

TEST REPORT

Report Number: 30332141 Project Number: 3033214

ReportDate: October 14, 2002 Date of Test: September 5 – October 14, 2002

Testing performed on the

Model: AirMAX 580/5800 FCC ID: QGQ-AM581

to

FCC Part 15 Subpart E

Malibu Networks

<u>Test Performed by:</u> Intertek Testing Services

1365 Adams Court Menlo Park, CA 94025 **Test Authorized by:**

Malibu Networks 1107 Investment Blvd., Suite 250 El Dorado Hills, CA 95762

Prepared by: David Chel

Data.

10/10/02

Reviewed by:

Ollie Moyrong

Date:

10/10/02

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services NA Inc. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Date of Test: September 5-October 14, 2002

TABLE OF CONTENTS

1.0	SUM	MARY OF TESTS	. 3
2.0	GEN	ERAL DESCRIPTION	. 3
_,,	2.1	Product Description	
	2.2	Related Submittal(s) Grants	
	2.3	Test Methodology	
	2.4	Test Facility	
3.0	SYST	TEM TEST CONFIGURATION	:
	3.1	System Support Equipment	
	3.2	Block Diagram of Test Setup.	
	3.3	Justification	
	3.4	Software Exercise Program	
	3.5	Mode of operation during test	
	3.6	Modifications required for Compliance	
	3.7	Additions, deviations and exclusions from standards	
4.0	MEA	SUREMENT RESULTS	. :
	4.1	Conducted Output Power at Antenna Terminal, EIRP	
	4.2	26 dB Bandwidth	
	4.3	Power Density	
	4.4	The ratio of the peak excursion of the modulation envelope to the peak power	
	4.5	Out-of-Band Conducted Emissions	
	4.6	Radiated Emissions	. 3
	4.7	AC Line Conducted Emission	
	4.8	Transmitter Duty Cycle Calculation / Measurements	
5.0	LIST	OF TEST EQUIPMENT	3
6.0	DOC	TIMENT HISTORY	2

Date of Test: September 5-October 14, 2002

1.0 Summary of Tests

Test	Reference	Results
Output power, EIRP	15.407(a)	Complies, see sec. 4.1 of this report
26 dB Bandwidth	15.407(a)	For calculation only, see sec. 4.2 of this report
Power Density	15.407(a)(5)	Complies, see sec. 4.3 of this report
The ratio of the peak excursion of the modulation envelope to the peak transmit power	15.407(a)(6)	Complies, see sec. 4.4 of this report
Out-of-band Antenna Conducted Emission	15.407(b)	Complies, see sec. 4.5 of this report
Spurious Radiated Emission from transmitter	15.407(b)	Complies, see sec. 4.6 of this report
Radiated Emission in Restricted Bands	15.209, 15.205	Complies, see sec. 4.6 of this report
Digital part Radiated Emission	15.109	Complies, see sec. 4.6 of this report
Radiated Emission from Receiver L.O.	15.109, 15.111	Not Applicable. The operating frequency is above 960 MHz
AC Conducted Emission	15.207	Complies, see sec. 4.7 of this report
Requirement	15.407(c)	Complies, see file "15.407(c)"
Requirement	15.407(d)	Complies, see file "15.407(d)"
Radiation Exposure Requirement	1.1310	Complies, see exhibit "RF Exposure "
Antenna Requirement	15.203	Not applicable, The EUT requires professional installation

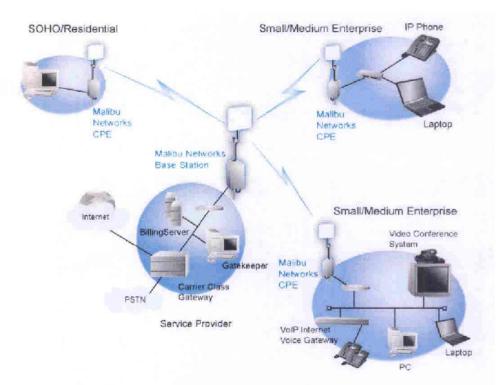
FCC ID: QGQ-AM581 Date of Test: September 5-October 14, 2002

2.0 General Description

2.1 Product Description

The Malibu AirMAX™ System is made up of "Base Station Equipment" (BSE) radios and "Customer Premises Equipment" (CPE) radios. The BSE stations are considered point-to- multipoint systems because they communicate with several different CPE stations on a regular basis. The CPE stations are considered point-to-point because they only communicate back to a particular BSE station. Both the BSE and the CPE stations operate on the 5.8 GHz ISM band utilizing IEEE 802.11 protocol. Both the BSE and the CPE radio are identical. The only difference between the two stations, if any at all, will be the antenna that is used at the installation.

The BSE and CPE may utilize two types of high gain antennas up to and including, a 8/110 dBi Omni and a 11/14 dBi panel antenna. It is expected that in some cases, antennas with lower gains will be used, however the units were tested with these higher gain antennas to allow use of lower gain antennas.


Malibu Networks customers for the AirMAX system will typically be an ISP or a business who wishes to provide wireless Internet connectivity for their customers / employees. Malibu Networks will not be selling the products to the end user of the system. This being the case, both the BSE and the CPE radios are professionally installed and configured.

The transmitter in the AirMAX radio is used a previously certified Cisco 802.11 2.4 GHz PCMCIA card (FCC ID: LDK102040). The Unit is powered by a generic wall plug AC adapter and Power over Ethernet.

Date of Test: September 5-October 14, 2002

A functional diagram of the Malibu Networks wireless system is shown in the diagram to the right.

The diagram shows a AirMAX BSE station supporting 3 AirMAX CPE stations.

Date of Test: September 5-October 14, 2002

Overview of the EUT

Applicant	Malibu Networks
Trade Name & Model No.	AirMax 580/5800
FCC Identifier	QGQ-AM581
Use of Product	Point-to-multipoint wireless communication network
Rated RF Output	20 dBm
Frequency Range	5750 – 5800 MHz
Type of Transmission	TDD
Type of Modulation	DBPSK, DQPSK, CCK
Data Rate	11 Mbps
Number of Channel(s)	11
Antenna(s) & Gain	14 dBi Directional CPE Antenna, model ASTJ22 10 dBi Omni BTS Antenna, model 2360 13 dBi Directional BTS Antenna, model 12010V
Antenna Requirement	The EUT requires professional installation (supporting documentation is attached)
Manufacturer name & address	Malibu Networks 1107 Investment Blvd., Suite 250 El Dorado Hills, CA 95762

A prototype version of the device was received on September 5, 2002 in good operating condition.

Date of Test: September 5-October 14, 2002

2.2 Related Submittal(s) Grants

Part 15.247 Direct Sequence Spread Spectrum.

2.3 Test Methodology

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site 1. This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.

Date of Test: September 5-October 14, 2002

3.0 System Test Configuration

3.1 System Support Equipment

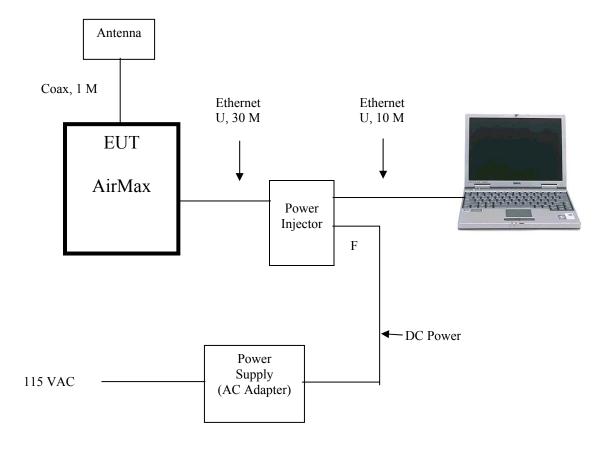
Table 1.3-1 contains the details of the support equipment associated with the Equipment Under Test.

Table 1.3-1: System Support Equipment

Item #	Description	Model No.	Serial No.
1	IBM Laptop	T21	75-0FX2F

Cables Associated with EUT

Table 1.3-2 contains the details of the cables associated with the EUT.


Table 1.3-2: Interconnecting cables associated with the EUT

Cables							
Description Length Shielding Ferrites Connection							
Description	Length	Sillerding	rerrites	From	To		
Coaxial cable	1 meter	Yes	No	AirMax	Antenna		
Ethernet cable	30 meters	No	No	AirMax	Power Injector		
Ethernet cable	10 meters	No	No	Power Injector	Computer		
DC power cable	1.5 meter	No	Yes	Power Injector	Power Adaptor		
AC power cable	1.5 meter	No	No	Power Adaptor	AC Line		

Date of Test: September 5-October 14, 2002

3.2 Block Diagram of Test Setup

The diagram shown below details the interconnection of the EUT and support equipment. For specific layout, refer to the test configuration photograph in the relevant section of this report.

S = Shielded	F = With Ferrite
U = Unshielded	\mathbf{M} = Length in Meter

Date of Test: September 5-October 14, 2002

3.3 Justification

For emission testing, the Equipment under Test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst-case emissions.

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

3.5 Mode of operation during test

Transmitting signal on low, middle and high channels.

3.6 Modifications required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Malibu Networks prior to compliance testing):

Intertek Testing Services made no modifications to the EUT.

3.7 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

FCC ID: QGQ-AM581 Date of Test: September 5-October 14, 2002

4.0 Measurement Results

4.1 Conducted Output Power at Antenna Terminal, EIRP FCC Rule 15.407(a)

Requirement:

For U-NII devices operating in 5.725-5.825 GHz band, the peak transmit power shall not exceed the lesser of 1 Watt (30 dBm) or 17 dBm+10Log(B), where B is the 26-dB emission bandwidth in MHz, with the maximum antenna gain: 23 dBi – for fixed point-to-point operation, 6 dBi – for point-to-multipoint operation.

Procedure:

The test procedure, described in the FCC Public Notice DA 02-2138, was used. Measurements were performed with a spectrum analyzer in the following steps:

- 1. The 26-dB Emission Bandwidth was measured with a spectrum analyzer resolution bandwidth (RBW) of 300 kHz (which is 1% 2% of the 26-dB Emission Bandwidth), and was found about 18 MHz (see plots in section 4.2).
- 2. The RBW was set to 1 MHz, SPAN to 18 MHz, and the sweep time was recorded as 50 ms.
- 3. The pulse duration (T) was measured and found equals 1.335 ms.

