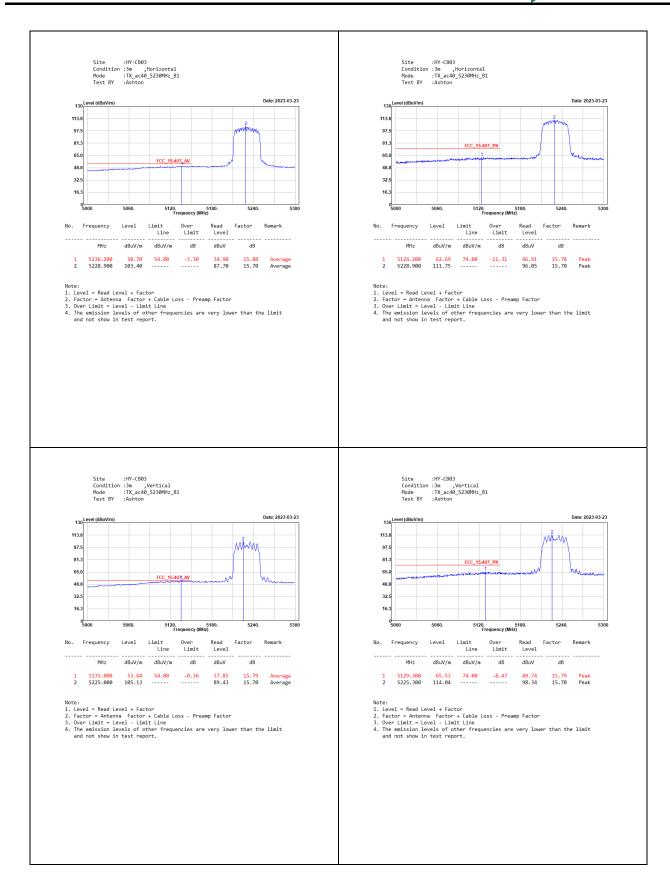


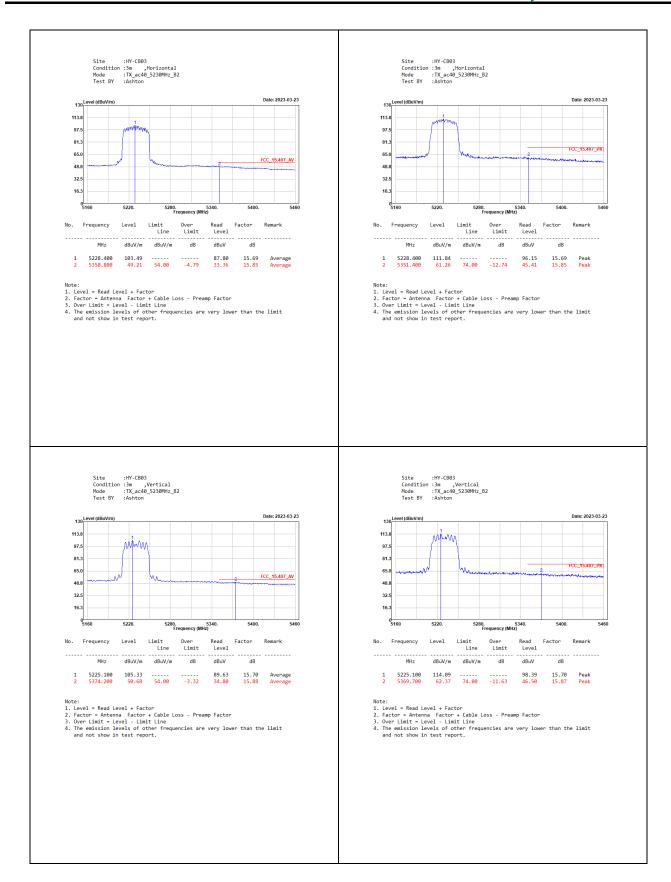

MIMO

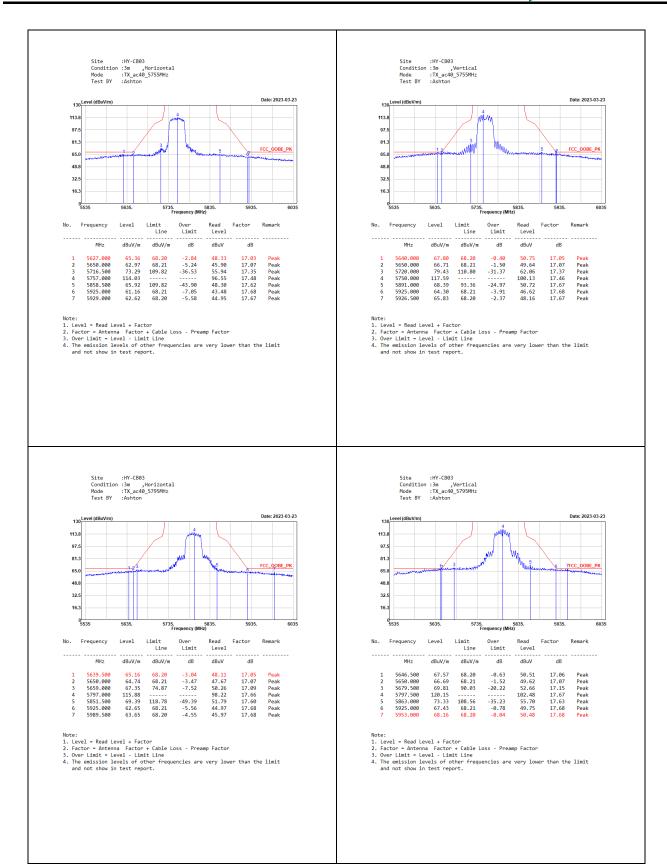


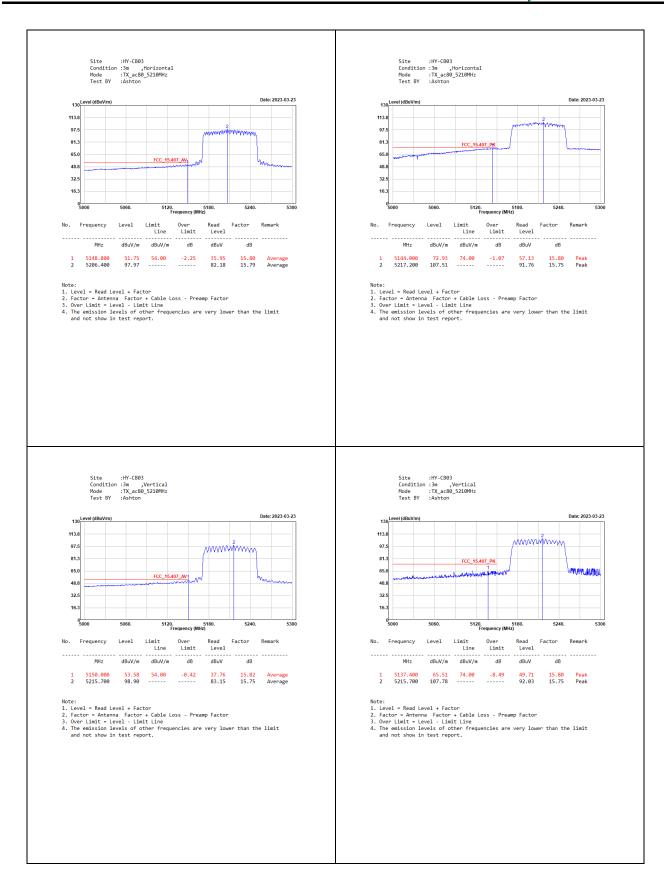


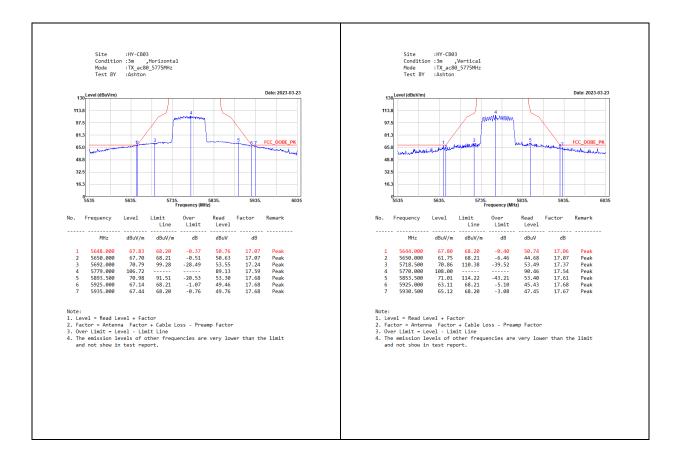


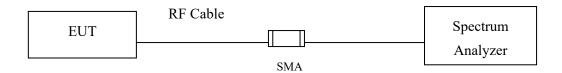












7. Occupied Bandwidth

7.1. Test Setup

7.2. Limits

For the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

7.3. Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.4. Test Result of Occupied Bandwidth

