



# Actions Mesures

Z.I. des Blanchisseries – 38500 VOIRON – France – Tél. +33 (0)4 76 65 76 50 – Fax +33 (0)4 76 66 18 30

## EMC TEST REPORT

**Nr 2758-FCC**

This test report applies only on equipment described hereafter.

Proposal number: 200211-2096 & 200210-2058

Date.....: November 27<sup>th</sup>, 2002

Location .....: SMEE **Actions Mesures** Laboratory - 38 VOIRON

Performed by .....: Jacques LORQUIN

Customer .....: **TAGSYS S.A. (M. D'ANNUNZIO)**  
180, Chemin de Saint Lambert  
13821 La PENNE SUR HUVEAUNE  
FRANCE

Product.....: **Conveyor Antenna with 120x470 Antennas**

Type of test .....: **Radiated and Conducted Emission Test**

Applied standards .....: ANSI C63-4 (1992+2000)  
47 CFR Part 15 Subpart C

**Result of tests.....:** Radiated Emission : Comply  
Conducted Emission : Comply

The reproduction of this test report is authorized only under its entire form. This report contents 17 pages.

Written by .....: Jacques LORQUIN

Approved by .....: Jacques LORQUIN



FCCID : QHKCONVYRANT

## CONVEYOR ANTENNA WITH 120X470 ANTENNAS

### 1. System test configuration

#### 1.1. Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). Antennas are connected to MEDIO-L100, which was connected to a Personnel computer. It has been tested with PC HP Vectra VLi8.

#### 1.2. HARDWARE IDENTIFICATION:

\* Equipment under test (EUT): Conveyor antenna      sn:proto      FCCID: QHKCONVYRANT

- **2x antennas 120x470**      sn: none
  - Input/output: 1x I/O BNC connector
  - Size: 140x140x10mm
  
- **MEDIO-L100 pn: SE10120A0 sn: M029010009**
  - Input/output:
    - \* 1x serial connector (DB9)
    - \* 1x parallel connector
    - \* Ch1 BNC antenna connector
    - \* Ch2 BNC antenna connector
    - \* Syn IN/OUT BNC connector
    - \* I/O ports (1,2,3,4, gnd, Vin, Vout, gnd)
    - \* Power supply
  
  - Size: 250x300x75mm
  - Frequencies: Crystal 32.768 kHz and 14.7456 MHz  
Oscillator 27.12MHz; (no clock or signal higher than 108 MHz)  
Bit rate: 9600bauds.
  - Output power: Ch1 & Ch2: 2W.



FCCID : QHKCONVYRANT

### 1.3. *Auxiliaries*

The FCC IDs for all equipment, more description of all cables used in the tested system are:

| <b>Trade Mark - Model Number<br/>(Serial number)</b>        | <b>FCC ID</b> | <b>Description</b> | <b>Cable description</b>                                         |
|-------------------------------------------------------------|---------------|--------------------|------------------------------------------------------------------|
| Tag 210<br>(sn: none)                                       | None          | Smart label        |                                                                  |
| HEWLETT PACKARD Vectra VLi8<br>(sn:FR94020451)              |               | Personal computer  | All data cables are shielded<br>Power cable unshielded.          |
| HEWLETT PACKARD pn:D2846<br>(sn: JP74001000)                | Doc of Conf   | Monitor            | Power cable unshielded.<br>Video cable with ferrite at each end. |
| HEWLETT PACKARD pn:C4734-60111<br>(sn: M971168931)          | GYUR38SK      | Keyboard           | Shielded cable                                                   |
| HEWLETT PACKARD pn:C4736-60101<br>(sn: LZA93024031)         | JNZ201213     | Mouse              | Shielded cable                                                   |
| HEWLETT PACKARD pn:C6410A <sup>①</sup><br>(sn: LMY9761915T) | Doc of Conf   | Parallel printer   | Shielded cable                                                   |
| Labtec pn: D8387A<br>(sn: none)                             | none          | headset            | Shielded cable                                                   |
| Telex<br>(sn: 700 3è3.000A)                                 | none          | microphone         | Shielded cable                                                   |
| Tagsys model: none<br>(sn: none)                            | None          | Signal box         |                                                                  |

<sup>①</sup>: Equipment used for radiated test.



FCCID : QHKCONVYRANT

①

#### ***1.4. Equipment modifications***

No equipment modification has been necessary during testing to achieve compliance to FCC part 15 Subpart C requirements. The unit tested was representative to a production unit.

#### ***1.5. EUT exercise software***

The EUT exercise program used during radiated and conducted testing was designed to exercise the conveyor antenna in a manner similar to a typical use:

- On laptop: Hyperterminal.exe, running under Windows 95
- On MEDIO-L100: fcc2\_210.hex [read I/O port, set the power on two channels at  $\pi$  phase shift, read tag's number and send it to laptop via RS232 serial link (9600bauds)]

#### ***1.6. Special accessories***

The serial interfaces cables and antenna cable (coaxial) with 6 ferrites set near MEDIO-L100 connector, used for compliance testing is shielded as normally supplied. All these cables are normally recommended to be used with the product.

#### ***1.7. I/O cables***

- ✓ 3x Standard power cords Length: 1.8m (PC, monitor and MEDIO-L100);
- ✓ 1x serial cable #174-8545 (Shielded cable, length: 3m);
- ✓ 2x Coaxial cables with 6 ferrites (length: 3m) provided with conveyor antenna;
- ✓ 1x cable with 3 wires (Shielded cable, length: 3m).
- ✓ 1x USB cable (length: 1m)
- ✓ 1x video cable shielded with ferrite at each end (length: 1.8)
- ✓ 1x parallel cable shielded HP#C2950A (length: 2m) used for radiated test.



FCCID : QHKCONVYRANT

## 2. Radiated emission data

### 2.1. SET-UP

The MEDIO-L100 and PC are placed on a non-conducting table of 80cm height. A smart label is set on the conveyor antenna.



#### Equipment configuration and running mode:

- The MEDIO-L100 is plug on serial connectors;
- The MEDIO-L100 is powered by 230V/50Hz;
- The signal box is connected on I/O ports
- RF Power output of MEDIO-L100: Ch1=2W & Ch2=2W;
- Antennas are connected to the Ch1 & CH2 of the MEDIO-L100;
- PC and EUT are ON;
- software is running;

The installation of EUT is identical for pre-characterization measurement in a 3 meters full anechoic chamber and for measures on a 10 meters Open site.



