

CommScope Technologies, LLC TEST REPORT

SCOPE OF WORK EMISSIONS TESTING – RPM-A5A11-B66 (Band 10)

REPORT NUMBER 103866582BOX-24b

ISSUE DATE August 24, 2019 [REVISED DATE] September 16, 2019

PAGES 334

DOCUMENT CONTROL NUMBER Non-Specific Radio Report Shell Rev. December 2017 © 2017 INTERTEK

EMISSIONS TEST REPORT

(FULL COMPLIANCE)

Report Number: 103866582BOX-24b Project Number: G103866582

Report Issue Date: 08/14/2019 Report Re-issued Date: 09/16/2019

Model(s) Tested: RPM-A5A11-B66 Model(s) Partially Tested: None Model(s) Not Tested but declared equivalent by the client: None

Standards: CFR47 FCC Part 27 (04/2019)

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 USA Client: CommScope Technologies LLC 250 Apollo Drive Chelmsford, MA 01824 USA

Report prepared by

Kouma Sinn / EMC Staff Engineer

Report reviewed by

Nicholas Abbondante / Chief Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction and Conclusion	4
2	Test Summary	4
3	Client Information	5
4	Description of Equipment Under Test and Variant Models	5
5	System Setup and Method	6
6	Maximum Peak Output Power and Human RF exposure	8
7	Peak-to-Average Power Ratio (PAPR)	63
8	26 dB Bandwidth and Occupied Bandwidth1	117
9	Band Edge Compliance2	221
10	Frequency Stability2	258
11	Transmitter spurious emissions2	287
12	Revision History	334

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Maximum Peak Output Power and Human RF exposure CFR47 FCC Parts 2.1046 and 27.50(d)(1-2)	Pass
7	Peak-to-Average Power Ratio (PAPR) CFR47 FCC Part 27.50(d)(5)	Pass
8	26 dB Bandwidth and Occupied Bandwidth CFR47 FCC Parts 2.1049 and 27.53(h)(3)	Pass
9	Band Edge Compliance CFR47 FCC 2.1051, 2.1053, and 27.53(h)	Pass
10	Frequency Stability CFR47 FCC Parts 2.1055 and 27.54	Pass
11	Transmitter Spurious Emissions CFR47 Parts 2.1051, 2.1053, 2.1057, and 27.53(h)	Pass
12	Revision History	

Notes: Band 10 is a subset of Band 66 the hardware is identical. It was added as a class 2 permissive change to Band 66 module.

3 Client Information

This EUT was tested at the request of:

Client:	CommScope Technologies LLC 250 Apollo Drive Chelmsford, MA 01824 USA
Contact:	Mr. Kevin Craig
Telephone:	(978) 250-2678
Fax:	None
Email:	kevin.craig@commscope.com

4 Description of Equipment Under Test and Variant Models

Manufacturer:	CommScope Telecommunications (China) Ltd.
	68 Su Hong Xi Lu, Suzhou Industrial Park.
	Suzhou, Jiangsu, 215021, China

Equipment Under Test				
Description Manufacturer Model Number Serial Number				
Band 10 Radio Module	CommScope Technol	ogies LLC	RPM-A5A11-B66	19063000051

Notes: Band 10 is a subset of Band 66 the hardware is identical. It was added as a class 2 permissive change to Band 66 module.

Receive Date:	04/23/2019
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The Radio Module is band specific using the Analog devices RF Agile Transceiver IC, AD936x. The device combines an RF front end with a flexible mixed-signal baseband section and integrated frequency synthesizers providing a configurable digital interface to the processor. The Radio Module also contains a band specific front end, band specific antenna and required power rails. All power rails required are derived from the 12 VDC bus supplied by the Baseband card. The reference frequency for the radio IC is 38.4 MHz is derived from the from an OCXO which is disciplined from a 1588 reference clock.

It supports bandwidths of 5, 10, 15, and 20 MHz with four modulations; TM1.1-QPSK, TM3.2-16QAM, TM3.1-64QAM, and TM3.1a-256QAM. The radio is fixed.

Description of Radio Host (provided by client)

The OneCell[®] RP5100 family is factory configurable with 2 - 4 Radios Modules mounted to a Baseband card. The same PCB's will be used in both indoor and outdoor version of the radio point. The device is fixed.

The baseband card is the host for the modular radios. It contains a two ethernet PHY's with one supporting 100M/1G/2.5G/5G/10G ethernet and the other supporting 100M/1G. The main processor is Zylinx Ultrascale+ MPSoC with 2 GB DDR3 and 4 GB Flash memory. The baseband PCBA converts POE power to +12 VDC bus voltage require as input to the radio modules.

	Equipment Under Test Power Configuration			
Î	Rated Voltage	Rated Current	Rated Frequency	Number of Phases
	48 VDC	0.960 mA per pair max	DC	N/A

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Pre-programmed to transmit at Low, Mid, and High channels at four different modulations, TM1.1-QPSK, TM3.2-16QAM, TM3.1-64QAM, and TM3.1a-256QAM.

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	RP5100 Diagnostics Ver 1009

Radio/Receiver Characteristics			
Frequency Band(s)	2110-2170 MHz		
Modulation Type(s)	TM1.1-QPSK, TM3.2-16QAM, TM3.1-64 QAM, TM3.1a-		
	256QAM		
Maximum Output Power (conducted)	24.39 dBm (Conducted)		
Test Channels	Low, Middle, High Channels of 5 MHz, 10 MHz, 15 MHz,		
	and 20 MHz Bandwidths, Single Channel operation only		
Occupied Bandwidth	17.945 MHz (Worst-case)		
MIMO Information (# of Transmit and	2x2 MIMO using cross polarized antennas and		
Receive antenna ports)	uncorrelated data streams		
Equipment Type	Module in a host		
Antenna Type and Gain	Detachable Antenna: +4 dBi (as provided by the client. Intertek takes no responsibility for the accuracy of this information. Actual antenna gain will be determined at the time of licensing)		

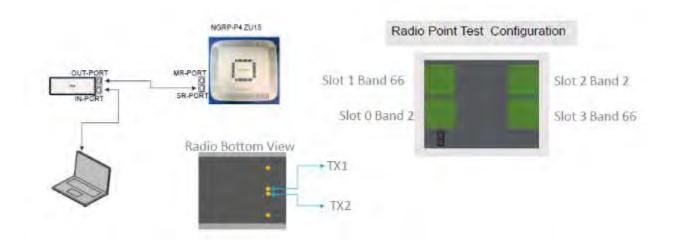
Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 System Setup and Method

	Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination	
	LAN (POE Power Cable)	2.58	Shielded	None	POE P/S	
	LAN (Communication)	9.00	Shielded	None	Laptop	


Support Equipment				
Description	Manufacturer	Model Number	Serial Number	
Laptop	Dell	LATITUDE	None	
Power Device Analzyer	Sifos Technologies	PDA-604A	604A0033	
OneCell [®] RP5100*	CommScope Technologies LLC	RP-A51xxi	None	

*Radio host used for testing

5.1 Method:

Configuration as required by ANSI C63.26-2015, KDB662911, and CFR47 FCC Part 27 (04/2019).

5.2 EUT Block Diagram:

6 Maximum Peak Output Power and Human RF exposure

6.1 Method

Tests are performed in accordance with CFR47 FCC Parts 2.1046 and 27, KDB 662911, and ANSI C63.26 Section 5.2.4.4.

TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
CEN001'	DC-40GHz attenuator 20dB	Centric RF	C411-20	CEN001	02/01/2019	02/01/2020
CBLHF2012-2M-1'	2m 9kHz-40GHz Coaxial Cable - SET1	Huber & Suhner	SF102	252675001	02/01/2019	02/01/2020
ROS005-1'	Signal and Spectrum Analyzer	Rohde & Schwarz	FSW43	100646	10/15/2018	10/15/2019
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019

Software Utilized:

Name	Manufacturer	Version
None		

6.3 Results:

The maximum conducted output power was measured to be 24.39 dBm, which is much less than the EIRP limit of 27.50(d)(1-2). The sample tested was found to Comply. Antenna gain limitations will depend on the location of deployment. Output power from the two antenna ports was not summed since the data streams are uncorrelated and the antennas are cross polarized.

§27.50(d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

(1) The power of each fixed or base station transmitting in the 1995-2000 MHz, 2110-2155 MHz, 2155-2180 MHz or 2180-2200 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 3280 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 3280 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.
(2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

Report Number: 103866582BOX-24b

Band 10, Bandwidth: 5 MHz, Modulation: TM1.1-QPSK					
Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)		
Low	2112.50	ANT0	23.66		
		ANT1	23.91		
Mid	2132.50	ANT0	24.01		
		ANT1	24.39		
High	2152.50	ANT0	24.09		
-		ANT1	23.21		

Band 10, Bandwidth: 5 MHz, Modulation: TM1.1-QPSK

Band 10, Bandwidth: 10 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)	
Low	2115.00	ANT0	23.86	
		ANT1	23.85	
Mid	2132.50	ANT0	23.61	
		ANT1	24.08	
High	2150.00	ANT0	23.98	
		ANT1	23.03	

Band 10, Bandwidth: 15 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2117.50	ANT0	23.87
		ANT1	24.01
Mid	2132.50	ANT0	23.66
		ANT1	24.13
High	2147.50	ANT0	24.00
_		ANT1	23.10

Band 10, Bandwidth: 20 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2120.00	ANT0	23.88
		ANT1	23.97
Mid	2132.50	ANT0	23.62
		ANT1	24.09
High	2145.00	ANT0	24.01
		ANT1	23.15

Band 10, Bandwidth: 5 MHz, Modulation: TM3.2-16QAM

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2112.50	ANT0	23.89
		ANT1	24.00
Mid	2132.50	ANT0	23.51
		ANT1	23.92
High	2152.50	ANT0	23.42
_		ANT1	22.52

Band 10, Bandwidth: 10 MHz, Modulation: TM3.2-16QAM

		,		
Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)	
Low	2115.00	ANT0	23.99	
		ANT1	23.89	
Mid	2132.50	ANT0	23.02	
		ANT1	23.41	
High	2150.00	ANT0	23.25	
		ANT1	22.57	

Band TU, Bandwidth: T5 MHz, Modulation: TM3.2-T6QAM				
Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)	
Low	2117.50	ANT0	23.85	
		ANT1	23.71	
Mid	2132.50	ANT0	23.09	
		ANT1	23.33	
High	2147.50	ANT0	23.35	
-		ANT1	22.46	

Band 10, Bandwidth: 15 MHz, Modulation: TM3.2-16QAM

Band 10, Bandwidth: 20 MHz, Modulation: TM3.2-16QAM

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)		
Low	2120.00	ANT0	24.03		
		ANT1	23.81		
Mid	2132.50	ANT0	23.15		
		ANT1	23.64		
High	2145.00	ANT0	23.45		
		ANT1	22.65		

Band 10, Bandwidth: 5 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2112.50	ANT0	24.08
		ANT1	23.97
Mid	2132.50	ANT0	23.29
		ANT1	23.76
High	2152.50	ANT0	23.82
		ANT1	23.17

Band 10, Bandwidth: 10 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2115.00	ANT0	23.78
		ANT1	23.87
Mid	2132.50	ANT0	23.29
		ANT1	23.86
High	2150.00	ANT0	23.62
		ANT1	22.85

Band 10 Bandwidth: 15 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2117.50	ANT0	24.04
		ANT1	24.04
Mid	2132.50	ANT0	23.48
		ANT1	24.05
High	2147.50	ANT0	23.75
_		ANT1	23.06

Band 10, Bandwidth: 20 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2120.00	ANT0	23.99
		ANT1	24.11
Mid	2132.50	ANT0	23.44
		ANT1	24.07
High	2145.00	ANT0	23.84
		ANT1	23.31

Band 10, Bandwidth: 5 MHz, Modulation: TM3.1a-256QAM				
Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)	
Low	2112.50	ANT0	24.05	
		ANT1	24.00	
Mid	2132.50	ANT0	23.58	
		ANT1	24.06	
High	2152.50	ANT0	23.86	
-		ANT1	23.20	

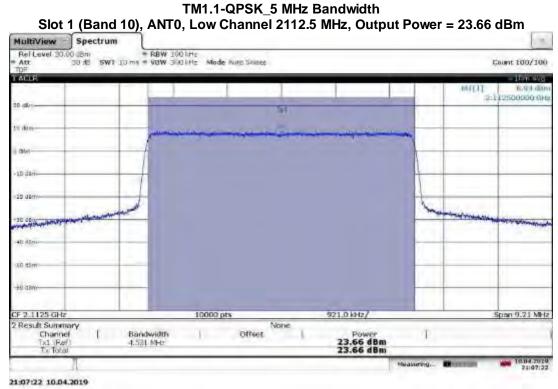
Band 10, Bandwidth: 5 MHz, Modulation: TM3.1a-256QAM

Band 10, Bandwidth: 10 MHz, Modulation: TM3.1a-256QAM

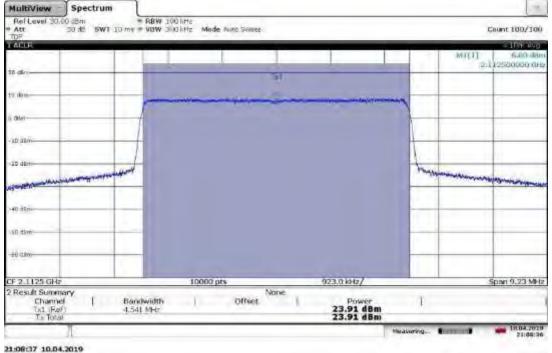
Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2115.00	ANT0	23.91
		ANT1	24.02
Mid	2132.50	ANT0	23.54
		ANT1	24.10
High	2150.00	ANT0	23.77
_		ANT1	23.09

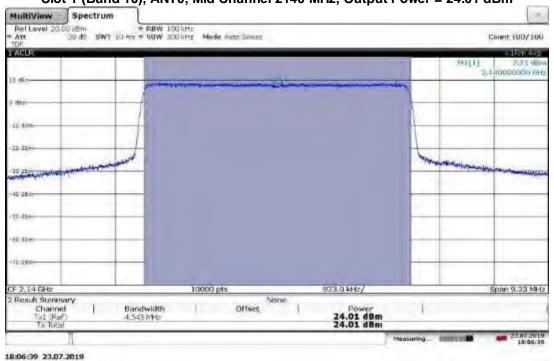
Band 10, Bandwidth: 15 MHz, Modulation: TM3.1a-256QAM

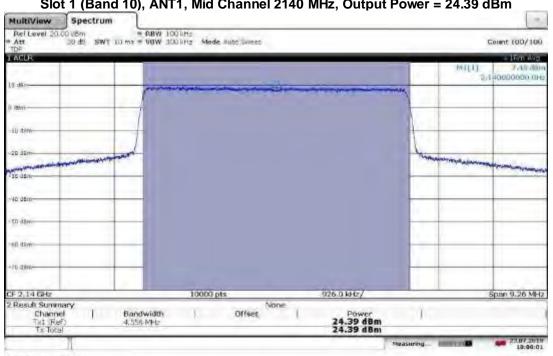
Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2117.50	ANT0	23.88
		ANT1	23.97
Mid	2132.50	ANT0	23.55
		ANT1	24.11
High	2147.50	ANT0	23.79
_		ANT1	23.12


Band 10, Bandwidth: 20 MHz, Modulation: TM3.1a-256QAM

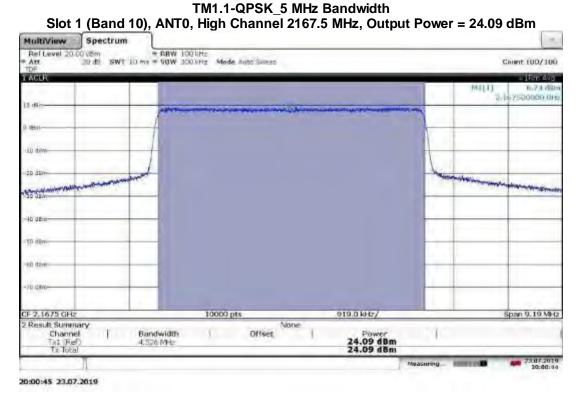
Channel	Frequency (MHz)	Antenna Port	Output Power (dBm)
Low	2120.00	ANT0	23.83
		ANT1	24.02
Mid	2132.50	ANT0	23.49
		ANT1	24.13
High	2145.00	ANT0	23.89
		ANT1	23.21


6.4 Setup Photograph:

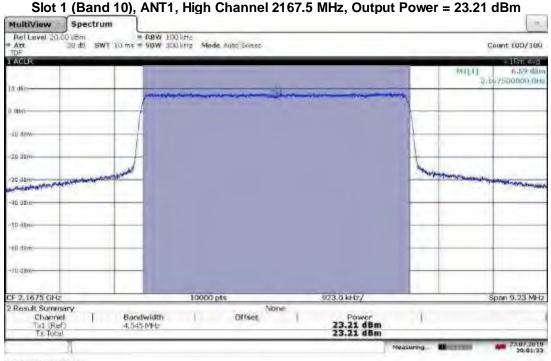

6.5 Plots/Data:



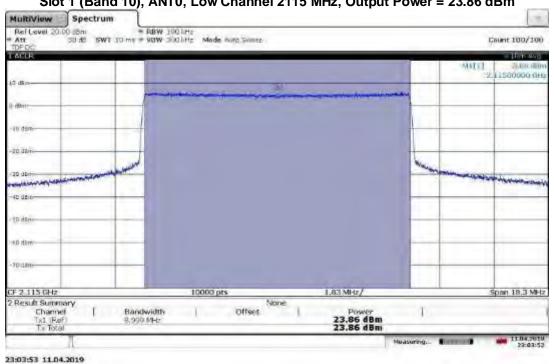
Non-Specific Radio Report Shell Rev. December 2017 Client: CommScope Technologies LLC / Model: RPM-A5A11-B66


TM1.1-QPSK 5 MHz Bandwidth Slot 1 (Band 10), ANTO, Mid Channel 2140 MHz, Output Power = 24.01 dBm

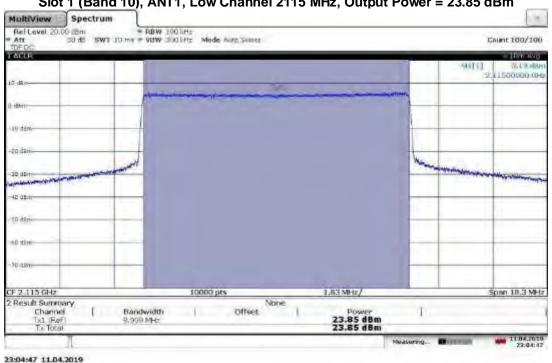
TM1.1-QPSK_5 MHz Bandwidth



Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 24.39 dBm

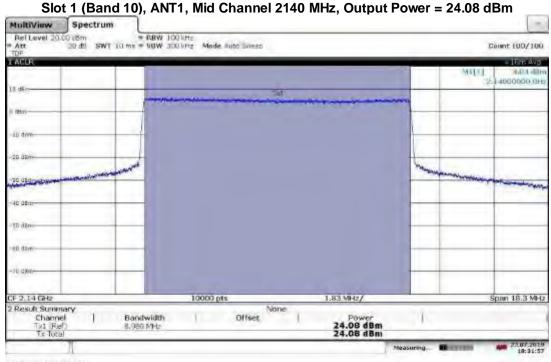

18:06:01 23.07.2019

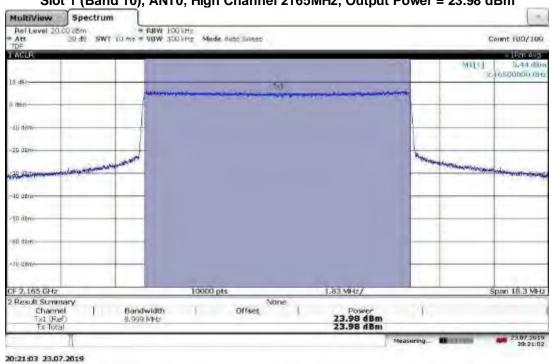
TM1.1-QPSK_5 MHz Bandwidth



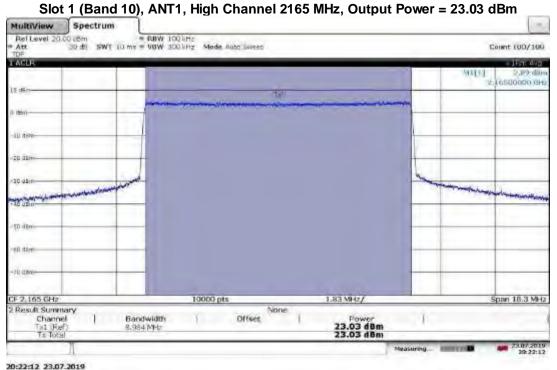
20:01:33 23.07.2019

TM1.1-QPSK 10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, Output Power = 23.86 dBm

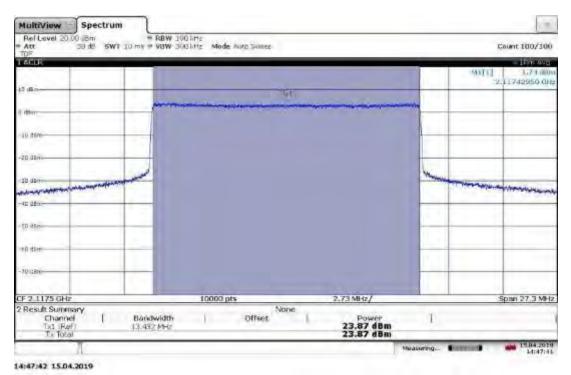

TM1.1-QPSK_10 MHz Bandwidth


Slot 1 (Band 10), ANT1, Low Channel 2115 MHz, Output Power = 23.85 dBm

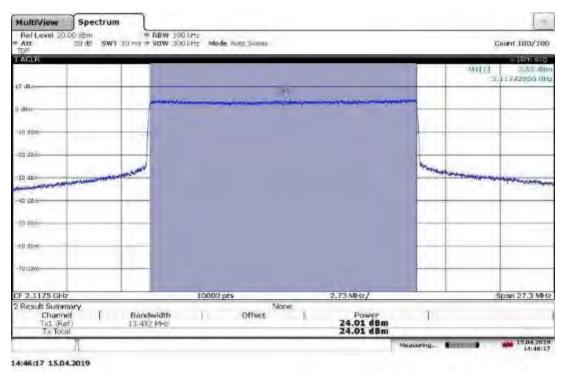
TM1.1-QPSK_10 MHz Bandwidth

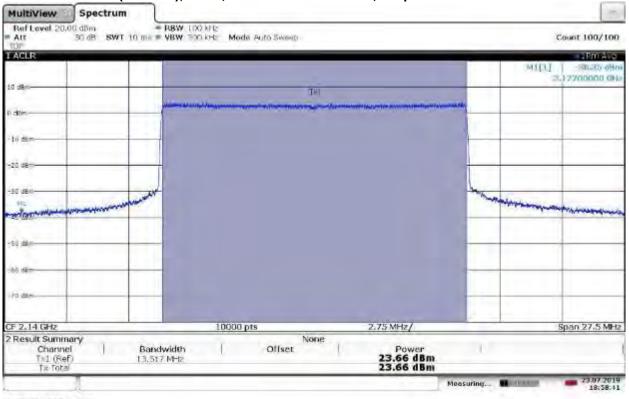


18:31:57 23.07.2019



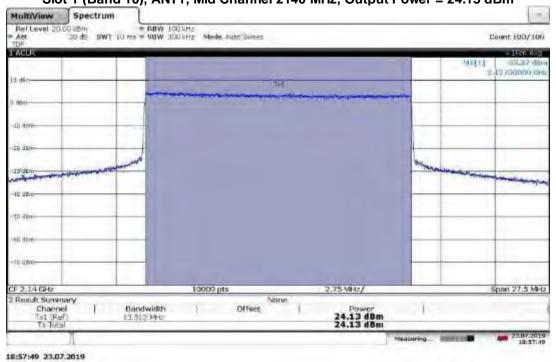
TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165MHz, Output Power = 23.98 dBm

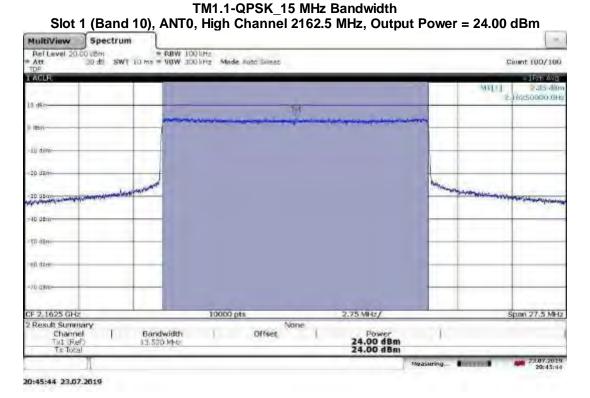

TM1.1-QPSK_10 MHz Bandwidth

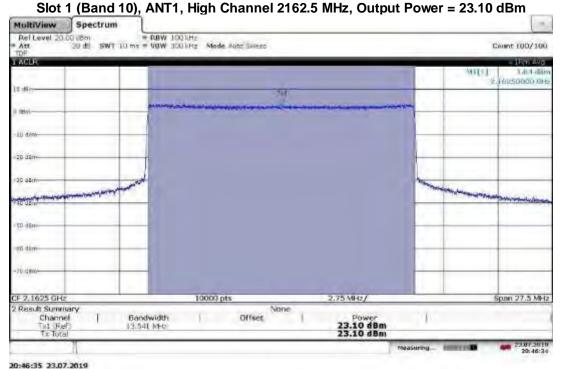


TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz, Output Power = 23.87 dBm

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2117.5 MHz, Output Power = 24.01 dBm

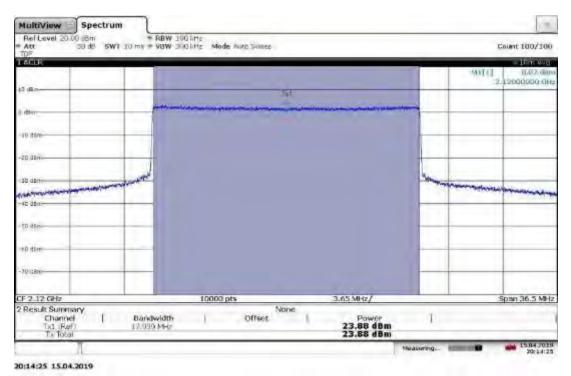


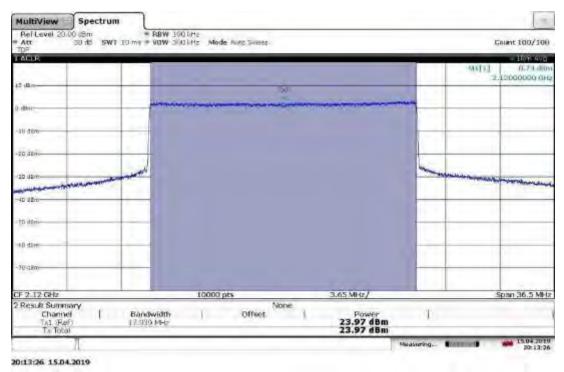


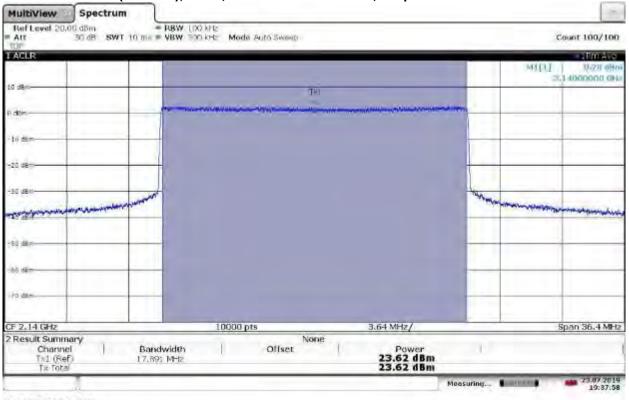

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.66 dBm

18:58:41 23.07.2019

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 24.13 dBm

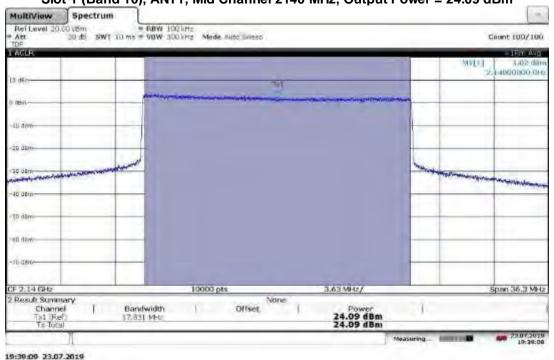


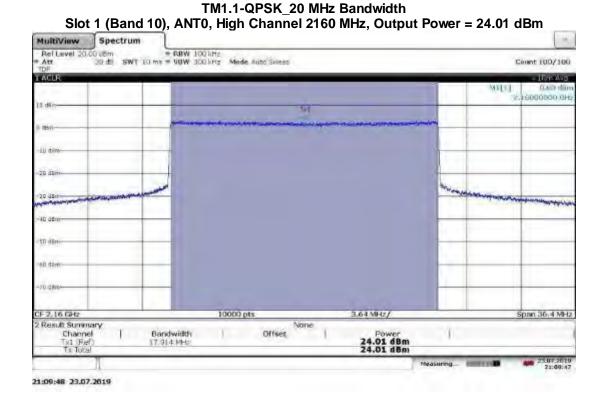



TM1.1-QPSK_15 MHz Bandwidth

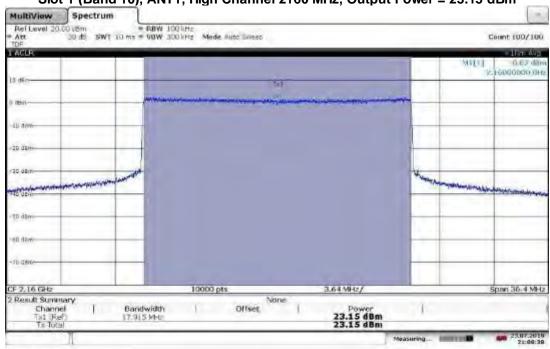
TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz, Output Power = 23.88 dBm

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2120 MHz, Output Power = 23.97 dBm

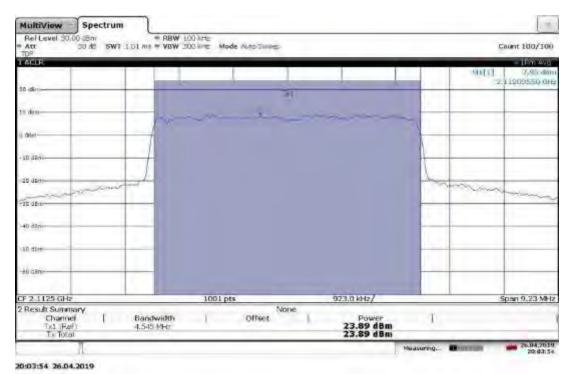




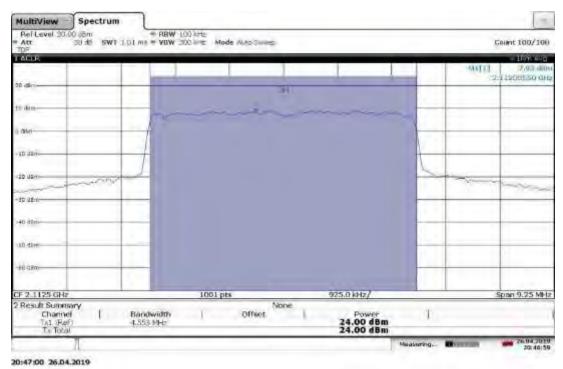
TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.62 dBm

