

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

Test Report Serial No:
RFI/SARE2/RP49232JD03A

Supersedes Test Report Serial No:
RFI/SARE1/RP49232JD03A

**This Test Report Is Issued Under The Authority
Of Michael Derby, Wireless Radio Performance Service Leader:**

Tested By: Richelieu Quoi

Checked By: Michael Derby

Report Copy No: PDF01

Issue Date: 22 June 2007

Test Dates: 25 May 2007 to 29 May 2007

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

This page has been left intentionally blank.

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

Table of Contents

1. Customer Information	4
2. Equipment Under Test (EUT).....	5
3. Test Specification, Methods and Procedures	10
4. Deviations from the Test Specification	10
5. Operation and Configuration of the EUT during Testing.....	11
6. Summary of Test Results.....	12
7. Measurements, Examinations and Derived Results.....	13
8. Measurement Uncertainty.....	16
Appendix 2. Measurement Methods	21
Appendix 3. SAR Distribution Scans	23
Appendix 5. Validation of System	46
Appendix 6. Simulated Tissues	47
Appendix 7. DASY4 System Details.....	48

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

1. Customer Information

Company Name:	TAGSYS SAS
Address:	180 Chemin Saint Lambert 13821 La Penne sur Huveaune Huveaune France
Contact Name:	Mr F DAnnunzio

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

2. Equipment Under Test (EUT)

The following information (with the exception of the date of receipt) has been supplied by the customer:

2.1. Description of EUT

The equipment under test is a hand held RFID WiFi Library Inventory Reader.

WiFi Inventory Reader with its dedicated LW2 antenna operates at medium range 13.56 MHz.
The EUT product compatibility standards for wireless local area network (WLAN) are based on the IEEC 802.11b specification.

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

2.2. Identification of Equipment Under Test (EUT)

Description:	RFID Handheld library Inventory Reader with Connection to Remote Host PC or PDA
Brand Name:	Tagsys RFID™
Model Name or Number:	WiFi Inventory Reader
Serial Number:	E0715010B0
Type Number:	SE12142B0
Device ID:	00000000-00000000-00409DFF-FF2C1028
MAC Address:	00:40:9D:2C:10:28
Firmware:	2.4.0.0 (Version 8200097_G 05/03/2006)
Boot Version:	1.1.3 (Release – 82000942_E1)
Post Version:	1.1.3 (Release – 82000941_G)
DSP Firmware Release:	LF12039 (Medio P101 Library)
FCC ID Number:	QHKWIFILIBINVREAD
Country of Manufacture:	France
Date of Receipt:	22 May 2007

Description:	Library Wand Antenna
Brand Name:	Tagsys RFID™
Model Name or Number:	LW2
Type Number:	SE12143A0
Serial Number:	E0715030A0
Country of Manufacture:	France
Date of Receipt:	22 May 2007

2.3. Modifications Incorporated in the EUT

During the course of testing the EUT was not modified.

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

2.4. Accessories

The following accessory was attached to the EUT during testing:

Description:	Belt Clip
Brand Name:	Tagsys RFID™
Model Name or Number:	Not Applicable
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Connected to Port:	Belt Clip

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Laptop
Brand Name:	Dell
Model Name or Number:	PP18L
Serial Number:	RF621 A01
Cable Length and Type:	54.5 cm, LAN Cable
Connected to Port:	LAN Port (To Router)

Description:	Wireless Firewall Router
Brand Name:	Netgear
Model Name or Number:	WGT624
Serial Number:	15W35A7606AB2
Cable Length and Type:	54.5 cm, LAN Cable
Connected to Port:	LAN Port and Antenna Port

Description:	Support Test Software
Brand Name:	Tagsys RFID™
Model Name or Number:	PX Explorer V1.5.7
Serial Number:	LF11533
Cable Length and Type:	Not Applicable
Connected to Port:	Not Applicable