As the sweep time was found more than T, and Emission Bandwidth – more than available spectrum analyzer RBW, Method 3 of DA 02-2138 was used (video averaging with max hold and sum power across the band) in the following steps:

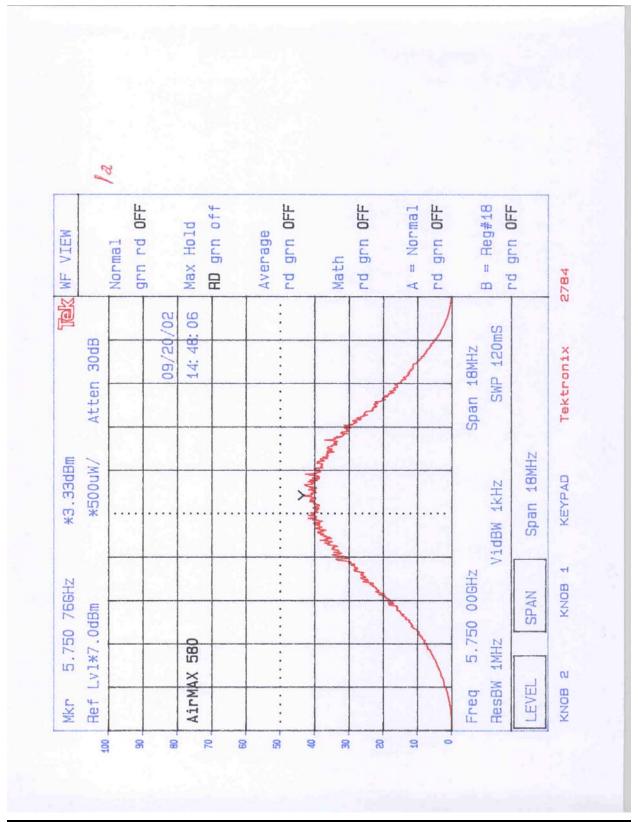
- 1. The SPAN was set to 18 MHz, RBW- to 1 MHz, Video bandwidth (VBW) to 1 kHz (as 1/T=775 Hz).
- 2. Display mode was set to Linear.
- 3. As a bin width (equals 0.83 MHz) is more than 0.5 MHz, the detector mode was set to Peak.
- 4. The Peak power was recorded.
- 5. The bandwidth correction factor 10Log(BW/1 MHz) was applied.

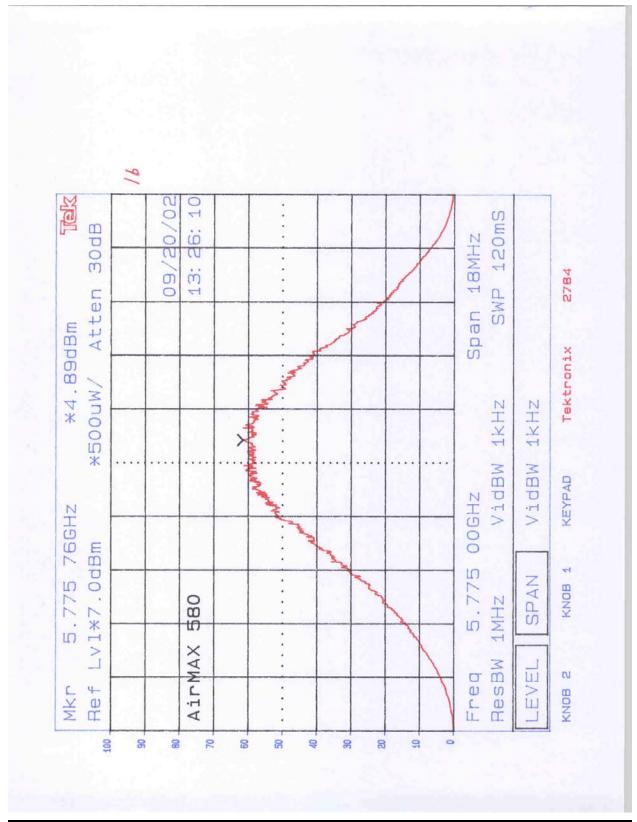
Date of Test: September 5-October 14, 2002

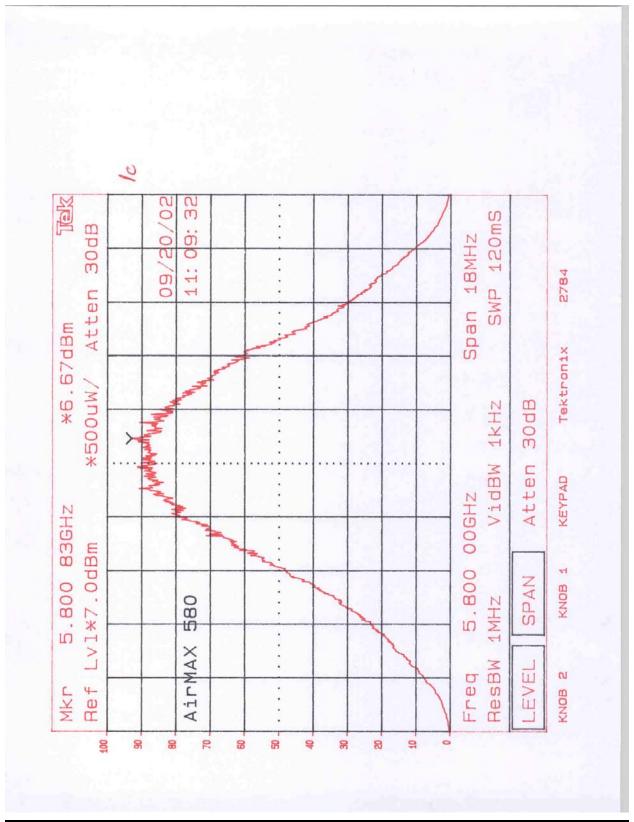
Result:

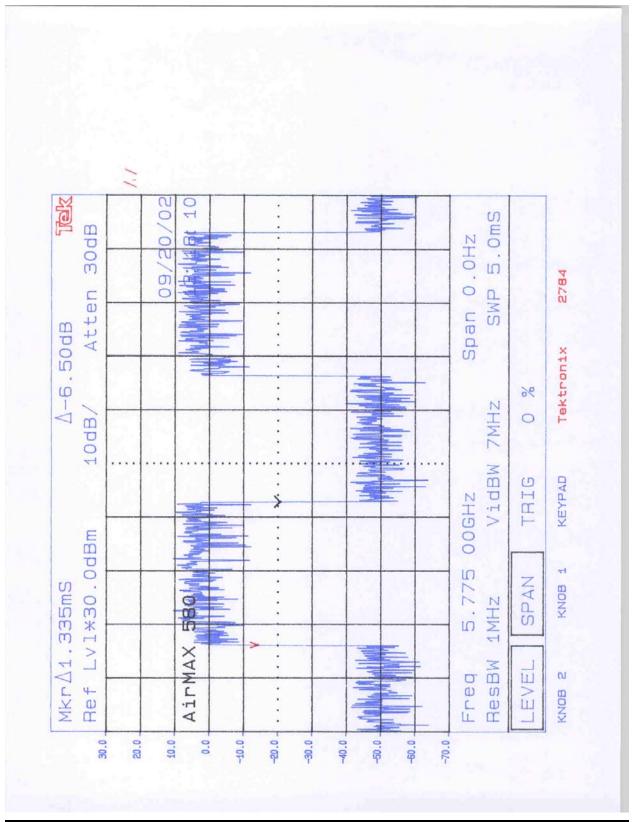
Base Station

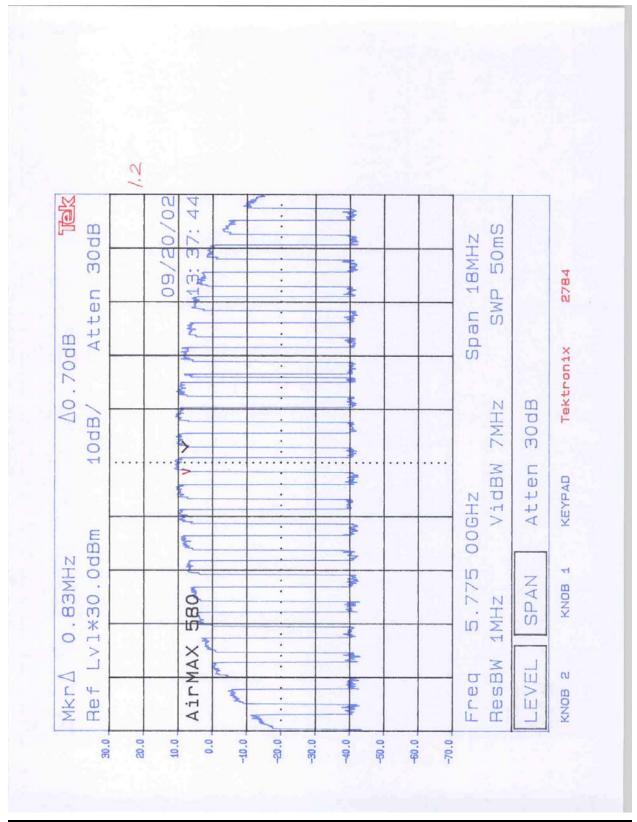
Frequency MHz	Measured Output Power dBm	Bandwidth correction factor dB	Total Output Power dBm	Calculated EIRP * dBm	EIRP Limit dBm	Margin dB	Plot
5750	3.33	12.5	15.8	28.8	53	-24.2	1a
5775	4.89	12.5	17.4	30.4	53	-22.6	1b
5800	6.67	12.5	19.2	32.2	53	-20.8	1c