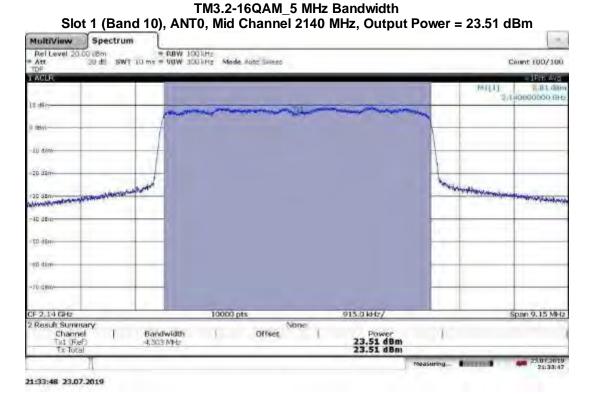

19:37:59 23.07.2019

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 24.09 dBm

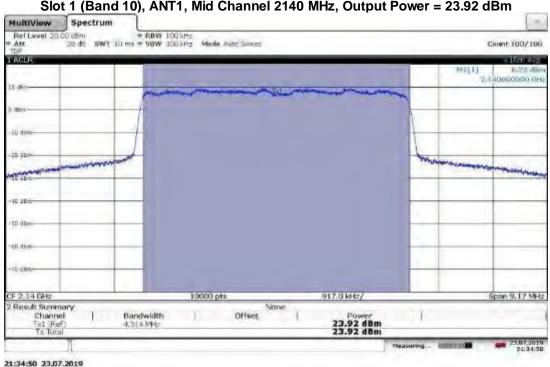


TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz, Output Power = 23.15 dBm

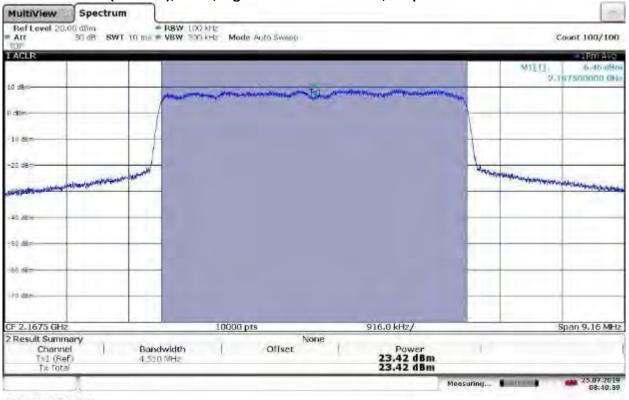



21:08:38 23.07.2019

TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2112.5 MHz, Output Power = 23.89 dBm

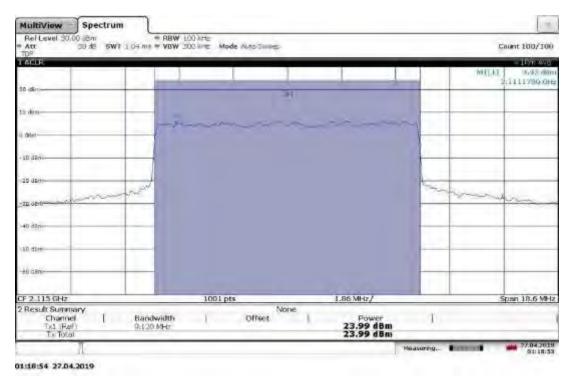


TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2115 MHz, Output Power = 24.00 dBm

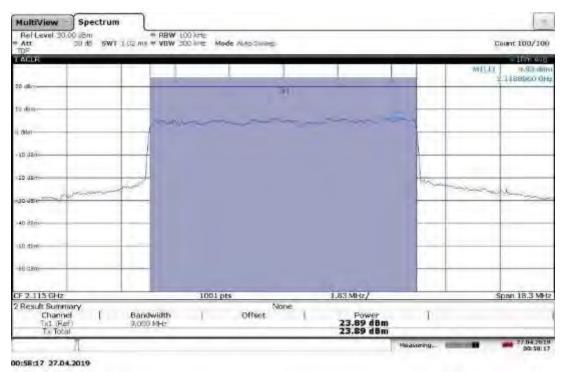


TM3.2-16QAM_5 MHz Bandwidth

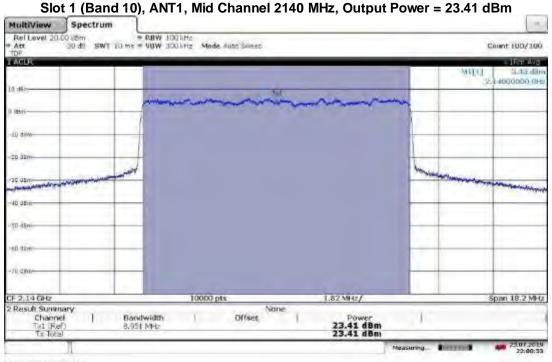
Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 23.92 dBm

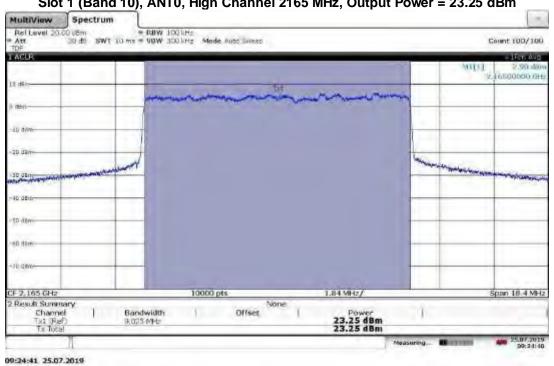

TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz, Output Power = 23.42 dBm

08:40:39 25.07.2019

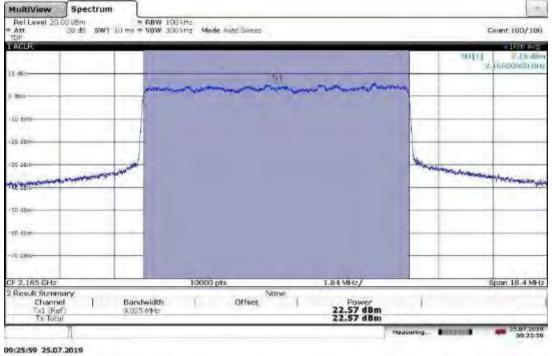

TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2167.5 MHz, Output Power = 22.52 dBm

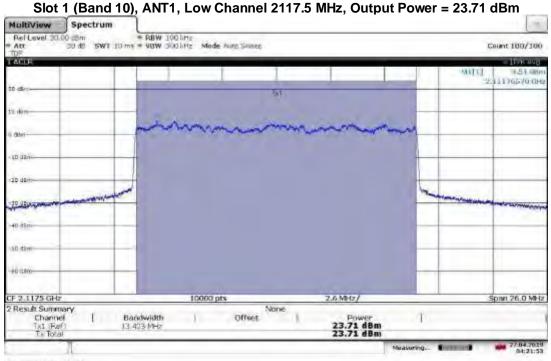
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, Output Power = 23.99 dBm


TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2115 MHz, Output Power = 23.89 dBm



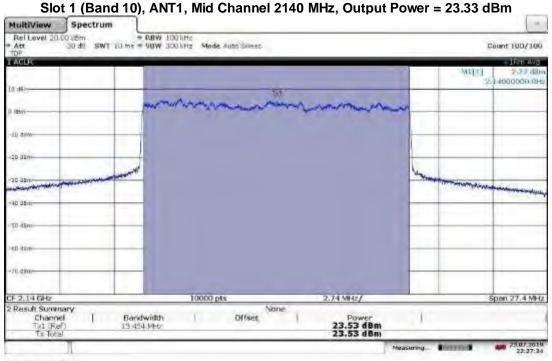
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.02 dBm


TM3.2-16QAM_10 MHz Bandwidth


TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz, Output Power = 23.25 dBm

TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2165 MHz, Output Power = 22.57 dBm

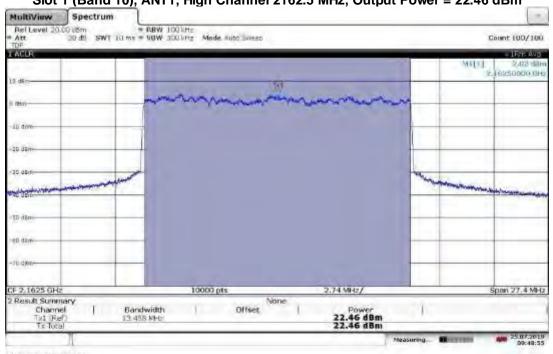
TM3.2-16QAM_15 MHz Bandwidth



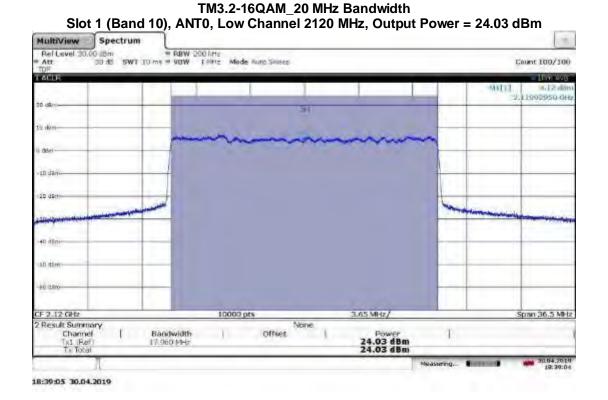
04:21:53 27.04.2019

TM3.2-16QAM 15 MHz Bandwidth Slot 1 (Band 10), ANTO, Mid Channel 2140 MHz, Output Power = 23.09 dBm

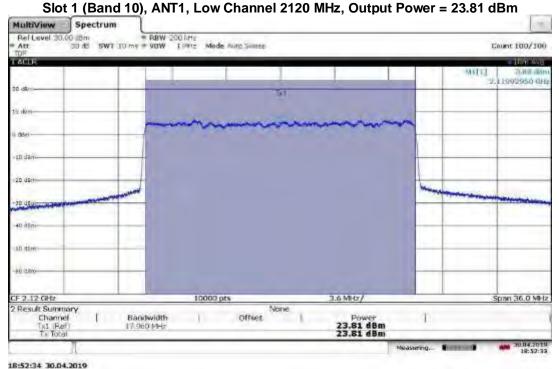
TM3.2-16QAM_15 MHz Bandwidth



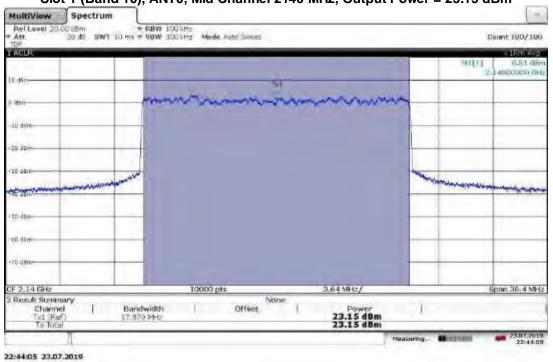
22:27:34 23.07.2019


TM3.2-16QAM 15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz, Output Power = 23.35 dBm

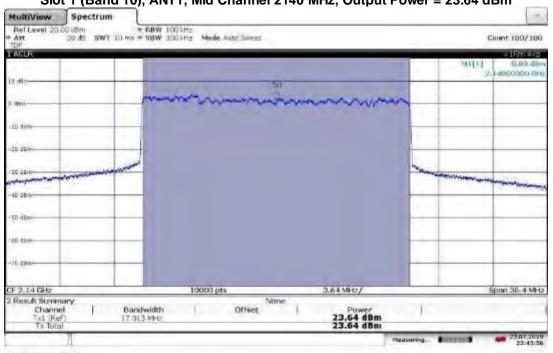
TM3.2-16QAM_15 MHz Bandwidth

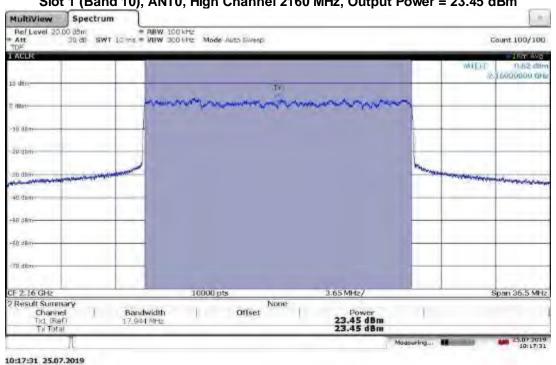


Slot 1 (Band 10), ANT1, High Channel 2162.5 MHz, Output Power = 22.46 dBm

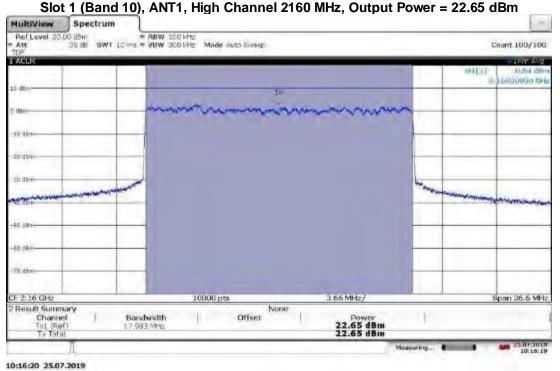

09:48:55 25.07.2019

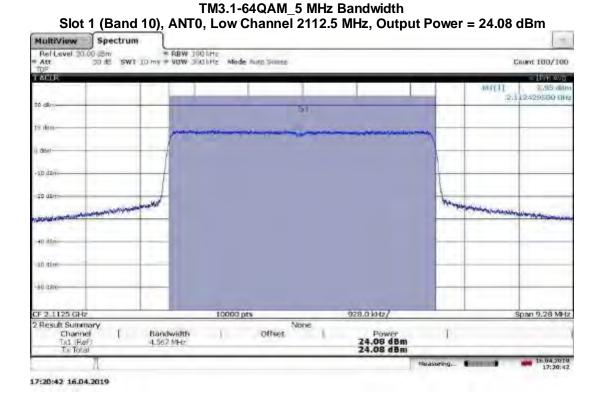
TM3.2-16QAM_20 MHz Bandwidth




TM3.2-16QAM 20 MHz Bandwidth Slot 1 (Band 10), ANTO, Mid Channel 2140 MHz, Output Power = 23.15 dBm

TM3.2-16QAM_20 MHz Bandwidth

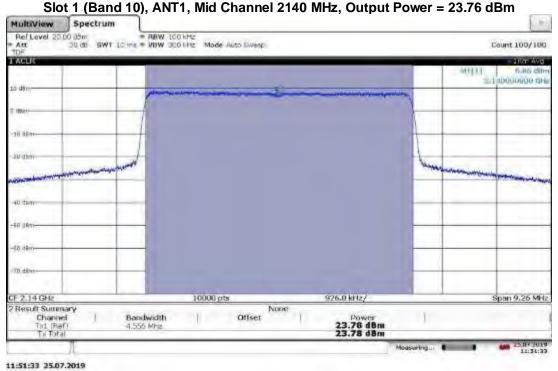

Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 23.64 dBm

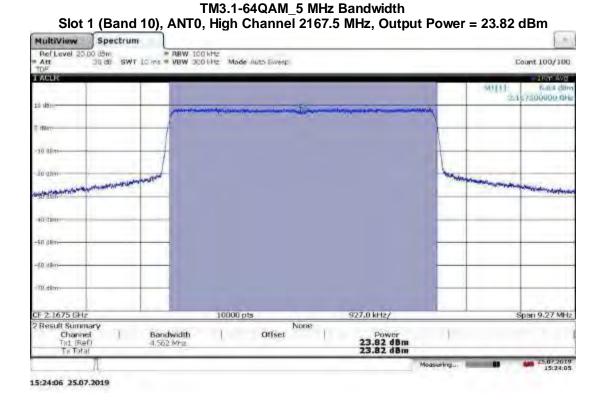

22:45:57 23.07.2019

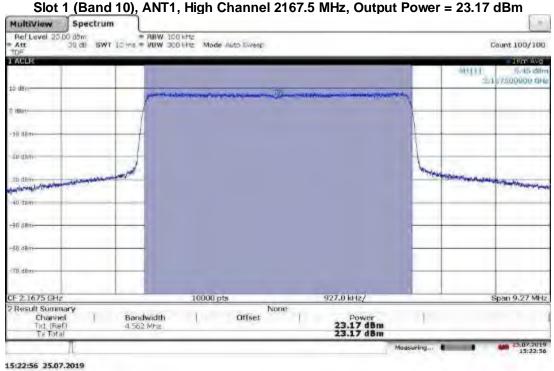
TM3.2-16QAM_20 MHz Bandwidth Slot <u>1 (Band 10)</u>, ANT0, High Channel 2160 MHz, Output Power = 23.45 dBm

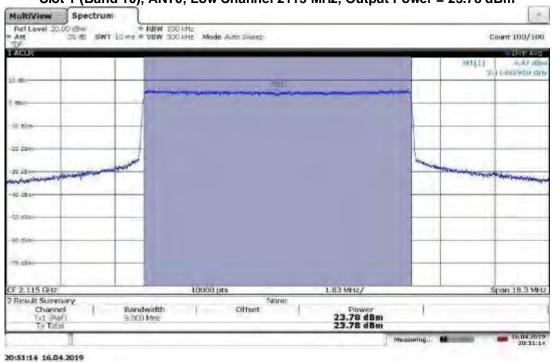
TM3.2-16QAM_20 MHz Bandwidth

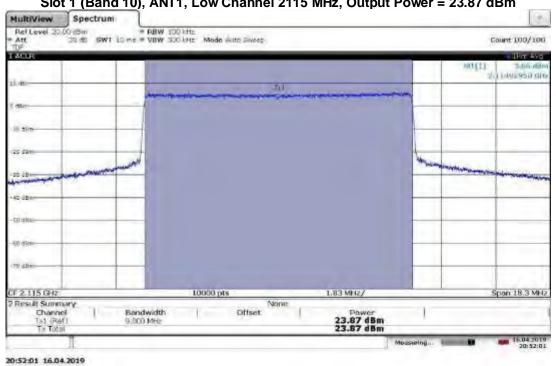
TM3.1-64QAM_5 MHz Bandwidth

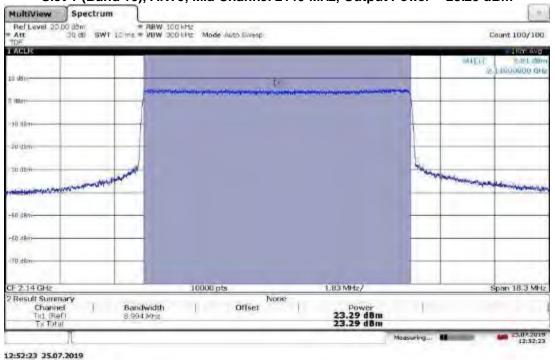

Slot 1 (Band 10), ANT1, Low Channel 2112.5 MHz, Output Power = 23.97 dBm


17:22:19 16.04.2019


TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.29 dBm

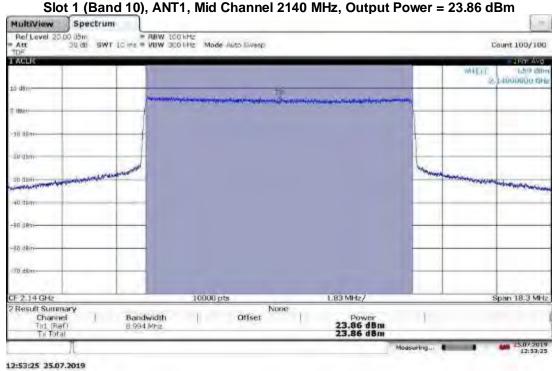

TM3.1-64QAM_5 MHz Bandwidth

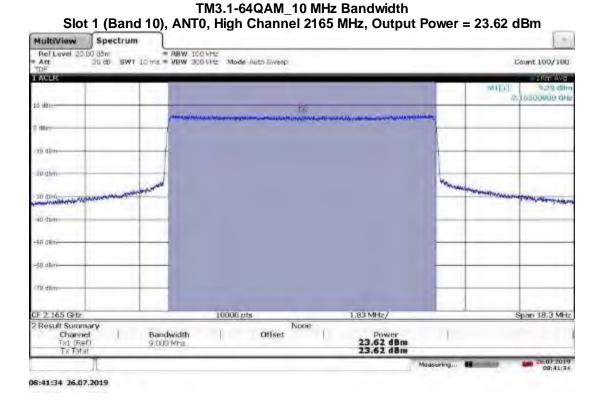

TM3.1-64QAM_5 MHz Bandwidth

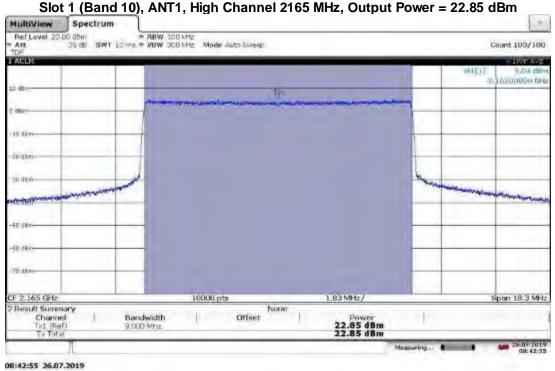


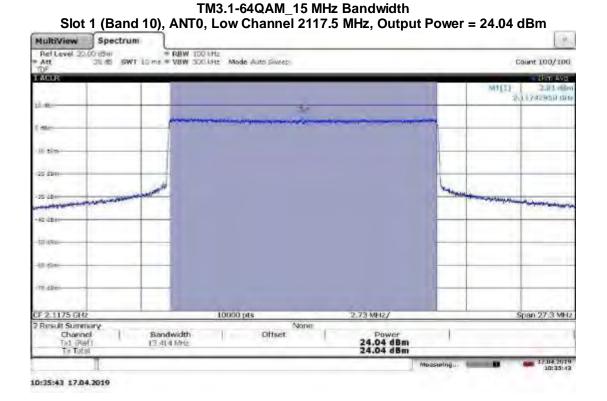
TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, Output Power = 23.78 dBm

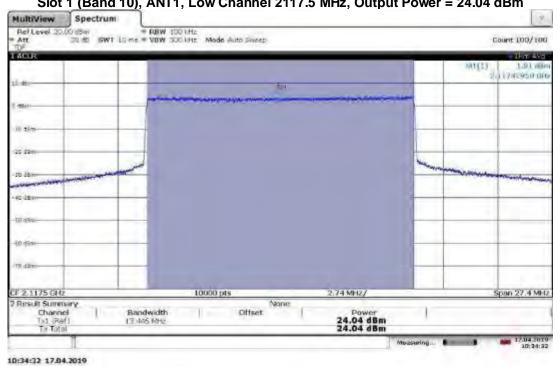
TM3.1-64QAM_10 MHz Bandwidth



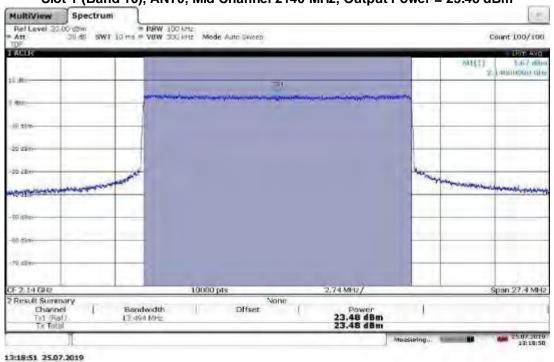

Slot 1 (Band 10), ANT1, Low Channel 2115 MHz, Output Power = 23.87 dBm


TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.29 dBm

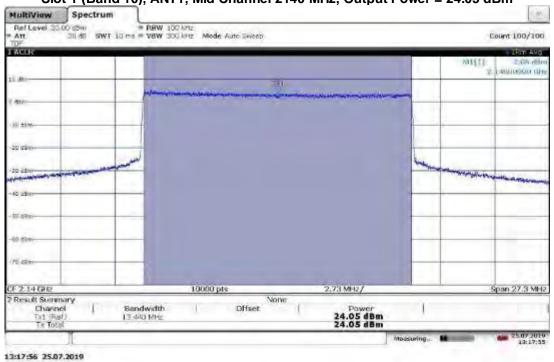

TM3.1-64QAM_10 MHz Bandwidth

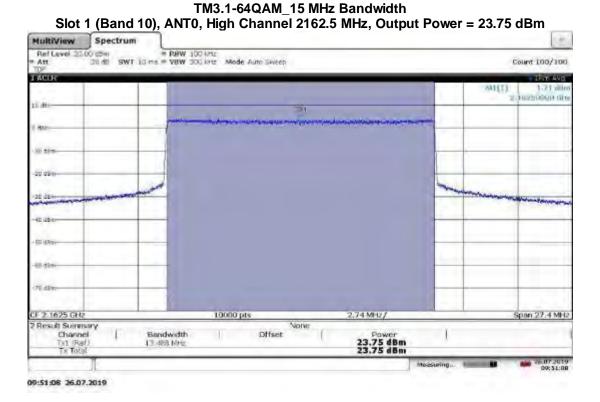


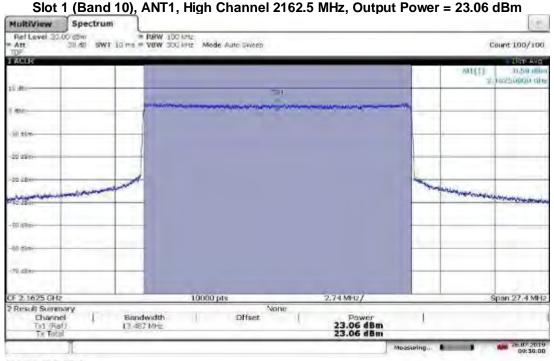
TM3.1-64QAM_10 MHz Bandwidth



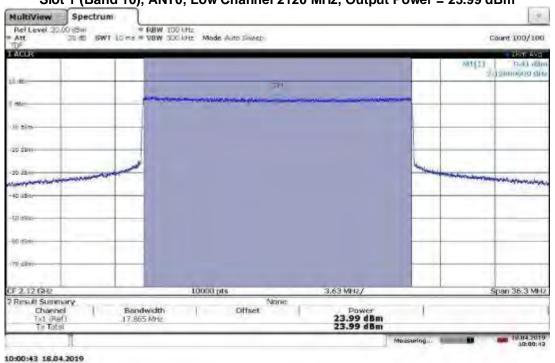
TM3.1-64QAM_15 MHz Bandwidth



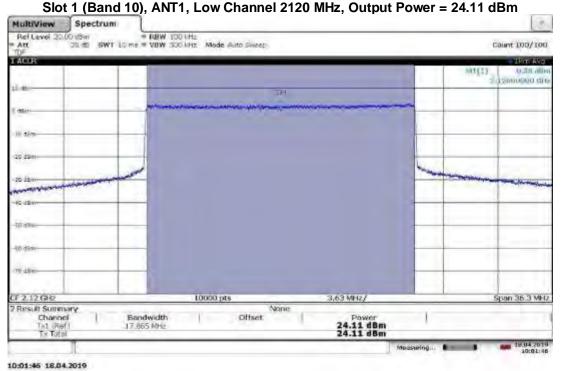

Slot 1 (Band 10), ANT1, Low Channel 2117.5 MHz, Output Power = 24.04 dBm

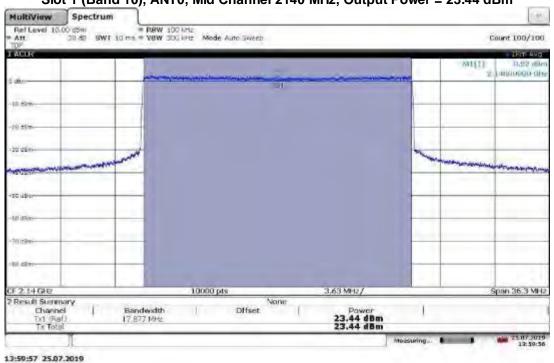

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.48 dBm

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 24.05 dBm

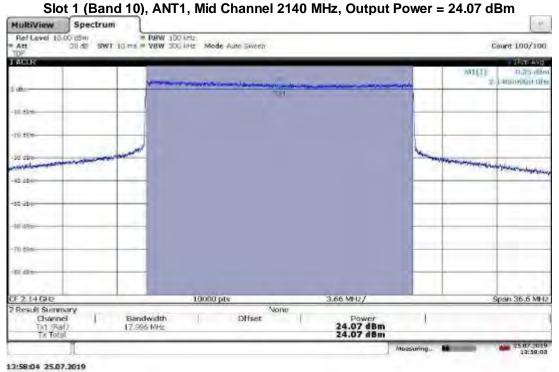


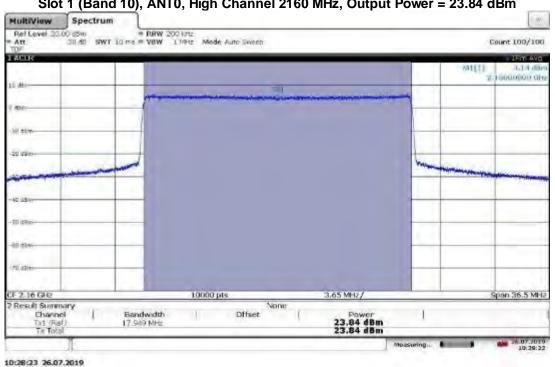
TM3.1-64QAM_15 MHz Bandwidth



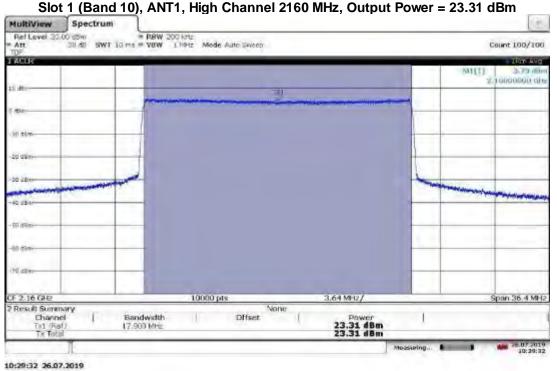

09:50:01 26.07.2019

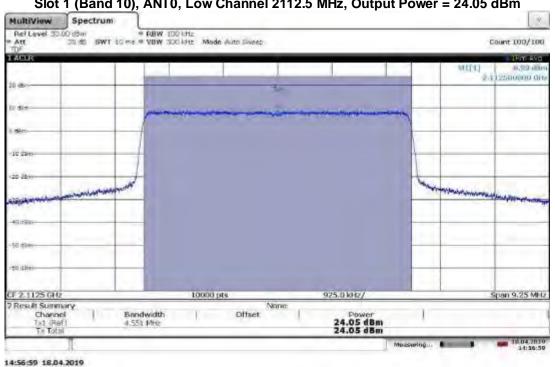
TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz, Output Power = 23.99 dBm