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

2.6. Additional Information Related to Testing

Equipment Category	WiFi RFID (RLAN Wideband)		
Type of Unit	Portable (Standalone battery powered device)		
Intended Operating Environment:	Within WiFi and RFID coverage		
Transmitter Maximum Output Power Characteristics:	WiFi 2450 MHz	16 dBm	
Transmitter Maximum Measured Output Power:	WiFi 2450 MHz	18.1 dBm	
Transmitter Frequency Range:	WiFi 2450 MHz	2412 MHz to 2462 MHz	
	RFID	13.56 MHz	
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	1	Low	2412
	7	Middle	2442
	11	High	2462
Modulation(s):	0 Hz		
Modulation Scheme (Crest Factor):	1		
Antenna Type:	WiFi: Internal		
Antenna Length:	WiFi: Unknown		
Number of Antenna Positions:	1 Fixed		
Power Supply Requirement:	Internal Battery Supply of 13.38 V DC as measured		
Battery Type(s):	Lithium-ion		

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

EN 62209-1: 2006

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

4. Deviations from the Test Specification

At the customer's request the EUT was tested in the body worn configuration only.

The maximum transmit power of the EUT was set to 16 dBm. This power level is set as default by the module manufacturer.

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

WiFi Data Allocated continuous transmit test mode with RFID active.

The reason for choosing this configuration was that it has been defined by the customer as being typical of normal use and likely to be worst case.

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

Standalone Battery powered with RFID Library Wand Antenna LW2 attached in the Body-worn configuration on the flat section of the 'SAM' phantom with a separation distance of 0mm.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the handset was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater than 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

6. Summary of Test Results

Test Name	Specification Reference	Compliance Status
Specific Absorption Rate (SAR) WiFi – Body Configuration	OET Bulletin 65 Supplement C:(2001-01)	Complied

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ, UK.

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

7.2. Test Results

7.2.1. Specific Absorption Rate – WiFi – Body Configuration

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.073

Environmental Conditions:

Temperature Variation in Lab (°C):	24 to 25
Temperature Variation in Liquid (°C):	24 to 24

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	7	0.058	1.600	1.542	1	Complied
Rear of EUT Facing Phantom	Flat (SAM)	7	0.073	1.600	1.528	1	Complied
Rear of EUT Facing Phantom With Belt Clip	Flat (SAM)	7	0.040	1.600	1.560	1	Complied

Note(s):

1. SAR measurement was performed with the EUT at a separation distance of 0 mm from the 'SAM' phantom flat section.

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

7.2.2. EIRP Measurement

Channel	Frequency (MHz)	TX Power before Test (dBm)
1	2412	15.7
7	2442	16.1
11	2462	18.1

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate Uncertainty at 2450 MHz Body 1g, WiFi Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528.	95%	±19.33%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

Measurement Uncertainty (Continued)

8.0.1. WiFi2450MHz – Body Configuration

**Specific Absorption Rate Uncertainty at 2450 MHz Body 1g, WiFi Modulation Scheme
calculated in accordance with IEC 62209-1 & IEEE 1528**

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (1g)	Standard Uncertainty		u _i or u _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.800	11.800	normal (k=2)	2.0000	1.0000	5.900	5.900	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	2.920	2.920	normal (k=1)	1.0000	1.0000	2.920	2.920	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	3.930	3.930	normal (k=1)	1.0000	0.6400	2.515	2.515	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	3.940	3.940	normal (k=1)	1.0000	0.6000	2.364	2.364	5
Combined standard uncertainty				t-distribution			9.86	9.86	>400
Expanded uncertainty				k = 1.96			19.33	19.33	>400

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	0
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None	Calibrated as part of system	0
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	0
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360 072	Calibrated before use	0
A1234	DAE for SAR	Schmid & Partner	DAE3	450	14 Jul 2006	12
A1322	D2450V2	Schmid & Partner Engineering AG	D2450V2	725	17 Jan 2007	24
A1378	EX3DV3	Schmid & Partner	EX3DV3	3508	20 Apr 2007	12
A1410	DC-4.0GHz 3dB	Omni Spectra	FSC 16179	20510-3	Calibrated as part of system	0
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	0
A1566	SAM Phantom	SPEAG	002	002	Calibrated before use	0
A215	20 dB Attenuator to 4GHz 20W	Narda	766-20	9402	Calibrated as part of system	0
C1144	155 mm UTIFLEX Cable	Rosenberger MICRO-COAX	FA147AF0015 03030	41842-1	Calibrated as part of system	0
C1145	300 mm UTIFLEX Cable	Rosenberger MICRO-COAX	FA147AF0030 03030	41843-1	Calibrated as part of system	0
C1146	3 m UTIFLEX Cable	Rosenberger MICRO-COAX	FA147AF0300 03030	41752-1	Calibrated as part of system	0
G051	10 MHz to 20.1 GHz	Gigatronics	7100/01-20	749472	06 Nov 2006	12