FCCID : QHKCONVYRANT

## 2.2. TEST EQUIPMENT

Test Equipment up to 1GHz on 10 meters open site:

| Equipment            | Company         | Model     | Serial     | Calibration Due                 |
|----------------------|-----------------|-----------|------------|---------------------------------|
| Spectrum Analyzer    | HP              | 8568B     | 2732A04140 | March 22 <sup>nd</sup> ,2003    |
| Quasi-Peak adapter   | HP              | 85650A    | 2811A01136 | March 22 <sup>nd</sup> ,2003    |
| RF Pre-selector      | HP              | 85685A    | 2833A00773 | March 22 <sup>nd</sup> ,2003    |
| Biconical Antenna    | EMCO            | 3104C     | 9401-4636  | April 4 <sup>th</sup> ,2003     |
| Log Periodic Antenna | EMCO            | 3146      | 2178       | April 4 <sup>th</sup> ,2003     |
| Spectrum Analyzer    | HP              | 8593E     | 3409u00537 | June 29 <sup>th</sup> ,2003     |
| Loop antenna         | Electro-metrics | EM-6879   | 690234     | February 10 <sup>th</sup> ,2004 |
| Amplifier            | HP              | 8447F H64 | 3113A06394 | March 28 <sup>th</sup> ,2003    |
| OATS                 |                 |           |            | April 9 <sup>th</sup> ,2003     |

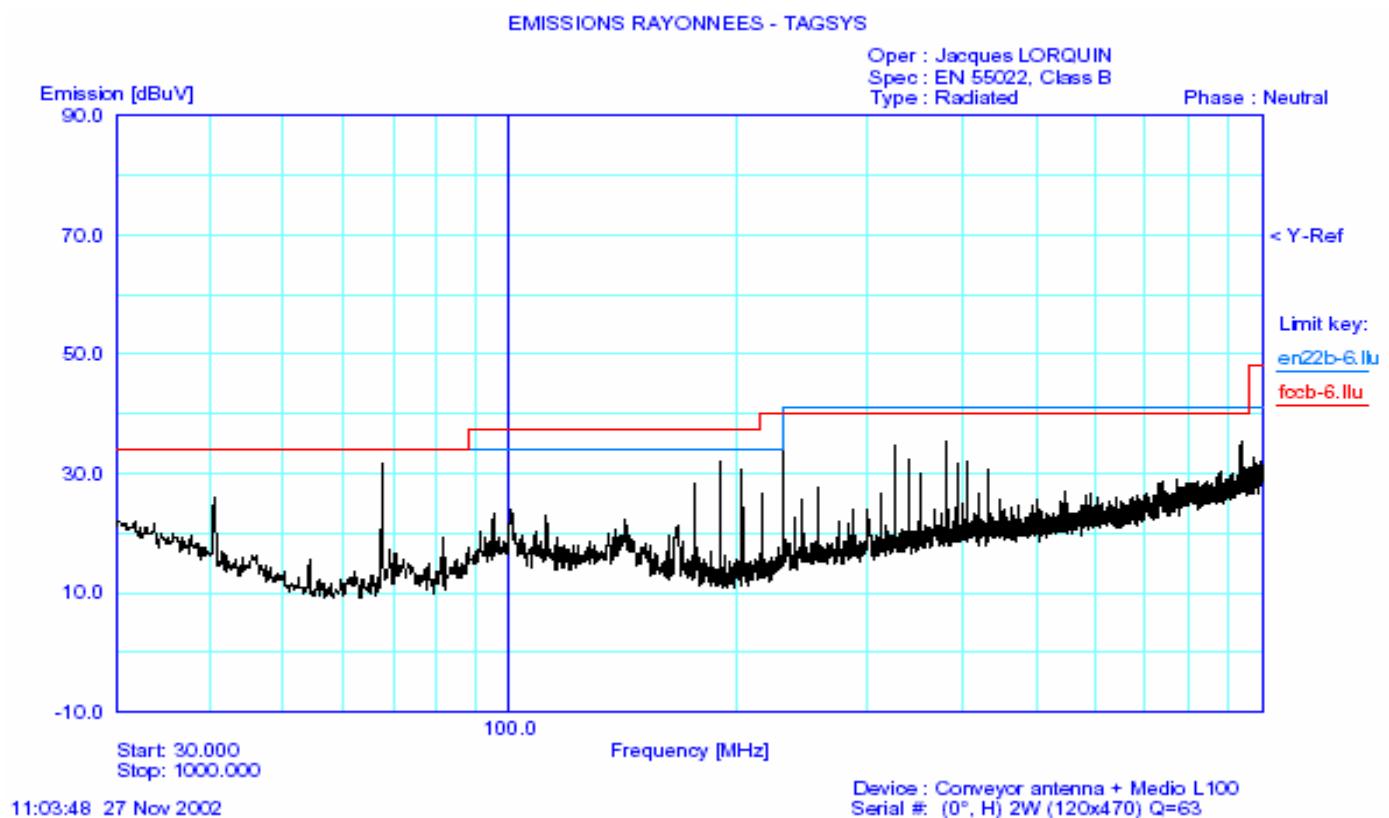
EMCO-1050, 6 meters height antenna mast

EMCO-1060, 3 meters diameter Turntable.

A 10 meters Open site located in SMEE **Actions Mesures** - Voiron (FRANCE).