TM3.1-64QAM_20 MHz Bandwidth

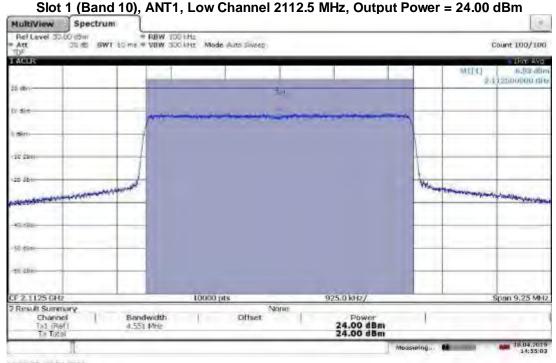


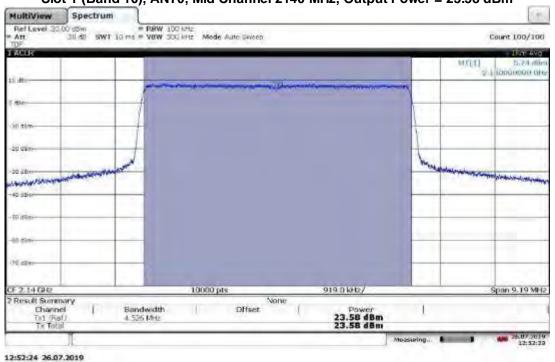
TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.44 dBm


TM3.1-64QAM_20 MHz Bandwidth



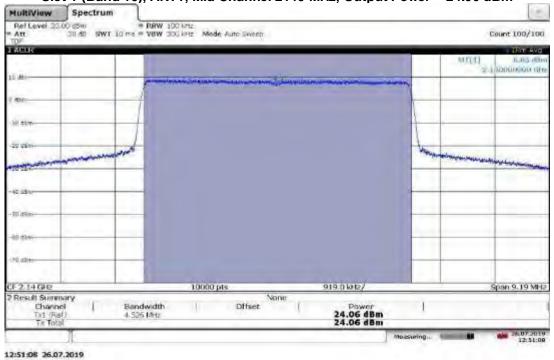
TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz, Output Power = 23.84 dBm

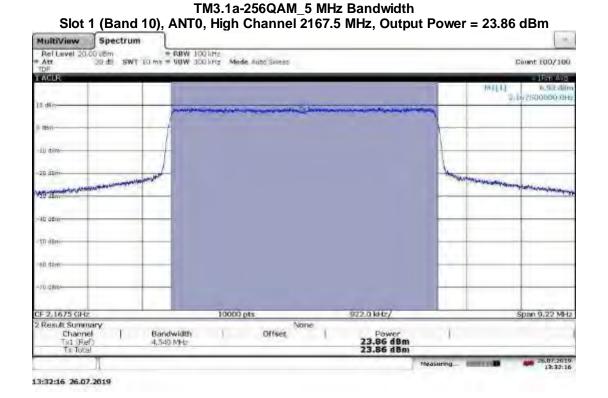

TM3.1-64QAM_20 MHz Bandwidth

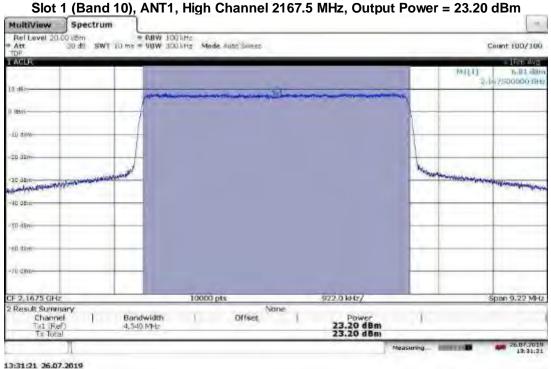


TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2112.5 MHz, Output Power = 24.05 dBm

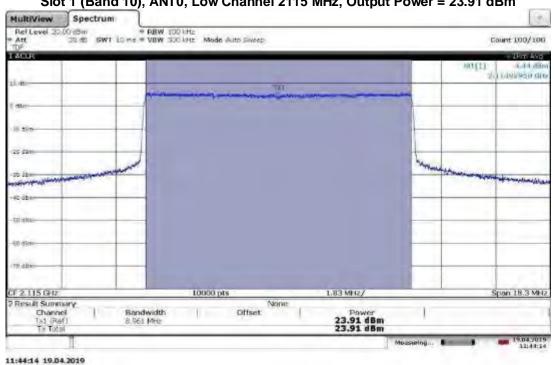
TM3.1a-256QAM_5 MHz Bandwidth



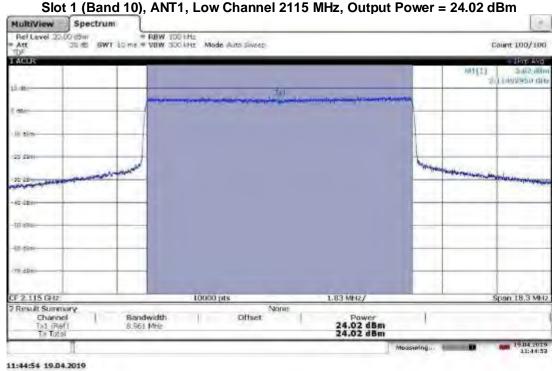

14:55:03 18.04.2019

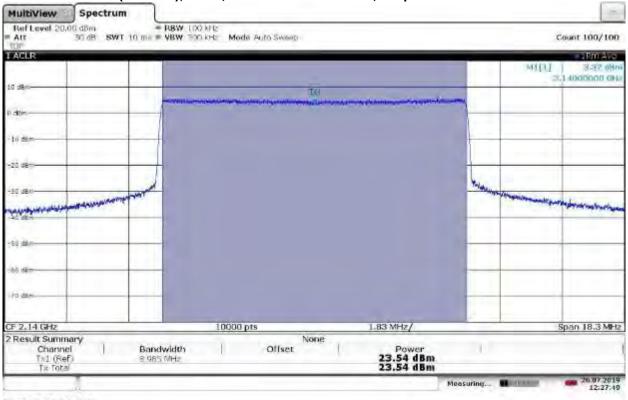

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.58 dBm

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 24.06 dBm



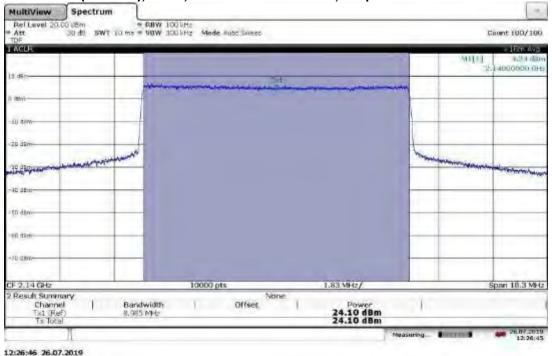
TM3.1a-256QAM_5 MHz Bandwidth

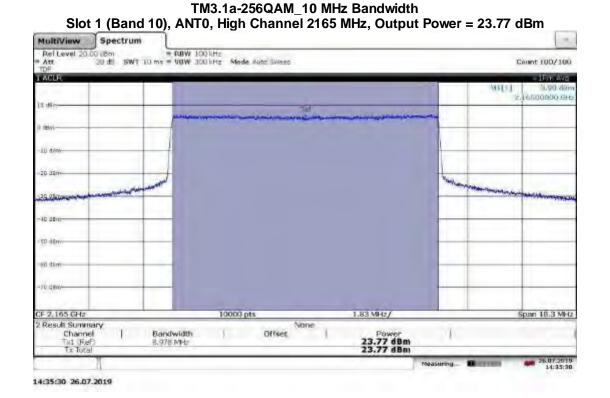



Non-Specific Radio Report Shell Rev. December 2017 Client: CommScope Technologies LLC / Model: RPM-A5A11-B66

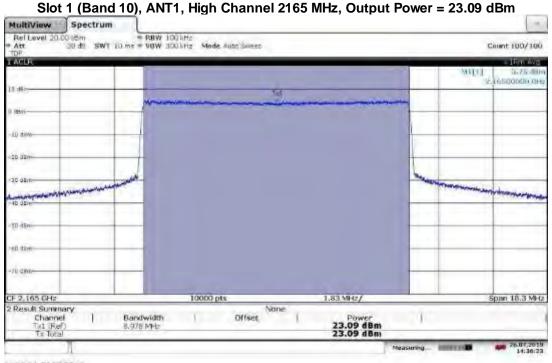
TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, Output Power = 23.91 dBm

TM3.1a-256QAM_10 MHz Bandwidth

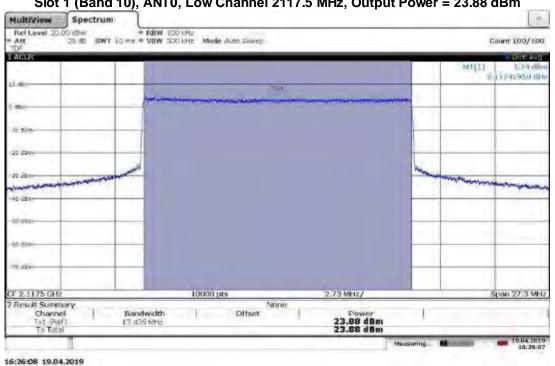




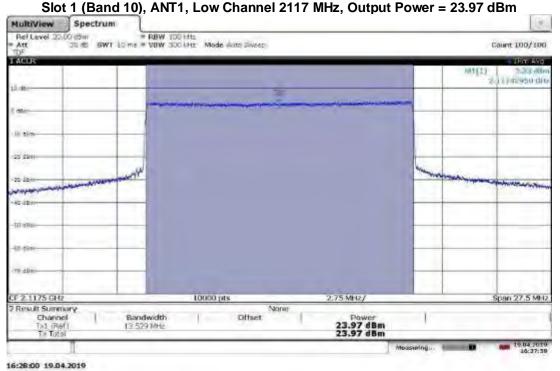
TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.54 dBm

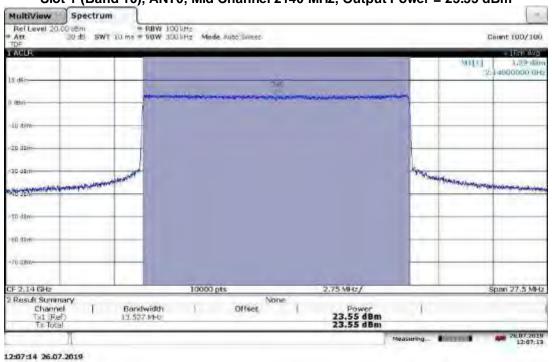

12:27:50 26.07.2019

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, Output Power = 24.10 dBm

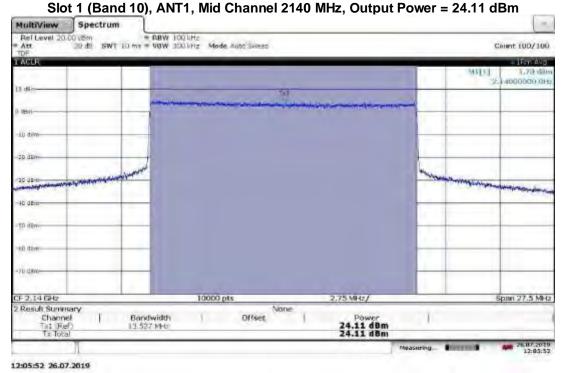


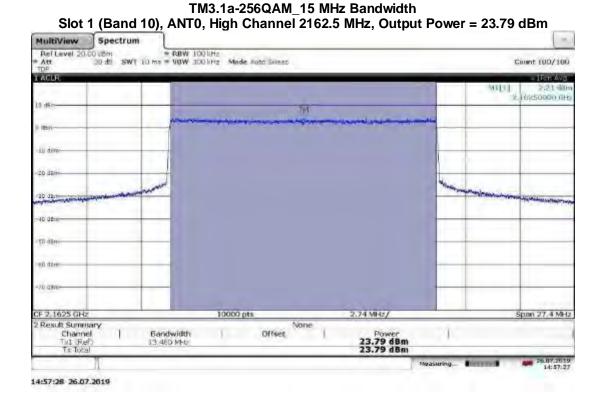
TM3.1a-256QAM_10 MHz Bandwidth

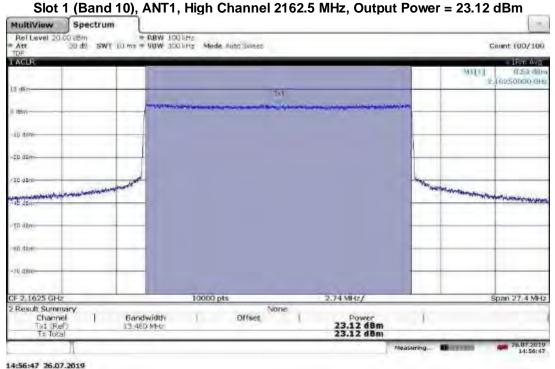


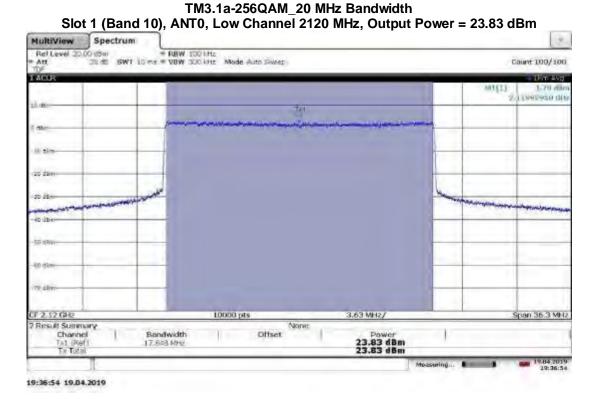

14:36:24 26.07.2019

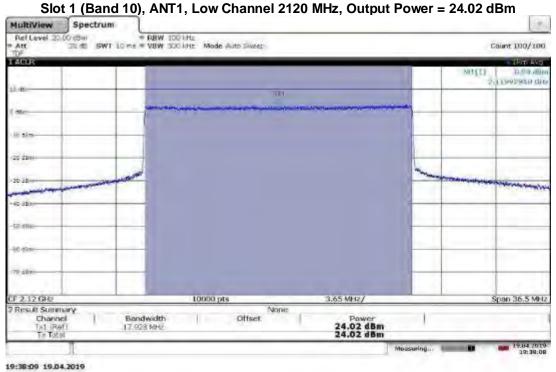
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz, Output Power = 23.88 dBm

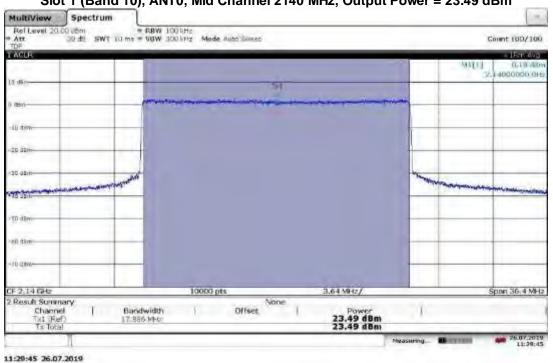

TM3.1a-256QAM_15 MHz Bandwidth

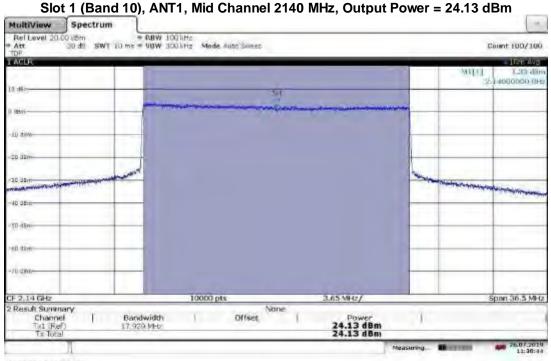


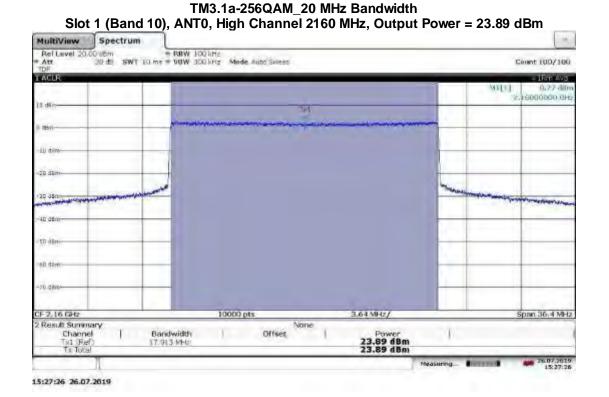

TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.55 dBm


TM3.1a-256QAM_15 MHz Bandwidth

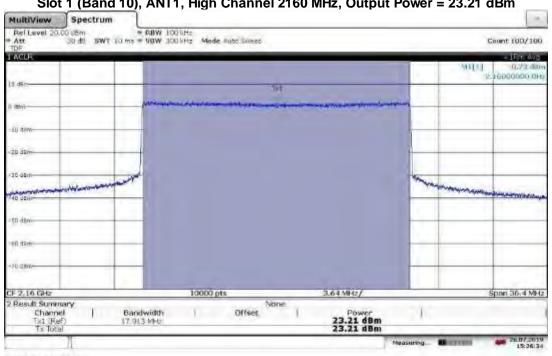



TM3.1a-256QAM_15 MHz Bandwidth


TM3.1a-256QAM_20 MHz Bandwidth



TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, Output Power = 23.49 dBm


TM3.1a-256QAM_20 MHz Bandwidth

11:30:45 26.07.2019

TM3.1a-256QAM_20 MHz Bandwidth

Slot 1 (Band 10), ANT1, High Channel 2160 MHz, Output Power = 23.21 dBm

15:26:35 26.07.2019

Limit for Maximum Permissible Exposure (MPE)

FCC Human RF Exposure Limits:

The FCC §1.1310 The criteria listed in table 1 was used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for O	ccupational/Controlled Expo	sure	
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
	(B) Limits for Gener	al Population/Uncontrolled E	xposure	
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

(1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure. The phrase *fully aware* in the context of applying these exposure limits means that an exposed person has received written and/or verbal information fully explaining the potential for RF exposure resulting from his or her employment. With the exception of *transient* persons, this phrase also means that an exposed person has received appropriate training regarding work practices relating to controlling or mitigating his or her exposure. Such training is not required for *transient* persons, but they must receive written and/or verbal information and notification (for example, using signs) concerning their exposure potential and appropriate means available to mitigate their exposure. The phrase *exercise control* means that an exposed person is allowed to and knows how to reduce or avoid exposure by administrative or engineering controls and work practices, such as use of personal protective equipment or time averaging of exposure.

(2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Report Number: 103866582BOX-24b

Test Procedure

RF exposure for licensed transmitter is handled at the time of licensing, however, an MPE calculation was performed in order to show the distance at which the device is compliant with the limits of §1.1310, assuming antenna gains of 0 dBi and 4 dBi. The highest measured conducted output power was used, adjusted by +3dB to account for two antenna MIMO operation.

FCC Limit For General Population/Uncontrolled Exposure at 2.155 GHz = 1 mW/cm²

Power Density = [EIRP] / $[4\pi x (D_{cm})^2]$

Where EIRP is in milliwatts and D is in centimeters. Setting the power density equal to the limit of 1 mW/cm^2 and solving for D_{cm} yields the following results.

Results:

EUT EIRP = Conducted power + Array Gain + Antenna gain in dBi

```
Power Density Limit = [EIRP] / [4\pi x (D_{cm})^2]
1 \text{ mW/cm}^2 = [\text{EIRP}] / [4\pi \text{ x} (D_{\text{cm}})^2]
D_{cm} = ([EIRP] / [4\pi])^{1/2}
For Gain = 0 dBi.
                  EIRP = 24.39 dBm + 10*LOG(2) + 0 dBi = 24.39 dBm + 3 dB + 0dBi
                  EIRP = 27.39 dBm or 548.28 mW
Therefore, the minimum safe distance D_{cm} = ([516.4] / [4\pi])^{1/2}
                  D_{cm} = 6.61 \text{ cm} at 0 dBi gain two antenna MIMO
For Gain = 4 dBi.
                 EIRP = 24.39 dBm + 10*LOG(2) + 4 dBi = 24.39 dBm + 3 dB + 4dBi
                 EIRP = 31.39 dBm or 1377.21 mW
Therefore, the minimum safe distance D_{cm} = ([1297] / [4\pi])^{1/2}
                  D<sub>cm</sub> = 10.47 cm at 4 dBi gain two antenna MIMO
For Gain = X dBi,
                 EIRP = 24.39 dBm + 10*LOG(2) + X dBi = 24.39dBm + 3 dB + XdBi
                 EIRP = 27.39+X dBm or 548.28 + 10<sup>(X/10)</sup> mW
Therefore, the minimum safe distance D_{cm} = ([548.28 + 10^{/}(X/10)] / [4\pi])^{1/2}
D_{cm} = 0.282 * (548.28 + 10^{(X/10)})^{1/2} cm at X dBi gain two antenna MIMO
                                                                       Test Date: 04/16/2019, 04/17/2019,
                                                                                   04/18/2019, 04/19/2019, 04/26/2019,
                         Kouma Sinn 49
        Test Personnel:
                                                                                   04/30/2019, 07/25/2019, 07/26/2019
  Supervising/Reviewing
              Engineer:
     (Where Applicable)
                        N/A
                        FCC Part 27
      Product Standard:
                                                                    Limit Applied: See report section 6.3
          Input Voltage: 48 VDC (POE)
   Pretest Verification w/
                                                            Ambient Temperature: 23, 22, 22, 22, 20, 22, 22, 22 °C
      Ambient Signals or
                                                                Relative Humidity: 20, 22, 23, 47, 42, 35, 62, 59 %
            BB Source: N/A
                                                            Atmospheric Pressure: 1001, 1011, 1014, 1000, 996, 1017,
                                                                                   1011, 1016 mbars
```

Deviations, Additions, or Exclusions: None

7 Peak-to-Average Power Ratio (PAPR)

7.1 Method

Tests are performed in accordance with ANSI C63.26 and CFR47 FCC Part 27.

TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
CEN001'	DC-40GHz attenuator 20dB	Centric RF	C411-20	CEN001	02/01/2019	02/01/2020
CBLHF2012-2M-1'	2m 9kHz-40GHz Coaxial Cable - SET1	Huber & Suhner	SF102	252675001	02/01/2019	02/01/2020
ROS005-1'	Signal and Spectrum Analyzer	Rohde &Schwarz	FSW43	100646	10/15/2018	10/15/2019
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019

Software Utilized:

Name	Manufacturer	Version
None		

7.3 Results:

The sample tested was found to Comply.

§27.50(d)(5) The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report Number: 103866582BOX-24b

Band TU, Bandwidth: 5 MHZ, Modulation: TMT.1-QPSK				
Channel	Frequency (MHz)	Antenna Port	PAPR (dB)	
Low	2112.50	ANT0	6.90	
		ANT1	6.44	
Mid	2140.00	ANT0	6.67	
		ANT1	6.19	
High	2167.50	ANT0	6.04	
-		ANT1	6.97	

Band 10, Bandwidth: 5 MHz, Modulation: TM1.1-QPSK

Band 10, Bandwidth: 10 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)	
Low	2115.00	ANT0	6.66	
		ANT1	6.74	
Mid	2140.00	ANT0	7.11	
		ANT1	6.81	
High	2165.00	ANT0	6.18	
-		ANT1	7.23	

Band 10, Bandwidth: 15 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2117.50	ANT0	7.05
		ANT1	7.26
Mid	2140.00	ANT0	7.72
		ANT1	7.18
High	2162.50	ANT0	6.83
		ANT1	7.93

Band 10, Bandwidth: 20 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2120.00	ANT0	7.38
		ANT1	6.91
Mid	2140.00	ANT0	7.74
		ANT1	7.16
High	2160.00	ANT0	6.97
		ANT1	7.78

Band 10, Bandwidth: 5 MHz, Modulation: TM3.2-16QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2112.50	ANT0	6.11
		ANT1	5.89
Mid	2140.00	ANT0	6.84
		ANT1	6.29
High	2167.50	ANT0	6.31
_		ANT1	7.24

Band 10, Bandwidth: 10 MHz, Modulation: TM3.2-16QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2115.00	ANT0	6.11
		ANT1	5.86
Mid	2140.00	ANT0	7.29
		ANT1	6.79
High	2165.00	ANT0	7.20
		ANT1	7.18

Report Number: 103866582BOX-24b

Band TU, Bandwidth: T5 MHz, Modulation: TM3.2-T6QAM				
Channel	Frequency (MHz)	Antenna Port	PAPR (dB)	
Low	2117.50	ANT0	6.80	
		ANT1	6.49	
Mid	2140.00	ANT0	7.58	
		ANT1	7.01	
High	2162.50	ANT0	6.79	
-		ANT1	7.66	

Band 10, Bandwidth: 15 MHz, Modulation: TM3.2-16QAM

Band 10, Bandwidth: 20 MHz, Modulation: TM3.2-16QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)	
Low	2120.00	ANT0	6.90	
		ANT1	6.82	
Mid	2140.00	ANT0	7.66	
		ANT1	7.18	
High	2160.00	ANT0	6.85	
_		ANT1	7.71	

Band 10, Bandwidth: 5 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2112.50	ANT0	6.40
		ANT1	6.37
Mid	2140.00	ANT0	7.27
		ANT1	6.69
High	2167.50	ANT0	6.04
_		ANT1	6.93

Band 10, Bandwidth: 10 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2115.00	ANT0	6.61
		ANT1	6.40
Mid	2140.00	ANT0	7.39
		ANT1	6.82
High	2165.00	ANT0	6.42
		ANT1	7.48

Band 10, Bandwidth: 15 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2117.50	ANT0	7.25
		ANT1	6.95
Mid	2140.00	ANT0	7.41
		ANT1	7.18
High	2162.50	ANT0	6.87
_		ANT1	7.74

Band 10, Bandwidth: 20 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2120.00	ANT0	6.92
		ANT1	6.79
Mid	2140.00	ANT0	7.67
		ANT1	7.22
High	2160.00	ANT0	6.89
		ANT1	7.62

Band 10, Bandwidth: 5 MHz, Modulation: TM3.1a-256QAM				
Channel	Frequency (MHz)	Antenna Port	PAPR (dB)	
Low	2112.50	ANT0	6.56	
		ANT1	6.48	
Mid	2140.00	ANT0	7.06	
		ANT1	6.52	
High	2167.50	ANT0	6.03	
_		ANT1	7.01	

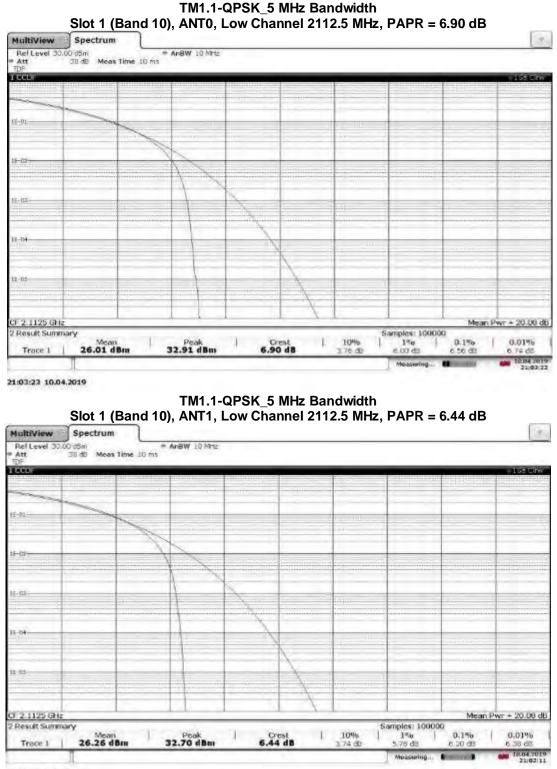
Band 10, Bandwidth: 5 MHz, Modulation: TM3.1a-256QAM

Band 10, Bandwidth: 10 MHz, Modulation: TM3.1a-256QAM

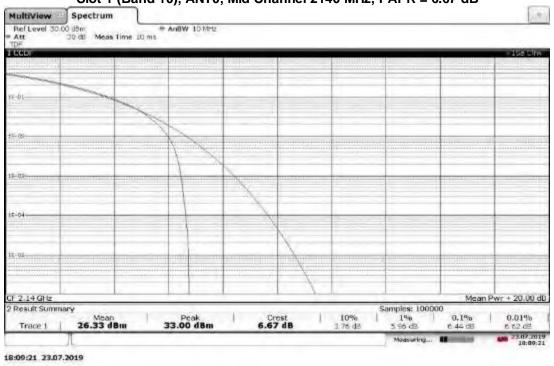
Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2115.00	ANT0	6.66
		ANT1	6.37
Mid	2140.00	ANT0	6.56
		ANT1	7.06
High	2165.00	ANT0	6.15
		ANT1	7.20

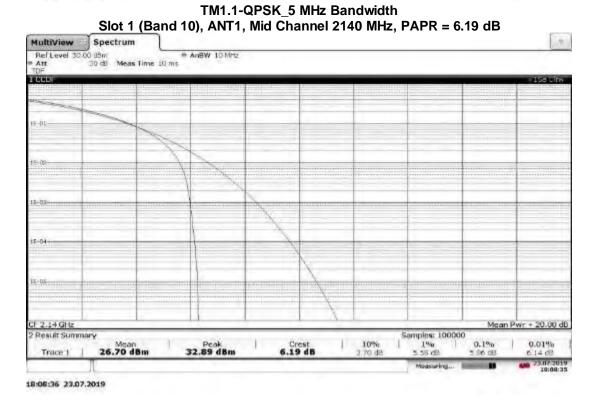
Band 10, Bandwidth: 15 MHz, Modulation: TM3.1a-256QAM

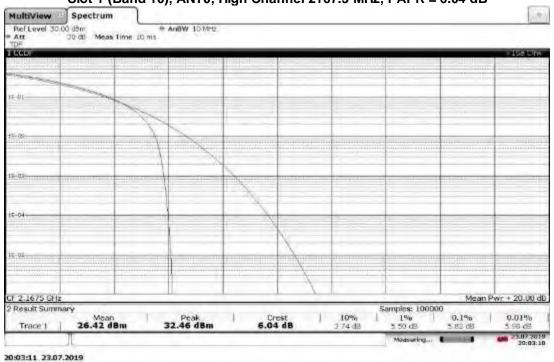
Channel	Frequency (MHz)	Antenna Port	PAPR (dB)
Low	2117.50	ANT0	7.20
		ANT1	7.10
Mid	2140.00	ANT0	7.14
		ANT1	6.63
High	2162.50	ANT0	6.90
_		ANT1	7.79


Band 10, Bandwidth: 20 MHz, Modulation: TM3.1a-256QAM

Channel	Frequency (MHz)	Antenna Port	PAPR (dB)		
Low	2120.00	ANT0	7.27		
		ANT1	7.19		
Mid	2140.00	ANT0	7.56		
		ANT1	7.18		
High	2160.00	ANT0	6.76		
		ANT1	7.60		