**Test of: TAGSYS SAS
WiFi Inventory Reader**

To: OET Bulletin 65 Supplement C : 2001-01

Test Equipment Used (Continued)

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (months)
G0528	Robot Power Supply	Schmid & Partner	DASY	None	Calibrated before use	0
G087	Dual 35V 10A	Thurlby Thandar	CPX200	100701	Calibration not required	-
M010	NRV Power Meter	Rohde & Schwarz	NRV	882 317/065	19 Jun 2006	12
M025	Fluke 87 Multimeter	Fluke	87	473 50093	20 Jun 2006	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172 406	19 Sep 2006	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	0
M1069	Power Head	Rohde & Schwarz	NRV-Z2	838824/0 10	19 Apr 2007	12
M1129	URY-Z2	Rohde & Schwarz	URY-Z2	890242/1 6	Calibrated as part of system	0
M136	4 Display Digital Version	RS Components	None	None	19 Apr 2007	12
S256	SAR Laboratory	RFI	N/A	N/A	Calibrated before use	0

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

Test of: TAGSYS SAS
WiFi Inventory Reader

To: OET Bulletin 65 Supplement C : 2001-01

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

A1378

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: EX3-3508_Nov06

CALIBRATION CERTIFICATE

Object EX3DV3 - SN.3508

Calibration procedure(s)
QA CAL-01 v5
Calibration procedure for dosimetric E-field probes

Calibration date: November 16, 2006

Condition of the calibrated item In Tolerance

CAL DUE
16/11/07

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	
Approved by:	Niels Kuster	Quality Manager	

Issued: November 17, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Federal Office of Metrology and Accreditation
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TS	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConF	sensitivity in TS / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORM x,y,z :** Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E²-field uncertainty inside TS (see below *ConvF*).
- NORM(f) $x,y,z = NORMx,y,z * frequency_response$**
 (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z:** DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TS corresponds to NORM $x,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV3 SN:3508

November 16, 2006

Probe EX3DV3

SN:3508

Manufactured:	December 19, 2003
Last calibrated:	March 18, 2006
Recalibrated:	November 16, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV3 SN:3508

Sensitivity in Free Space^A

NormX	0.780 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	0.640 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	0.610 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^B

DCP X	95 mV
DCP Y	96 mV
DCP Z	97 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