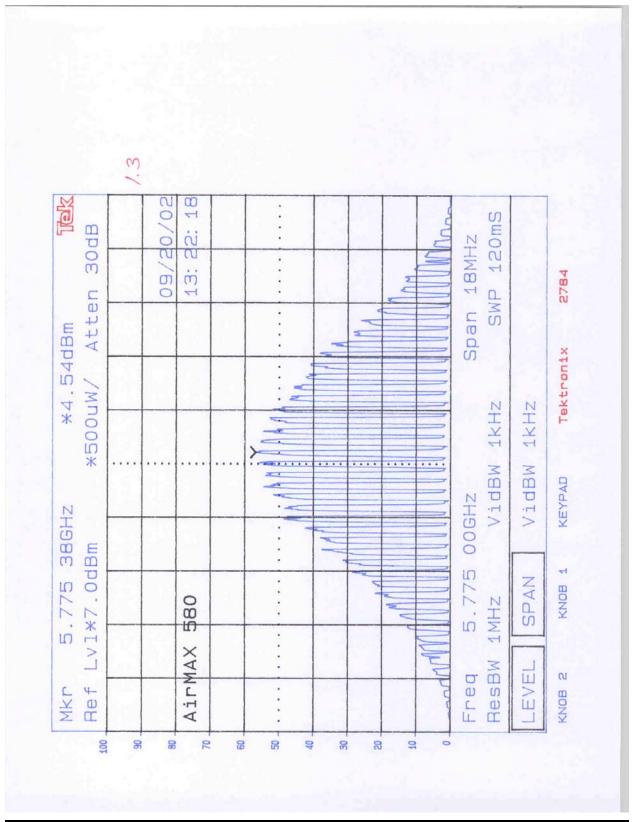

^{*} Calculated for antenna Gain = 13 dBi

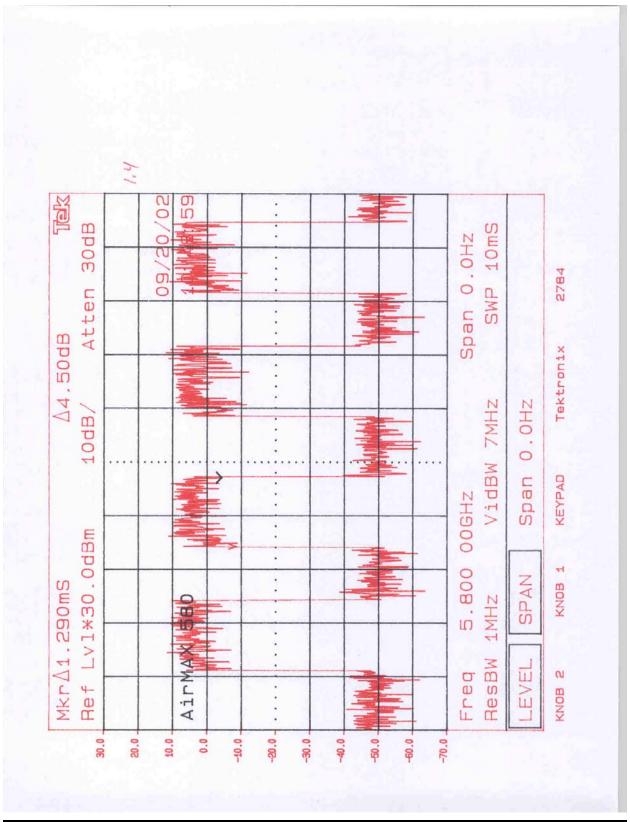

Subscriber Unit

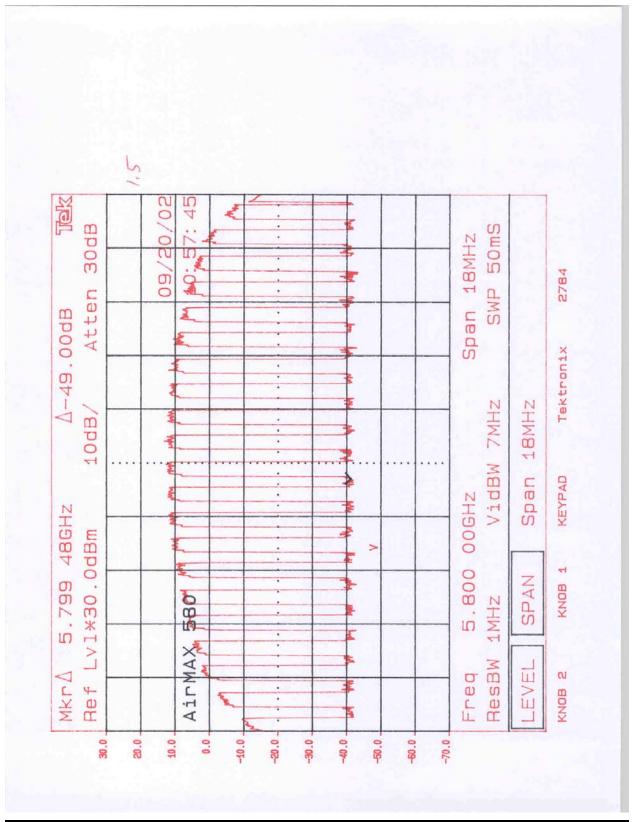

Frequency MHz	Measured Output Power dBm	Bandwidth correction factor dB	Total Output Power dBm	Calculated EIRP * dBm	EIRP Limit dBm	Margin dB	Plot
5750	3.33	12.5	15.8	29.8	36	-6.2	1a
5775	4.89	12.5	17.4	31.4	36	-4.6	1b
5800	6.67	12.5	19.2	33.2	36	-2.8	1c

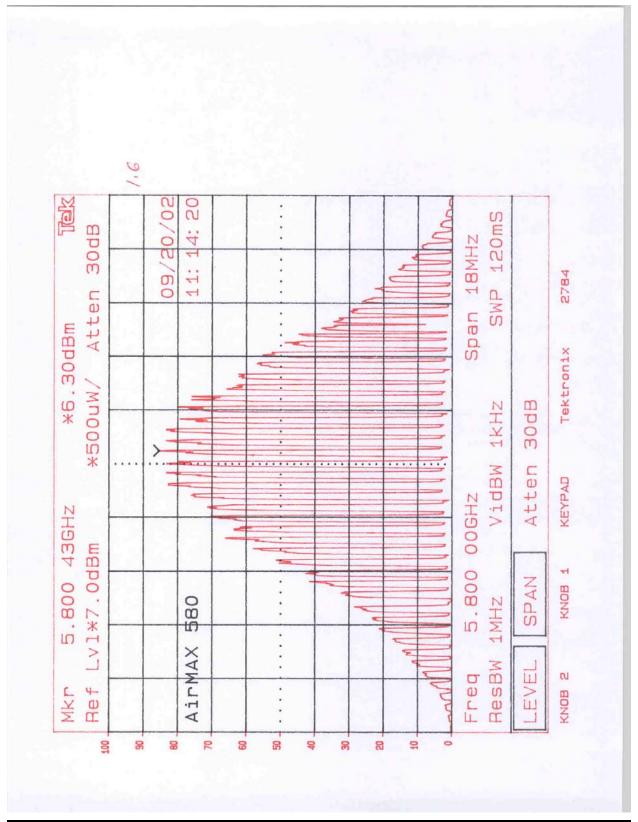

^{*} Calculated for antenna Gain = 14 dBi


For details, see also plots: 1.1-1.6.





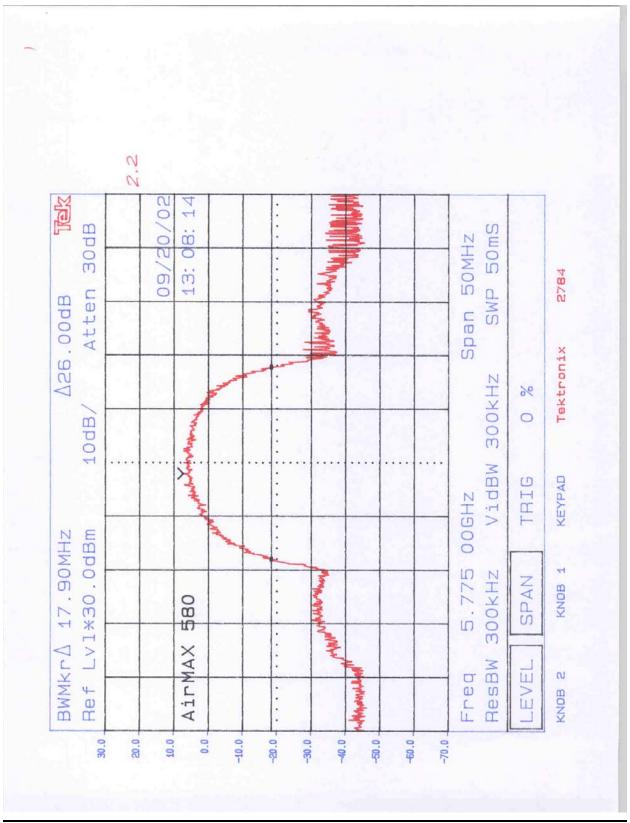


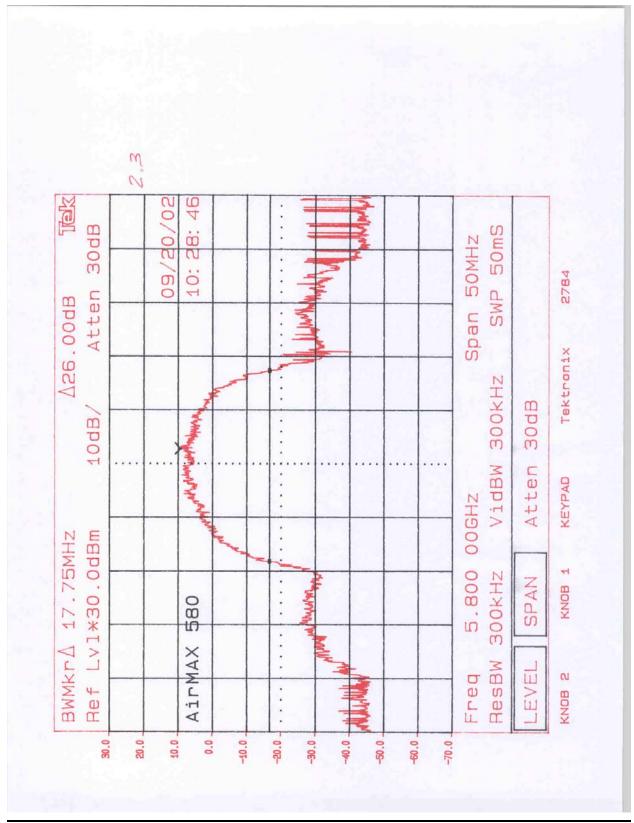


FCC ID: QGQ-AM581 Date of Test: September 5-October 14, 2002

4.2 26 dB Bandwidth


FCC Rule 15.407(a) (for calculation only)


Procedure:


The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer Resolution BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 26 dB lower than PEAK level. The 26-dB bandwidth was determined from where the channel output spectrum intersected the display line.