Pre-scan, test Equipment up to 1GHz:

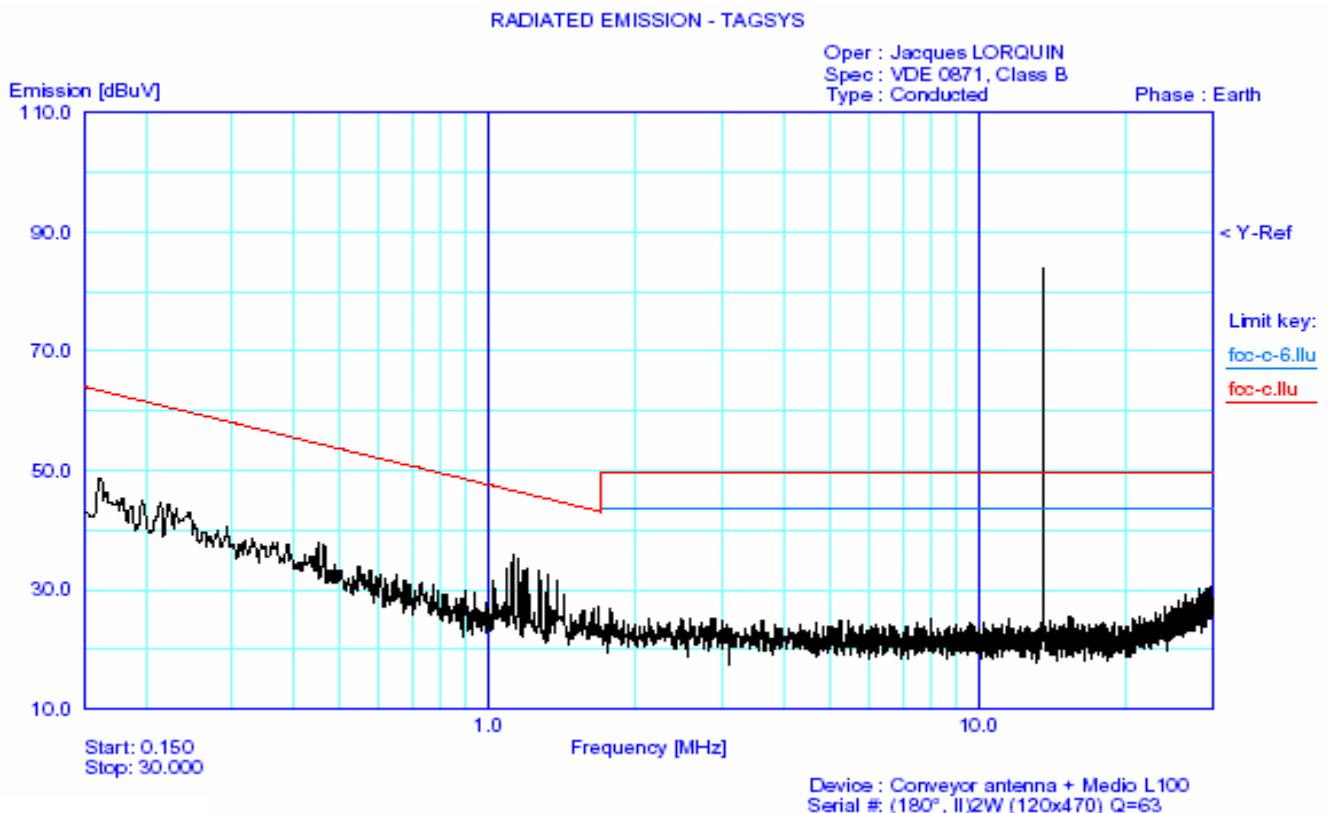
| Equipment            | Company         | Model     | Serial     | Calibration Due                 |
|----------------------|-----------------|-----------|------------|---------------------------------|
| EMC Analyzer         | HP              | 8591EM    | 3536A00384 | March 29 <sup>th</sup> ,2003    |
| Amplifier            | HP              | 8447F H64 | 3113A06394 | March 28 <sup>th</sup> ,2003    |
| Antenna (30MHz-1GHz) | CHASE           | CBL6111A  | 1628       | March 29 <sup>th</sup> ,2003    |
| Loop antenna         | Electro-metrics | EM-6879   | 690234     | February 10 <sup>th</sup> ,2004 |




FCCID : QHKCONVYRANT

### 2.3. TEST SEQUENCE AND RESULTS

#### 2.3.1. Pre-characterization at 3 meters


A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization, and on 4 faces of the EUT. See below for a graph example:





FCCID : QHKCONVYRANT

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) axis and the loop antenna position was rotated during the test for maximized the emission measurement. See below for a graph example:



Result below 30 MHz



FCCID : QHKCONVYRANT

### 2.3.2.Characterization on 10 meters open site from 30MHz to 1GHz

The product has been tested according to ANSI C63.4-(1992), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested with 230V / 50Hz power line voltage, at a distance of 10 meters from the antenna and compared to the FCC part 15 subpart C §15.209 limits. Measurement bandwidth was 120 kHz from 30 MHz to 1GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 2.1.

| No | Frequency (MHz) | QPeak Lmt (dB $\mu$ V/m) | QPeak (dB $\mu$ V/m) | QPeak-Lmt (dB) | Angle (deg) | Pol | Hgt (cm) | Tot Corr (dB) | Comments |
|----|-----------------|--------------------------|----------------------|----------------|-------------|-----|----------|---------------|----------|
| 1  | 40.703          | 40.0                     | 37.6                 | -2.4           | 343         | V   | 134      | 11.6          | *        |
| 2  | 68.911          | 40.0                     | 28.2                 | -11.8          | 201         | V   | 101      | 9.8           | *        |
| 3  | 189.851         | 43.5                     | 37.9                 | -5.6           | 21          | H   | 249      | 19.2          | *        |
| 4  | 203.46          | 43.5                     | 38.1                 | -5.4           | 31          | H   | 290      | 15.6          | *        |
| 5  | 230.536         | 46.0                     | 41.3                 | -7.2           | 53          | V   | 101      | 15.5          | *        |
| 6  | 257.660         | 46.0                     | 39.8                 | -6.2           | 347         | V   | 373      | 15.9          | *        |
| 7  | 284.770         | 46.0                     | 37.1                 | -8.9           | 314         | V   | 225      | 17.1          | *        |
| 8  | 311.894         | 46.0                     | 45.0                 | -1             | 249         | H   | 380      | 18            | *        |
| 9  | 325.459         | 46.0                     | 39.2                 | -6.8           | 254         | H   | 389      | 18.2          | *        |
| 10 | 352.577         | 46.0                     | 41.4                 | -4.6           | 319         | V   | 218      | 18.5          | *        |
| 11 | 379.704         | 46.0                     | 43.3                 | -2.7           | 339         | V   | 250      | 18.9          | *        |
| 12 | 406.815         | 46.0                     | 41.0                 | -5             | 32          | H   | 194      | 19.4          | *        |

\*: The results are extrapolated with §15.31 requirement.