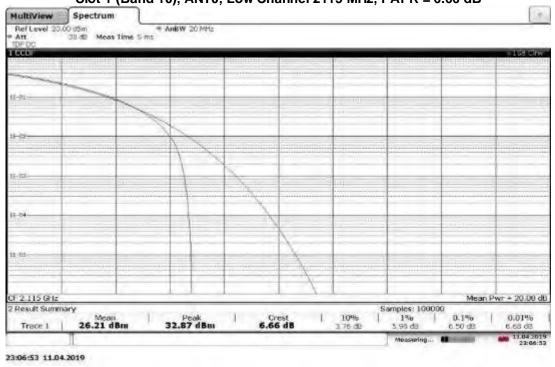

7.4 Setup Photograph:

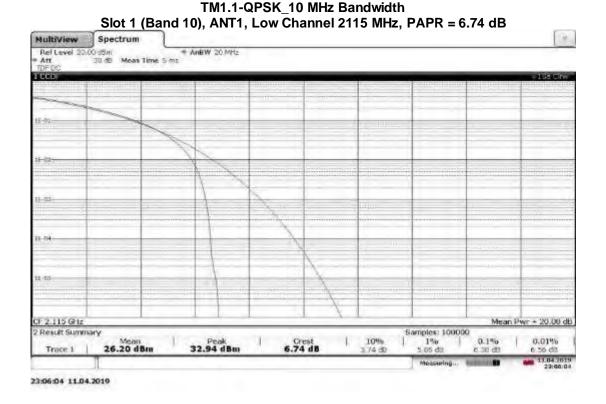

7.5 Plots/Data:

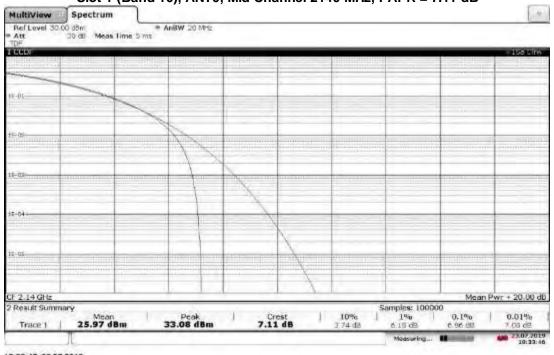


21:02:11 10.04.2019

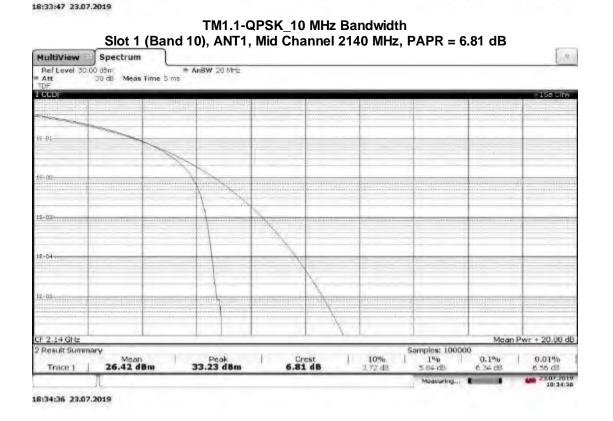
TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 6.67 dB

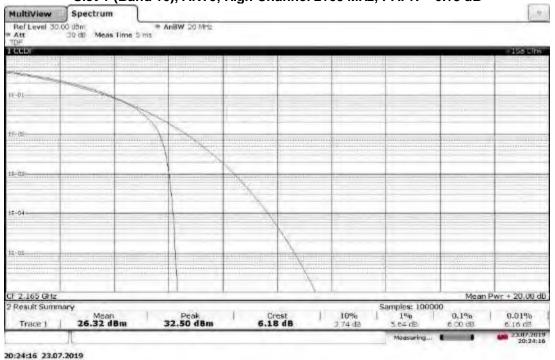


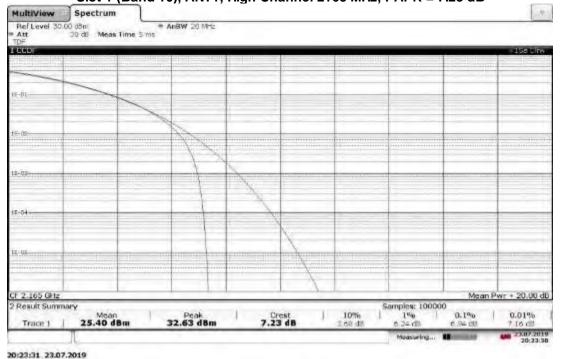

TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz, PAPR = 6.04 dB

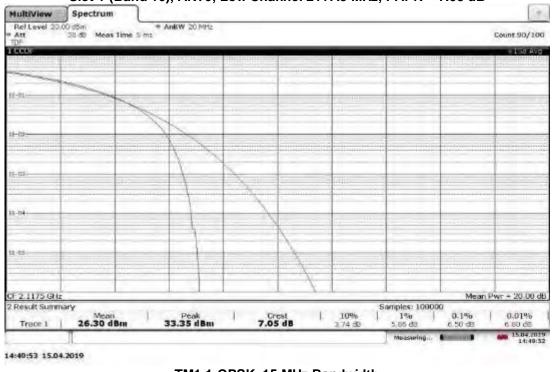

Slot 1 (Band 10), ANT1, High Channel 2167.5 MHz, PAPR = 6.97dB 1.2 Spectrum MultiView RefLevel 30.00 d3m Att 30 d8 Meas Time 10 ms Anew 10 Metz COL Sec. Ins E-04-F 2.1675 GHz Mean Pwr + 20.00 db Samples: 100000 1% Result Summar 10% 0.1% 0.01% Pcak 32.53 dBm 6.97 dB 25.55 dBm 6.10 dB Trace 1 6.70 dB 6 90 dB 23.07 7019 20:02:27 Modsuring 20:02:27 23.07.2019

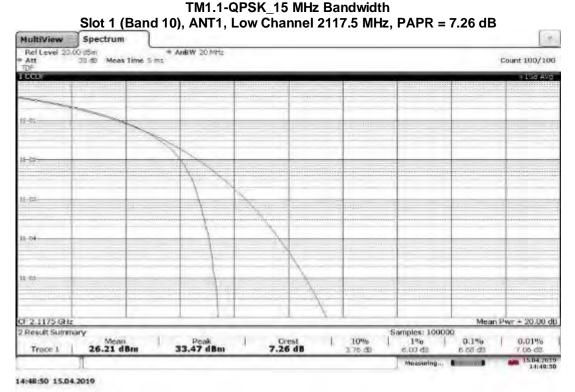
TM1.1-QPSK_5 MHz Bandwidth

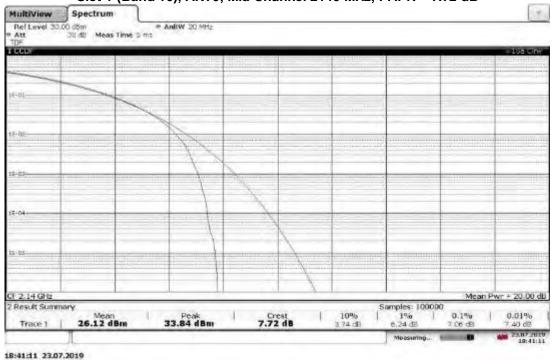


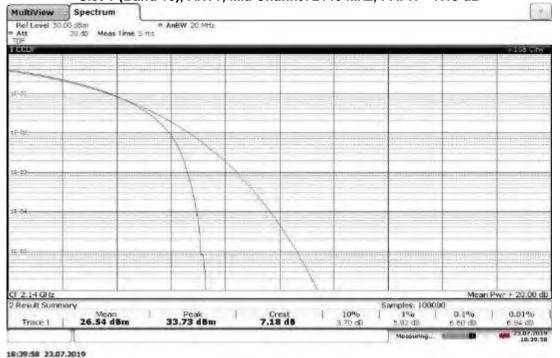

TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, PAPR = 6.66 dB

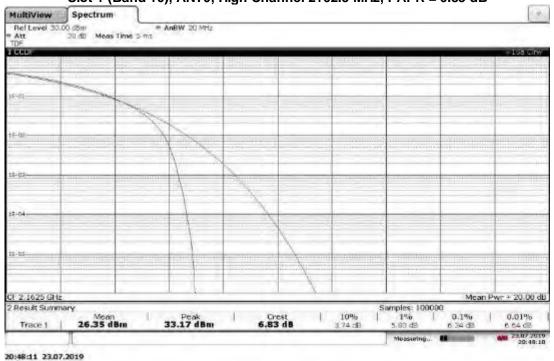

TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.11 dB



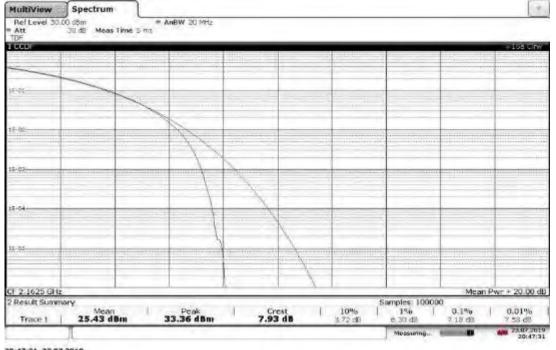

TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz, PAPR = 6.18 dB

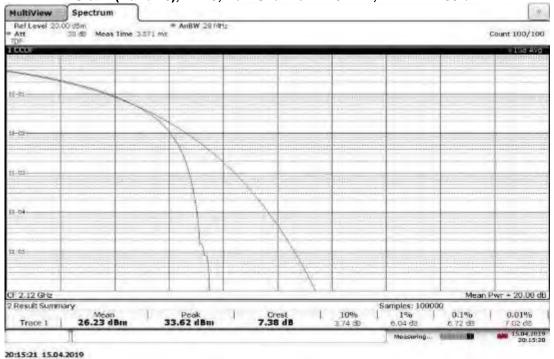

TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2165 MHz, PAPR = 7.23 dB


TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz, PAPR = 7.05 dB

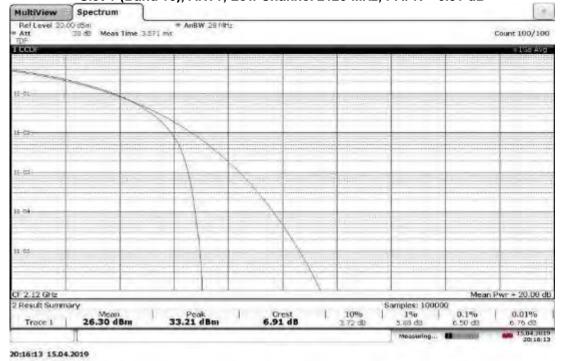


TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.72 dB

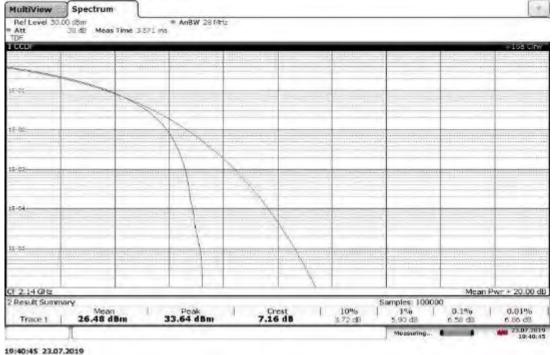

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, PAPR = 7.18 dB

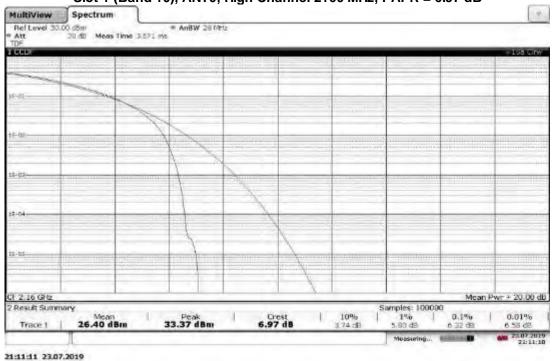


TM1.1-QPSK 15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz, PAPR = 6.83 dB

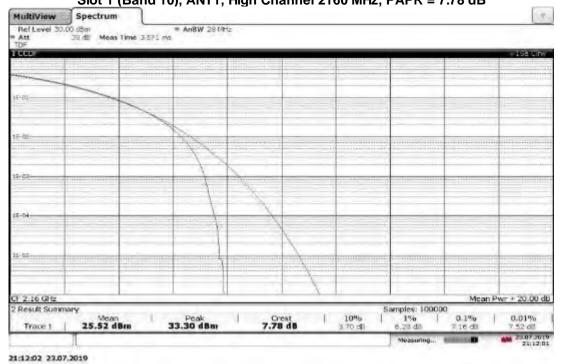

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2162.5 PAPR = 7.93 dB

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz, PAPR = 7.38 dB


TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2120 MHz, PAPR = 6.91 dB

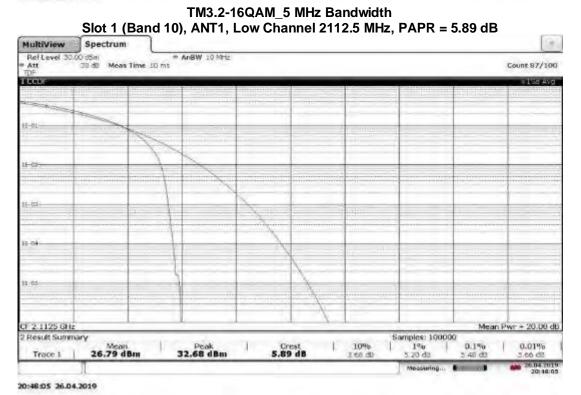


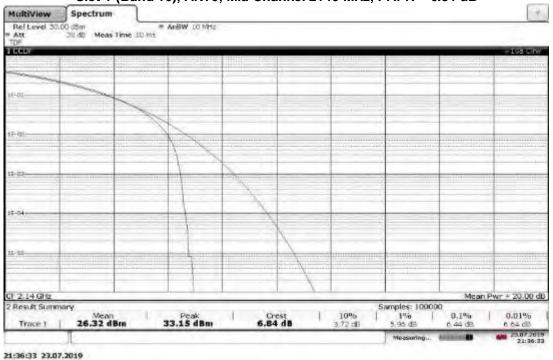
TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.74 dB



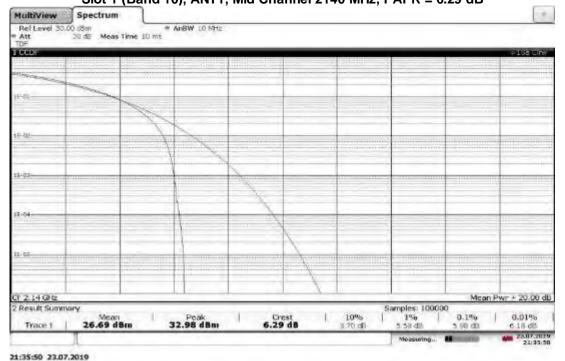


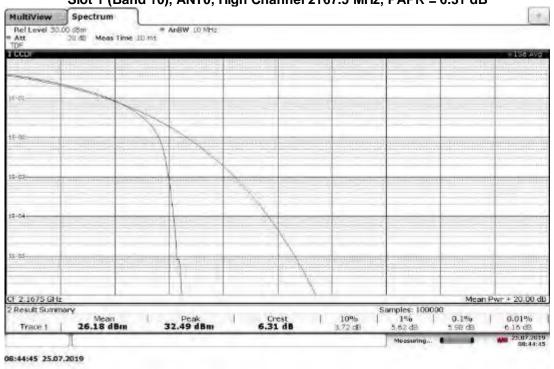
TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz, PAPR = 6.97 dB


TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz, PAPR = 7.78 dB

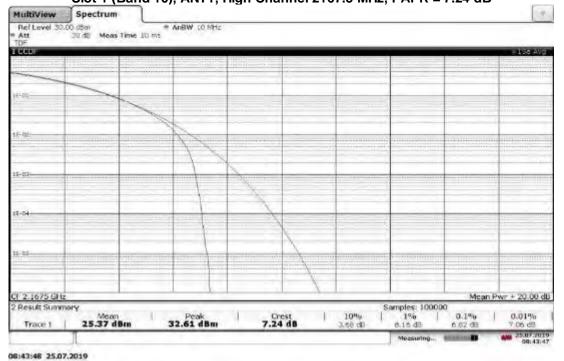


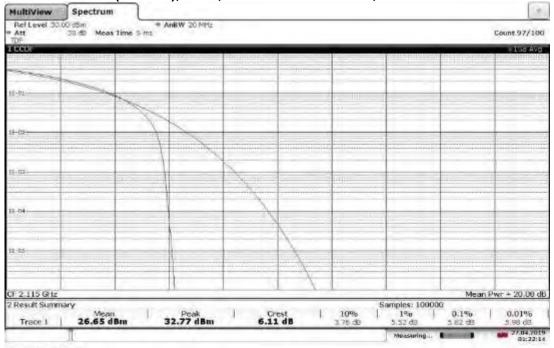
TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2112.5 MHz, PAPR = 6.11 dB


20:04:50 26.04.2019



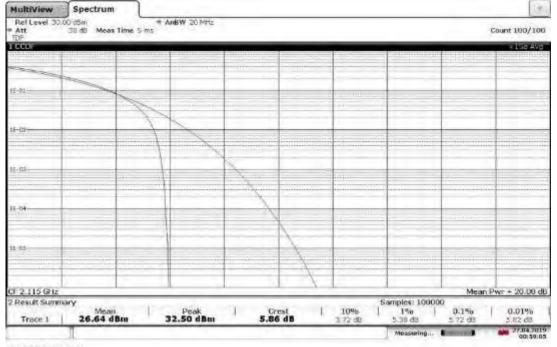
TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 6.84 dB


TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, PAPR = 6.29 dB



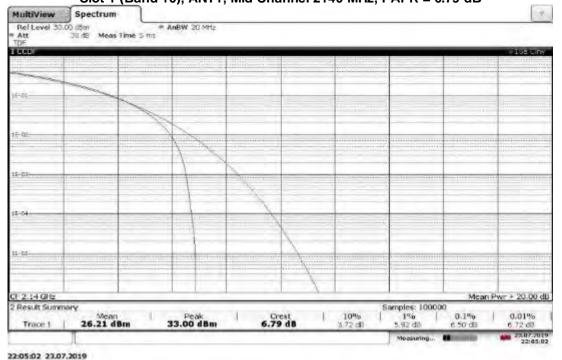
TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz, PAPR = 6.31 dB

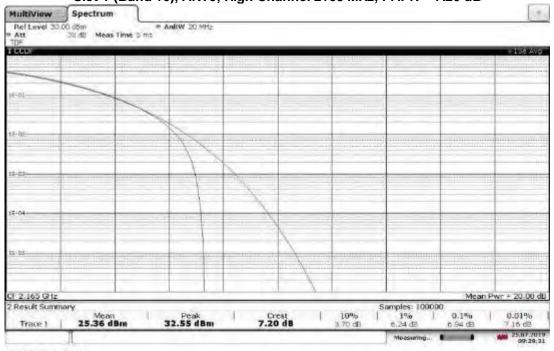
TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2167.5 MHz, PAPR = 7.24 dB




TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, PAPR = 6.11 dB

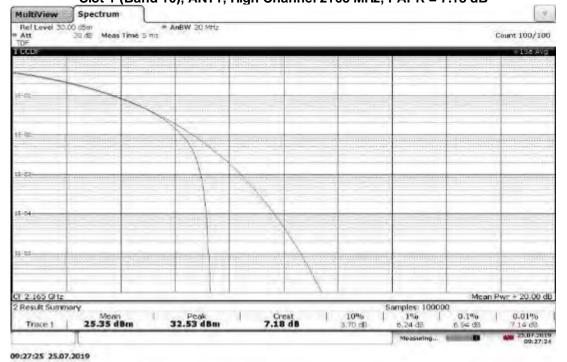
01:22:14 27.04.2019

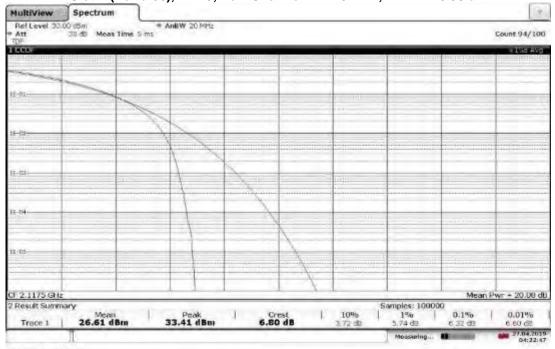



00:59:05 27.04.2019

TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANTO, Mid Channel 2140 MHz, PAPR = 7.29 dB

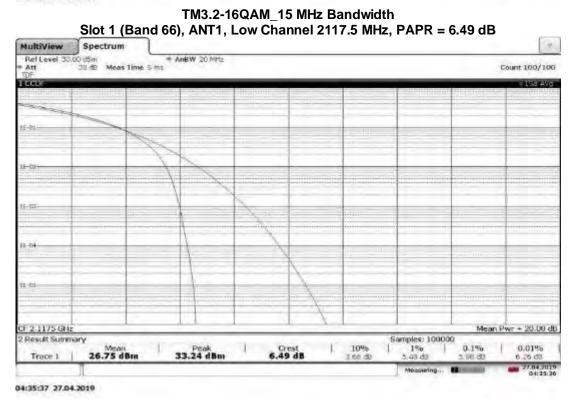
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, PAPR = 6.79 dB

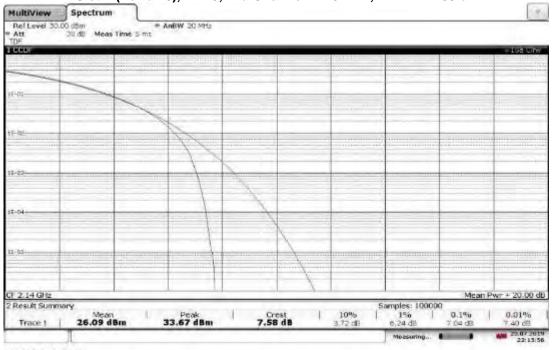


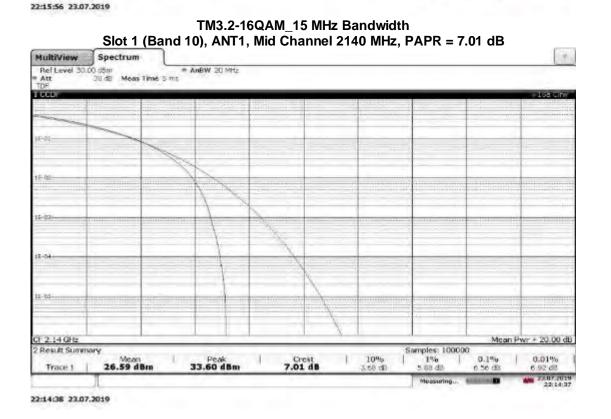


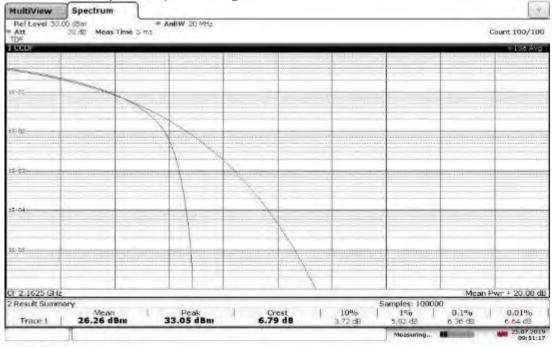
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz, PAPR = 7.20 dB

09:29:31 25.07.2019

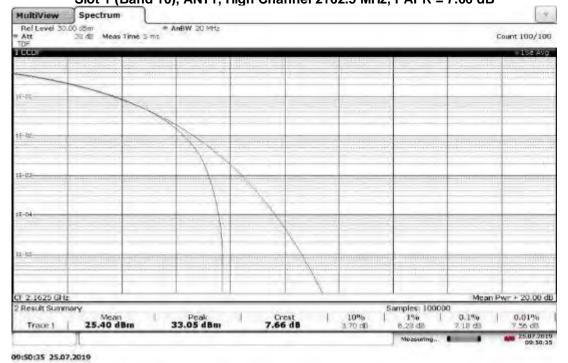

TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2165 MHz, PAPR = 7.18 dB

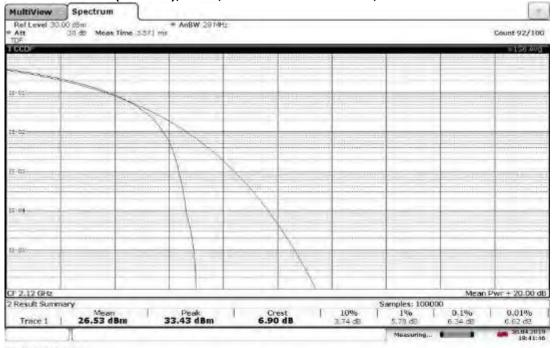



TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 66), ANTO, Low Channel 2117.5 MHz, PAPR = 6.80 dB


04:22:47 27.04.2019

TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.58 dB

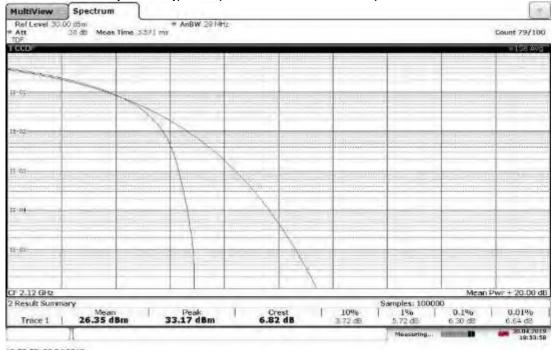


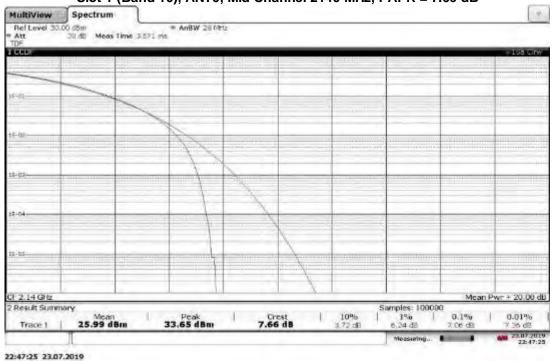


TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz, PAPR = 6.79 dB

09:51:18 25.07.2019

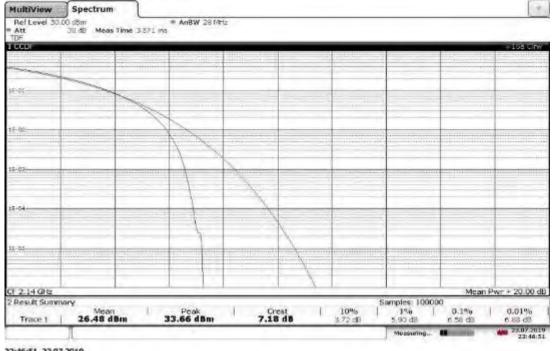
TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2162.5 MHz, PAPR = 7.66 dB

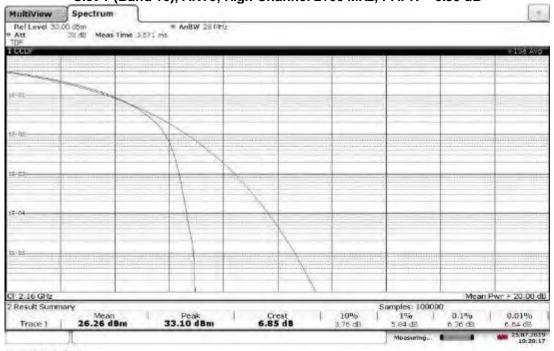




TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz, PAPR = 6.90 dB

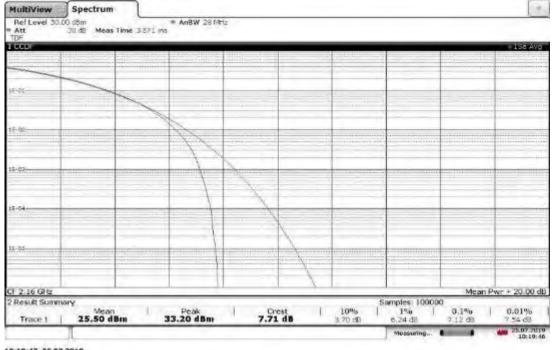
18:41:46 30.04.2019

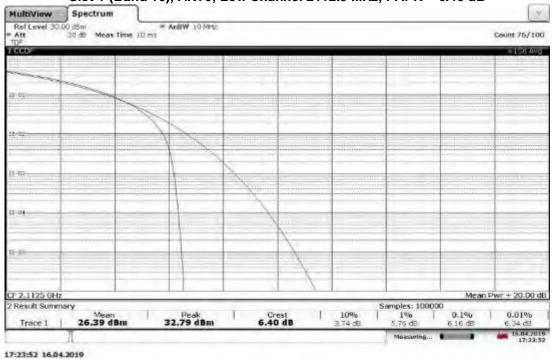

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2120 MHz, PAPR = 6.82 dB



TM3.2-16QAM 20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.66 dB

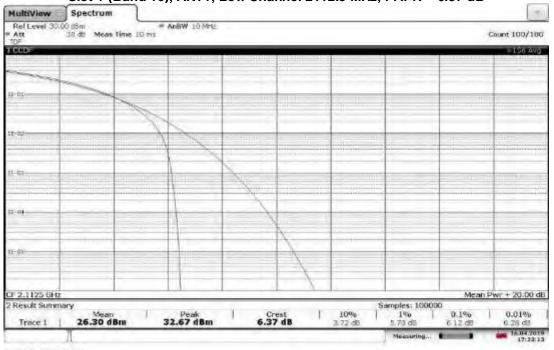
TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, PAPR = 7.18 dB

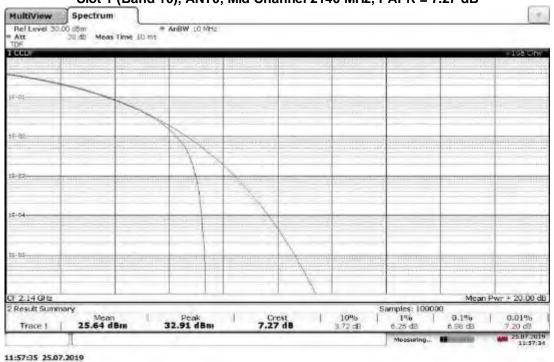




TM3.2-16QAM 20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz, PAPR = 6.85 dB

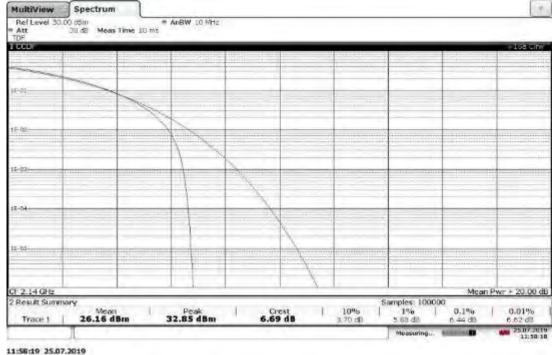
10:20:18 25.07.2019

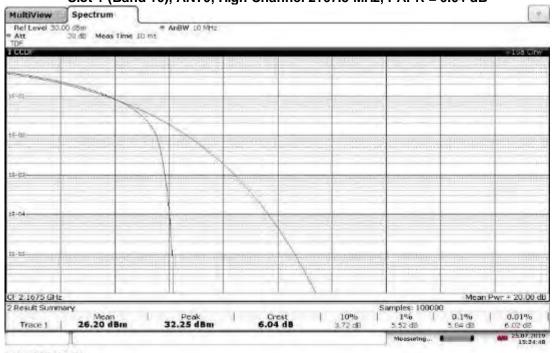

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz, PAPR = 7.71 dB



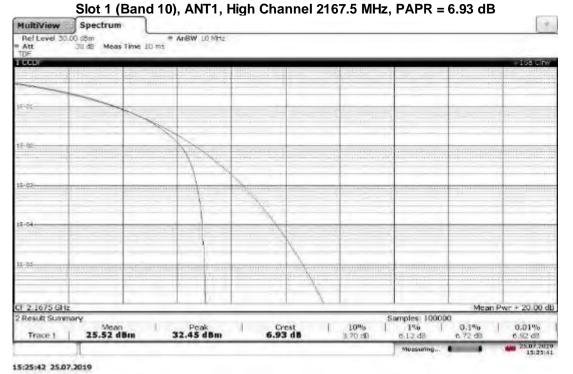
TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2112.5 MHz, PAPR = 6.40 dB