Result:

Frequency, MHz	26 dB Bandwidth, MHz	Plot
5750	17.7	2.1
5775	17.9	2.2
5800	17.8	2.3

FCC ID: QGQ-AM581 Date of Test: September 5-October 14, 2002

4.3 Power Density FCC Rule 15.407(a)(3)

Requirement:

For U-NII devices operating in 5.725-5.825 GHz band, the peak power spectral density shall not exceed 17 dBm in any 1 MHz band with the maximum antenna gain: 23 dBi – for fixed point-to-point operation, 6 dBi – for point-to-multipoint operation.

Procedure:

Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

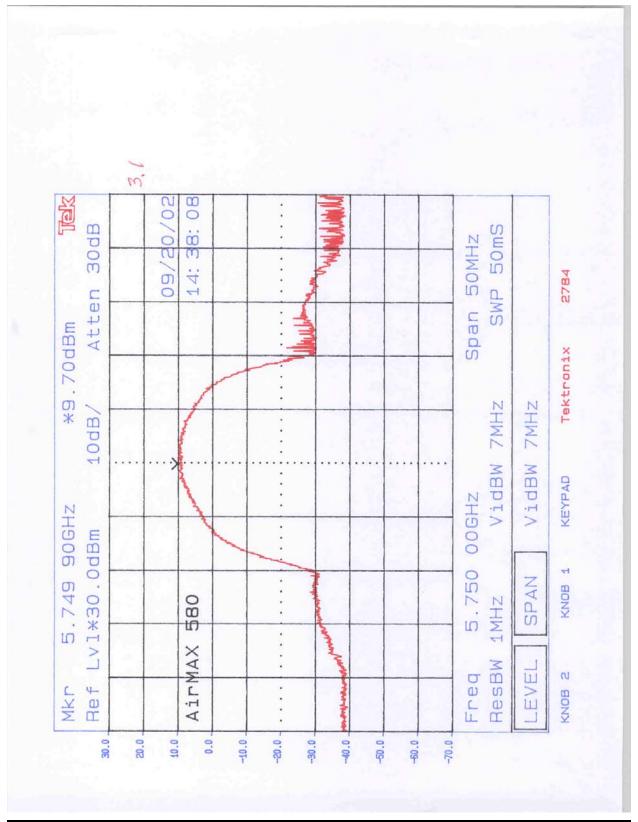
The spectrum analyzer Resolution Bandwidth was set to 1 MHz and Video Bandwidth was set to 7 MHz. Peak power spectral density reading was recorded.

Result:

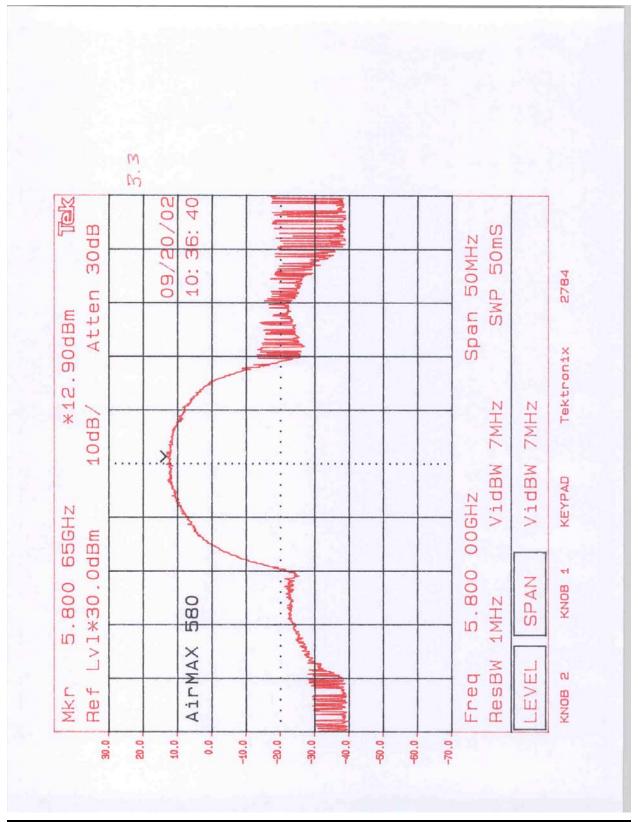
Base Station

Frequency MHz	Peak Power Density dBm	Calculated EIRP Density* dBm	EIRP Density Limit dBm	Margin dB	Plot
5750	9.7	22.7	23	-0.3	3.1
5775	11.2	24.2	23	1.2 **	3.2
5800	12.9	25.9	23	2.9 **	3.3

^{*} Calculated for antenna Gain = 13 dBi.


Subscriber Unit


Frequency MHz	Peak Power Density dBm	Calculated EIRP Density* dBm	EIRP Density Limit dBm	Margin dB	Plot
5750	9.7	23.7	40	-16.7	3.1
5775	11.2	25.2	40	-14.8	3.2
5800	12.9	26.9	40	-13.1	3.3


^{*} Calculated for antenna Gain = 14 dBi.

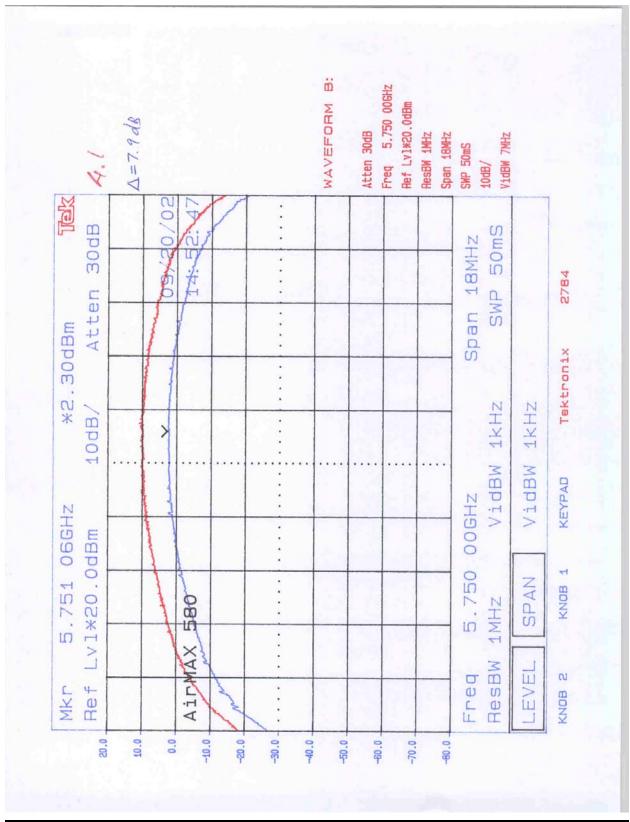
Refer to the following plots for power density data.

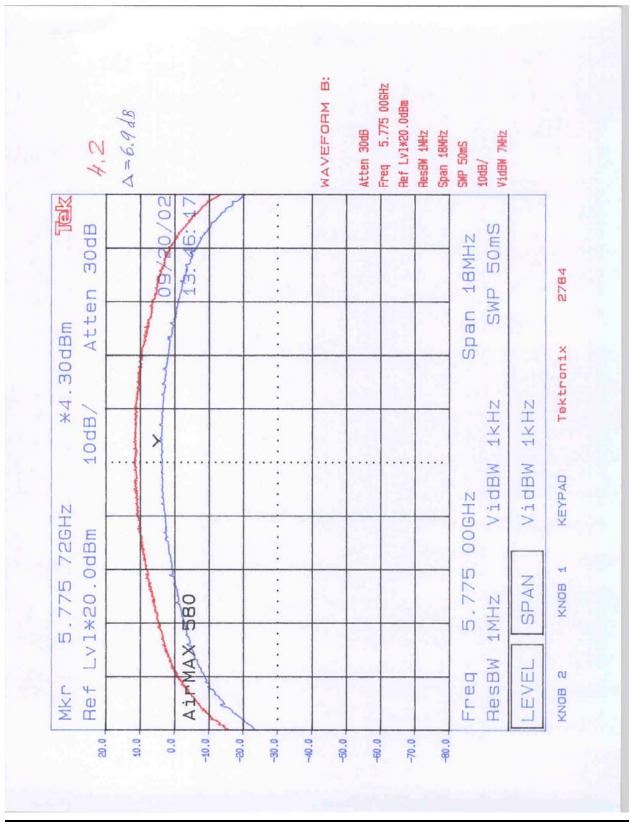
^{**} The output Power must be reduce if 13 dBi gain antenna is used.