### 2.3.3.Characterization on 10 meters open site below 30 MHz

The product has been tested with 230V / 50Hz power line voltage, at a distance of 10 meters from the antenna and compared to the FCC part 15 subpart C §15.209& §15.225 limits. Measurement bandwidth was 9 kHz from 150 kHz to 30 MHz and 100 Hz from 9 kHz to 150 kHz.

The loop antenna position was rotated to locate the orientation that maximized emission reception during testing. Antenna search was performed for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 2.1.



FCCID : QHKCONVYRANT

| Frequency (MHz)     | QPeak Lmt (dB $\mu$ V/m) | QPeak (dB $\mu$ V/m) | QPeak-Lmt (dB) | Angle EUT (deg)      | Pol      | Angle Ant. (deg) | Tot Corr (dB) |
|---------------------|--------------------------|----------------------|----------------|----------------------|----------|------------------|---------------|
| 13.56* <sup>1</sup> | 80                       | 71.2                 | -8.8           | 84                   | vertical | 90               | 35.5          |
| 27.12               |                          |                      |                | Not traceable signal |          |                  |               |

\*<sup>1</sup>: Fundamental - 15.225 limits. Measure have been done at 10m distance and corrected following requirements of 15.209.e)

#### 2.4. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

$$FS = RA + AF + CF - AG$$

Where      FS = Field Strength  
              RA = Receiver Amplitude  
              AF = Antenna Factor  
              CF = Cable Factor  
              AG = Amplifier Gain

Assume a receiver reading of 52.5dB $\mu$ V is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dB $\mu$ V/m.

$$FS = 52.5 + 7.4 + 1.1 - 29 = 32 \text{ dB}\mu\text{V/m}$$

The 32 dB $\mu$ V/m value can be mathematically converted to its corresponding level in  $\mu$ V/m. Level in  $\mu$ V/m = Common Antilogarithm  $[(32 \text{ dB}\mu\text{V/m})/20]$  = 39.8  $\mu$ V/m.



FCCID : QHKCONVYRANT

### 3. Conducted emission data

The product has been tested according to ANSI C63.4-(1992) and FCC Part 15 subpart C.

The product has been tested with 110V/60Hz power line voltage and compared to the FCC Part 15 subpart C §15.207 limits. Measurement bandwidth was 9 kHz from 150 kHz to 30 MHz.

Measurement was initially made with an HP-8591EM Spectrum Analyzer in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement with the Rohde & Schwarz ESH3 receiver for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary.

The Peak data are shown on the following plots. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

#### 3.1. SET-UP



The MEDIO-L100 and PC are placed on a non-conducting table of 80cm height. The antenna support is set on the floor (isolated). The cable of the power supply (MEDIO-L100) has been shorted to 1 meter length. The MEDIO-L100 is powered through the LISN.



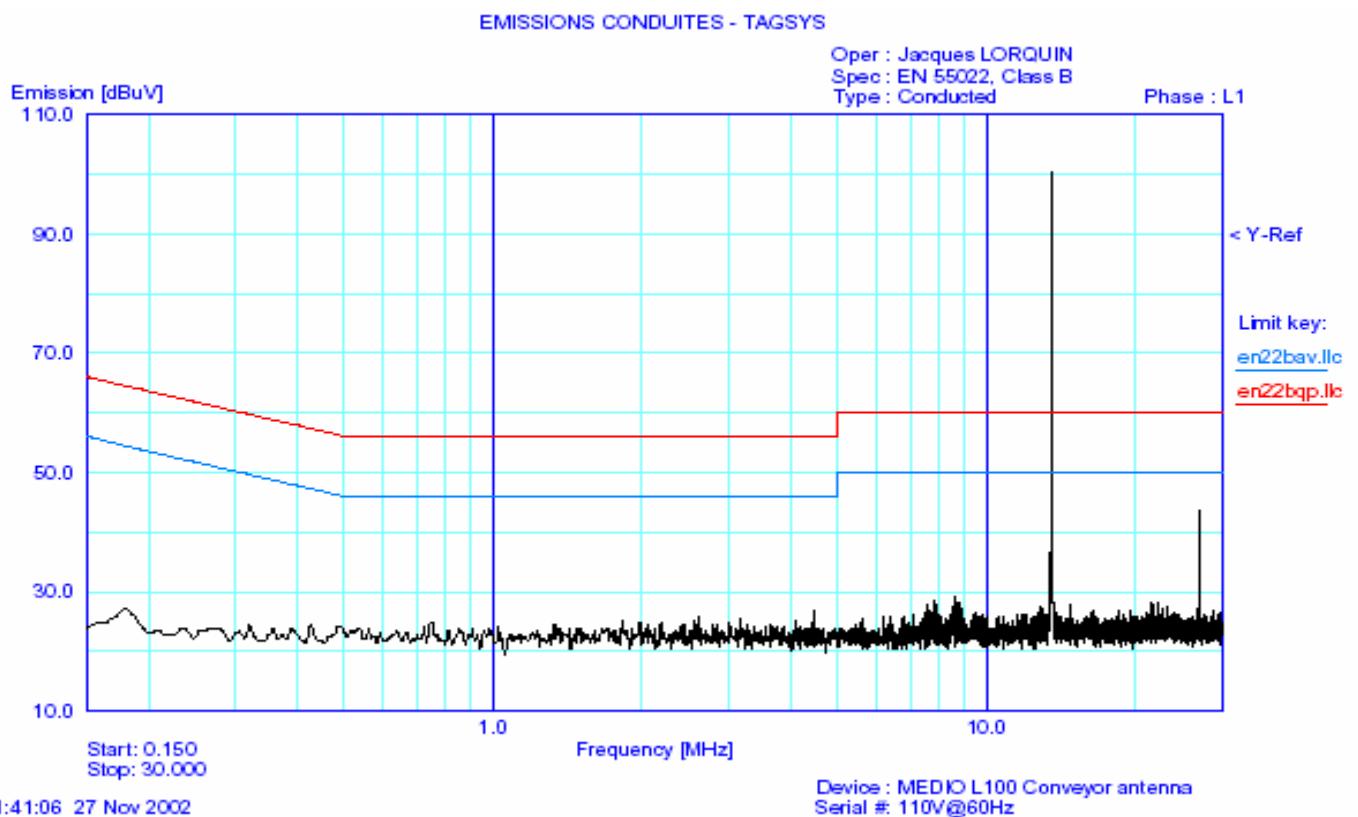
FCCID : QHKCONVYRANT

Equipment configuration and running mode:

- The MEDIO-L100 is plug on serial connector;
- The MEDIO-L100 is powered by 110V/60Hz;
- The signal box is connected on I/O ports
- The Antenna is connected to the Ch1 & Ch2 of the MEDIO-L100;
- PC and EUT are ON;
- software is running;

**3.2. TEST EQUIPMENT**

| Equipment         | Company       | Model    | Serial        | Calibration Due                   |
|-------------------|---------------|----------|---------------|-----------------------------------|
| EMC Analyzer      | HP            | 8591EM   | 3536A00384    | March 29 <sup>th</sup> , 2003     |
| test receiver     | Rohde&Schwarz | ESH3     | 872079/117    | March 21 <sup>st</sup> , 2003     |
| Transient Limiter | HP            | 11947A   | 3107A01596    | March 28 <sup>th</sup> , 2003     |
| LISN(secondary)   | EMCO          | 3810/2SH | 9511-11821628 | December 12 <sup>th</sup> , 2003  |
| LISN(measure)     | Telemeter     | TGmbH    | NNB 0001300   | September 13 <sup>th</sup> , 2003 |
| 50Ω / 50µH        | Electronis    | 2/16     |               |                                   |
| Faraday room      | Rayproof      |          | 4854          | none                              |



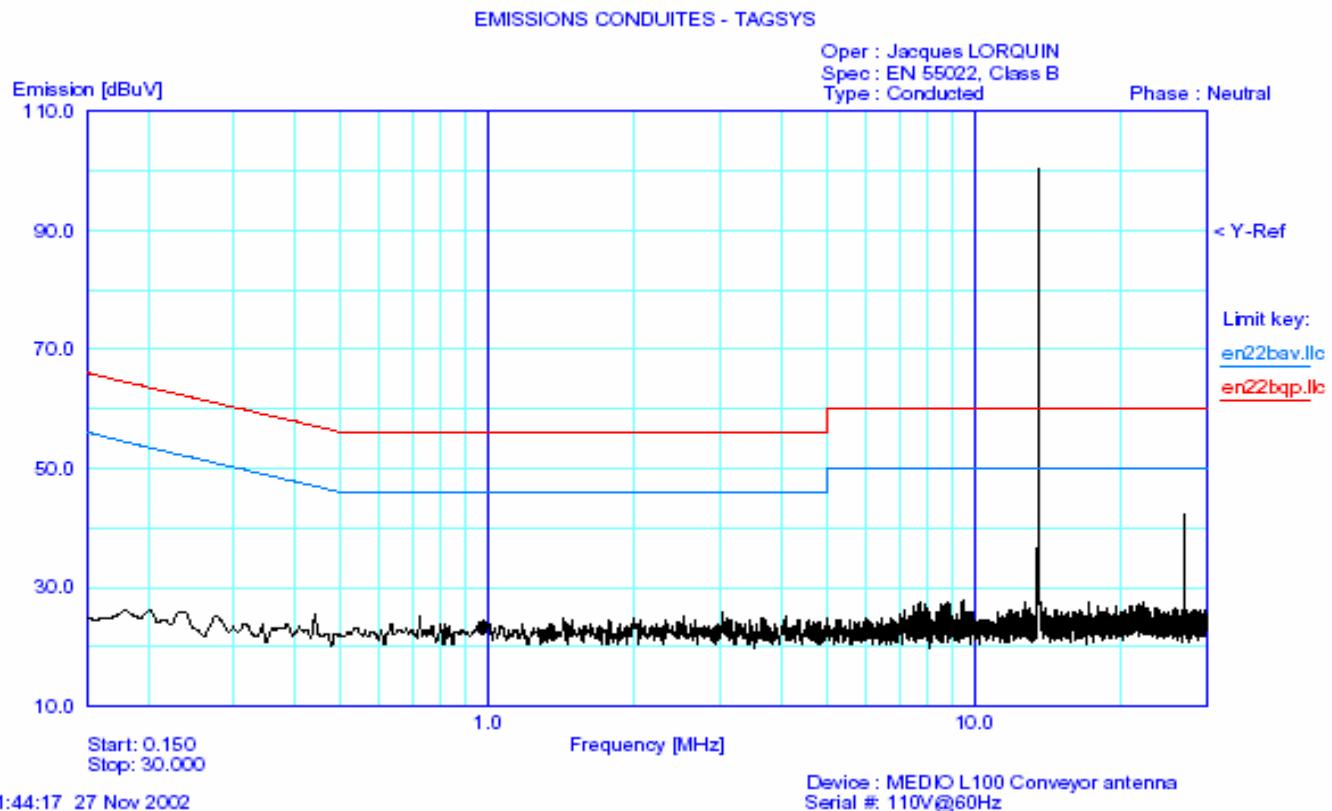

FCCID : QHKCONVYRANT

### 3.3. TEST SEQUENCE AND RESULTS

Measures are performed on line 1 and line 2 of the power supply of the MEDIO-L100,

#### 3.3.1. Line conducted emission data on MEDIO-L100




| Num. | Freq.<br>[MHz] | Peak<br>[dB $\mu$ V] | Q-Peak<br>[dB $\mu$ V] | QP limit<br>[dB $\mu$ V] | QP delta<br>[dB $\mu$ V] | Average<br>[dB $\mu$ V] | AVG Limit<br>[dB $\mu$ V] | AVG Delta<br>[dB $\mu$ V] | Comment. |
|------|----------------|----------------------|------------------------|--------------------------|--------------------------|-------------------------|---------------------------|---------------------------|----------|
| 1    | 13.56          | 100.3                | -                      | 60.00                    | -                        | 50.00                   | 50.00                     | 0.00                      | See *    |
| 2    | 27.12          | 43.53                | -                      | 60.00                    | (-16.47)                 | -                       | 50.00                     | (-6.43)                   |          |