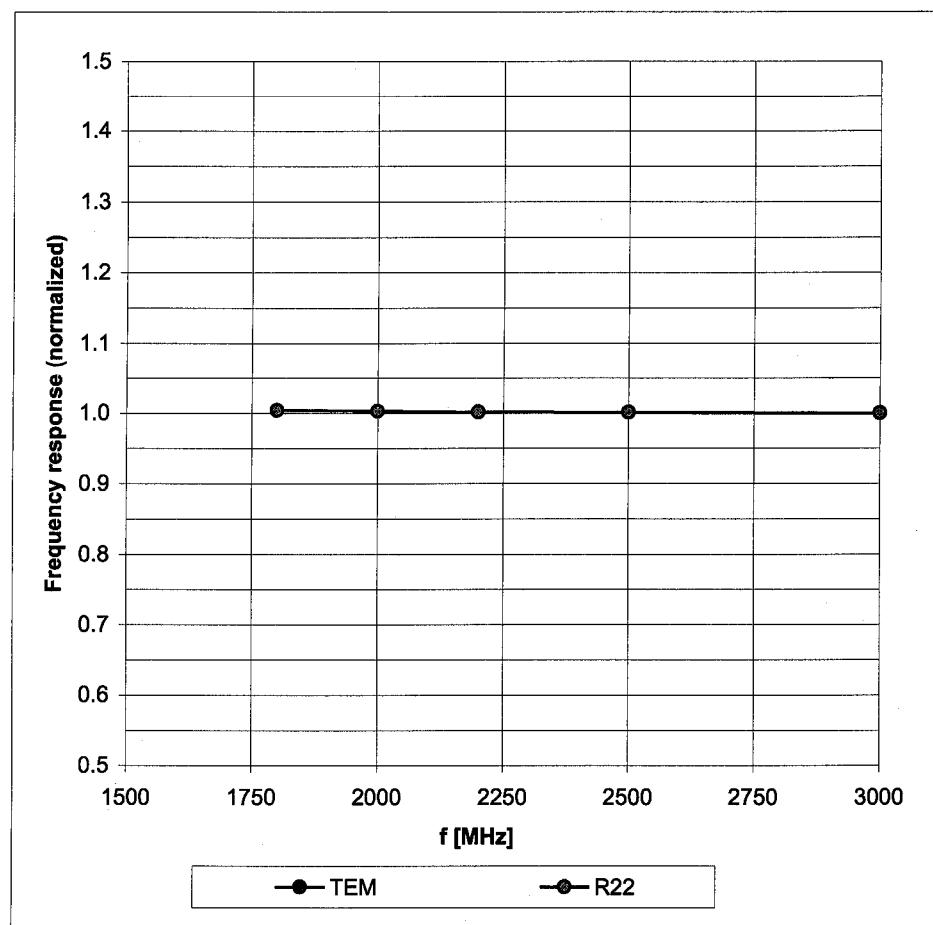
Boundary Effect

TSL **2450 MHz** Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	2.6	1.0
SAR _{be} [%] With Correction Algorithm	0.2	0.4

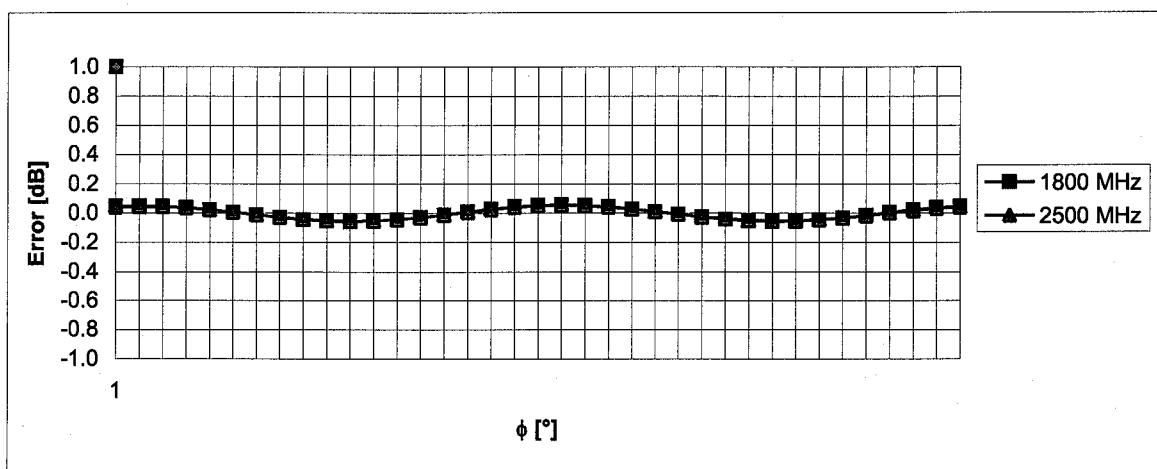
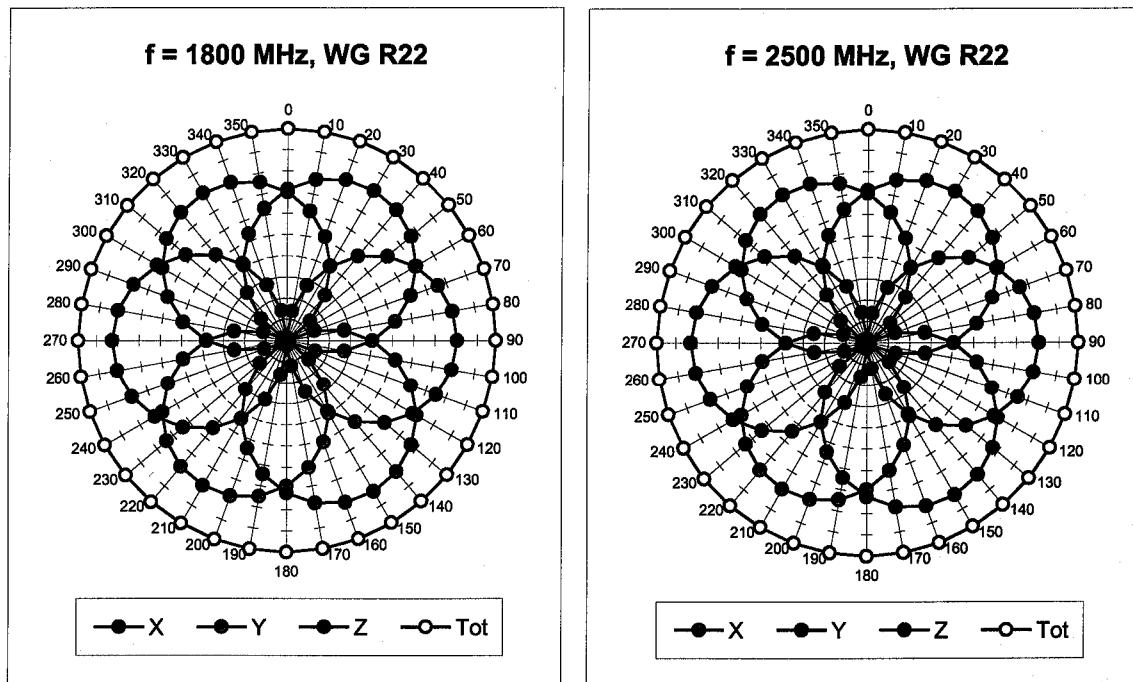
Sensor Offset