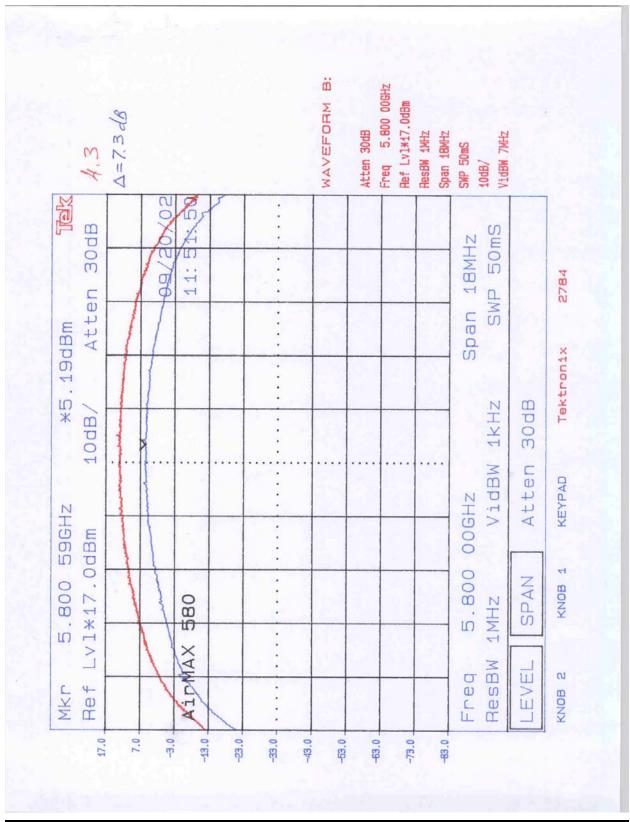
FCC ID: QGQ-AM581 Date of Test: September 5-October 14, 2002

The ratio of the peak excursion of the modulation envelope to the peak power FCC Rule 15.407(a)(6)

Requirement:


The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13 dB.


Procedure:


Spectrum Analyzer was connected to the output of the EUT. The Resolution Bandwidth was set to 1 MHz. Two plots were made in each band: with the Video Bandwidth set to 7 MHz and with the Video Bandwidth set to 1 kHz. The difference between spectrum analyzer readings indicates the ratio of the peak excursion of the modulation envelope to the peak transmit power.

Test Result:

See attached plots 4.1 - 4.3 for the ratio of the peak excursion of the modulation envelope to the peak power. The maximum Ratio is 7.9 dB.

Date of Test: September 5-October 14, 2002

4.5 Out-of-Band Conducted Emissions FCC Rule 15.407(b)

Requirement:

For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of –17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed and EIRP of –27 dBm/MHz.

The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

Procedure:

Spectrum Analyzer was connected to the output of the EUT. For measurements above 1 GHz, the Resolution Bandwidth was set to 1 MHz; for measurements below 1 GHz, the Resolution Bandwidth was set 100 kHz, and the Video Bandwidth was set to 100 kHz. Several plots were made in the frequency range from 5715 to 5835 MHz.

In addition, plots were made in the frequency range from 30 MHz to 40 GHz.

Result:

Refer to the data tables on the next page and plots in Appendix 1 (FCC 15 E Appendix 1 file) for the Out-of-band Conducted Emissions data.

Operating Frequency,	Frequency MHz	Measured Conducted Level	Calculated EIRP *	EIRP Limit	Margin	Plot
MHz		dBm/MHz	dBm/MHz	dBm/MHz	dB	
	≤ 5715	-60.0	-46.0	-27.0	-19.0	5.1b
5750	5715-5725	-56.4	-42.4	-17.0	-25.4	5.1c
	5825-5835	-52.7	-38.7	-17.0	-21.7	5.1d
	> 5835	-55.2	-41.2	-27.0	-14.2	5.1f

Operating Frequency, MHz	Frequency MHz	Measured Conducted Level dBm/MHz	Calculated EIRP * dBm/MHz	EIRP Limit dBm/MHz	Margin dB	Plot
5775	≤ 5715	-60.2	-36.2	-27.0	-9.2	5.2b
	5715-5725	-58.8	-44.8	-17.0	-27.8	5.2c
	5825-5835	-53.4	-39.4	-17.0	-22.4	5.2d
	> 5835	-55.2	-41.2	-27.0	-14.2	5.2f

Operating Frequency, MHz	Frequency MHz	Measured Conducted Level dBm/MHz	Calculated EIRP * dBm/MHz	EIRP Limit dBm/MHz	Margin DB	Plot
	≤ 5715	-59.9	-45.9	-27.0	-18.9	5.3b
5800	5715-5725	-59.8	-45.8	-17.0	-28.8	5.3c
	5825-5835	-48.2	-34.2	-17.0	-17.2	5.3d
	> 5835	-53.3	-39.3	-27.0	-12.3	5.3f

^{*} Calculated for antenna Gain = 14 dBi.

Date of Test: September 5-October 14, 2002

4.6 Radiated Emissions

FCC Rule 15.407(b), 15.209, 15.205

Procedure

Radiated emission measurements were performed from 30 MHz to 40,000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz.

The EUT is placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak and average detection.

The measurements were performed for three fundamental frequencies with three transmitting antennas: ASTJ22, 12010V, 2360.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG + Att

Where $FS = Field Strength in dB(\mu V/m)$

RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(1/m)

AG = Amplifier Gain in dB

Att = External attenuator (if used)

Assume a receiver reading of $52.0 \text{ dB}(\mu\text{V})$ is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted, giving field strength of $32.0 \text{ dB}(\mu\text{V/m})$. This value in $dB(\mu\text{V/m})$ was converted to its corresponding level in $\mu\text{V/m}$.

 $RA = 52.0 dB(\mu V)$

AF = 7.4 dB

CF = 1.6 dB

AG = 29.0 dB

Att = 0 dB

 $FS = 52+7.4+1.6-29.0+0 = 32.0 \text{ dB}(\mu\text{V/m})$

Date of Test: September 5-October 14, 2002

Level in $\mu V/m = Common Antilogarithm [(32.0 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

Transmitter Radiated Emission Test Result

The data on the following pages shows the measured Field Strength. The EUT complies with the Field Strength requirement in restricted bands by 1.2 dB. For frequencies outside the restricted bands, the Field Strength (average value) at 3 m is less than 54 dB(μ V/m). This corresponds to radiated power (EIRP) of –41.3 dBm, which is well below the limit of –27 dBm/1MHz.

Company:	MALIBU NE	TWORKS				Model #:	AirMax 58	0/5800	Standar	d_	FCC § 15B	
EUT:	UNII Radio					S/N #:	none		Limits_		2	
Project #:	3033217					Test Date:	October 1	1, 2002	Test Dis	tance_	1	meter
Test Mode:	TX at 5800 I	MHz with a	anten	na AS	TJ22	Engineer:	Bruce G.		Duty Re	laxation	0	dB
	An	tenna Use				Pre-Amp Use	d	Cal	ble Used			
Number:	14	21	2	22	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	316	50-10	Miteq	None	ACO/400	NPS72-1	None	None	None)
Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	dB(μV/m)	dB(μV/m)	dB
11600	57.6	Peak	14	9	V	41.2	36.8	5.1	-9.5	57.6	74.0	-16.4
11600	38.8	Ave.	14	9	V	41.2	36.8	5.1	-9.5	38.8	54.0	-15.2
11600	58.9	Peak	14	9	Н	41.9	36.8	5.1	-9.5	59.6	74.0	-15.4
11600	49.0	Ave.	14	9	Н	41.9	36.8	5.1	-9.5	49.7	54.0	-4.3
17400	56.3	Peak	14	9	V	42.2	35.6	7.1	-9.5	60.5	74.0	-13.5
17400	37.3	Ave.	14	9	V	42.2	35.6	7.1	-9.5	41.5	54.0	-12.5
17400	55.4	Peak	14	9	Н	43.0	35.6	7.1	-9.5	60.4	74.0	-13.6
17400	34.5	Ave.	14	9	Н	43.0	35.6	7.1	-9.5	39.5	54.0	-14.5
23200	34.3*	Peak	21	13	V/H	40.4	23.3	2.2	-9.5	44.1	74.0	-29.9
23200	26.5*	Ave.	21	13	V/H	40.4	23.3	2.2	-9.5	36.3	54.0	-17.7
29000	43.3*	Peak	22	13	V/H	43.5	24.2	2.8	-9.5	55.8	74.0	-18.8
29000	36.8*	Ave.	22	13	V/H	43.5	24.2	2.8	-9.5	49.3	54.0	-4.7
34800	47.0*	Peak	22	13	V/H	43.6	23.8	3.2	-9.5	60.5	74.0	-13.5
34800	37.9*	Ave.	22	13	V/H	43.6	23.8	3.2	-9.5	51.4	54.0	-2.6
Notes:	a) D.C.F.:Dis	stance Co	rrecti	on Fac	ctor							

b) Insert. Loss (dB) = Cable A + Cable B + Cable C.

c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss. - Duty Relaxation (transmitter only).

d) Negative signs (-) in Margin column signify levels below the limits.

e) All other emissions not reported are below the equipment noise floor which is at least 6 dB below the limits.

^{*} noise floor level

	MALIBU NE	TWORKS			Model #:	AirMax 58	0/5800	Standar	d_	FCC § 15B	
EUT:	UNII Radio				S/N #:			Limits_		2	
Project #:	3033217				Test Date:	October 1	1 2002	Test Dis	stance_	1	meter
Test Mode:	TX at 5775 I	MHz with a	antenna AS	STJ22	Engineer:	Bruce G.		Duty Re	laxation	0	dB
	1	itenna Use			Pre-Amp Use			ble Used		<u> </u>	
Number:	14	21	22	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	3160-10	Miteq	None	ACO/400	NPS72-1	None	None	None)
Frequency	Reading	Detector	Ant. Amp	. Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	# #	H/V	dB(1/m)	dB	dB	dB	dB(μV/m)	dB(μV/m)	dB
11550	54.7	Peak	14 9	V	41.2	36.8	5.1	-9.5	54.7	74.0	-19.3
11550	38.5	Ave.	14 9	V	41.2	36.8	5.1	-9.5	38.5	54.0	-15.5
11550	60.1	Peak	14 9	Н	41.9	36.8	5.1	-9.5	60.8	74.0	-13.2
11550	50.0	Ave.	14 9	Н	41.9	36.8	5.1	-9.5	50.7	54.0	-3.3
17325	52.7	Peak	14 9	V	42.2	35.6	7.1	-9.5	56.9	74.0	-17.1
17325	34.2	Ave.	14 9	V	42.2	35.6	7.1	-9.5	38.4	54.0	-15.6
17325	54.5	Peak	14 9	Н	43.0	35.6	7.1	-9.5	59.5	74.0	-14.5
17325	34.0	Ave.	14 9	Н	43.0	35.6	7.1	-9.5	39.0	54.0	-15.0
23100	35.0*	Peak	21 13	V/H	40.4	23.3	2.2	-9.5	44.8	74.0	-29.8
23100	26.4*	Ave.	21 13	V/H	40.4	23.3	2.2	-9.5	36.2	54.0	-17.8
28875	45.0*	Peak	22 13	V/H	43.4	24.2	2.8	-9.5	57.5	74.0	-16.5
28875	36.4*	Ave.	22 13	V/H	43.4	24.2	2.8	-9.5	48.9	54.0	-5.1
34650	45.6*	Peak	22 13	V/H	43.6	23.8	3.2	-9.5	59.1	74.0	-14.9
34650	38.0*	Ave.	22 13	V/H	43.6	23.8	3.2	-9.5	51.5	54.0	-2.5
Notes:	a) D.C.F.:Di	stance Co	rrection Fa	ctor							
	b) Insert. Lo	ss (dB) =	Cable A +	Cable B +	Cable C .						
	c) Net (dB) =	= Reading	+ Antenna	Factor - F	re-amp + Ins	ert. Loss	Duty Relaxa	tion (trans	smitter on	ly).	
	, , ,	_			ify levels belo		•	,		,	
	, ,	• ,	•	•	•		loor which is a	at least 6	dB below	the limits.	
	* noise floo										