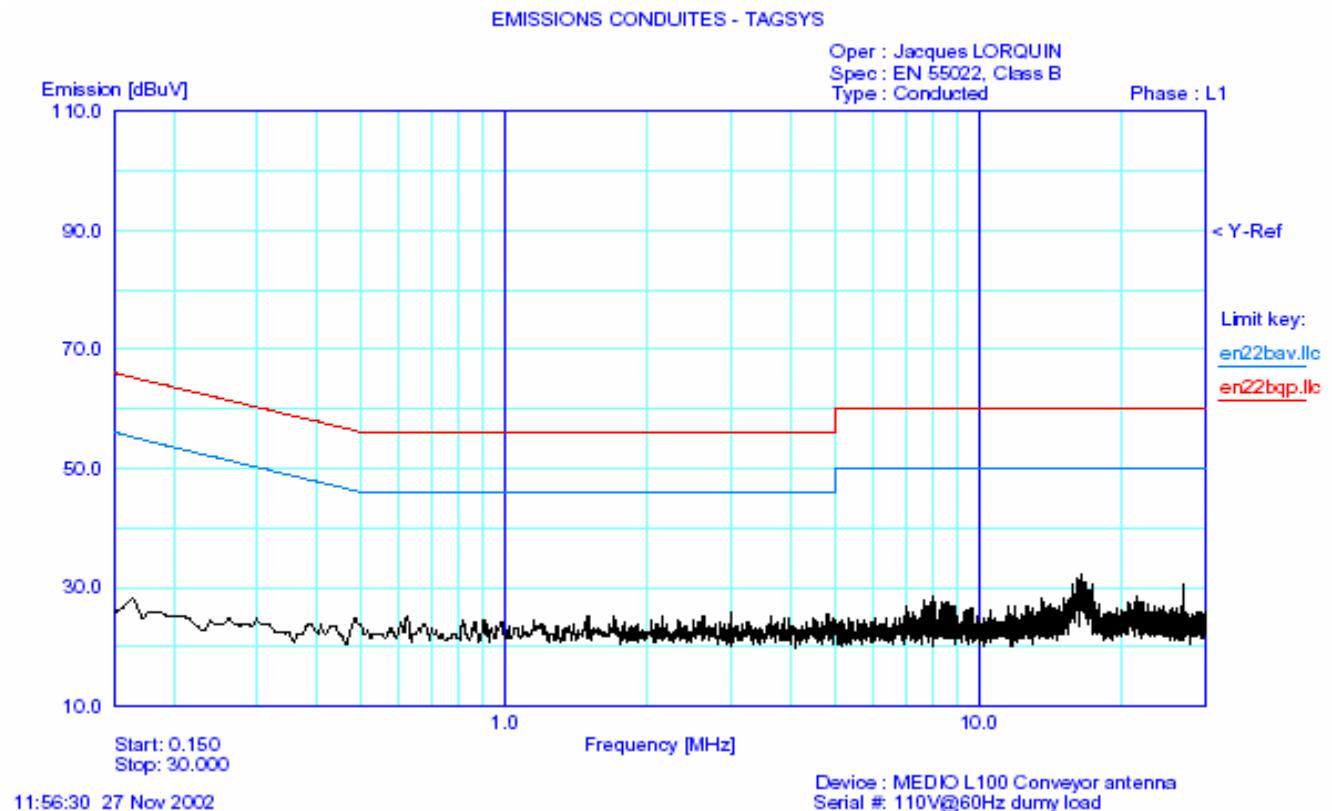
\*: Carrier - §15.207(b): Limits shall not apply to carrier current systems operating as intentional radiators on frequencies below 30MHz.