Probe Tip to Sensor Center **1.0 mm**


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

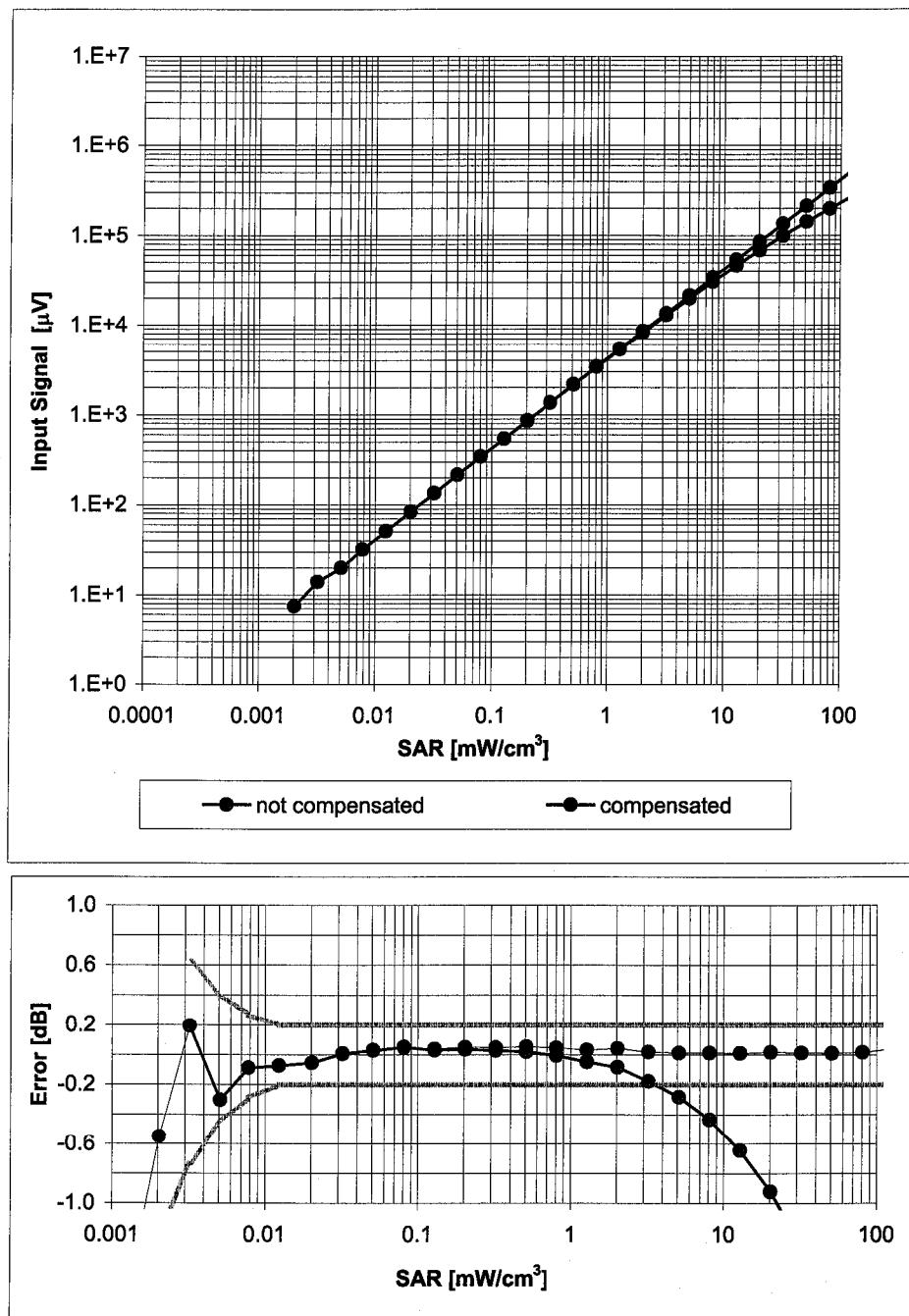
^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