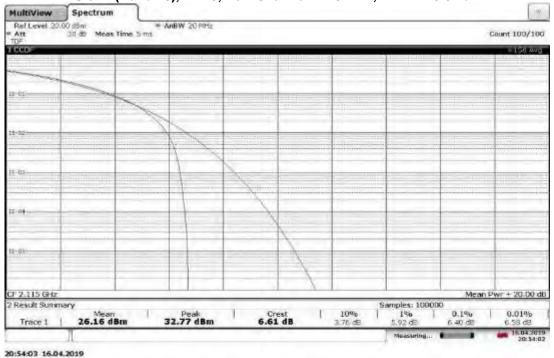
TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2112.5 MHz, PAPR = 6.37 dB




17:23:13 16.04.2019

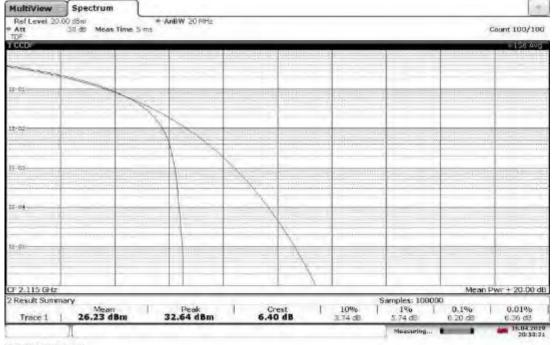
TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.27 dB

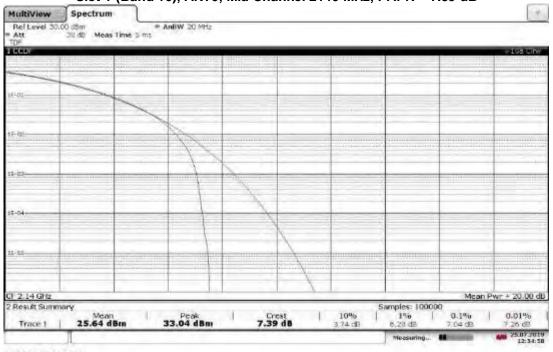




TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz, PAPR = 6.04 dB

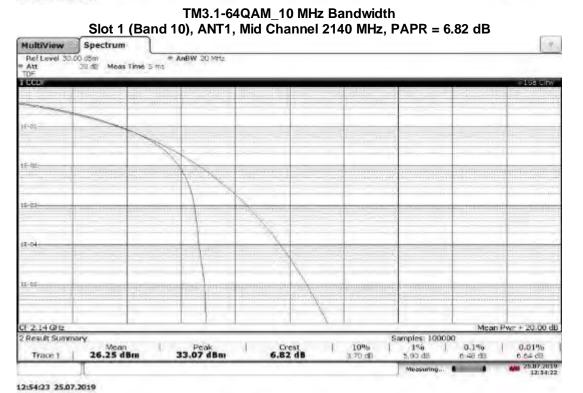
15:24:48 25.07.2019

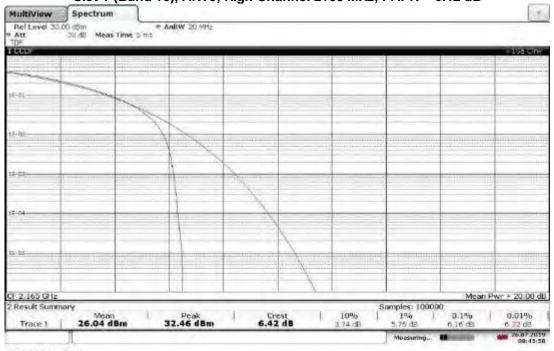

TM3.1-64QAM_5 MHz Bandwidth



TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, PAPR = 6.61 dB

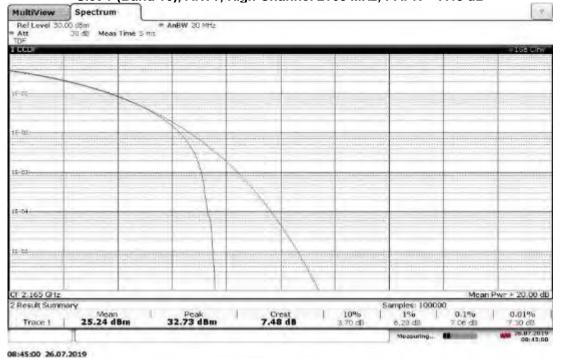
TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2115 MHz, PAPR = 6.40 dB

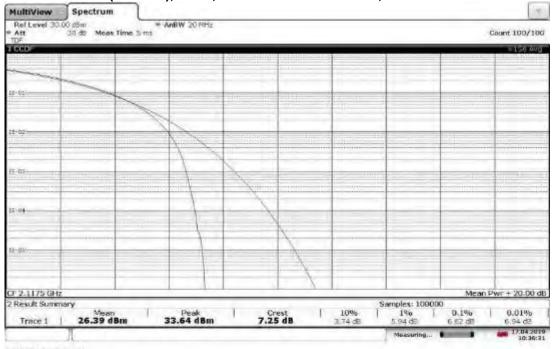



20:53:22 16.04.2019

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANTO, Mid Channel 2140 MHz, PAPR = 7.39 dB

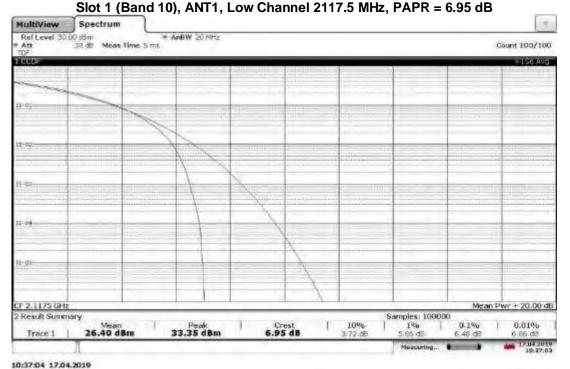
12:54:58 25.07.2019

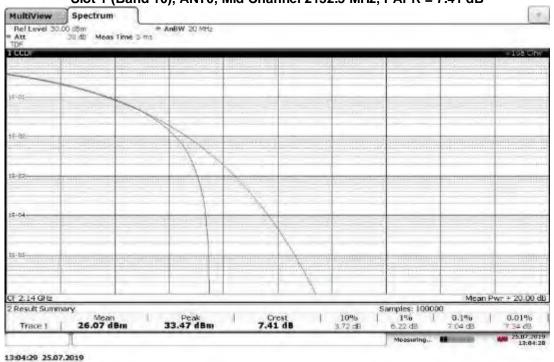




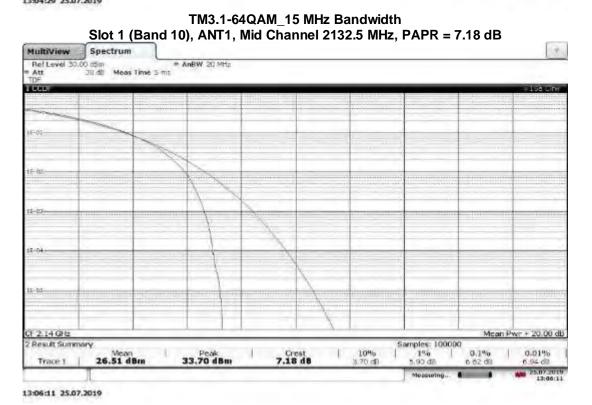
TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz, PAPR = 6.42 dB

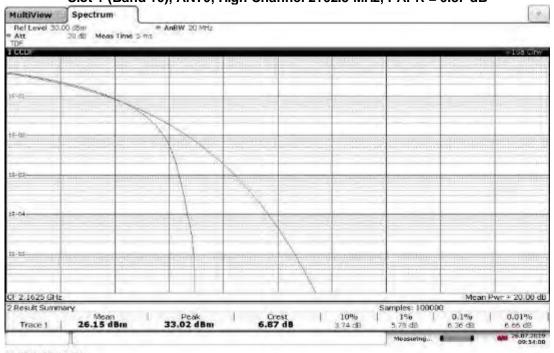
08:45:58 26.07.2019



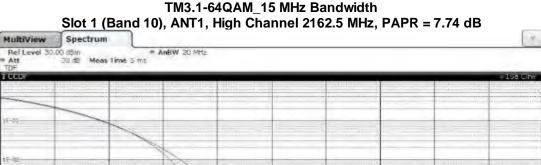


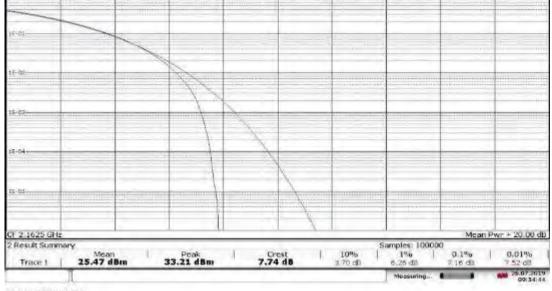
TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz, PAPR = 7.25 dB


10:36:32 17.04.2019

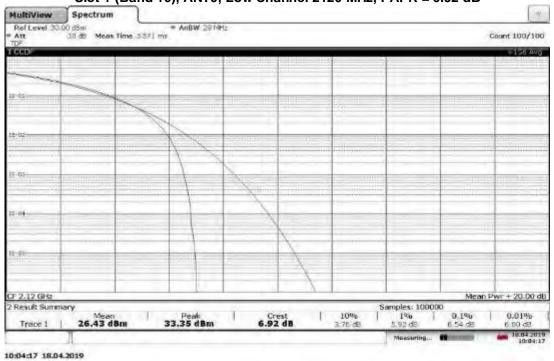

TM3.1-64QAM_15 MHz Bandwidth

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2132.5 MHz, PAPR = 7.41 dB

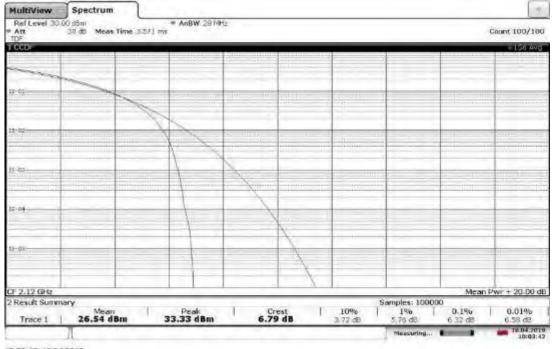




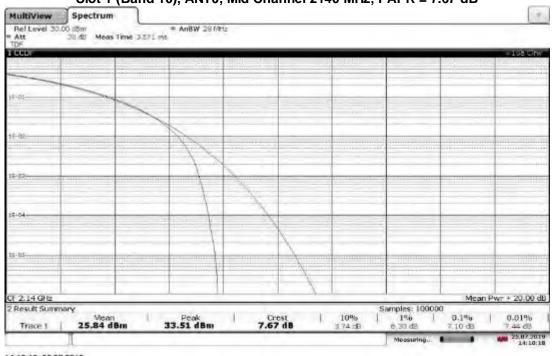
TM3.1-64QAM 15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz, PAPR = 6.87 dB


09:54:00 26.07.2019

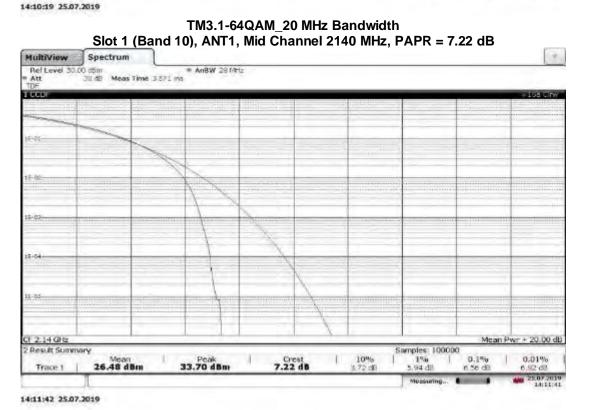
CCL

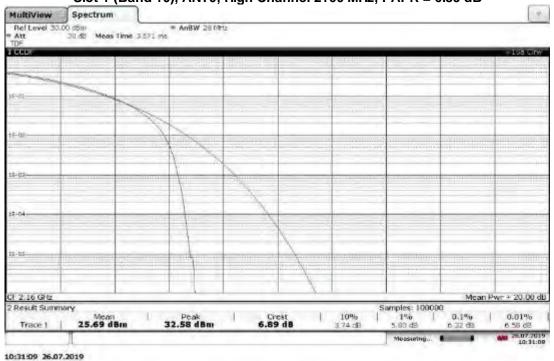


09:54:45 26.07.2019

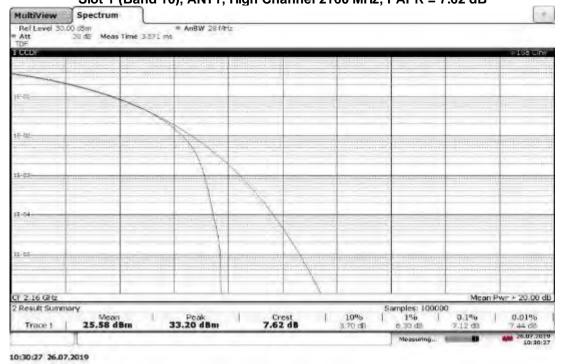


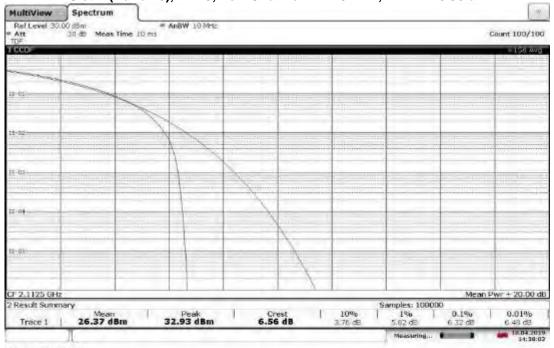
TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz, PAPR = 6.92 dB


TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2120 MHz, PAPR = 6.79 dB



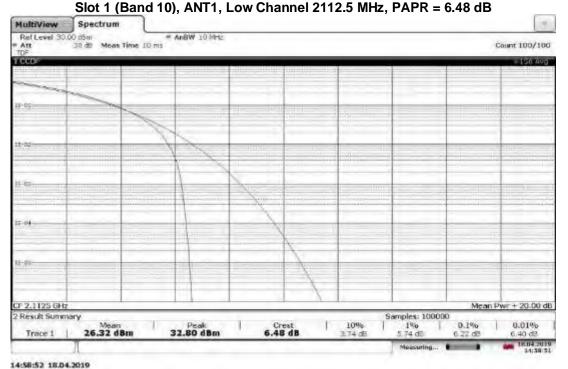
10:03:42 18.04.2019

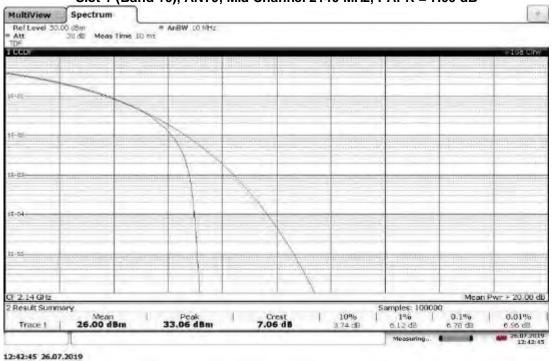

TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.67 dB



TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz, PAPR = 6.89 dB

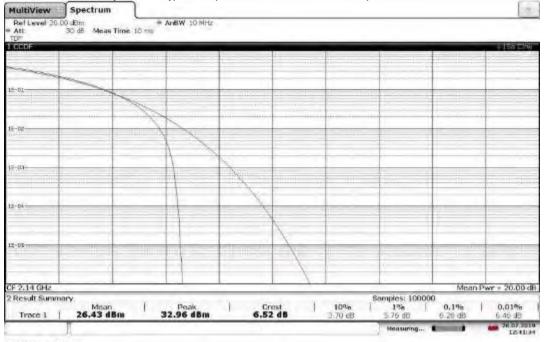
TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz, PAPR = 7.62 dB

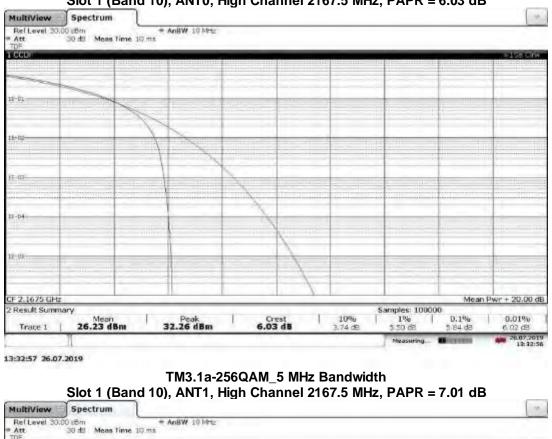




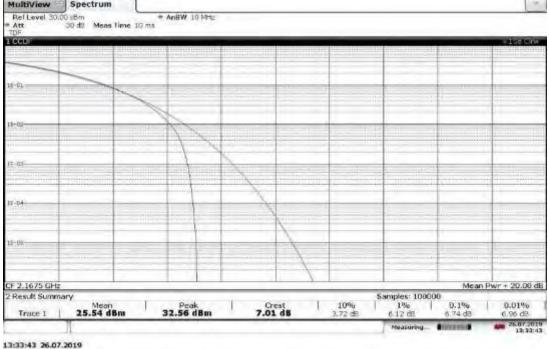
TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2112.5 MHz, PAPR = 6.56 dB

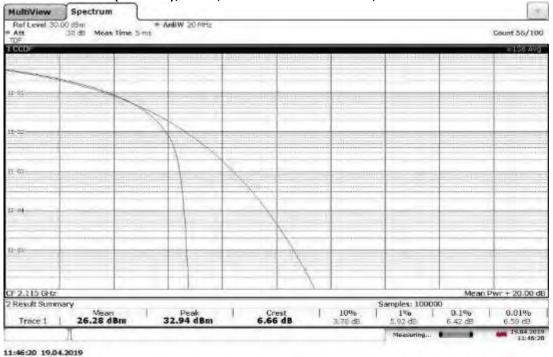
14:58:03 18.04.2019


TM3.1a-256QAM_5 MHz Bandwidth

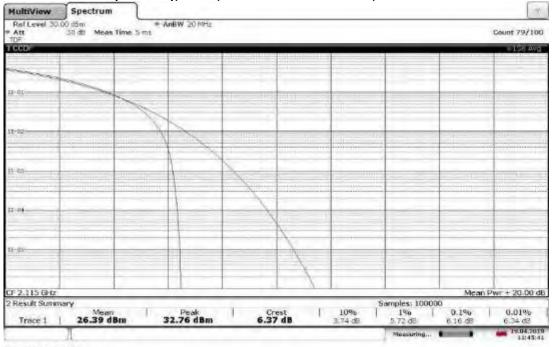


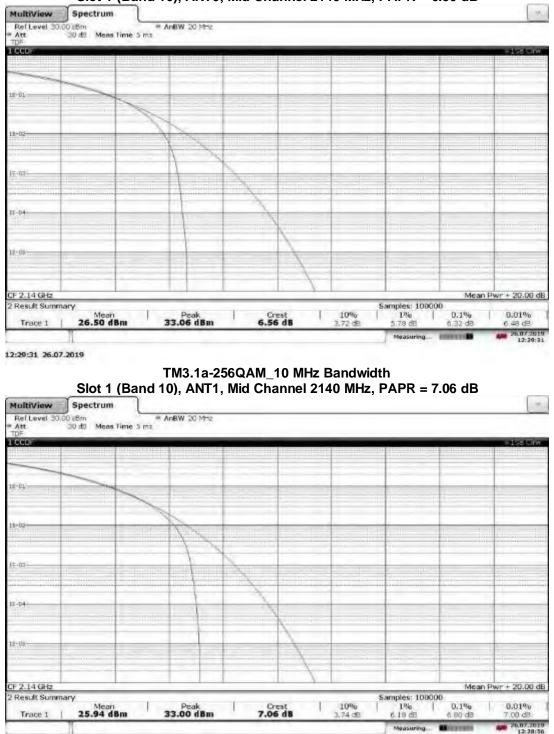
TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.06 dB


TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz, PAPR = 6.52 dB



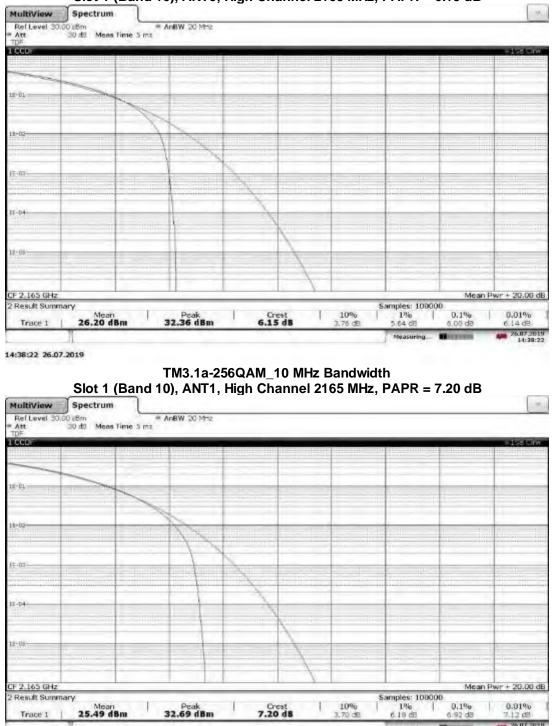
12:41:35 26.07.2019


TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz, PAPR = 6.03 dB



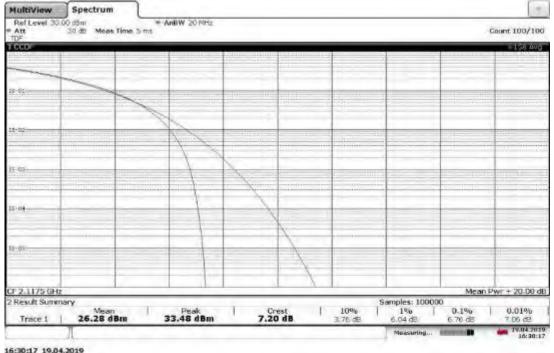
TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz, PAPR = 6.66 dB

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2115 MHz, PAPR = 6.37 dB

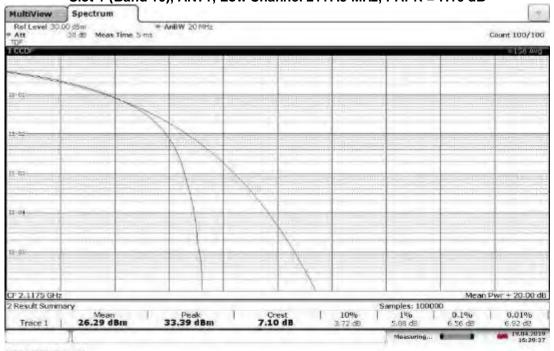


11:45:41 19.04.2019

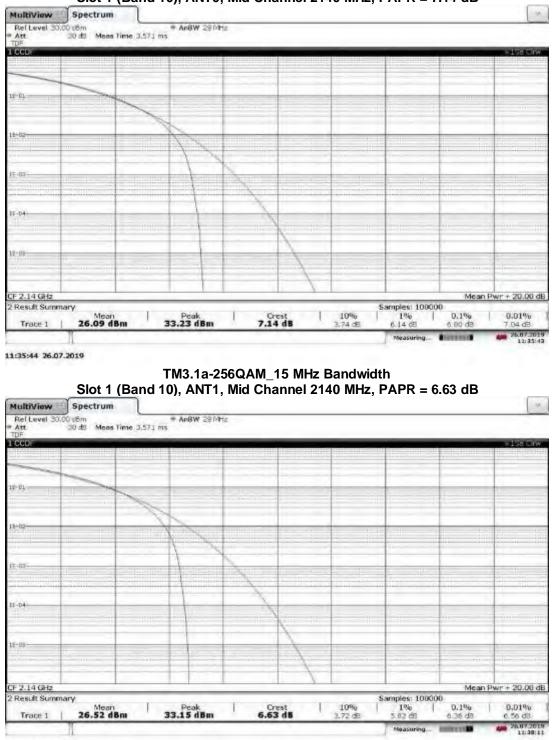
TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANTO, Mid Channel 2140 MHz, PAPR = 6.56 dB


12:28:56 26.07.2019

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz, PAPR = 6.15 dB


14:37:17 26.07.2019

14:17:17



TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz, PAPR = 7.20 dB

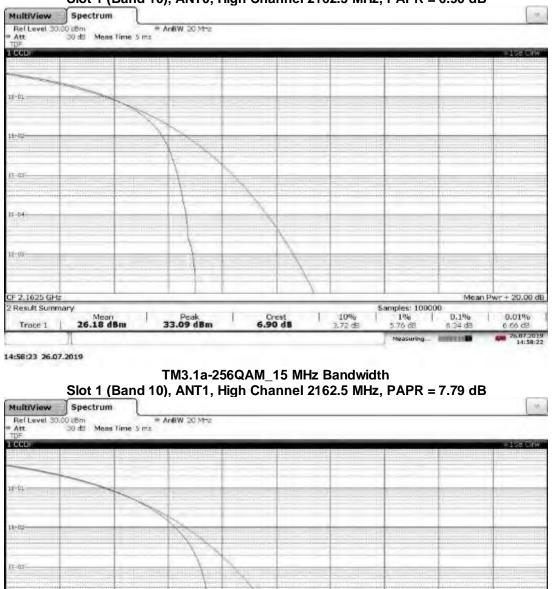
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2117.5 MHz, PAPR = 7.10 dB

16:29:28 19.04.2019

TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANTO, Mid Channel 2140 MHz, PAPR = 7.14 dB

11:38:12 26.07.2019

17-04


CF 2.1625 GHz

Trace 1

Result Summary

14:59:00 26.07.2019

25.50 dBm

TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz, PAPR = 6.90 dB

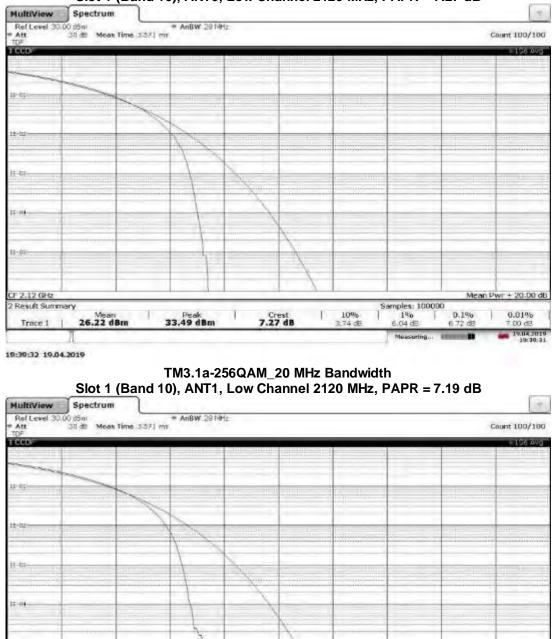
Non-Specific Radio Report Shell Rev. December 2017 Client: CommScope Technologies LLC / Model: RPM-A5A11-B66

Peak 33.29 dBm Mean Pwr + 20.00 dB

0.01%

8 dB 6.07.7019 14:59:00

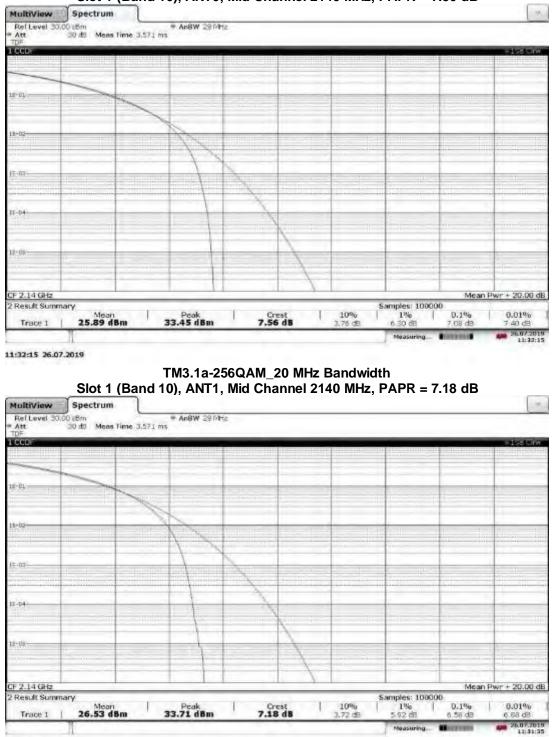
D.1%


Samples: 100000

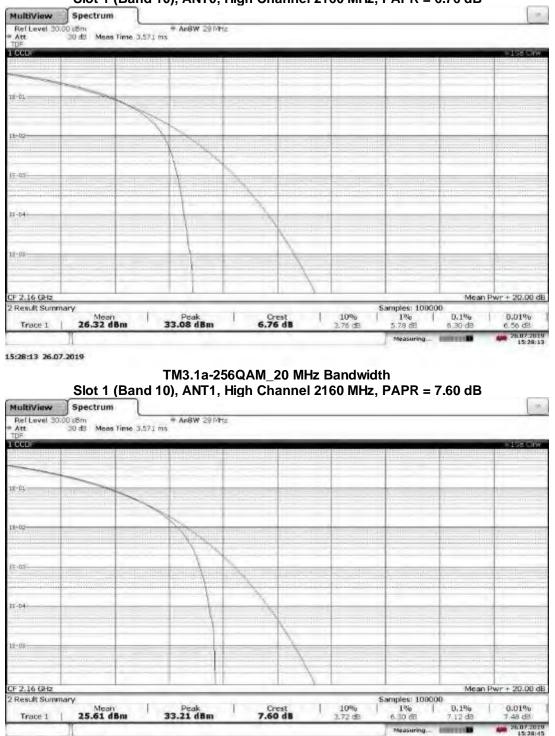
1% 6.26 di

10% 3.70 dt

ŀ


Crest 7.79 dB

TM3.1a-256QAM 20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz, PAPR = 7.27 dB


F 2.12 GHz Mean Pwir + 20.00 dt Samples: 100000 Result Summary 0.01% 6.74 dB 0.1% Crest 7.19 dB 10% 1%o 5.84 di Mean 26.38 dBm 33.57 dBm T ь. Trace 1 172

19:30:05 19.04.2019

TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz, PAPR = 7.56 dB

11:31:35 26.07.2019

TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz, PAPR = 6.76 dB

15:28:46 26.07.2019

		Intertek	
Report Number: 10	3866582BOX-24b		Issued: 08/14/2019
Test Personnel:	Kouma Sinn 495	Test Date:	04/10/2019, 04/11/2019, 04/12/2019, 04/15/2019, 04/16/2019, 04/17/2019, 04/18/2019, 04/19/2019, 04/26/2019, 04/20/2019, 02/25/2019, 02/28/2019,
Supervising/Reviewing Engineer: (Where Applicable)	N/A		_04/30/2019, 07/25/2019, 07/28/2019
Product Standard: Input Voltage:	FCC Part 27 48 VDC (POE)	Limit Applied:	See report section 7.3
		Ambient Temperature:	22, 23, 23, 23, 23, 22, 22, 22, 20, 22, 22, 22 ℃
Pretest Verification w/ Ambient Signals or BB Source:	_N/A	Relative Humidity:	21, 15, 26, 47, 20, 22, 23, 47, 42, 35, _62, 59 %
		Atmospheric Pressure:	1004, 1013, 1004, 980, 1001, 1011, 1014, 1000, 996, 1017, 1011, 1016 mbars

Deviations, Additions, or Exclusions: None

8 26 dB Bandwidth and Occupied Bandwidth

8.1 Method

Tests are performed in accordance with ANSI C63.26 and CFR47 FCC Parts 2.1049 and 27.

TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
CEN001'	DC-40GHz attenuator 20dB	Centric RF	C411-20	CEN001	02/01/2019	02/01/2020
CBLHF2012-2M-1'	2m 9kHz-40GHz Coaxial Cable - SET1	Huber & Suhner	SF102	252675001	02/01/2019	02/01/2020
ROS005-1'	Signal and Spectrum Analyzer	Rohde &Schwarz	FSW43	100646	10/15/2018	10/15/2019
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019

Software Utilized:

Name	Manufacturer	Version
None		

8.3 Results:

The sample tested was found to Comply.

§27.53(h)(3): The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§2.1049: The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Report Number: 103866582BOX-24b

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2112.50	ANT0	4.531	5.21
		ANT1	4.541	5.01
Mid	2140.00	ANT0	4.543	5.32
		ANT1	4.556	5.67
High	2167.50	ANT0	4.526	5.32
_		ANT1	4.545	5.37

Band 10. Bandwidth: 10 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2115.00	ANT0	8.999	9.95
		ANT1	8.992	9.98
Mid	2140.00	ANT0	8.968	9.96
		ANT1	8.981	10.00
High	2165.00	ANT0	8.910	10.02
		ANT1	8.984	9.940

Band 10, Bandwidth: 15 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2117.50	ANT0	13.510	14.77
		ANT1	13.475	14.72
Mid	2140.00	ANT0	13.517	14.74
		ANT1	13.512	14.82
High	2162.50	ANT0	13.520	15.17
_		ANT1	13.541	14.99

Band 10, Bandwidth: 20 MHz, Modulation: TM1.1-QPSK

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2120.00	ANT0	17.939	19.39
		ANT1	17.907	19.31
Mid	2140.00	ANT0	17.891	19.63
		ANT1	17.934	19.51
High	2160.00	ANT0	17.915	19.69
		ANT1	17.911	19.57

Band 10. Bandwidth: 5 MHz. Modulation: TM3.2-16QAM

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2112.50	ANT0	4.544	5.14
		ANT1	4.556	5.23
Mid	2132.50	ANT0	4.503	5.00
		ANT1	4.514	5.13
High	2152.50	ANT0	4.510	5.09
_		ANT1	4.516	4.98

Band 10, Bandwidth: 10 MHz, Modulation: TM3.2-16QAM

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2115.00	ANT0	9.014	9.91
		ANT1	8.985	9.91
Mid	2140.00	ANT0	9.013	9.76

Report Number:	103866582BOX-24b
----------------	------------------

		ANT1	8.951	9.86
High	2165.00	ANT0	9.025	9.76
		ANT1	8.969	9.85

Report Number: 103866582BOX-24b

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2117.50	ANT0	13.524	14.48
		ANT1	13.453	14.47
Mid	2140.00	ANT0	13.433	14.57
		ANT1	13.454	14.56
High	2162.50	ANT0	13.476	14.73
		ANT1	13.458	14.57

Band 10, Bandwidth: 20 MHz, Modulation: TM3.2-16QAM

	Bana ro, Banamath. 20 mili2, modulation. Thiol2 rogam							
Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)				
Low	2120.00	ANT0	17.945	19.11				
		ANT1	17.892	19.51				
Mid	2140.00	ANT0	17.879	19.48				
		ANT1	17.913	19.62				
High	2160.00	ANT0	17.944	19.69				
		ANT1	17.983	19.73				

Band 10, Bandwidth: 5 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2112.50	ANT0	4.567	4.99
		ANT1	4.520	5.08
Mid	2140.00	ANT0	4.550	5.05
		ANT1	4.555	5.03
High	2167.50	ANT0	4.574	5.42
_		ANT1	4.562	4.99

Band 10, Bandwidth: 10 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2115.00	ANT0	8.996	9.90
		ANT1	9.022	9.92
Mid	2140.00	ANT0	8.994	9.83
		ANT1	9.003	9.87
High	2165.00	ANT0	9.007	9.86
		ANT1	9.002	9.92

Band 10. Bandwidth: 15 MHz. Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2117.50	ANT0	13.518	14.59
		ANT1	13.501	14.65
Mid	2140.00	ANT0	13.494	14.88
		ANT1	13.440	14.73
High	2162.50	ANT0	13.488	14.93
_		ANT1	13.487	14.68

Band 10, Bandwidth: 20 MHz, Modulation: TM3.1-64QAM

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2120.00	ANT0	17.865	19.53
		ANT1	17.913	19.46
Mid	2140.00	ANT0	17.877	19.56

Issued: 08/14/2019

		ANT1	17.966	19.71
High	2160.00	ANT0	17.949	19.77
		ANT1	17.900	19.59

Report Number: 103866582BOX-24b

Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2112.50	ANT0	4.553	5.04
		ANT1	4.551	5.08
Mid	2140.00	ANT0	4.546	5.04
		ANT1	4.526	5.09
High	2167.50	ANT0	4.541	5.05
		ANT1	4.539	5.05

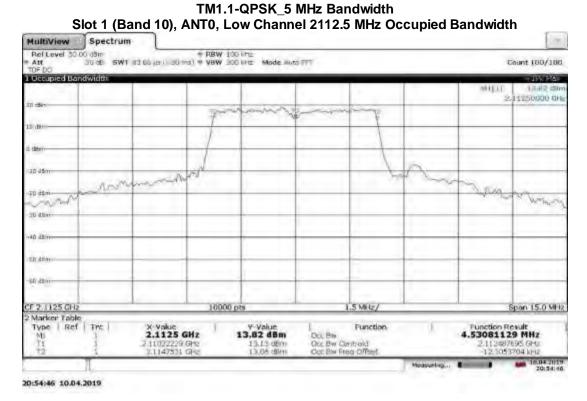
... 2.141 ~ ~~~~

Band 10, Bandwidth: 10 MHz, Modulation: TM3.1a-256QAM

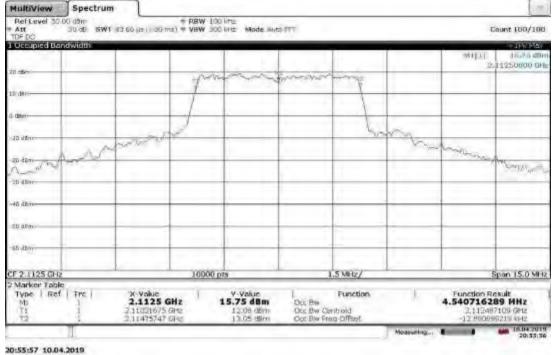
Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2115.00	ANT0	8.967	9.85
		ANT1	9.007	9.84
Mid	2140.00	ANT0	8.963	9.82
		ANT1	8.985	9.90
High	2165.00	ANT0	8.979	9.86
		ANT1	8.965	9.86

Band 10, Bandwidth: 15 MHz, Modulation: TM3.1a-256QAM

	Barra re, Barrawatri.	,		
Channel	Frequency (MHz)	Antenna Port	Occupied BW	26 dB BW (MHz)
			(MHz)	
Low	2117.50	ANT0	13.445	14.70
		ANT1	13.505	14.23
Mid	2140.00	ANT0	13.503	14.75
		ANT1	13.527	14.86
High	2162.50	ANT0	13.530	14.83
		ANT1	13.460	14.71

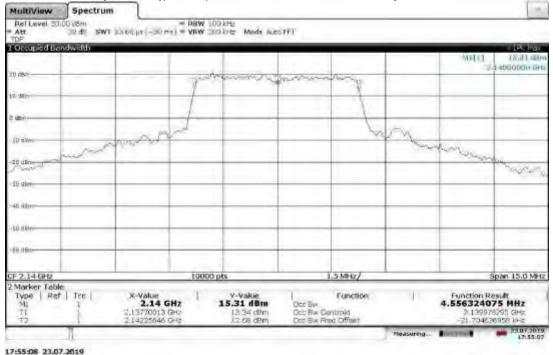

Band 10, Bandwidth: 20 MHz, Modulation: TM3.1a-256QAM

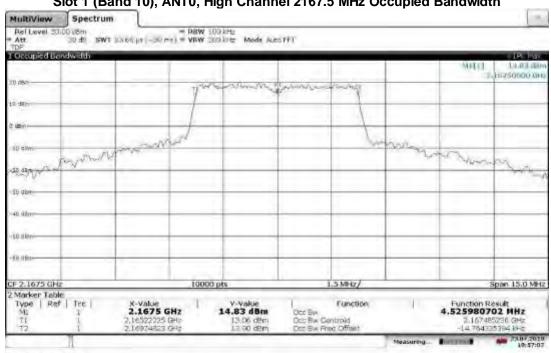
Channel	Frequency (MHz)	Antenna Port	Occupied BW (MHz)	26 dB BW (MHz)
Low	2120.00	ANT0	17.848	19.42
		ANT1	17.928	19.49
Mid	2140.00	ANT0	17.886	19.63
		ANT1	17.929	19.52
High	2160.00	ANT0	17.907	19.93
		ANT1	17.913	19.68


8.4 Setup Photograph:

8.5 Plots/Data:

TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2112.5 MHz Occupied Bandwidth

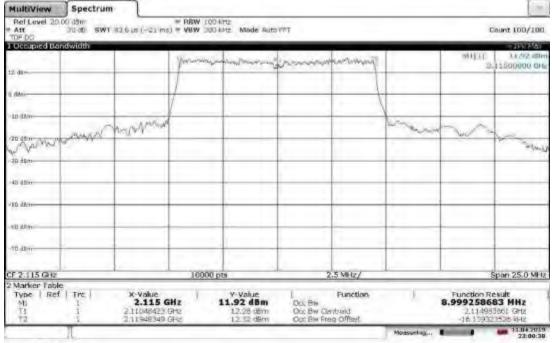




TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

17:58:25 23.07.2019

TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz Occupied Bandwidth

19:57:08 23.07.2019

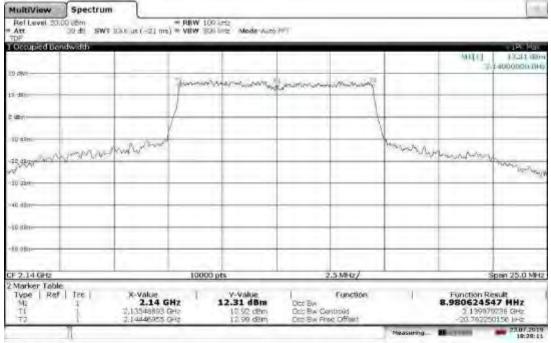
TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2167.5 MHz Occupied Bandwidth

19:53:21 23.07.2019

TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz Occupied Bandwidth

23:00:39 11.04.2019

TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2115 MHz Occupied Bandwidth

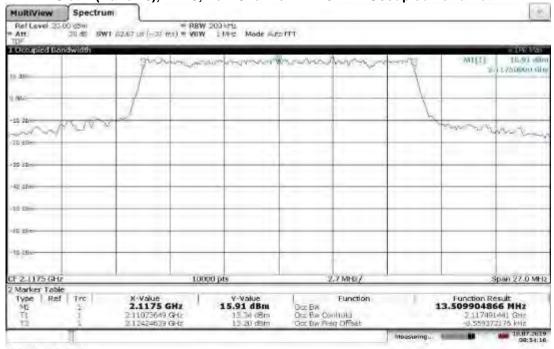

Ref Level 20.0		83.6 LB (-21 MS)	= RBW 1004 = VBW 3004		1491			Count 100/10
TOF DO I Occupied Bar	dwidth	_		-	_			TINKA
			pormen	hannahan	frankan	many		12 15 50000 B
ul di-			1		1	1		
tiden-				-	-	1		
10 dbm	-			-			hair	
	Manura	Mar and Marine			-		war and a second	where the series
	10							a. M
30 dam-								
-40 d5w				-				
10 diamond						-	-	
ni aim						_		
				1				
-10-JB-11							· · · · · · ·	
F 2.115 GH2	č	4	10000 p	ts	2	.5 Milz/		Span 25.0 Mt
2 Marker Table Type Ref MD T1 T2		X-Value 2.115 Gi 2.11049195 G 2.11946419 G	He	9-Value 12.36 dBm 11.70 (Em 12.46 (Bm)	L Oci, Bw Oci, Bw Cla Oci, Bw Fre		1	Function Result 3.992252661 MHz 2.114968059 GHz 11 940806224 HHz
	T	The second secon		12.40 00/11	CALCH 110	a periodi	Measuring	11.04.20 22.57


TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

18:26:22 23.07.2019

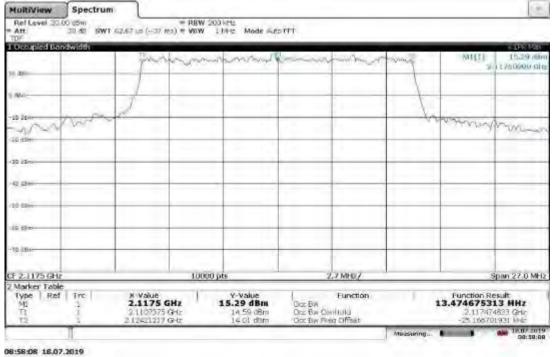
TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth

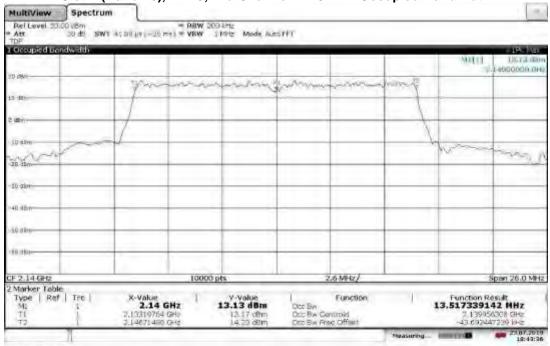
18:28:11 23.07.2019


TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz Occupied Bandwidth

20:18:07 23.07.2019

TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2165 MHz Occupied Bandwidth


20:15:17 23.07.2019



TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz Occupied Bandwidth

06:54:16 18.07.2019

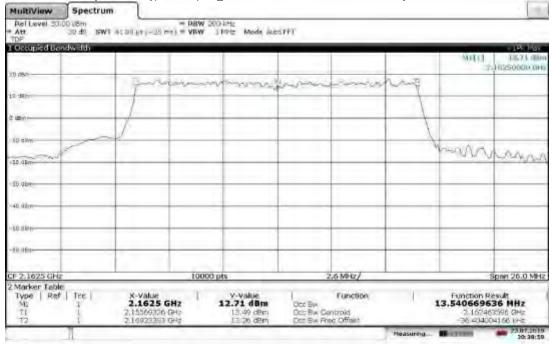
TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2117.5 MHz Occupied Bandwidth

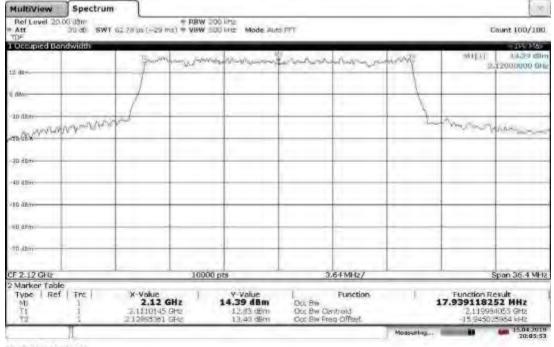


TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

18:43:36 23.07.2019

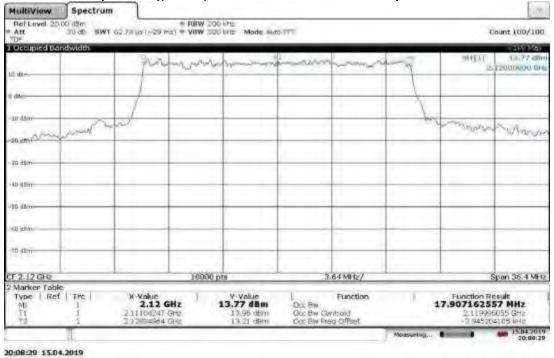
TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


18:45:15 23.07.2019


TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz Occupied Bandwidth

20:41:48 23.07.2019

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2162.5 MHz Occupied Bandwidth


20:38:59 23.07.2019

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz Occupied Bandwidth

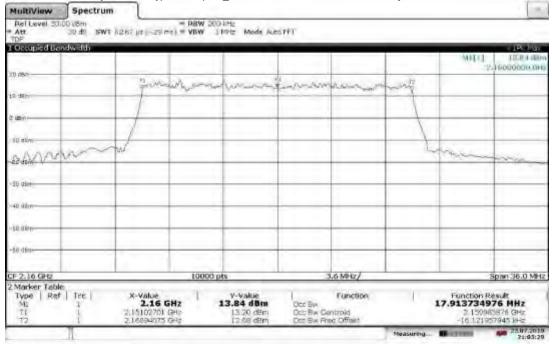
20:05:54 15.04.2019

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2120 MHz Occupied Bandwidth

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

19:34:43 23.07.2019

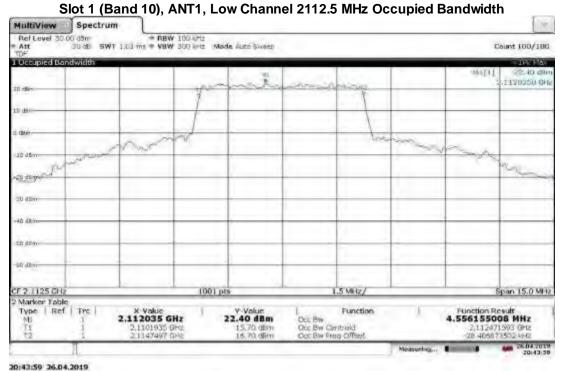
TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


19:32:59 23.07.2619

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz Occupied Bandwidth

21:02:36 23.07.2019

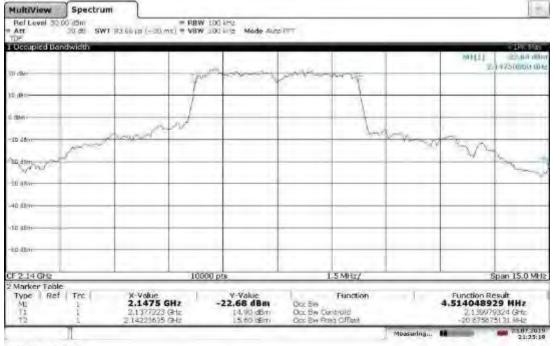
TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz Occupied Bandwidth

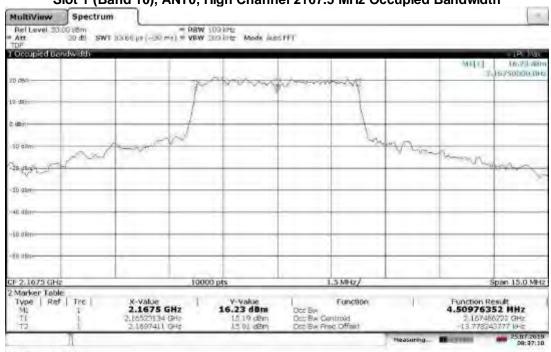

21:05:29 23.07.2619

TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2112.5 MHz Occupied Bandwidth

20:00:03 26.04.2019

TM3.2-16QAM_5 MHz Bandwidth

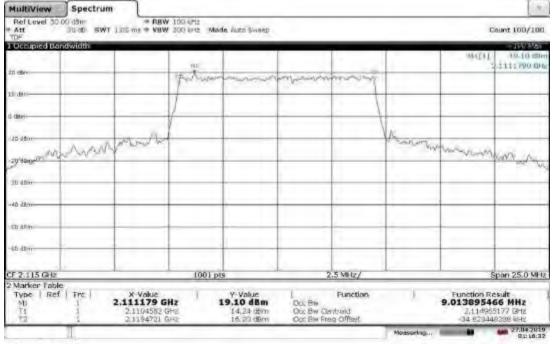



TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

21:28:09 23.07.2019

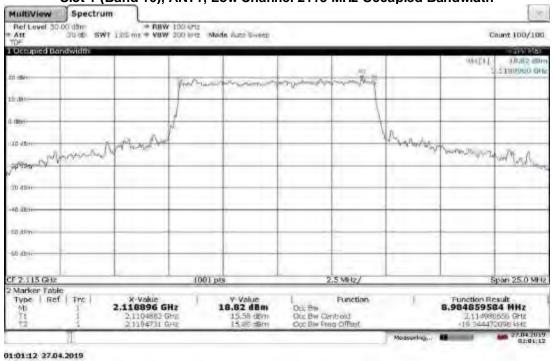
TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth

21:25:19 23.07.2019


TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz Occupied Bandwidth

06:37:11 25.07.2019

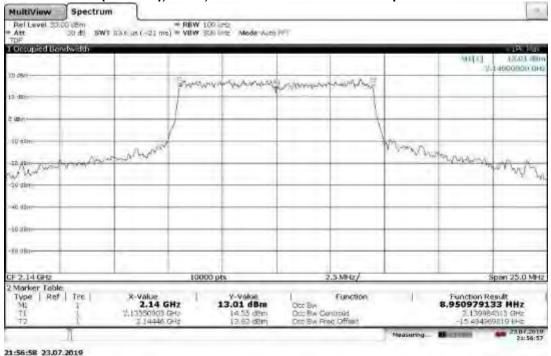
TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2167.5 MHz Occupied Bandwidth


08:33:57 25.07.2019

TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz Occupied Bandwidth

01:16:32 27.04.2019

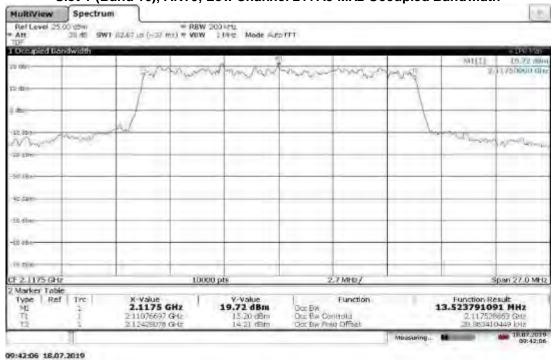
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2115 MHz Occupied Bandwidth



TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

21:55:00 23.07.2019

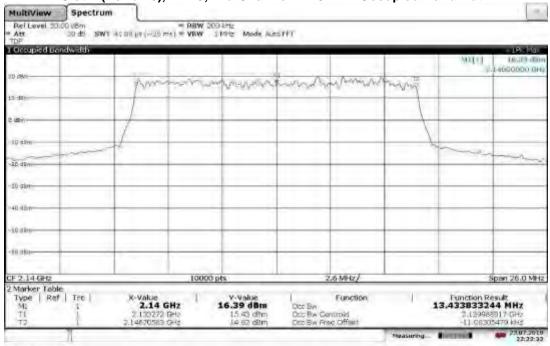
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz Occupied Bandwidth

09:21:32 25.07.2619

TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2165 MHz Occupied Bandwidth

09:19:11 25.07.2019



TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz Occupied Bandwidth

TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2117.5 MHz Occupied Bandwidth

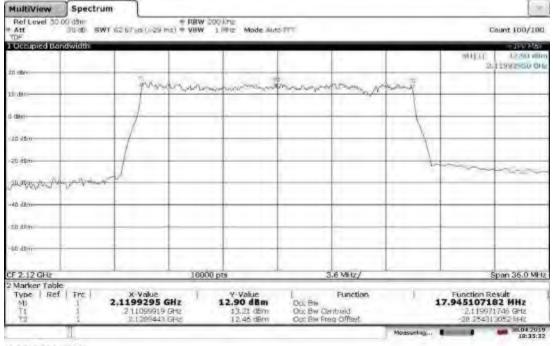

09:44:13 18.07.2019

TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

22:22:32 23.07.2019

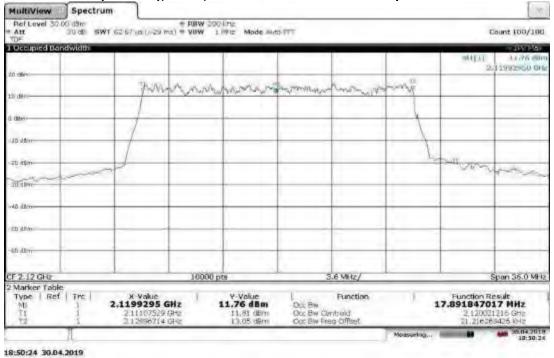
TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth

22:20:33 23.07.2619


TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz Occupied Bandwidth

09:43:22 25.07.2019

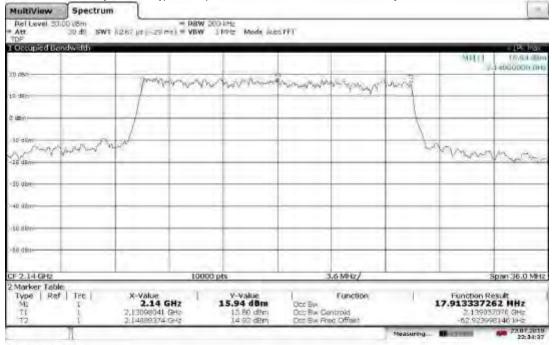
TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2162.5 MHz Occupied Bandwidth

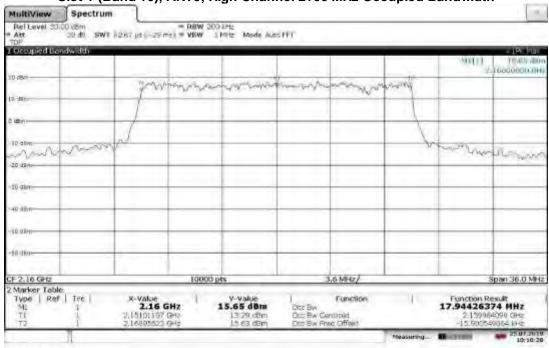

09:40:06 25.07.2019

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz Occupied Bandwidth

18:35:33 30.04.2019

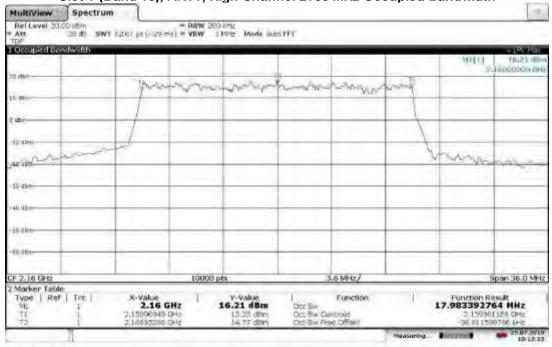
TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2120 MHz Occupied Bandwidth

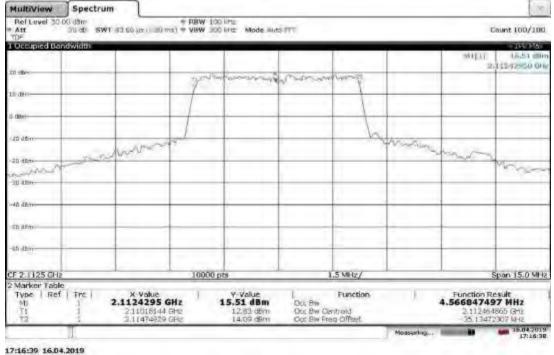


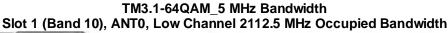

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

22:37:25 23.07.2619

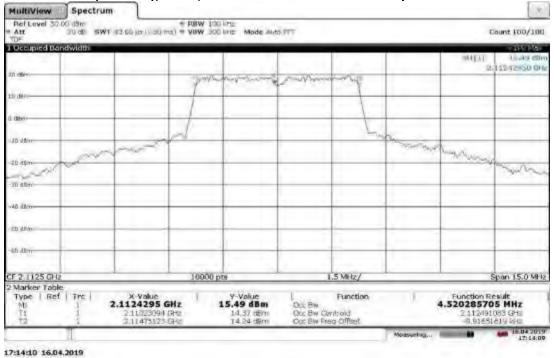
TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


22:34:37 23.07.2619


TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz Occupied Bandwidth

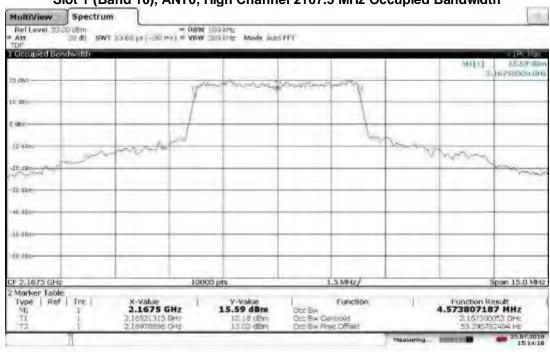

10:10:28 25.07.2019

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz Occupied Bandwidth



10:12:32 25.07.2019

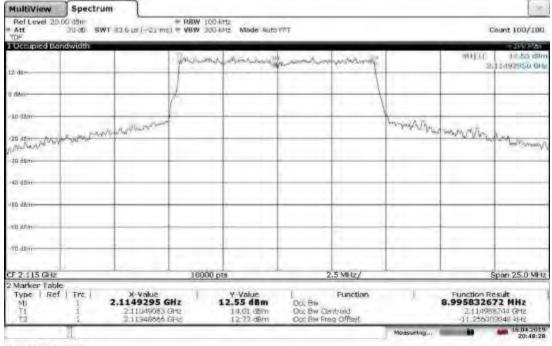
TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2112.5 MHz Occupied Bandwidth


TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

10:34:53 25.07.2019

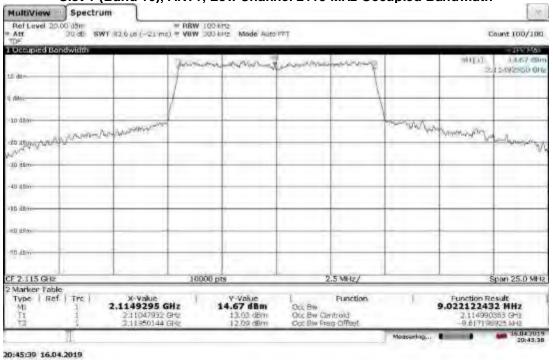
TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth

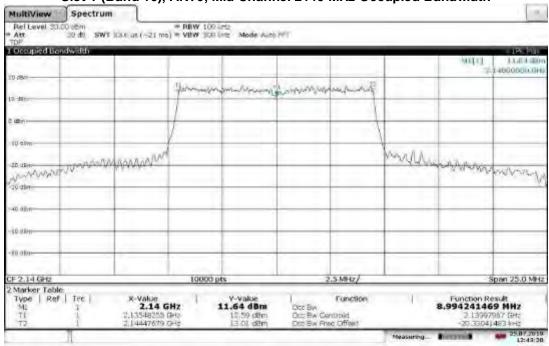
10:48:40 25.07.2019


TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz Occupied Bandwidth

15:14:19 25.07.2019

TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2167.5 MHz Occupied Bandwidth


15:18:24 25.07.2019



TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2115 MHz Occupied Bandwidth

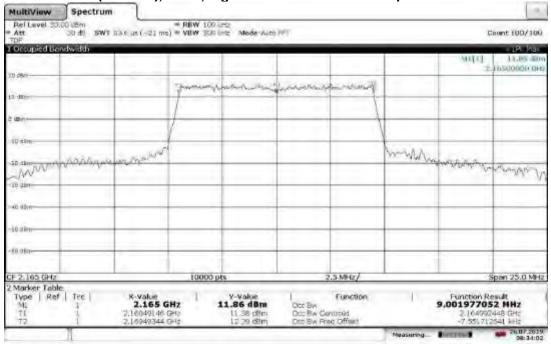
20:48:29 16.04.2019

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2115 MHz Occupied Bandwidth

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

12:43:21 25.07.2019

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


12:41:13 25.07.2019

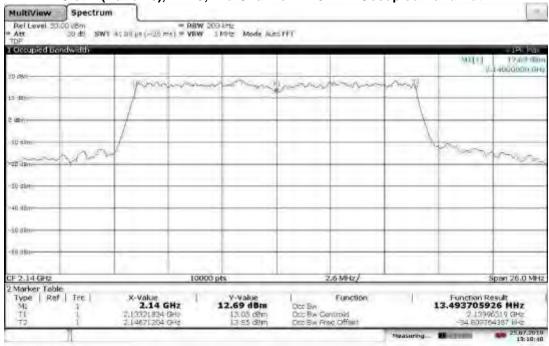
TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz Occupied Bandwidth

06:37:09 26.07.2019

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2165 MHz Occupied Bandwidth

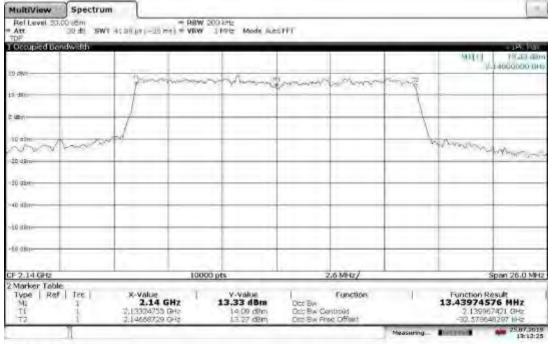
06:34:03 26.07.2019

Spectrum	1							1.65	
	67 LB (37 M			to FFT					
width	-							THE MAK	
				4				16-171 (8)	
	French	1 have	marian	form	and the second	- and	2) (750000 die	
	1			-		1	-		
	/			1.0		1 1			
	/		-	-		1			
	-			-		1			
							1 Acres	marth	
				-			-		
				-	-	-			
				-		1	-		
							-		
			_	-	-				
	_		_		-			_	
1	_	10000 j	ots		27 MHU/		1	span 27.0 MHz	
1001				1	4.000				
2 2.1175 2 2.1107465		2.1175 GHz 16.04 dBm 2.11074655 GHz 14.08 dBm		Occ Bik Occ Bik Cerittolia			Function Result 13.518053621 MHz 2.117505581 GHz 3.58(129979 kHz		
	ID AD SW1 62.	13m 10 40 SW1 62.67 Lb (-3) m W605 Trc X-Value 1 2.11076655	10 m * R8W 200 10 m SWT 62.67 Lb (~33 ms) * VBW 1 W605 10 m 10 m	20m * R8W 200 krts 10 dB SWT 62.67 lb (~35 Ms) * VBW 11442 Mode Ad W605 10 dB SWT 62.67 lb (~35 Ms) * VBW 11442 Mode Ad W605 10 dB SWT 62.67 lb (~35 Ms) * VBW 11442 Mode Ad 10 dB SWT 62.67 lb (~35 Ms) * VBW 11442	10 40 SWT 62.67 Lb (-53 Ms) * VBW 1145 Mode Arp FTT WEDN 10 40 SWT 62.67 Lb (-53 Ms) * VBW 1145 Mode Arp FTT WEDN 10 40 SWT 62.67 Lb (-53 Ms) * VBW 1145 Mode Arp FTT 10 4000 pts 2 Trc X-Value 2 2 11074 GHz 16.04 dBm Occ 5A 0 cc 5A 2 11074 GHz 16.04 dBm Occ 5A	SW1 62.67 IB (-53 Ms) * VBW I Met Mode Arp FTT WEBH	30m * R8W 200 kHz 10.40 SW1 62.67 Lb (~33 m) * VBW 1.4% Mode Arc HT WEM 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4	SWT 62.67 IB (-53 Mt) * VBW I Met Mode Arp FTT WEM	


TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz Occupied Bandwidth

10:21:55 18.07.2019

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2117.5 MHz Occupied Bandwidth

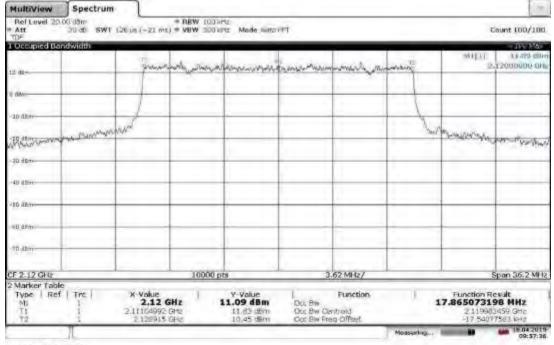

10:23:50 18:07.2019

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

13:10:41 25.07.2019

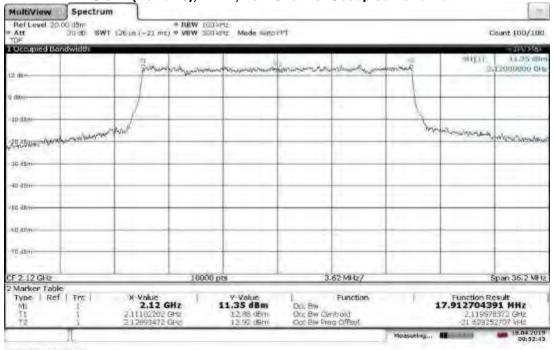
TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth

13:12:25 25.07.2019


TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz Occupied Bandwidth

09:37:37 26.07.2019

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2162.5 MHz Occupied Bandwidth

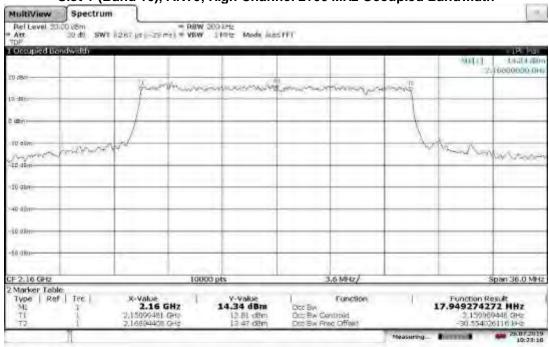

09:38:35 26.07.2019



TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel Occupied Bandwidth

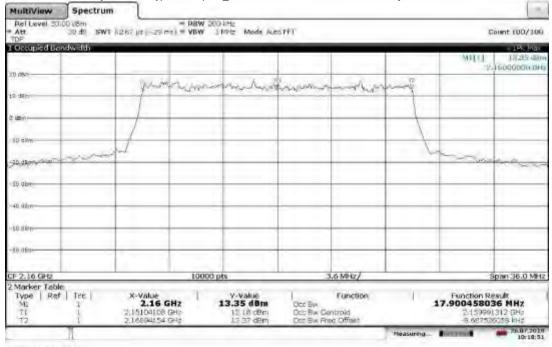
09:57:37 18.04.2019

TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel Occupied Bandwidth


TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

13:45:05 25.07.2019

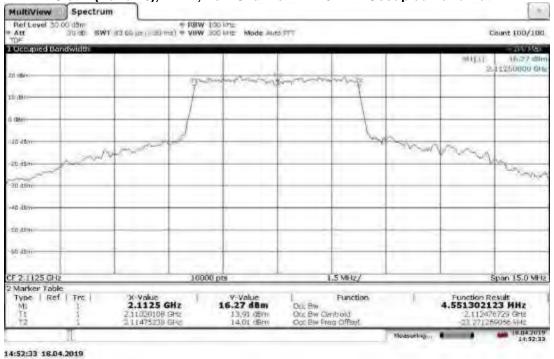
TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


13:47:53 25.07.2019

TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz Occupied Bandwidth

10:23:11 26.07.2019

TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz Occupied Bandwidth


10:18:52 26.07.2019

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2112.5 MHz Occupied Bandwidth

14:50:49 18.04.2019

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2112.5 MHz Occupied Bandwidth

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2112.5 MHz Occupied Bandwidth

12:44:39 26.07.2019

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2112.5 MHz Occupied Bandwidth

12:47:16 26.07.2019

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2167.5 MHz Occupied Bandwidth

13:20:38 26.07.2019

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2167.5 MHz Occupied Bandwidth

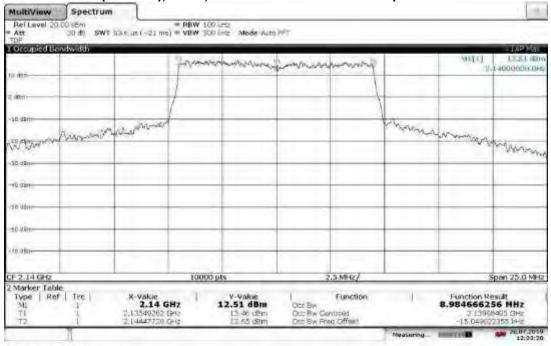

13:24:28 26.07.2019

TDF		83.6 Ln (-21 ms)							
1 Occupied Ban	dwicith							34 FAC	And 6 dite
			porter	Americany	marinaly	progenting .			12-19250 04
12 di-			1					-	
U dAvi-			1	-		1		-	
-10 dim-			-	-		-	lan	-	
120 10m W 10	-	K/N Summer		_			produced	-castring	000
hiputh in sa									and have the
-10 d‡m				-			1		
-40 d.5m				-					
-36 dim	_	-		-		-	-		
ell dim-				-			-		
10.45 m									
							1		
CF 2.115 GH2		4 4	16000	pts	2	.5 MHz/		5	pan 25.0 MHz
2 Marker Table	(the f					the second second		the second second	and the
Type Ref MD T1 T2	ief Trc. X-Value 1 2.1149295 GH 1 2.1136045 GH 1 2.11366785 GH		5 GH2 13.08 d8m		Occ Bw Occ Bw Occ Bw Centroid Occ Bw Free Offset		Function Result 8.967427591 MHz 2.114594141 GHz 15.859013751 642		

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel Occupied Bandwidth

11:37:50 19.04.2019

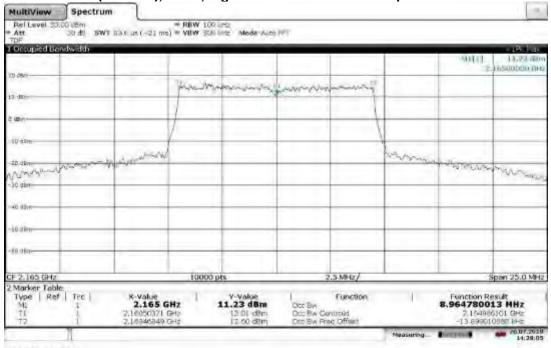
TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel Occupied Bandwidth



TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

12:20:57 26.07.2619

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth

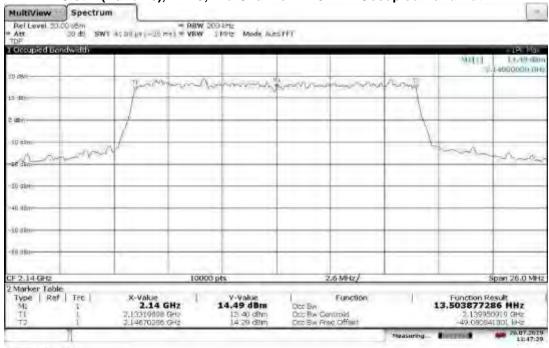

12:23:20 26.07.2019

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2165 MHz Occupied Bandwidth

14:30:00 26.07.2019

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2165 MHz Occupied Bandwidth

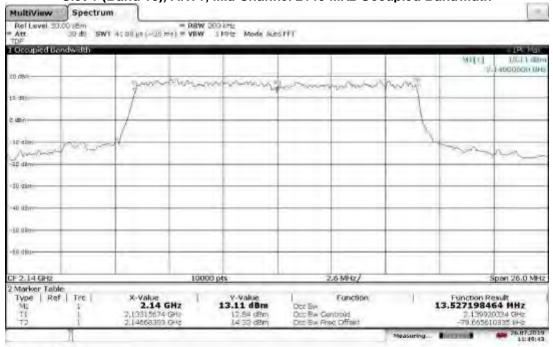
14:28:06 26.07.2019


MultiView	Spectrum								1.65
Ref Level 25. Att		12.67 LB (37	= RBW : ms) = VBW	1995 Mode Au	to FFT				
I Occupied Bar	ndwidth		-				-		1199-1436
10 08/				_				20111	LU-Q5 dBr
		2m	mour	winner	to summer	WHITTING	Ang	×) (/anoou die
To days			-	-					
1		1							
G ABET		1					1		
		1							
-10 35 11	10.000	1			-	-	- too	No. 0	
LANA	and and						1	- MA	man
ED SIM -						-		-	
	_								
-30 180	-		-		-	-	-	-	
-40 dam-	-				-				
			_				1		
-10 dbm				-		-		-	
-10 dbm	-		-					-	
10 (19)									
CF 2-1175 GHz		-	1000	0 pts		2.7 MHIL/			Span 27.0 MHz
2 Marker Table									
Type Ref MI	Tre	X-Value 2.1175	GHY	15.06 dBm	Oct Bill	Function		Function R 13.4448162	
Tt	a.	211076454		16.20 cBm	Oka Bie Co	entrolid			6948 GHz
12	1	-212420936	GHZ	14.99 dBm	Oct By Pt	sig Offsat		-13 05207	
	1						Mossuring	-	11:27:21

TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2117.5 MHz Occupied Bandwidth

11:27:21 18:07.2019

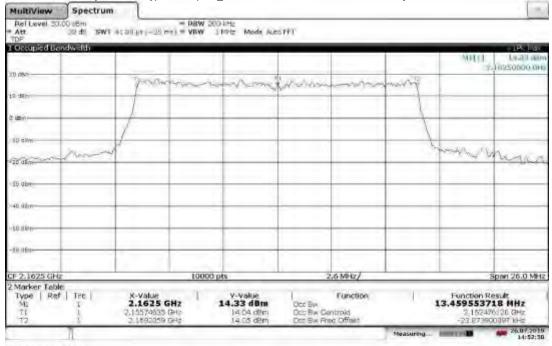
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band_10), ANT1, Low Channel 2117.5 MHz Occupied Bandwidth

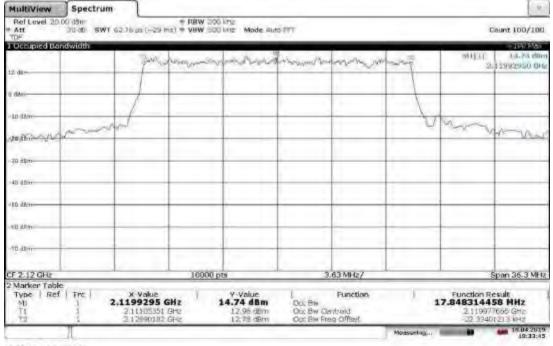

Att. TDF		92,67 LB (+37 M	ay a ron .	Mode A.r.	P.U.I.				
I Occupied Bar	ndwidth							V91(1)	- 16.71.08n
20 OB1		in most	marter	manner	trans	- may he	and the second		11750000 die
ra da e									-
a deserv					-				
10 Barn-		1					Jaco	Norski	200
20 clm	-2000-							1.1.0	with we
-30 (800									
40 dam-									
sta dbm								-	
10 dbm	-	_				-			
10 tim	_								
CF 2-11/5 GHz			10000 p	ts	2	/ MHU/		-	Span 27.0 MHz
Marker Table Type Ref ML T1 T2		X-Value 2.1175 G 2.11070665 2.12421176	GHz 12.91.dBm		Function Occ Bit Occ Bit Control of Occ Bit Prior Offset		Function Result 13.505109618 MHz 2.117459267 GHz 40.79342439 Mer		

TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

11:47:30 26.07.2019

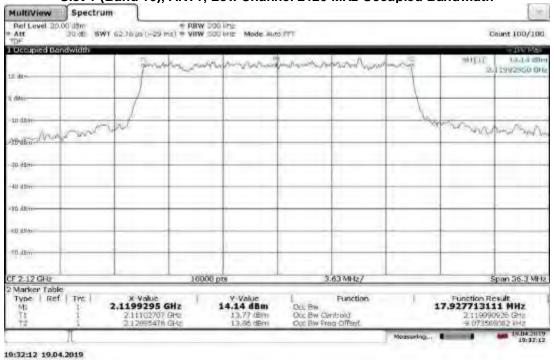
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth


11:40:43 26.07.2019


TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2162.5 MHz Occupied Bandwidth

14:49:58 26.07.2019

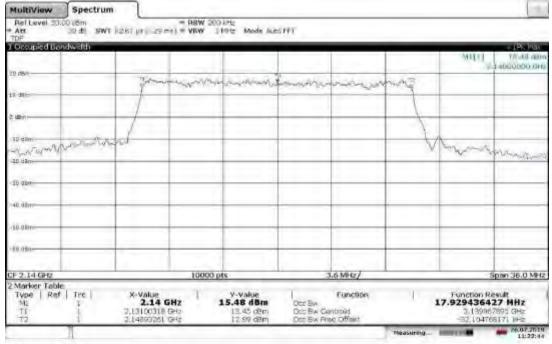
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2162.5 MHz Occupied Bandwidth


14:52:50 26.07.2019

TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 2120 MHz Occupied Bandwidth

19:33:45 19.04.2019

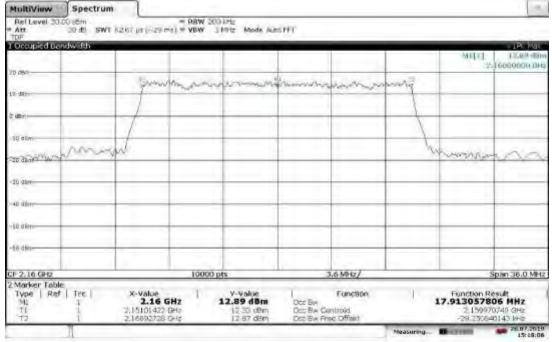
TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 2120 MHz Occupied Bandwidth



TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 2140 MHz Occupied Bandwidth

11:24:47 26.07.2619

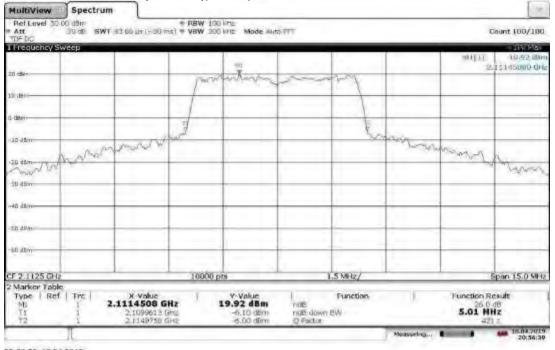
TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 2140 MHz Occupied Bandwidth

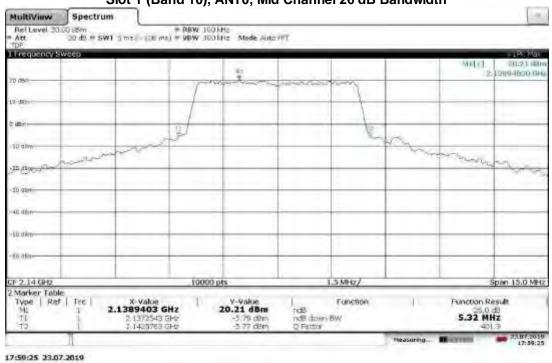

11:22:45 26.07.2019

TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 2160 MHz Occupied Bandwidth

15:11:12 26.07.2019

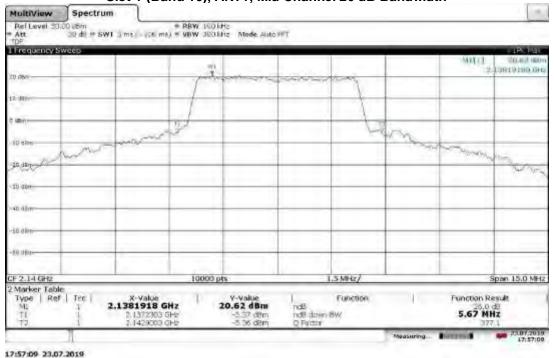
TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 2160 MHz Occupied Bandwidth


15:18:07 26.07.2019


TM1.1-QPSK 5 MHz Bandwidth Slot 1 (Band 10), ANTO, Low Channel 26 dB Bandwidth

20:53:55 10.04.2019

TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth



20:56:39 10.04.2019

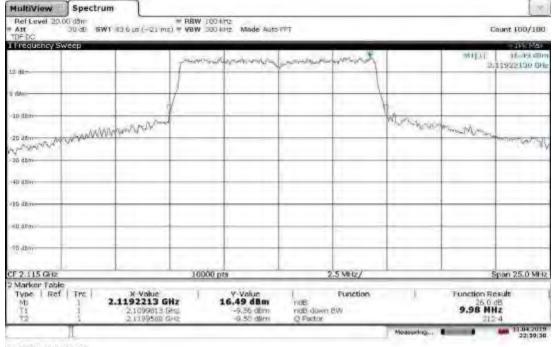
TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

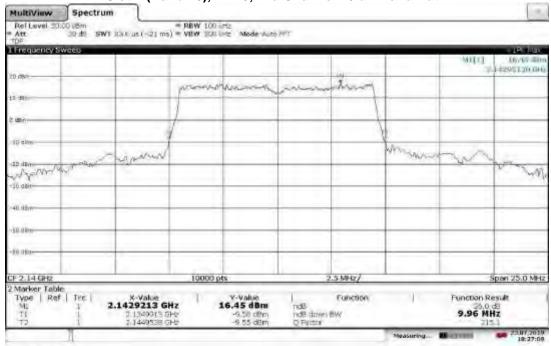
TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

19:57:47 23.07.2019

TM1.1-QPSK_5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth

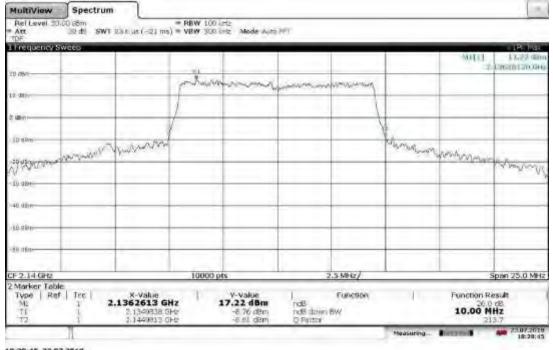

19:56:05 23.07.2019

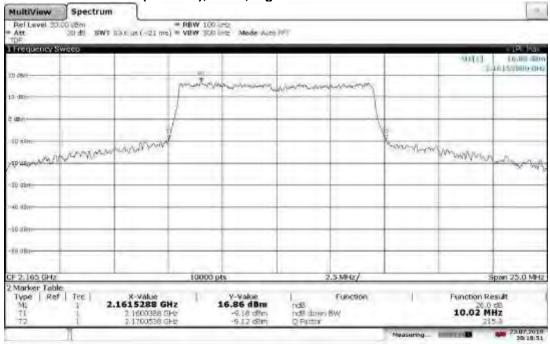
MultiView	Spectru			-, -					1.00
Ref Level 20.0 # Att TDF DC	0 dðm 30 do SW	1 83 6 LD (-21 MS)	# RBW 1004	ing Mode Auto	1991				iount 100/100
I Frequency Sw	eep								TIN MAN
			math		man	amining		attp: 2	16,57 cm 11188130 0H
12 di-			1				1		
U video-			1	-		-	1		
-10 dim-		hard	-	-	-	-	have		
125 45 m A AM	MANN'	water we have a					manuna	marthan	Withman
-30 d\$m-				-	-				
-40 dBm		-		-			-		
-10 dkm		-				-	-		
ni) al m		-					-	-	
-90 -Birr		-	_	-	-	-	-		
CF 2.115 GHz			10000 p	15	2	.5 MHz/		1	Span 25.0 MHz
2 Marker Table	Contract In	20.000		00.00		and the second second			2.4
Type Ref ML T1 T2	Tre	X-Value 2.1116613 GH 2.1100486 G 2.1199938 G	10	V-Value 16.57 dBm -9.43 dBm -9.44 dBm	ndB down Q Factor	Function		Function R/ 26.0 9.95 MI 213	dB Iz
	П.						Measuring		ILB42019


TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

23:01:12 11.04.2019

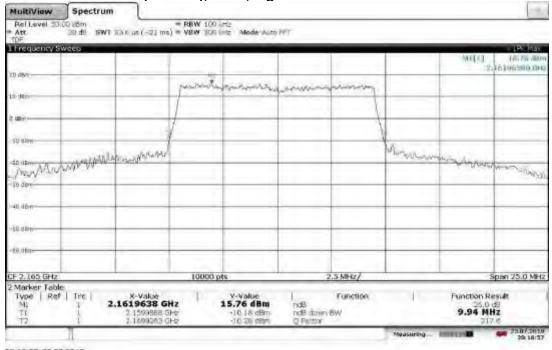
TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

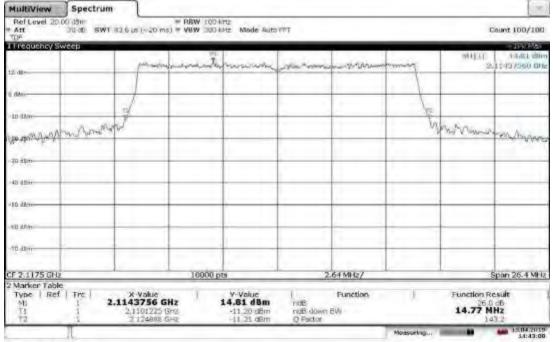

22:59:31 11.04.2019


TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

18:27:09 23.07.2019

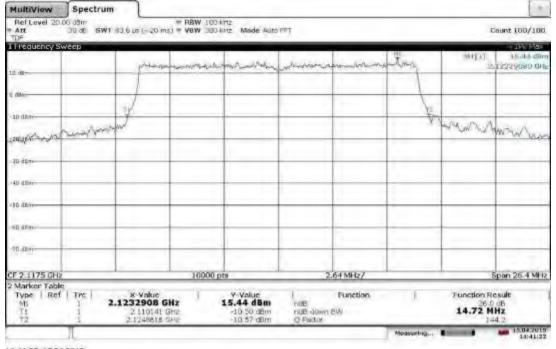
TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth


18:28:45 23.07.2019


TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

20:18:52 23.07.2019

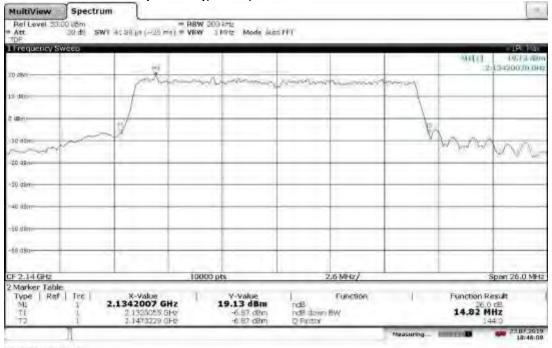
TM1.1-QPSK_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth

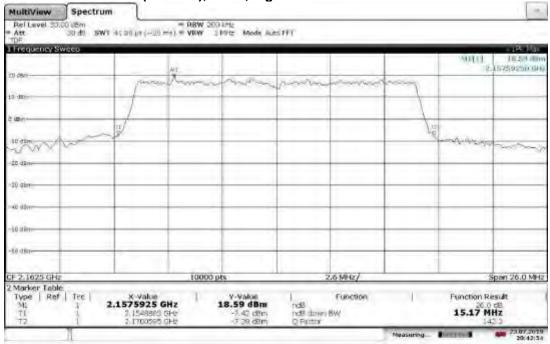

20:16:57 23.07.2019

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

14:43:00 15.04.2019

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

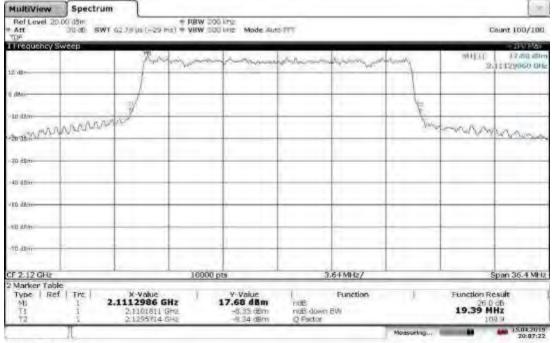

14:41:23 15.04.2019


TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

18:44:26 23.07.2019

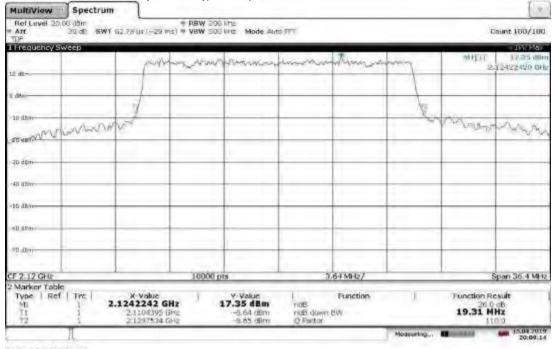
TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

18:46:10 23.07.2019


TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

20:42:54 23.07.2619

TM1.1-QPSK_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


20:40:51 23.07.2019

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

20:07:22 15.04.2019

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

20:09:15 15.04.2019

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

19:35:39 23.07.2019

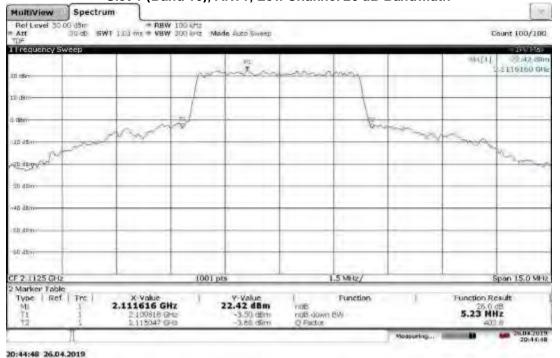
TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