	MALIBU NE	TWORK	S			Model #:	AirMax 58	80/5800	Standa	rd_	FCC § 15B	
EUT:	UNII Radio					S/N #:			Limits_	•	2	
	3033217					Test Date:	October 1	1, 2002		stance_	1	meter
Test Mode:	TX at 5750 I	MHz with	ante	nna <i>A</i>	ASTJ22	Engineer:	Bruce G.		Duty Re	elaxation	0	dB
	T	enna Us				Pre-Amp Use			ble Used			
Number:	14	21	2		9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	316	0-10	Miteq	None	ACO/400	NPS72-1	None	None	None	9
Frequency	Reading I	Detector	· Δnt /	Δmn	Ant Pol	. Ant. Facto	r Pro₋∆mn	Insert I as	sD C F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	#	ч. #	H/V	dB(1/m)	dB	dB	dB	dB(μV/m)	dB(μV/m)	dB
11500	57.3	Peak	14	9	V	41.2	36.8	5.1	-9.5	57.3	74.0	-16.7
11500	50.5	Ave.	14	9	V	41.2	36.8	5.1	-9.5	50.5	54.0	-3.5
11500	61.9	Peak	14	9	H	41.9	36.8	5.1	-9.5	62.6	74.0	-11.4
11500	52.1	Ave.	14	9	Н	41.9	36.8	5.1	-9.5	52.8	54.0	-1.2
17250	50.7	Peak	14	9	V	42.2	35.6	7.1	-9.5	54.9	74.0	-19.1
17250	34.0	Ave.	14	9	V	42.2	35.6	7.1	-9.5	38.2	54.0	-15.8
17250	52.8	Peak	14	9	Н	43.0	35.6	7.1	-9.5	57.8	74.0	-16.2
17250	34.5	Ave.	14	9	Н	43.0	35.6	7.1	-9.5	39.5	54.0	-14.5
23000	35.6*	Peak	21	13	V/H	40.4	23.3	2.2	-9.5	45.4	74.0	-28.6
23000	27.0*	Ave.	21	13	V/H	40.4	23.3	2.2	-9.5	36.8	54.0	-17.2
28750	44.0*	Peak	22	13	V/H	43.4	24.2	2.8	-9.5	56.5	74.0	-17.5
28750	35.6*	Ave.	22	13	V/H	43.4	24.2	2.8	-9.5	48.1	54.0	-5.9
34500	48.0*	Peak	22	13	V/H	43.6	23.8	3.2	-9.5	61.5	74.0	-12.5
34500	38.3*	Ave.	22	13	V/H	43.6	23.8	3.2	-9.5	51.8	54.0	-2.2
Notes:	a) D.C.F.:Di	stance C	orrec	tion F	actor							
	b) Insert. Lo	ss (dB) =	= Cab	le A +	Cable B	+ Cable C .						
	c) Net (dB) =	= Readin	g + A	ntenr	na Factor	- Pre-amp +	Insert. Los	ss Duty R	elaxation	(transmit	ter only).	
	d) Negative	signs (-)	in Ma	argin (column si	ignify levels	below the I	imits.				
	e) All other		s not	repor	ted are b	elow the equ	uipment no	ise floor whi	ch is at le	ast 6 dB	below the li	mits.
	* noise floo	or level										

Company:	MALIBU NE	TWORKS				Model #:	AirMax 58	0/5800	Standar	d_	FCC § 15B	
EUT:	UNII Radio					S/N #:	none		Limits_		2	
Project #:	3033217					Test Date:	October 1	1, 2002	Test Dis	stance_	1	meter
Test Mode:	TX at 5800 M	MHz with a	antenr	na 120	010V	Engineer:	Bruce G.		Duty Re	laxation	0	dB
		itenna Use				Pre-Amp Use			ble Used			
Number:	14	21	2	2	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	316	0-10	Miteq	None	ACO/400	NPS72-1	None	None	None	9
_	- "		• .	-							00	
Frequency								Insert. Loss			Limit @3m	
MHz	dB(μV)	P/A/Q	# 4 4	#	H/V	dB(1/m)	dB	dB	dB	dB(μV/m)	\ i ,	dB
11600	54.6	Peak	14	9	V	41.2	36.8	5.1	-9.5	54.6	74.0	-19.4
11600	45.3	Ave.	14	9	V	41.2	36.8	5.1	-9.5	45.3	54.0	-8.7
11600	55.5 45.9	Peak	14 14	9	Н	41.9 41.0	36.8 36.8	5.1 5.1	-9.5	56.2 46.5	74.0	-17.8 -7.5
11600 17400	45.8 47.0	Ave.	14	9	H V	41.9 42.2	35.6	5. i 7.1	-9.5 -9.5	40.5 51.2	54.0 74.0	-7.5 -22.8
17400	40.2	Peak Ave.	14	9	V	42.2 42.2	35.6	7.1 7.1	-9.5 -9.5	31.2 44.4	74.0 54.0	-22.6 -9.6
17400	59.8	Peak	14	9	v H	43.0	35.6	7.1 7.1	-9.5 -9.5	64.8	74.0	-9.0 -9.2
17400	36.7	Ave.	14	9	H	43.0	35.6	7.1	-9.5 -9.5	41.7	54.0	-12.3
23200	34.3*	Peak	21	13	V/H	40.4	23.3	2.2	-9.5 -9.5	44.1	74.0	-29.9
23200	26.5*	Ave.	21	13	V/H	40.4	23.3	2.2	-9.5	36.3	54.0	-17.7
29000	43.3*	Peak	22	13	V/H	43.5	24.2	2.8	-9.5	55.8	74.0	-18.2
29000	36.8*	Ave.	22	13	V/H	43.5	24.2	2.8	-9.5	49.3	54.0	-4.7
34800	47.0*	Peak	22	13	V/H	43.6	23.8	3.2	-9.5	60.5	74.0	-13.5
34800	37.9*	Ave.	22	13	V/H	43.6	23.8	3.2	-9.5	51.4	54.0	-2.6
Notes:	a) D.C.F.:Dis	stance Co	rrectio	on Fac	ctor							
	b) Insert. Los					Cable C .						
	c) Net (dB) =	= Reading	+ Ant	enna	Factor - P	re-amp + Inse	ert. Loss	Duty Relaxa	tion (tran	smitter or	nly).	
		_				ify levels belo		=	`		3,	
	, -	• ,	-	-	_	•		loor which is a	at least 6	dB below	the limits.	
	* noise floo	or level										

Componi	MALIDITATE	TWODKO				Model #:	AirMay EQ	0/5000	Ctondor	ral	ECC \$ 4EB	
Company: EUT:	MALIBU NE UNII Radio	IWURKS	1			Niodel #: S/N #:	AirMax 58	0/5800	Standar Limits	_	FCC § 15B	
Project #:	3033217					Test Date:	October 1	1 2002	Test Dis		1	meter
Test Mode:		MHz with a	anten	na 120	010V	Engineer:	Bruce G.			elaxation	0	dB
	Ar	ntenna Use	ed			Pre-Amp Use	d	Cal	ole Used			
Number:	14	21	:	22	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	310	30-10	Miteq	None	ACO/400	NPS72-1	None	None	None	Э
Frequency				•			•	Insert. Loss	D. C. F.		Limit @3m	_
MHz	dB(μV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	dB(μV/m)		dB
11550	54.3	Peak	14	9	V	41.2	36.8	5.1	-9.5	54.3	74.0	-19.3
11550	45.2	Ave.	14	9	V	41.2	36.8	5.1	-9.5	45.2	54.0	-8.8
11550	56.0	Peak	14	9	Н	41.9	36.8	5.1	-9.5	56.7	74.0	-17.3
11550	46.4	Ave.	14	9	Н	41.9	36.8	5.1	-9.5	47.1	54.0	-6.9
17325	53.1	Peak	14	9	V	42.2	35.6	7.1	-9.5	57.3	74.0	-16.7
17325	32.3	Ave.	14	9	V	42.2	35.6	7.1	-9.5	36.5	54.0	-17.5
17325	56.5	Peak	14	9	Н	43.0	35.6	7.1	-9.5	61.5	74.0	-12.5
17325	33.7	Ave.	14	9	Н	43.0	35.6	7.1	-9.5	38.7	54.0	-15.3
23100	35.0*	Peak	21	13	V/H	40.4	23.3	2.2	-9.5	44.8	74.0	-29.2
23100	26.4*	Ave.	21	13	V/H	40.4	23.3	2.2	-9.5	36.2	54.0	-17.8
28875	45.0*	Peak	22	13	V/H	43.4	24.2	2.8	-9.5	57.5	74.0	-16.5
28875	36.4*	Ave.	22	13	V/H	43.4	24.2	2.8	-9.5	48.9	54.0	-5.1
34650	45.6*	Peak	22	13	V/H	43.6	23.8	3.2	-9.5	59.1	74.0	-14.9
34650	38.0*	Ave.	22	13	V/H	43.6	23.8	3.2	-9.5	51.5	54.0	-2.5
Notes:	d) Negative	ess (dB) = e = Reading signs (-) in emissions	Cable + An n Mar	e A + (tenna gin co	Cable B + 0 Factor - P lumn signi	re-amp + Inse fy levels belo	w the limits	Duty Relaxa s. loor which is a	,			