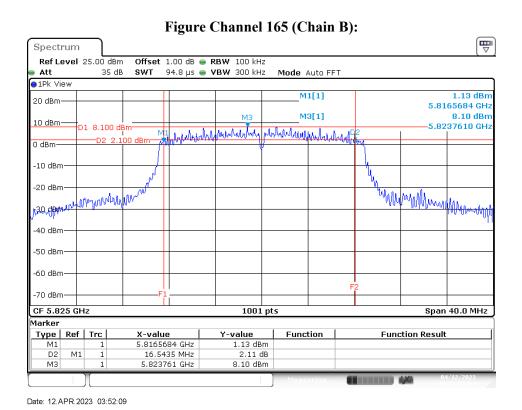
Product : 5G Enterprise Router
Test Item : Occupied Bandwidth Data

Test Mode : Transmit (802.11a)

Test Date : 2023/04/12

Channel No. Chain	Frequency	Measurement Level	Required Limit	Result	
Chamici ivo.	Chain	(MHz)	(kHz)	(kHz)	Result
149	A	5745	15105	>500	Pass
157	A	5785	15145	>500	Pass
165	A	5825	15145	>500	Pass

Figure Channel 157: \blacksquare Spectrum Offset 1.00 dB ■ RBW 100 kHz SWT 94.8 µs ■ VBW 300 kHz Ref Level 25.00 dBm 35 dB Att ●1Pk View M1[1] 6.01 dBn 20 dBm-5.7773676 GHz 13.89 dBm 13.890 dBm 10 dBm-5.7862790 GHz 0 dBm Minh two. May was and the same -30 dBm -40 dBm -50 dBm -60 dBm--70 dBm-Span 40.0 MHz CF 5.785 GHz 1001 pts Marker Ref | Trc | **X-value** 5.7773676 GHz 15.1449 MHz **Y-value** 6.01 dBm 5.28 dB Function **Function Result** Type M1 D2 5.786279 GHz 13.89 dBm МЗ


Date: 12.APR.2023 03:28:07

Product : 5G Enterprise Router
Test Item : Occupied Bandwidth Data
Test Mode : Transmit (802.11ac-20 MHz)

Test Date : 2023/04/12

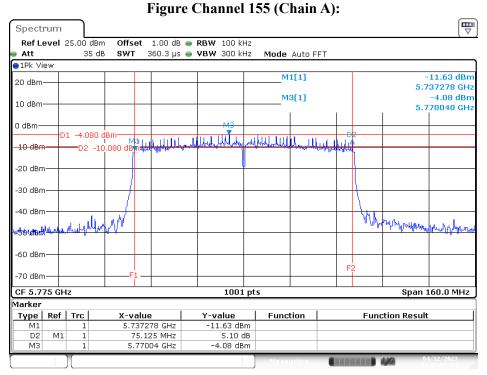
Channel No.	Chain	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	A	5745	15065	>500	Pass
157	A	5785	15105	>500	Pass
165	A	5825	15105	>500	Pass
149	В	5745	16544	>500	Pass
157	В	5785	16304	>500	Pass
165	В	5825	16544	>500	Pass
149	С	5745	15305	>500	Pass
157	С	5785	15664	>500	Pass
165	С	5825	15704	>500	Pass
149	D	5745	15105	>500	Pass
157	D	5785	15105	>500	Pass
165	D	5825	15944	>500	Pass

Product : 5G Enterprise Router
Test Item : Occupied Bandwidth Data
Test Mode : Transmit (802.11ac-40 MHz)

Test Date : 2023/04/12

Channel No.	Chain	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
151	A	5755	35085	>500	Pass
159	A	5795	35085	>500	Pass
151	В	5755	35005	>500	Pass
159	В	5795	35085	>500	Pass
151	С	5755	35005	>500	Pass
159	С	5795	35085	>500	Pass
151	D	5755	35005	>500	Pass
159	D	5795	35085	>500	Pass

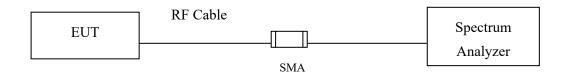
Figure Channel 151 (Chain A): Spectrum Ref Level 25.00 dBm Offset 1.00 dB @ RBW 100 kHz Att Mode Auto Sweep ●1Pk View M1[1] -1.49 dBm 20 dBm 5.7374176 GHz M3[1] 5.55 dBm 10 dBm-5.7525220 GHz D2 -0.450 dBm 0 dBm -20 dBm-Whomproppy that I delige what the control of the co -60 dBm -70 dBm-1001 pts Span 80.0 MHz CF 5.755 GHz Marker Type | Ref | Trc | Function **Function Result** X-value Y-value 5.7374176 GHz 35.0849 MHz -1.49 dBm 3.60 dB 5.55 dBm M1 D2 М1 5.752522 GHz МЗ