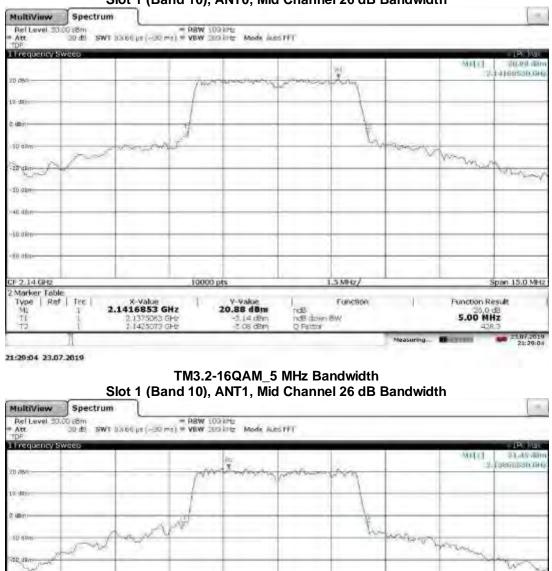
19:33:48 23.07.2619


TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

21:03:49 23.07.2019

TM1.1-QPSK_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


21:06:09 23.07.2019



TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

20:00:58 26.04.2019

TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

21:27:06 23.07.2019

Ref Ire

CF 2.14 GHz 2 Marker Table

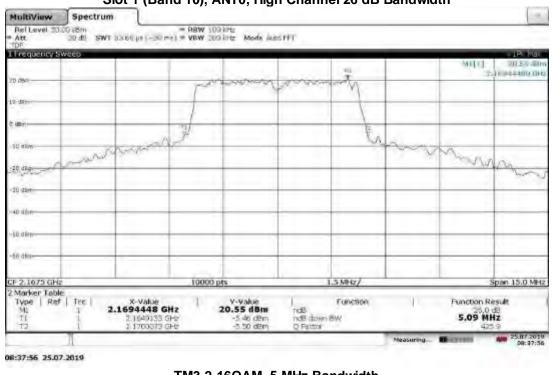
> Type Mi

X-Value 2.1386553 GHz

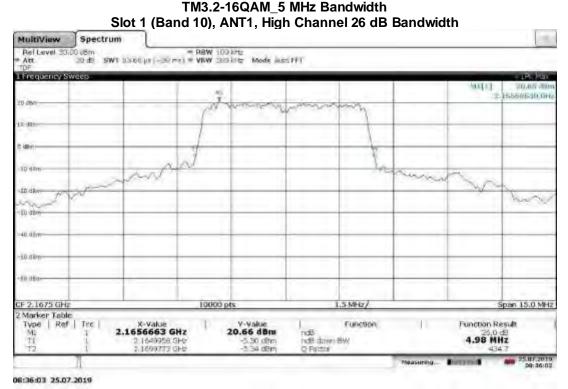
1373768 1425045 10000 pts

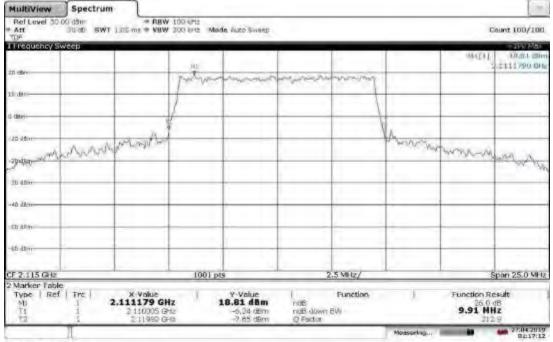
Y-Value 21.45 dBm

-4.56 dBr -4.56 dBr 1.5 MHz/


Function

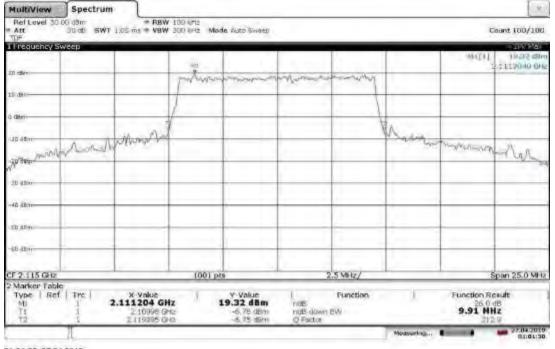
nd8nd8-tawn 8W O Restart Span 15.0 MHz


21:27:06


Function Result

5.13 MHz

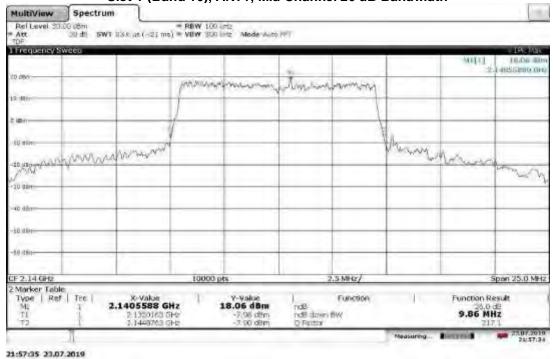
TM3.2-16QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth



TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

01:17:12 27.04.2019

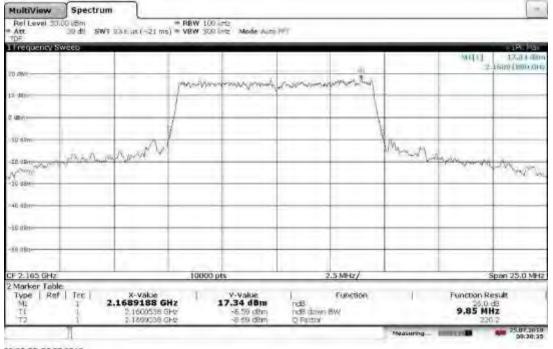
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth


01:01:30 27.04.2019

TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

21:55:51 23.07.2019

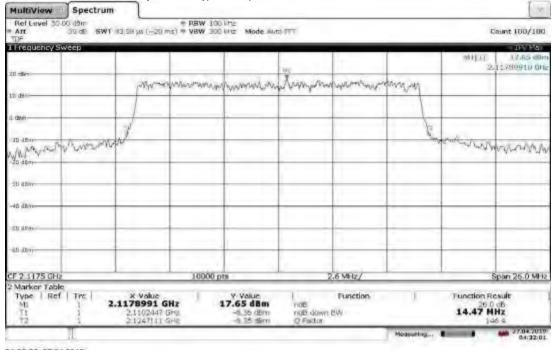
TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth



TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

09:22:18 25.07.2019

TM3.2-16QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


09:20:35 25.07.2019

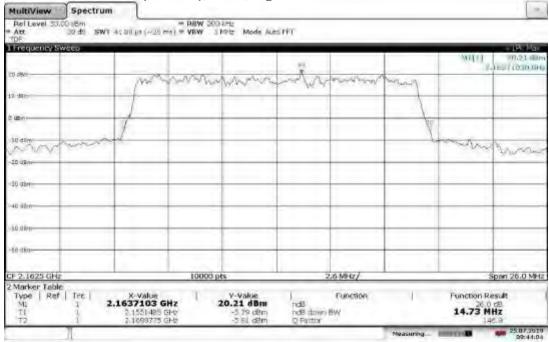
MultiView	Spectrum								1.00
RefLevel 30 # Att		13,58 µs (20 m	+ FBW 10 s) + VBW 10		1711 (2)			T	ount 100/100
Il requency S	weep		_		_				100200
		-		1		1	1	Tritte	17,95 dBm 12163970 GHz
20 384		4 100	1.00	1	1		1.10	-	1
10 million		Walnut	M.T. M. M.M.	My Marsha	to manufactor	annow have	a and the		
12 (80-		1		1			- 1		
4.000		1			_	-	1		
(1 diter)		1					F		
22.2.	1. 1.	a.F		1	100 C		E E	L	
A Magan	North March						1	the remains	man Am
- 20 dbm									
an star						1.1	1		
-30 45m						-			
				1	· · · · ·				
-40 dam-				-		-		-	
th dim						-	-	-	
1.0									
-65-Bm	-			-				-	
CF 2:1175 GH			10000	pts	-	2.6 MHz/			Span 26-0 MHz
2 Marker Tabl		22.27.97.1				the second second		-	
Type Ref	1 Trc 2.	X Value 1216197 G	Hz	Y-Value 17.95 dBm	TOE	Function		Function R 26.0	
11 12	1	2.1103045 6	9Hgz	-7.99 dbm	nuB down	EW		14.48 M	Hz
1.14	-	21247985-5	C %	-9.05 d9m	Q Faid(a		-		27.84.2019
	il.						Moasuning	-	04:20:22

TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

04:20:22 27.04.2019

TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

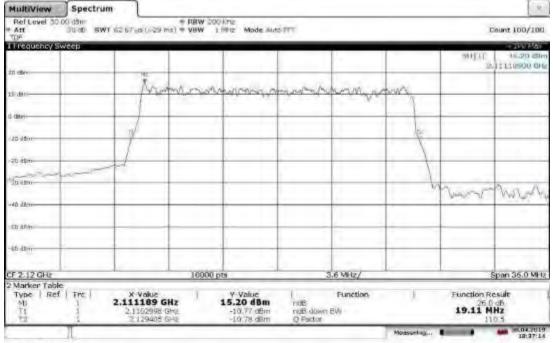
04:32:02 27.04.2019


TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

22:23:15 23.07.2619

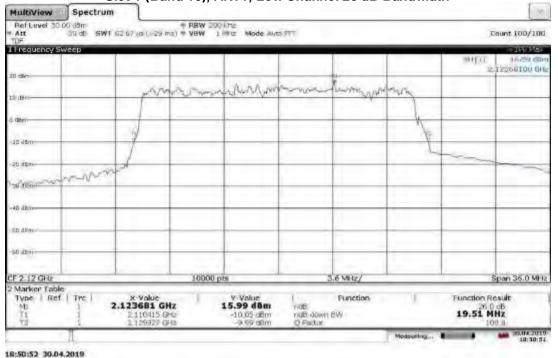
TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

22:21:26 23.07.2619


TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

09:44:04 25.07.2019

TM3.2-16QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


09:42:11 25.07.2019

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

18:37:15 30.04.2019

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

22:37:57 23.07.2019

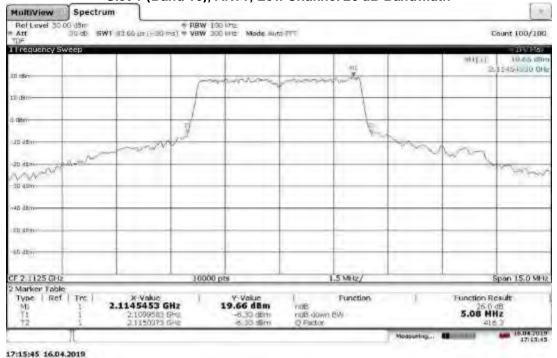
TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

22:36:18 23.07.2019

TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

10:11:22 25.07.2019

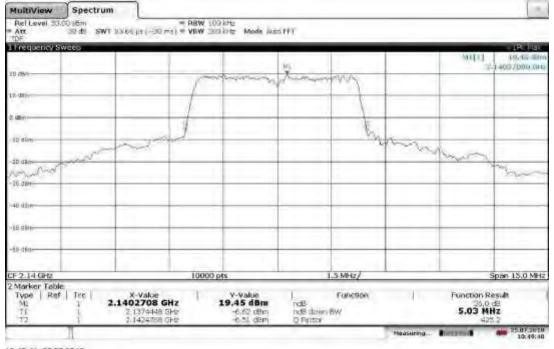
TM3.2-16QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


10:13:19 25.07.2619

TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

17:17:08 16.04.2019

TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth



TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

10:38:16 25.07.2019

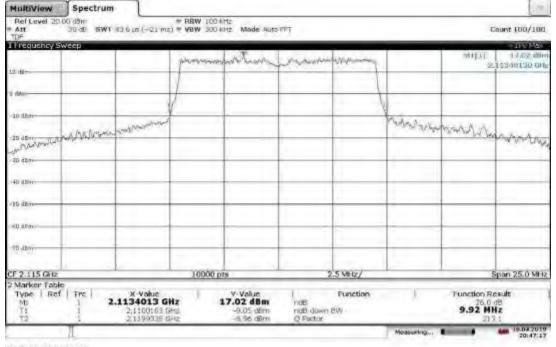
TM3.1-64QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

10:49:41 25.07.2019

TM3.1-64QAM 5 MHz Bandwidth Slot 1 (Band 10), ANTO, High Channel 26 dB Bandwidth

15:15:20 25.07.2019

TM3.1-64QAM 5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


15:19:31 25.07.2019

TOF Threquency Sw	AND .		-	-			_	_	TINFO
			Bell aller	frinter	andar	- Areau		3.Citize	16.82 dan
12 48-			1	the second	And an and an and and	and and		2	11/06/280 046
La det			1						
U rider			1			1			_
		1	(VI.		
-10 diam		1					V		· · · · · · · · · · · · · · · · · · ·
	112.4	ware count					two-whe		
20.35	1 gray My ar	Warran.			-		e cherte	Marias	March 1
anyments									and a high the
-10 dbm	_		_		-		-		
-48 450									
-10 dim		+ +		-			-		-
sti di m	-	-			-		-		
1. All 1.		1 1							
-90-JBm		1						-	
		1							
CF 2.115 GHz			10000 p	18	2	.5 Metz/	-		pan 25.0 MHz
2 Marker Table				200 200				2010/06154	0.00
Type Ref	The	2.1140888 GH	17	V-Value 16.82 dBm	ros	Function	- A	Function Re 26.0	
71	1	2.1100188 G		-9.18 dBm	noB down I	EW		9.90 MH	Z

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

20:49:06 16.04.2019

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

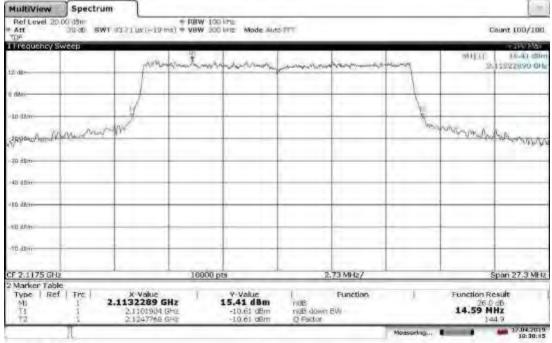

20:47:18 16.04.2019

TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

12:44:15 25.07.2019

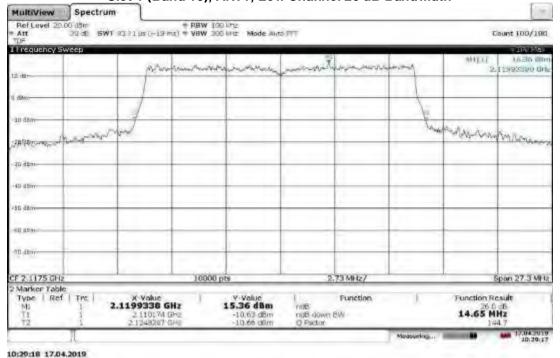
TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

12:42:15 25.07.2019


TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

06:38:11 26.07.2019

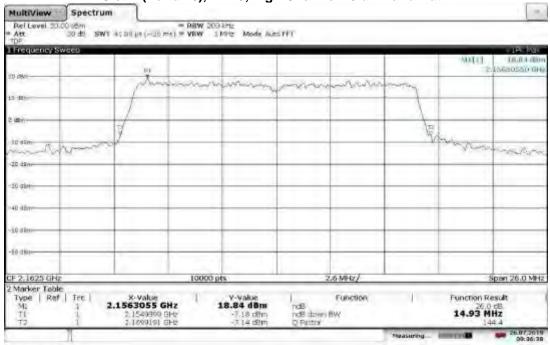
TM3.1-64QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


08:35:52 26.07.2619

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

10:30:45 17.04.2019

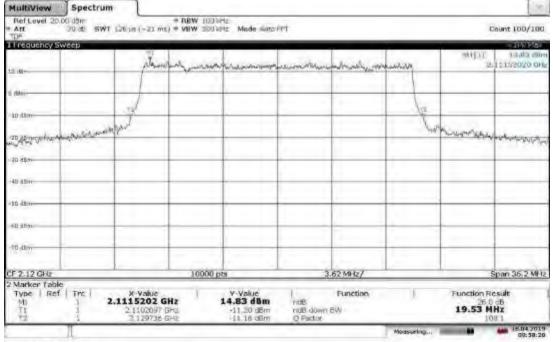
TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth


TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth,

13:11:24 25.07.2019

TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

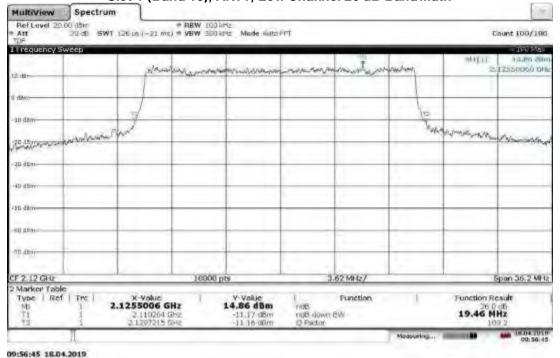

13:12:58 25.07.2619



TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

09:36:38 26.07.2019

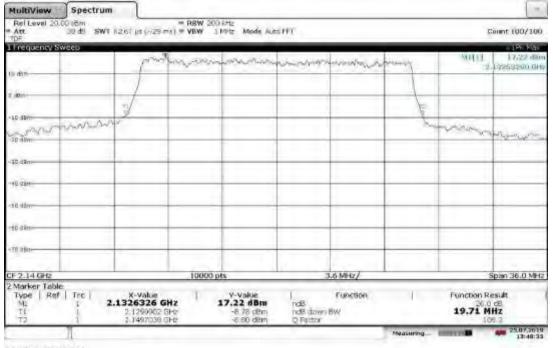
TM3.1-64QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth



TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

09:58:20 18.04.2019

TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

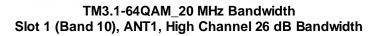


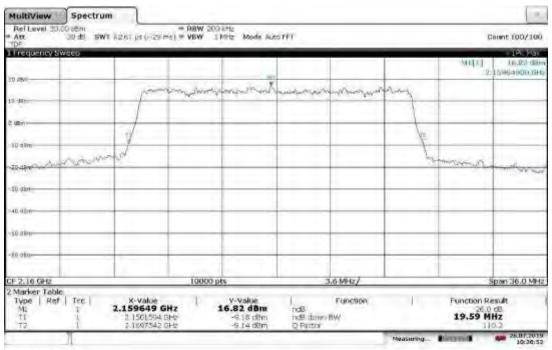
								- a.,
Rei Level 20.0	0.06m 30.45 \$7WT 1.2.67	+ RB	W 200 kHz W 1 MPtz Mode Au	to PFT			0	ount 100/100
TDF		PP-10-16-18	2 - See See 2	1010				
1 Frequency Sw	rees						LANK C.L.	17.19-mini
A		monthing	manning	Lowing	and in	planning .	witch .	13300700.0Hp
to den		1 1				1		10000 Million
		1				1		
a akter		<i>[</i>						
	71					12		
-10 dain-	1					1		
1.2	a west							10.0
Mager Var	M. Maria					18	-amin	- martin
inder a la				1	1			
-10 dam								
- 10 dbm								11
14 141					1			
50 100							-	
Carlo Martin								
-10 dim-								
20.000								
-10 080								1
cub dittie				1				
	1							1.
CF 2.14 GHz		10	000 pts	-	3.6 MHz/		2	span 36.0 MHz
2 Marker Table							-	
Type Ref		3007 GHz	17.19 dBm	ndB	Function		Function Ra 26.0	
TI		1300907 GHt-	-8.50 dBm	ndB down	BW		19.56 M	Hz
72		496354 GHz	-8.77 dBm	Q Factor	- V		10	
	1					Measuring	M-cremi	A 25.07.2019 13:46:40

TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

13:46:50 25.07.2019

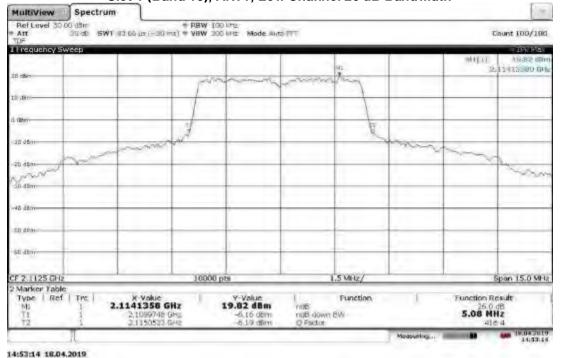
TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth




13:48:33 25.07.2019

TM3.1-64QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

10:25:04 26.07.2019


10:20:52 26.07.2019

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

14:51:46 18.04.2019

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

12:45:39 26.07.2019

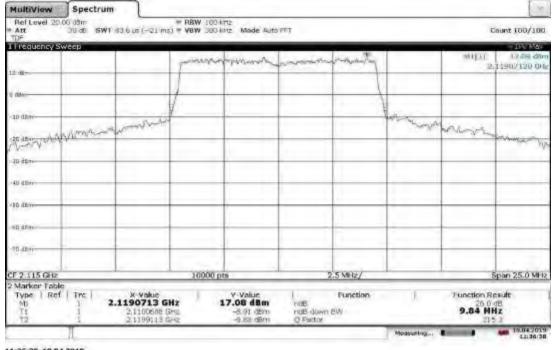
TM3.1a-256QAM_5 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth



TM3.1a-256QAM 5 MHz Bandwidth Slot 1 (Band 10), ANTO, High Channel 26 dB Bandwidth

13:22:46 26.07.2019

TM3.1a-256QAM 5 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


13:25:03 26.07.2019

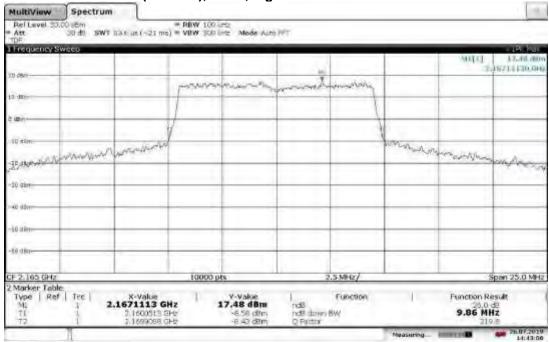
THE Thequency Sw	of the second seco								+D ^A VAL
I Frequency av	eep.		T	- manth		La Comercia		3.CHile	17.23 dam
			prover	for second and	anter an	hundrend			1:170380 GHz
12 40-			1			1		-	
6			1			1			
U (SAv-			t			1	1		
		4					B		
-10 dhm		1					1 march		
an an and		winning and					Vanandyru	call a com	
2D dBm	antific large							Junicha	mon
									~
-10 d\$m		1		1					
-40 4.5m									
10 dEm		+ +							
100 C									
ell dfm		-			-		-	-	
1000		1		1					
-90-Bm									
CF 2.115 GHz		1 1	10000 p	18	2	.5 MHz/	1	-	Span 25.0 MHz
2 Marker Table	Sec.			1					
Type Ref	Tre	X-Value	2 1 3	Y-Value	1 and	Function	1	Function Re	
A10	1 .	2.1117038 GH 2.1100568 GH		-8.61 dBm	note down			9.85 MH	015

TM3.1a-256QAM 10 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

11:36:32 19.04.2019

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

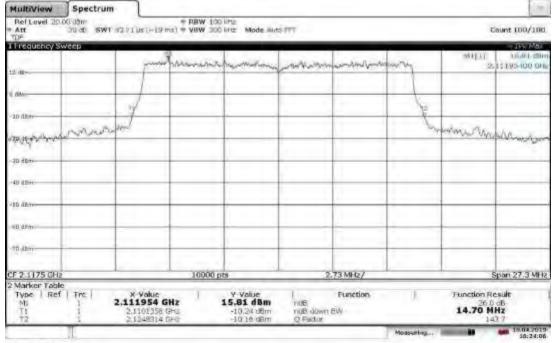
11:36:39 19.04.2019


TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

12:22:28 26.07.2019

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth

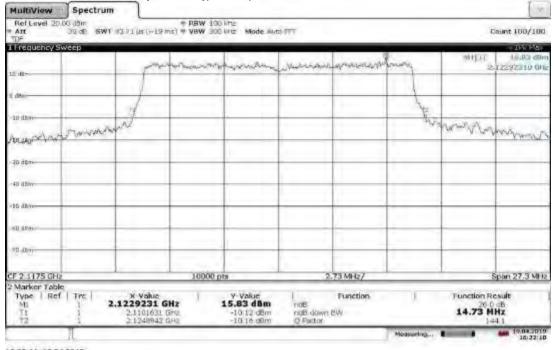
12:24:06 26.07.2019


TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

14:43:07 26.07.2019

TM3.1a-256QAM_10 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth

MultiView	Spectru	m							1.0
Ref Level 301 Att		T 63.6 (m) -21 mg	* RBW 30	of ketz 10 ketz - Made Auto	स्ल				
Frequeray Sv	veep								+ APR Mark
	1							MILII	16-19-00m Hears Troom rick
an april	-	-		2	1	- MI - W			
			proved	annound the	n-manh	month			
to day			1			1			
i der	1.000	-	1						
		1	1	1		1	6		
-10 35		+ 1					¥.		
		Normanny					Mark.	1.2.	
mannet	Ward	Aver			-	-	- Martin	Part - Part - Part	hunn
									West H
-10 d8 0		1							
-40 -80					-		_		
-20 3917									
miden					1				
						1	1		
	_	-			-		-		
CF 2.165 GHz		1	1000	Dots		2.5 MHz/		3	Span 25.0 MHz
2 Marker Table		autor.	1	and the	7			and the second	
Type Ref	Trc.	X-Value 2.1686188 Gi	4z	V-Value 16.43 dBm	nde	Function		Function R 36.0	
T1 T2	1	2,1600463 G	Hz	-9.58 dBm -9.56 dBm	ndB down C Factor	BW		9.86 MI	Hz
10	10	CURANDS N	142	9-30 (C hi)	A varian		1.0		26.97.2019
	10						filmenaring,.	a country	14.28.5


14:28:55 26.07.2019


TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

16:24:07 19.04.2019

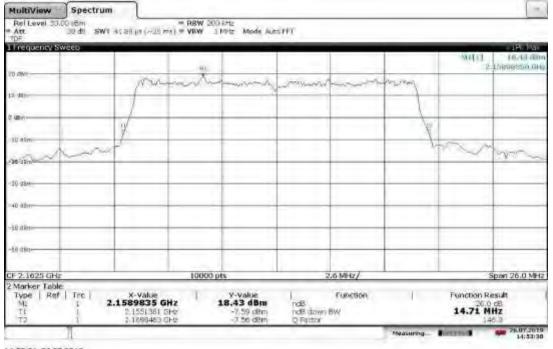
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth

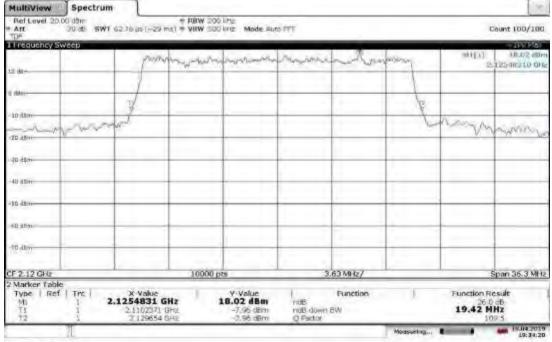
16:22:11 19.04.2019

TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

11:48:47 26.07.2019

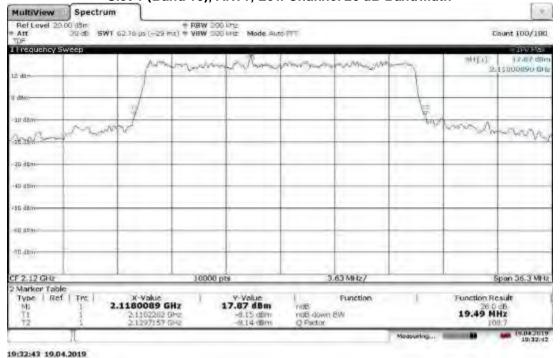
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth


11:50:22 26.07.2019


TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

14:51:44 26.07.2019

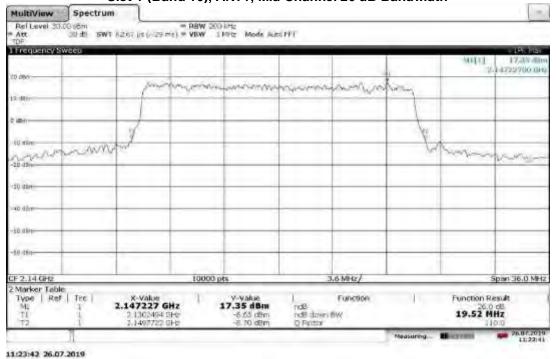
TM3.1a-256QAM_15 MHz Bandwidth Slot 1 (Band 10), ANT1, High Channel 26 dB Bandwidth


14:53:31 26.07.2019

TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Low Channel 26 dB Bandwidth

19:34:21 19.04.2019

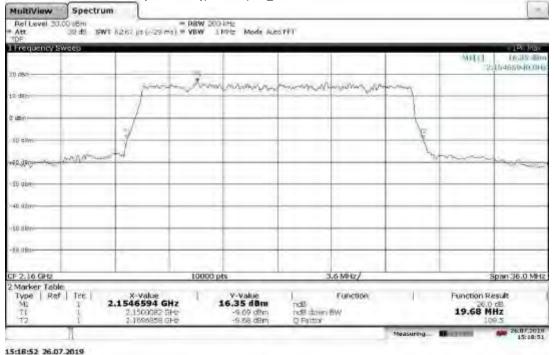
TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Low Channel 26 dB Bandwidth



TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, Mid Channel 26 dB Bandwidth

11:25:31 26.07.2019

TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT1, Mid Channel 26 dB Bandwidth



TM3.1a-256QAM_20 MHz Bandwidth Slot 1 (Band 10), ANT0, High Channel 26 dB Bandwidth

15:11:57 26.07.2019

		Intertek	
Report Number: 10	3866582BOX-24b		Issued: 08/14/2019
Test Personnel: Supervising/Reviewing Engineer:	Kouma Sinn 45	Test Date:	04/10/2019, 04/11/2019, 04/12/2019, 04/15/2019, 04/16/2019, 04/17/2019, 04/18/2019, 04/19/2019, 04/26/2019, 04/30/2019, 07/18/2019, 07/25/2019, 07/26/2019
(Where Applicable)			
Product Standard: Input Voltage:	FCC Part 27 48 VDC (POE)	Limit Applied:	See report section 8.3
		Ambient Temperature:	22, 23, 23, 23, 23, 22, 22, 22, 20, 22, 22, 22, 22 ℃
Pretest Verification w/ Ambient Signals or BB Source:	_N/A	Relative Humidity:	21, 15, 26, 47, 20, 22, 23, 47, 42, 35, 64, 52, 59 %
		Atmospheric Pressure:	1004, 1013, 1004, 980, 1001, 1011, 1014, 1000, 996, 1017, 1007, 1011, 1016 mbars