FCCID : QHKCONVYRANT

### 3.3.2. Neutral conducted emission data on MEDIO-L100

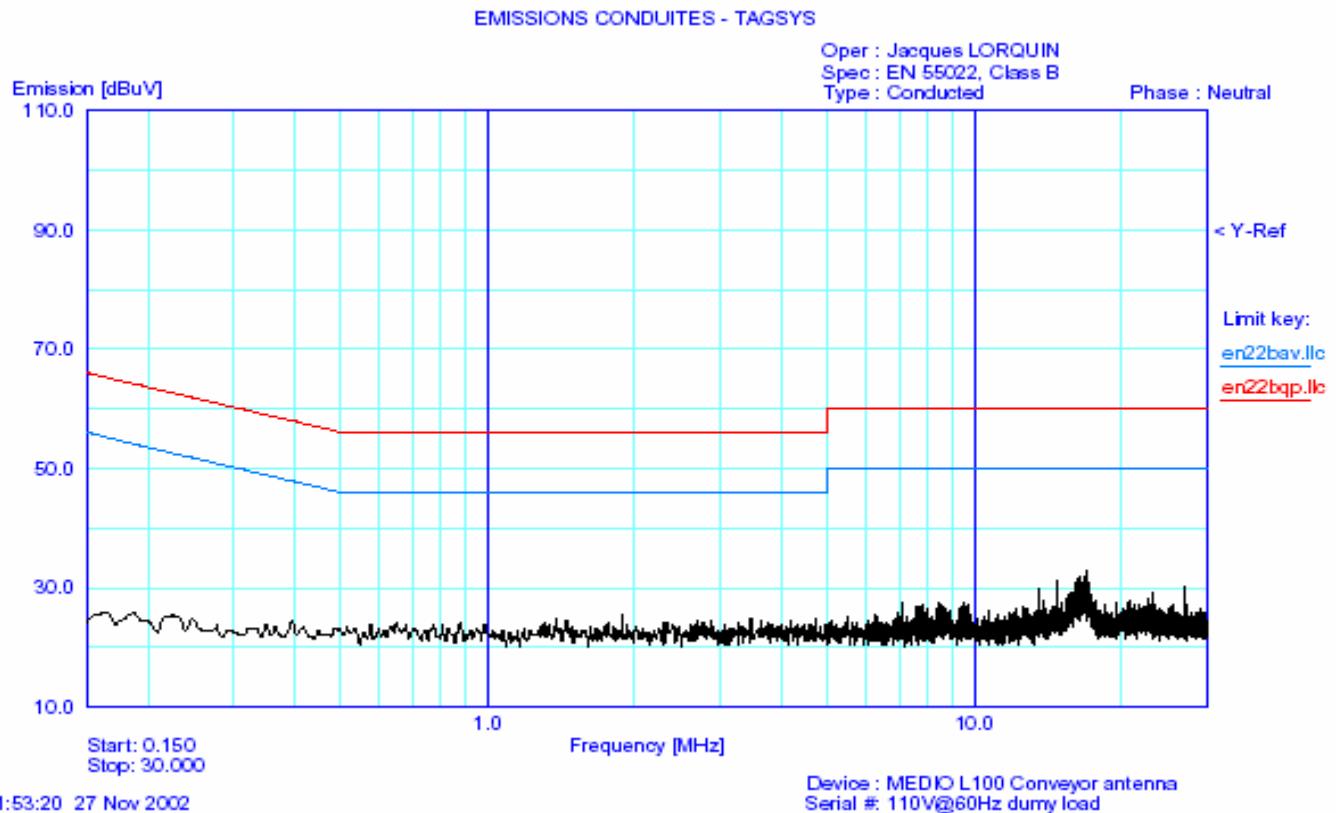



| Num. | Freq.<br>[MHz] | Peak<br>[dB $\mu$ V] | Q-Peak<br>[dB $\mu$ V] | QP limit<br>[dB $\mu$ V] | QP delta<br>[dB $\mu$ V] | Average<br>[dB $\mu$ V] | AVG Limit<br>[dB $\mu$ V] | AVG Delta<br>[dB $\mu$ V] | Comment. |
|------|----------------|----------------------|------------------------|--------------------------|--------------------------|-------------------------|---------------------------|---------------------------|----------|
| 1    | 13.56          | 100.2                |                        | 60.00                    |                          | 50.00                   |                           |                           | See *    |
| 2    | 27.12          | 42.82                | 41.85                  | 60.00                    | -18.15                   | 41.57                   | 50.00                     | -8.43                     |          |

\*: Carrier - §15.207(b): Limits shall not apply to carrier current systems operating as intentional radiators on frequencies below 30MHz.



FCCID : OHKCONVYRANT


3.3.3. Line conducted emission data on MEDIO-L100 with dummy load  
Antennas are replaced by dummy loads.





FCCID : QHKCONVYRANT

**3.3.4. Neutral conducted emission data on MEDIO-L100 with dummy load**  
Antennas are replaced by dummy loads.





FCCID : QHKCONVYRANT

#### 4. Field strength of fundamental §15.225(a)

The polarization of the measurements for the larger power level is vertical (the test is performed for both vertical and horizontal axis, and the loop antenna position was rotated during the test for maximized the emission measurement.)

Measurements have been done at 10m distance and corrected following requirements of 15.209(e)

| Frequency (MHz) | QPeak Lmt (dB $\mu$ V/m) | QPeak (dB $\mu$ V/m) | QPeak-Lmt (dB) | Angle EUT (deg) | Pol      | Angle Ant. (deg) | Tot Corr (dB) |
|-----------------|--------------------------|----------------------|----------------|-----------------|----------|------------------|---------------|
| 13.56           | 80                       | 71.2                 | -8.8           | 84              | vertical | 90               | 35.5          |

No significant variation of the fundamental amplitude during voltage variation testing per 15.31(e). Maximum deviation under extreme test condition (voltage variation from 85% to 115%): 0.4dBc

##### Limits Subclause §15.225(a)

| Frequency (MHz) | Field strength ( $\mu$ V/m) | Measurement distance (m) |
|-----------------|-----------------------------|--------------------------|
| 13.56           | 10 000<br>80dB $\mu$ V/m    | 30                       |

#### 5. Fundamental frequency tolerance (15.225.c)

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency.

##### 5.1. Voltage fluctuation

Power supply has been set at 85% and 115% of nominal voltage, at 20°C.

Nominal voltage: 110-230V/60Hz

Frequency of carrier: 13.56 MHz

Upper limit: 13.561356 MHz

Lower limit: 13.558644 MHz

| Voltage         | 85V       | 230V      | 276V      |
|-----------------|-----------|-----------|-----------|
| Frequency (MHz) | 13.560000 | 13.559960 | 13.560025 |
| Result          | Pass      | -         | Pass      |