Componi	MALIBU NE	TMODI	C		Model #	AirMax 58	00/5000	Ctondo	v ol	ECC 8 4ED	
Company: EUT:	UNII Radio	IWORK	5		Model #: S/N #:	Alfiviax 50	50/5800	Standar	_	FCC § 15B	
Project #:						Ootobord	14 2002	_	•	2	motor
		NALL- with	onton	oo 12010\/	Test Date:				stance_		meter dB
l est wode	TX at 5750	WIHZ WILI	anteni	na 12010V	Engineer:	Bruce G.		Duty Re	elaxation	U	uв
	Ant	tenna Us	ed		Pre-Amp Us	ed	Са	able Used			
Number:	14	21	22	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	3160-	10 Miteg	None	ACO/400	NPS72-1	None	None	Non	е
				•							
Frequency	Reading	Detector	Ant. Ar	mp. Ant. Po	I. Ant. Facto	r Pre-Amp	Insert. Los	s D. C. F.	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	#	# H/V	dB(1/m)	dB	dB	dB	dB(μV/m)	dB(μV/m)	dB
11500	57.0	Peak	14	9 V	41.2	36.8	5.1	-9.5	57.0	74.0	-17.0
11500	47.5	Ave.	14	9 V	41.2	36.8	5.1	-9.5	47.5	54.0	-6.5
11500	60.0	Peak	14	9 H	41.9	36.8	5.1	-9.5	60.9	74.0	-13.1
11500	50.8	Ave.	14	9 H	41.9	36.8	5.1	-9.5	51.6	54.0	-2.4
17250	44.3	Peak	14	9 V	42.2	35.6	7.1	-9.5	48.5	74.0	-25.5
17250	36.6	Ave.	14	9 V	42.2	35.6	7.1	-9.5	40.8	54.0	-13.2
17250	56.0	Peak	14	9 H	43.0	35.6	7.1	-9.5	61.0	74.0	-13.0
17250	33.0	Ave.	14	9 H	43.0	35.6	7.1	-9.5	38.0	54.0	-16.0
23000	35.6*	Peak	21 1	13 V/H	40.4	23.3	2.2	-9.5	45.4	74.0	-28.6
23000	27.0*	Ave.	21 1	13 V/H	40.4	23.3	2.2	-9.5	36.8	54.0	-17.2
28750	44.0*	Peak	22 1	13 V/H	43.4	24.2	2.8	-9.5	56.5	74.0	-17.5
28750	35.6*	Ave.	22 1	13 V/H	43.4	24.2	2.8	-9.5	48.1	54.0	-5.9
34500	48.0*	Peak	22 1	13 V/H	43.6	23.8	3.2	-9.5	61.5	74.0	-12.5
34500	38.3*	Ave.	22 1	13 V/H	43.6	23.8	3.2	-9.5	51.8	54.0	-2.2
Notes:	c) Net (dB) d) Negative	oss (dB) = = Readin signs (-) emission	= Cable g + Ant in Mar	A + Cable l tenna Facto gin column s	B + Cable C r - Pre-amp + signify levels pelow the equ	Insert. Lo	limits.		,	- /	mits.

Date of Test: September 5-October 14, 2002

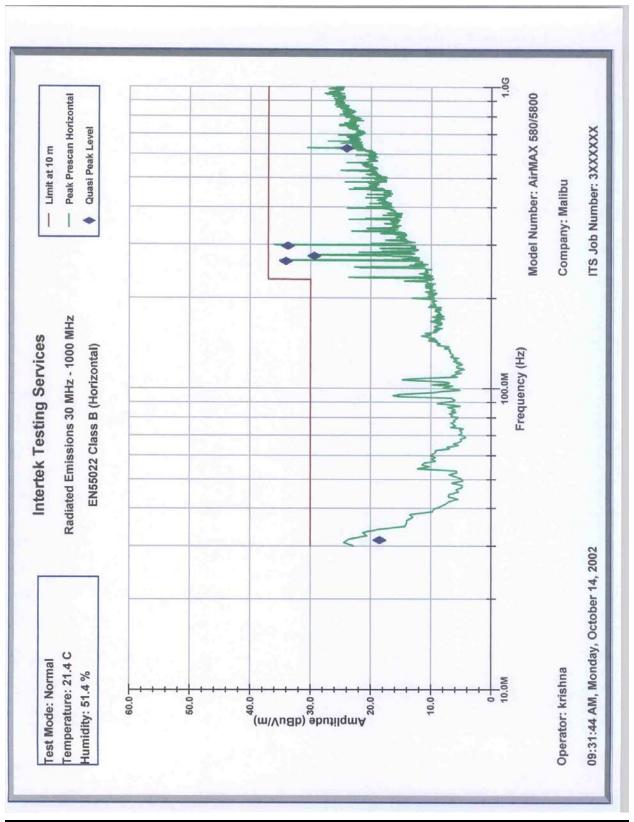
ļ												
Company:	MALIBU NE	TWORKS				Model #:	AirMax 58	0/5800	Standar	d_	FCC § 15B	
EUT:	UNII Radio					S/N #:	none		Limits_		2	
Project #:	3033217					Test Date:	October 1	1, 2002	Test Dis	tance_	1	meter
Test Mode:	TX at 5800 I	MHz with a	anten	na 236	30	Engineer:	Bruce G.		Duty Re	laxation	0	dB
	An	itenna Use	ed			Pre-Amp Use	d	Ca	ble Used			
Number:	14	21	2	22	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	310	60-10	Miteq	None	ACO/400	NPS72-1	None	None	None	е
Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	dB(μV/m)	dB
11600	56.2	Peak	14	9	V	41.2	36.8	5.1	-9.5	56.2	74.0	-17.8
11600	44.9	Ave.	14	9	V	41.2	36.8	5.1	-9.5	44.9	54.0	-9.1
11600	58.5	Peak	14	9	Н	41.9	36.8	5.1	-9.5	59.2	74.0	-14.8
11600	47.0	Ave.	14	9	Н	41.9	36.8	5.1	-9.5	47.7	54.0	-6.3
17400	42.0	Peak	14	9	V	42.2	35.6	7.1	-9.5	46.2	74.0	-27.8
17400	31.5	Ave.	14	9	V	42.2	35.6	7.1	-9.5	35.7	54.0	-18.3
17400	62.1	Peak	14	9	Н	43.0	35.6	7.1	-9.5	67.1	74.0	-6.9
17400	40.0	Ave.	14	9	Н	43.0	35.6	7.1	-9.5	45.0	54.0	-9.0
23200	34.3*	Peak	21	13	V/H	40.4	23.3	2.2	-9.5	44.1	74.0	-29.9
23200	26.5*	Ave.	21	13	V/H	40.4	23.3	2.2	-9.5	36.3	54.0	-17.7
29000	43.3*	Peak	22	13	V/H	43.5	24.2	2.8	-9.5	55.8	74.0	-18.2
29000	36.8*	Ave.	22	13	V/H	43.5	24.2	2.8	-9.5	49.3	54.0	-4.7
34800	47.0*	Peak	22	13	V/H	43.6	23.8	3.2	-9.5	60.5	74.0	-13.5
34800	37.9*	Ave.	22	13	V/H	43.6	23.8	3.2	-9.5	51.4	54.0	-2.6

Notes:

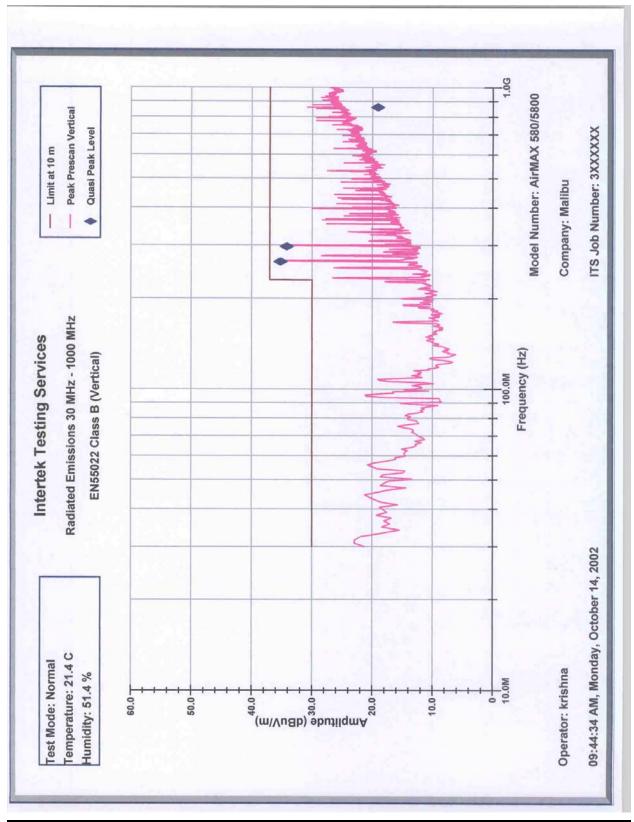
- a) D.C.F.:Distance Correction Factor
- b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss. Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 6 dB below the limits.

