

Choose certainty. Add value.

Report On

RF Exposure Assessment of the Laerdal Medical AS Little Anne QCPR Sensor

FCC ID: QHQ-120-60750 IC: 20263-12060750

Document 75931051 Report 07 Issue 1

August 2015

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <u>www.tuv-sud.co.uk</u>

REPORT ON

RF Exposure Assessment of the Laerdal Medical AS Little Anne QCPR Sensor

Document 75931051 Report 07 Issue 1

August 2015

PREPARED FOR

PREPARED BY

APPROVED BY

Laerdal Medical AS Tanke Svilandsgt.30 4002 Stavanger Norway

Merly

Ryan Henley Project Manager

Mark Jenkins Authorised Signatory

DATED

20 August 2015

Document 75931051 Report 07 Issue 1

CONTENTS

Section

Page No

1	REPORT SUMMARY	3
1.1	Introduction	4
1.2	Regional Requirements	5
1.3	Product Information	6
1.3.1	Technical Description	6
1.3.2	Supported Features	6
1.3.3	Antennas	6
1.4	Brief Summary of Results	7
2	TEST DETAILS	B
2.1 2.2	Rationale for Assessment of the RF Exposure Test Result Details	9 0
3	DISCLAIMERS AND COPYRIGHT1	1
3.1	Disclaimers and Copyright1	2

SECTION 1

REPORT SUMMARY

RF Exposure Assessment of the Laerdal Medical AS Little Anne QCPR Sensor

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the RF Exposure Assessment of the Laerdal Medical AS Little Anne QCPR Sensor to the requirements of the applied test specifications.

Objective	To perform RF Exposure Assessment to determine the Equipment Under Test's (EUT's) compliance of the applied rules.
Applicant	Laerdal Medical AS
Manufacturer	Laerdal Medical AS
Manufacturing Description	The purpose of the Little Anne QCPR Sensor is to provide the user with objective measurements and quality feedback on CPR when training on Little Anne. The feedback will be presented to the user on a smartphone application (Ref. URS-1022)
Hardware Version	REV A Prototype
Model Number(s)	Little Anne QCPR Sensor
Test Specification/Issue/Date	EN 62311:2008 CFR 47 Pt1.1310 Health Canada Safety Code 6 ARPANSA Radiation Protection Series No.3

1.2 REGIONAL REQUIREMENTS

The table below shows the regional requirements that are referenced in this test report. A full list of the requirements is shown in Annex A.

Report Reference	Regional Requirement
EU	EN 62311:2008
FCC	CFR 47 Pt1.1310
IC	Health Canada Safety Code 6
AUS	ARPANSA Radiation Protection Series No.3

1.3 PRODUCT INFORMATION

1.3.1 Technical Description

The Equipment under test was a Laerdal Medical AS Little Anne QCPR Sensor The purpose of the Little Anne QCPR Sensor is to provide the user with objective measurements and quality feedback on CPR when training on Little Anne. The feedback will be presented to the user on a smartphone application (Ref. URS-1022). A full technical description can be found in the manufacturer's documentation.

All reported calculations were carried out on the relevant information supplied for the Little Anne QCPR Sensor to demonstrate compliance with the applied test specification(s). The sample assessed was found to comply with the requirements of the applied rules.

1.3.2 Supported Features

The following radio access technologies and frequency bands are supported by the equipment under test.

Radio Access Technology	Bluetooth Low Energy
Frequency Band	2402 MHz to 2480 MHz

1.3.3 Antennas

The following antennas are supported by the equipment under test.

No.	Model	Gain (dBi)
1	Internal	0

1.4 BRIEF SUMMARY OF RESULTS

The wireless device described within this report has been shown to be capable of compliance with the basic restrictions related to human exposure to electromagnetic fields for both General Public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specification(s).

Required Compliance Boundary (m)				
Occupational	General Population			
0.01	0.01			

Table 1 – Compliance Boundary Results

Regional	Calculated RF exposure level at compliance boundary of 0.01 m							
Requirement	S Field (W/m ²)		E Field (V/m)		H Field (A/m)			
	Result	Limit	Result	Limit	Result	Limit		
ICNIRP	0.7958	50.0000	17.3205	137.0000	0.0459	0.3630		
FCC*	0.0796	5.0000	N/A	N/A	N/A	N/A		
RSS	0.7958	31.6361	17.3205	109.2114	0.0459	0.2897		
ARPANSA	0.7958	50.0000	17.3205	137.0000	0.0459	0.3640		

* Requirement and Result in mW/cm²

Table 2 – Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.01 m.

Regional	Calculated RF exposure level at compliance boundary of 0.01 m							
Requirement	S Field (W/m ²)		E Field (V/m)		H Field (A/m)			
	Result	Limit	Result	Limit	Result	Limit		
ICNIRP	0.7958	10.0000	17.3205	61.0000	0.0459	0.1620		
FCC*	0.0796	1.0000	N/A	N/A	N/A	N/A		
RSS	0.7958	5.3508	17.3205	44.9105	0.0459	0.1191		
ARPANSA	0.7958	10.0000	17.3205	61.4000	0.0459	0.1630		

* Requirement and Result in mW/cm²

Table 3 – General Population Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.01 m.