Date: 12.APR.2023 03:57:51

Product : 5G Enterprise Router
Test Item : Occupied Bandwidth Data
Test Mode : Transmit (802.11ac-80 MHz)

Test Date : 2023/04/12

Channel No.	Chain	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
155	A	5775	75125	>500	Pass
155	В	5775	75125	>500	Pass
155	С	5775	74965	>500	Pass
155	D	5775	75125	>500	Pass



Date: 12.APR.2023 04:11:00

8. Duty Cycle

8.1. Test Setup

8.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to U-NII test procedure of KDB789033 for compliance to FCC 47CFR 15.407 requirements.

8.3. Test Result of Duty Cycle

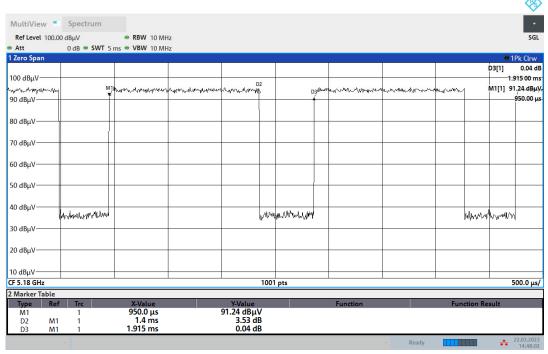
Product : 5G Enterprise Router

Test Item : Duty Cycle Test Mode : Transmit

Duty Cycle Formula:

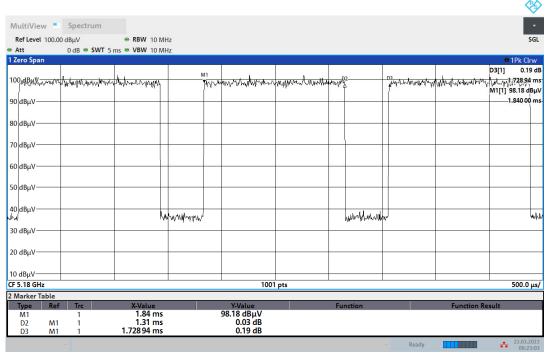
Duty Cycle = Ton / (Ton + Toff)

Duty Factor = 10 Log (1/Duty Cycle)


Results:

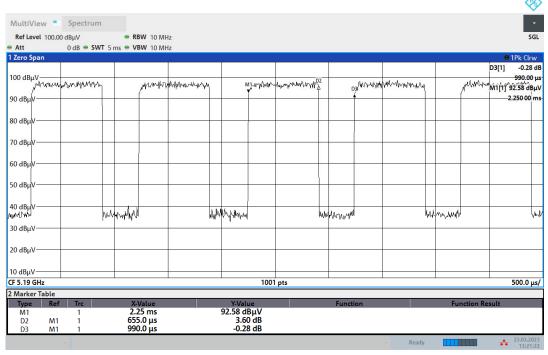
5GHz band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
802.11a	1.4000	1.9150	73.11	1.36
802.11ac-20 MHz	1.3100	1.7289	75.77	1.21
802.11ac-40 MHz	0.6550	0.9900	66.16	1.79
802.11ac-80 MHz	0.3230	0.7410	43.59	3.61

Page: 72 of 74

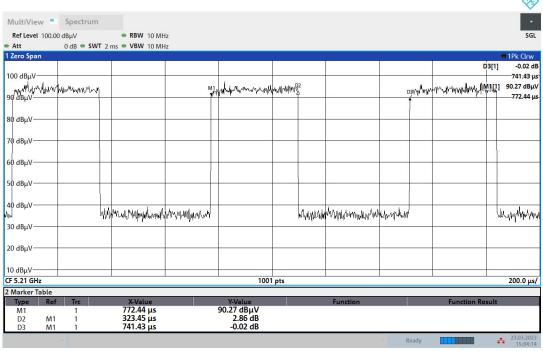


802.11a

14:48:03 22.03.2023


802.11ac20

09:23:04 23.03.2023



802.11ac40

13:21:23 23.03.2023

802.11ac80

15:04:14 23.03.2023