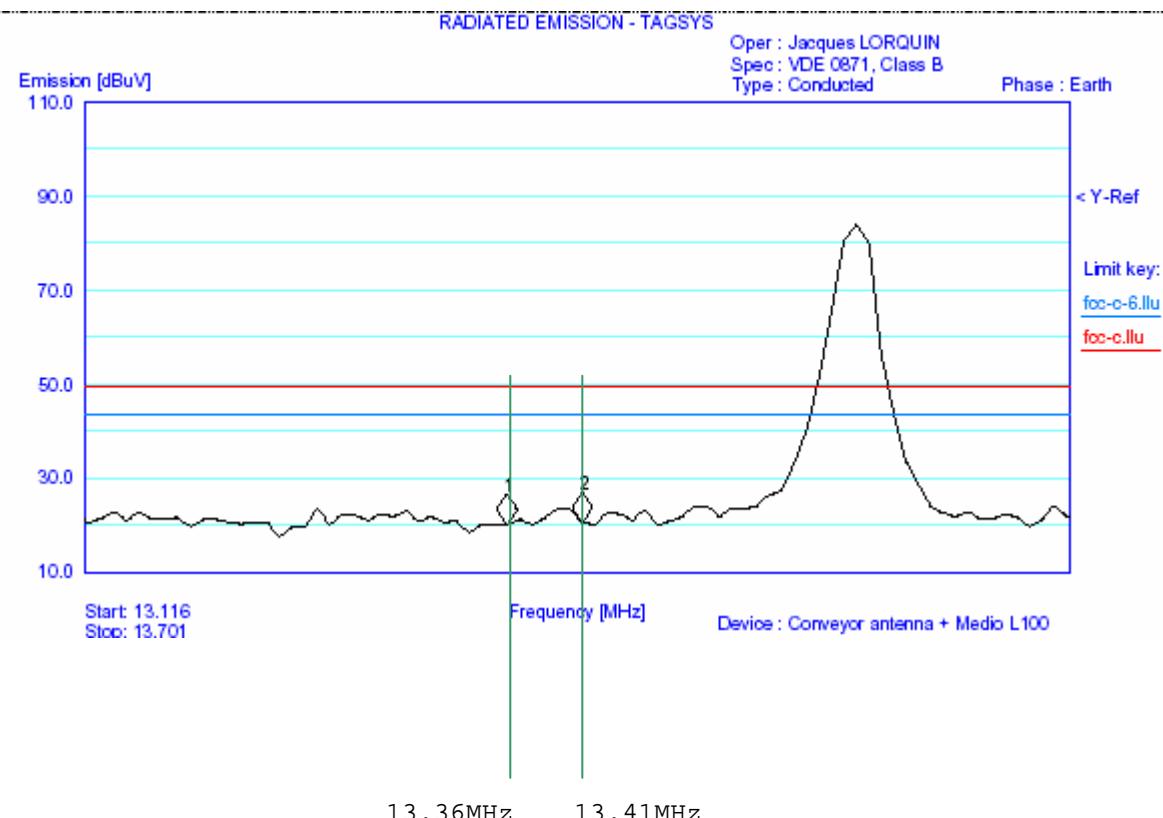


FCCID : QHKCONVYRANT

### 5.2. Temperature

Temperature has been set at  $-20^{\circ}\text{C}$  and  $+50^{\circ}\text{C}$  at nominal voltage 230V/50Hz.

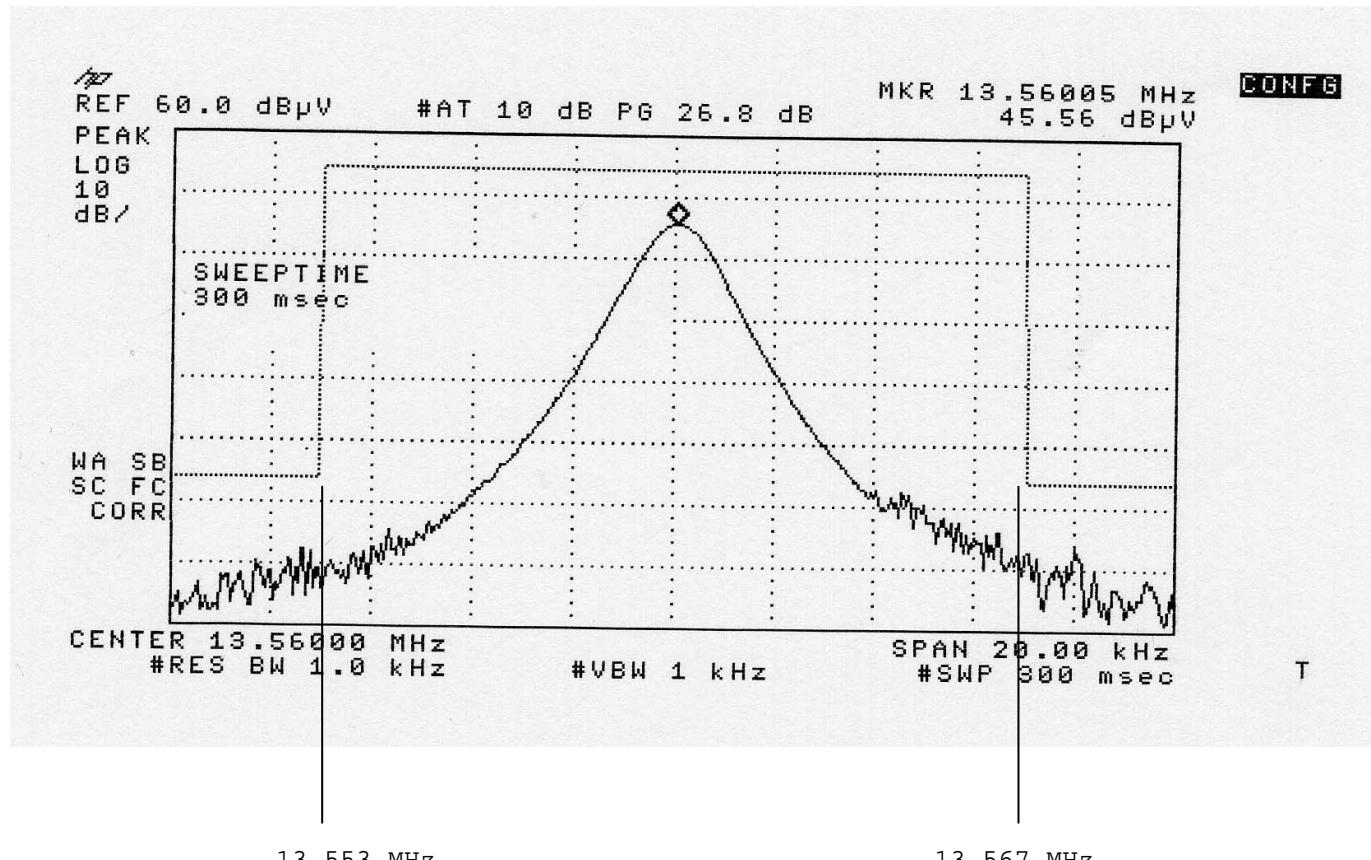
Frequency of carrier: 13.56 MHz


Upper limit: 13.561356 MHz

Lower limit: 13.558644 MHz

| Voltage         | $-20^{\circ}\text{C}$ | $20^{\circ}\text{C}$ | $+50^{\circ}\text{C}$ |
|-----------------|-----------------------|----------------------|-----------------------|
| Frequency (MHz) | 13.559925             | 13.559960            | 13.560015             |
| Result          | Pass                  | -                    | Pass                  |

### 6. Occupied bandwidth


Here is a plot of the occupied bandwidth, which show that, 13.36MHz - 13.41MHz restricted band is free of spurious emission.





FCCID : QHKCONVYRANT

7. Band-edge compliance §15.209



*End of Tests*