SECTION 2

TEST DETAILS

2.1 RATIONALE FOR ASSESSMENT OF THE RF EXPOSURE

The aim of the assessment report is to evaluate the compliance boundary for a set of given input power(s) according to the basic restrictions (directly or indirectly via compliance with reference levels) related to human exposure to radio frequency electromagnetic fields. The chosen assessment method to establish the compliance boundary in the far-field region is the reference method as defined in the relevant specifications.

The RF exposure assessment is based upon the following criteria:

The Little Anne QCPR Sensor The purpose of the Little Anne QCPR Sensor is to provide the user with objective measurements and quality feedback on CPR when training on Little Anne. The feedback will be presented to the user on a smartphone application (Ref. URS-1022) operates with the following transmitters active on the antenna ports shown in Section 1.3.3. For each transmitter, the Radio Access Technology (RAT), EIRP inclusive of antenna gain and duty cycle, gain of the antenna and lowest frequency of operation are shown as they contribute to the calculation of S Field, E field and H field values according to the following formulas.

The power flux (S Field):

$$S = \frac{PG_{(\theta,\phi)}}{4\pi r^2}$$

The electric field strength (E Field):

$$E = \frac{\sqrt{30PG}}{r} (\theta, \phi)$$

The magnetic field strength (H Field):

$$H=\frac{E}{\eta_{\circ}}$$

Where:

P = Average Power (W) G = Antenna Gain (dBi) r = Distance (cm) or (m) $\eta_o = 377$

2.2 TEST RESULT DETAILS

The frequencies shown in the tables below have been chosen based on the lowest possible frequency that the EUT can transmit.

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	Frequency (MHz)	RF Exposure boundary of	e Level at com 0.01 m	pliance
								S Field	E Field	H Field
1	1	1	Bluetooth Low Energy	0.001	100	0	2402	0.7958	17.3205	0.0459

Table 4 – Occupational Transmitter Summary

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	Frequency (MHz)	RF Exposure boundary of	e Level at com 0.01 m	pliance
								S Field	E Field	H Field
1	1	1	Bluetooth Low Energy	0.001	100	0	2402	0.7958	17.3205	0.0459

Table 5 – General Population Transmitter Summary

SECTION 3

DISCLAIMERS AND COPYRIGHT

3.1 DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2015 TÜV SÜD Product Service

ANNEX A

REGIONAL REQUIREMENTS

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.065 - 1	-	610/f	1.6/f
1 - 10	-	610/f	1.6/f
10 - 400	10	61	0.162
400 - 2000	f/40	3*f^0.5	0.00796*f^0.5
2000 - 300000	50	137	0.363

Table A.1 – EN 62311:2008 Occupational Limits

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.003 - 0.15	-	87	5
0.15 - 1	-	87/f	0.73/f
1 - 10	-	87/f^0.5	0.73/f
10 - 400	2	27	0.071
400 - 2000	f/200	1.375*f^0.5	0.00364*f^0.5
2000 - 300000	10	61	0.162

Table A.2 – EN 62311:2008 General Population Limits

Frequency Range (MHz)	S Field (mW/cm ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	900/f^2	1842/f	4.89/f
30 - 300	1	61.4	0.163
300 - 1500	f/300	-	-
1500 - 100000	5	-	-

Table A.3 – CFR 47 Pt1.1310 Occupational Limits

Frequency Range (MHz)	S Field (mW/cm ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	180/f^2	824/f	2.19/f
30 - 300	0.2	27.5	0.073
300 - 1500	f/1500	-	-
1500 - 100000	1	-	-

Table A.4 – CFR 47 Pt1.1310 General Population Limits

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	10	61.4	0.163
20 - 48	44.72/f^0.5	129.8/f^0.25	0.3444/f^0.25
48 - 100	6.455	49.33	0.1309
100 - 6000	0.6455*f^0.5	15.60*f^0.25	0.04138*f^0.25
6000 - 150000	50	137	0.364

Table A.5 – Health Canada Safety Code 6 Occupational Limits

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	2	27.46	0.0728
20 - 48	8.944/f^0.5	58.07/f^0.25	0.1540/f^0.25
48 - 300	1.291	22.06	0.05852
300 - 6000	0.02619*f^0.6834	3.142*f^0.3417	0.008335*f^0.3417
6000 - 15000	10	61.4	0.163

Table A.6 – Health Canada Safe	y Code 6 General Po	pulation Limits
--------------------------------	---------------------	-----------------

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.1 - 1	-	614	1.63/f
1 - 10	1000/f^2	614	1.63/f
10 - 400	10	61.4	0.163
400 - 2000	f/40	3.07*f^0.5	0.00814*f^0.5
2000 - 300000	50	137	0.364

Table A.7 – ARPANS	A Radiation	Protection	Series	No.3	Occupational	Limits
--------------------	-------------	------------	--------	------	--------------	--------

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.1 - 0.15	-	86.8	4.86
0.15 - 1	-	86.8	0.729/f
1 - 10	-	86.8/f^0.5	0.729/f
10 - 400	2	27.4	0.0729
400 - 2000	f/200	1.37*f^0.5	0.00364*f^0.5
2000 - 300000	10	61.4	0.163

Table A.8 – ARPANSA Radiation Protection Series No.3 General Population Limits