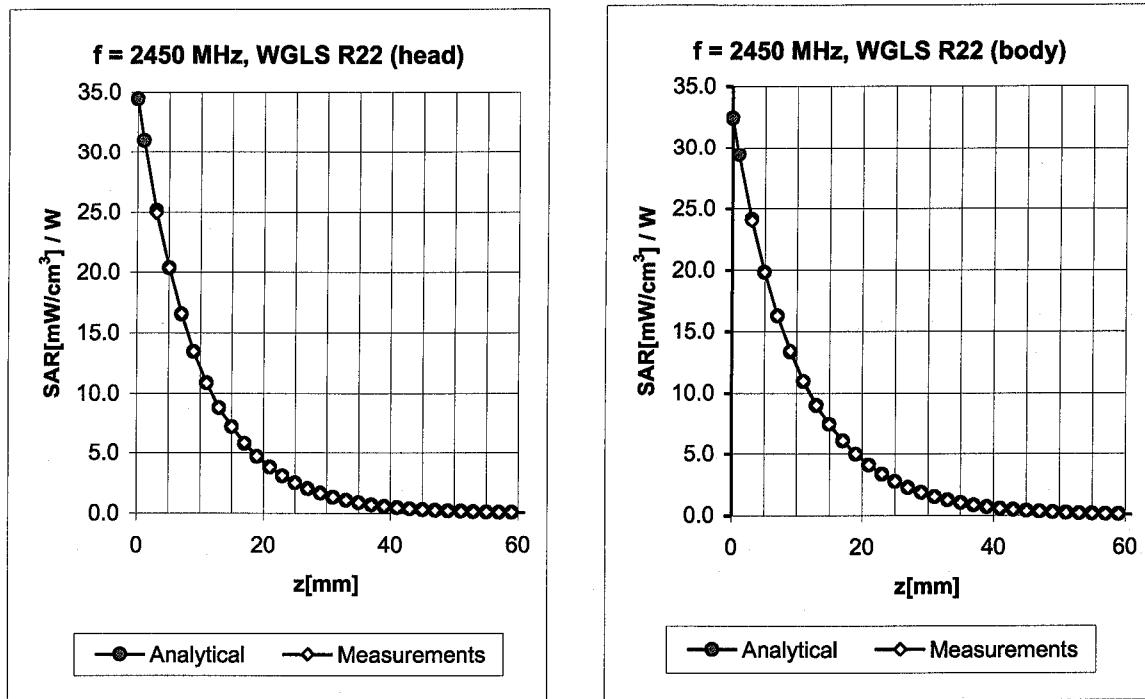


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)


Receiving Pattern (ϕ), $\vartheta = 0^\circ$

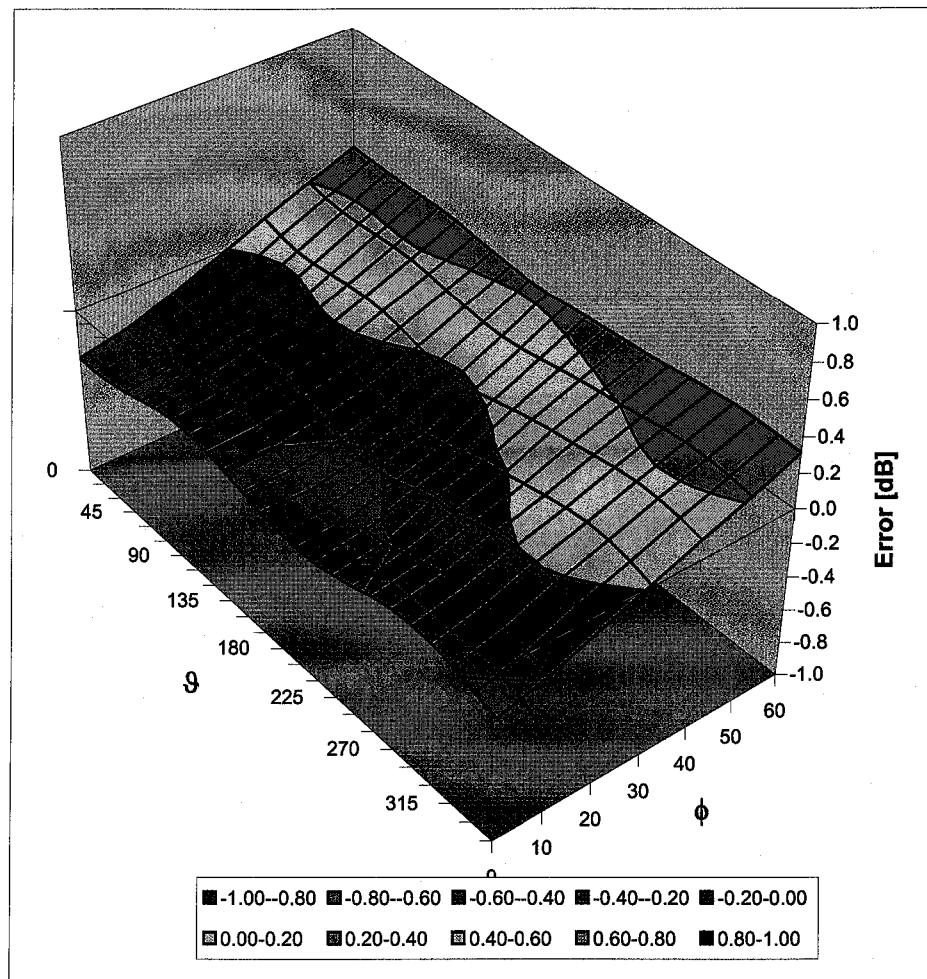
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)


Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.33	1.00	8.00	$\pm 11.8\% (k=2)$
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.33	1.00	7.89	$\pm 11.8\% (k=2)$
2600	$\pm 50 / \pm 100$	Body	$52.5 \pm 5\%$	$2.16 \pm 5\%$	0.29	1.00	7.76	$\pm 11.8\% (k=2)$

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

NM
24/01/07

A1322

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client RFI

Certificate No: D2450V2-725_Jan07

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 725

Calibration procedure(s) QA CAL-05.v6
Calibration procedure for dipole validation kits

Calibration date: January 17, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference Probe ES3DV2	SN 3025	19-Oct-06 (SPEAG, No. ES3-3025_Oct06)	Oct-07
DAE4	SN: 907	20-Jul-06 (SPEAG, No. DAE4-907_Jul06)	Jul-07
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06

Calibrated by:	Name	Function	Signature
	Mike Meili	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 18, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- **Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- **Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- **Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- **Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- **SAR measured:** SAR measured at the stated antenna input power.
- **SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- **SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	$2450 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	38.0 \pm 6 %	1.79 mho/m \pm 6 %
Head TSL temperature during test	(22.3 \pm 0.2) °C	-----	-----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.5 mW / g
SAR normalized	normalized to 1W	54.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	53.3 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.26 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	24.8 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.2 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature during test	(22.1 ± 0.2) °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.6 mW / g
SAR normalized	normalized to 1W	54.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	53.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.21 mW / g
SAR normalized	normalized to 1W	24.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.4 \Omega + 7.7 j\Omega$
Return Loss	- 22.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.8 \Omega + 7.7 j\Omega$
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 16, 2002