^{*} noise floor level

	MALIBU NE	TWORKS	3				AirMax 58	0/5800	Standar	_	FCC § 15B	
EUT:	UNII Radio					S/N #:			Limits_		2	
Project #:	3033217					Test Date:	October 1	1 2002	Test Dis		1	meter
Test Mode:	TX at 5775 I	MHz with	anten	na 236	80	Engineer:	Bruce G.		Duty Re	laxation	0	dB
	۸۰۰۰	tanna I la	ه ما			Dua Aman Illan	ما	Cal	ا ماما			
Maria la arri		ntenna Us		20		Pre-Amp Use			ble Used			
Number:	14	21		22	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	316	60-10	Miteq	None	ACO/400	NPS72-1	None	None	None	9
Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	dB(μV/m)	dB(μV/m)	dB
11550	53.5	Peak	14	9	V	41.2	36.8	5.1	-9.5	53.5	74.0	-20.5
11550	42.4	Ave.	14	9	V	41.2	36.8	5.1	-9.5	42.4	54.0	-11.6
11550	60.7	Peak	14	9	Н	41.9	36.8	5.1	-9.5	61.4	74.0	-12.6
11550	49.2	Ave.	14	9	Н	41.9	36.8	5.1	-9.5	49.9	54.0	-4.1
17325	43.3	Peak	14	9	V	42.2	35.6	7.1	-9.5	47.5	74.0	-26.5
17325	34.1	Ave.	14	9	V	42.2	35.6	7.1	-9.5	38.3	54.0	-15.7
17325	54.0	Peak	14	9	Н	43.0	35.6	7.1	-9.5	59.0	74.0	-15.0
17325	31.6	Ave.	14	9	Н	43.0	35.6	7.1	-9.5	36.6	54.0	-17.4
23100	35.0*	Peak	21	13	V/H	40.4	23.3	2.2	-9.5	44.8	74.0	-29.2
23100	26.4*	Ave.	21	13	V/H	40.4	23.3	2.2	-9.5	36.2	54.0	-17.8
28875	45.0*	Peak	22	13	V/H	43.4	24.2	2.8	-9.5	57.5	74.0	-16.5
28875	36.4*	Ave.	22	13	V/H	43.4	24.2	2.8	-9.5	48.9	54.0	-5.1
34650	45.6*	Peak	22	13	V/H	43.6	23.8	3.2	-9.5	59.1	74.0	-14.9
34650	38.0*	Ave.	22	13	V/H	43.6	23.8	3.2	-9.5	51.5	54.0	-2.5
Notes:	d) Negative	ess (dB) = = Reading signs (-) i emissions	Cable ı + An n Mar	A + C tenna gin co	Cable B + 0 Factor - P lumn signi	re-amp + Inse fy levels belo	w the limits	Duty Relaxa s. loor which is a	,		-,	


Company:	MALIBU NE	ETWORK	S			Model #:	AirMax 58	80/5800	Standa	rd_	FCC § 15B	
EUT:	UNII Radio					S/N #:			Limits_		2	
Project #:	3033217					Test Date:	October 1	1, 2002	Test Di	stance_	1	meter
Test Mode:	TX at 5750	MHz with	ante	nna 2	2360	Engineer:	Bruce G.		Duty Re	elaxation	0	dB
		tenna Us				Pre-Amp Use			ble Used		l	
Number:	14	21	2	2	9	4	13	10	0	0	0	
Model:	EMCO 3115	3160-9	316	0-10	Miteq	None	ACO/400	NPS72-1	None	None	Non	е
	D I'	D. ((•	A (D)	A . 1 E 1 .				NI . 1	11	
Frequency						. Ant. Factor					Limit @3m	
MHz	dB(μV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB		dB(μV/m)	dB
11500	59.4	Peak	14	9	V	41.2	36.8	5.1	-9.5	59.4	74.0	-14.6
11500	48.1	Ave.	14	9	V	41.2	36.8	5.1	-9.5	48.1	54.0	-5.9
11500	60.0	Peak	14	9	H	41.9	36.8	5.1	-9.5	60.7	74.0	-13.3
11500	48.4	Ave.	14	9	Н	41.9	36.8	5.1	-9.5	49.1	54.0	-4.9
17250	40.5	Peak	14	9	V	42.2	35.6	7.1	-9.5	44.7	74.0	-29.3
17250	30.0	Ave.	14	9	V	42.2	35.6	7.1	-9.5	34.2	54.0	-19.8
17250	55.1	Peak	14	9	Н	43.0	35.6	7.1	-9.5	60.1	74.0	-13.9
17250	33.7	Ave.	14	9	Н	43.0	35.6	7.1	-9.5	38.7	54.0	-15.3
23000	35.6*	Peak	21	13	V/H	40.4	23.3	2.2	-9.5	45.4	74.0	-28.6
23000	27.0*	Ave.	21	13	V/H	40.4	23.3	2.2	-9.5	36.8	54.0	-17.2
28750	44.0*	Peak	22	13	V/H	43.4	24.2	2.8	-9.5	56.5	74.0	-17.5
28750	35.6*	Ave.	22	13	V/H	43.4	24.2	2.8	-9.5	48.1	54.0	-5.9
34500	48.0*	Peak	22	13	V/H	43.6	23.8	3.2	-9.5	61.5	74.0	-12.5
34500	38.3*	Ave.	22	13	V/H	43.6	23.8	3.2	-9.5	51.8	54.0	-2.2
Notes:	c) Net (dB) d) Negative	oss (dB) = = Readir e signs (-) emission	= Cab ng + A in Ma	le A Inteni argin	+ Cable E na Factor column s	3 + Cable C Pre-amp + ignify levels elow the equ	· Insert. Lo: below the I	limits.		•		mits.

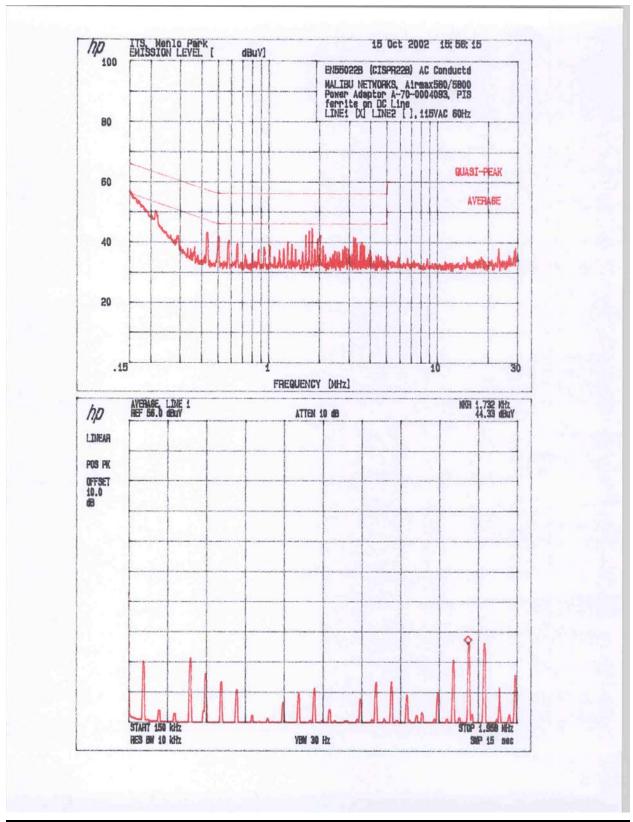
Date of Test: September 5-October 14, 2002

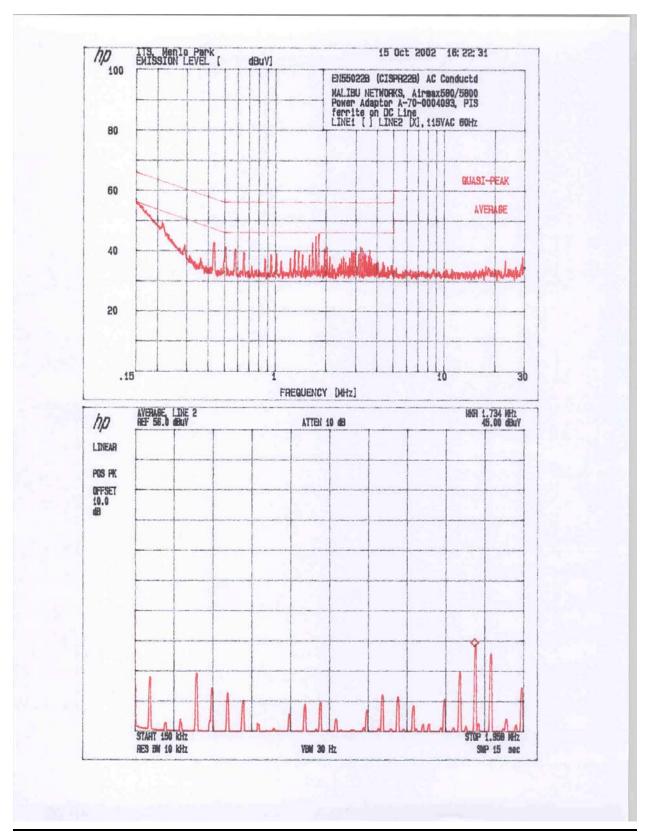

<u>Digital part Radiated Emission Test Result</u> FCC Rule 15.109

The CISPR 22 Limit and test procedure were user. Test was performed at 10 m distance.

The data on the following pages list the significant emission frequencies, the limit and the margin of Compliance. The EUT complies with the 15.109 requirement by 1.8 dB.

	124	Radiated Emissions 30 MHz - 1000 MHz EN55022 Class B (OP-Vertical)	interior lesting services lated Emissions 30 MHz - 1000 EN55022 Class B (OP-Vertical	MHz - 1000	MHZ			
Operator: krishna 10:27:58 AM, Mond	a <	October 14, 2002				1 Number: Job Number any: Malib	Model Number: AirMAX 580/5800 ITS Job Number: 3XXXXXX Company: Malibu	00
		2	3	4		9	7	
Frequency	Quasi Pk FS	Limit@10m	Margin	RA	CF	AG	AF	
MHZ	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)	
264.0705 MHz	35.2	37.0	-1.8	42.3	5.1	24.8	12.6	
7.08 MHz	34.2	37.0	-2.8	41.1	5.1	24.8	12.8	
859.3943 MHz	19.1	37.0	-17.9	13.2	7.2	24.2	22.9	
Test Mode: Normal	rmal							
Temperature: 21.4	21.4 C							
Humidity: 51.4	% 7							


Date of Test: September 5-October 14, 2002


4.7 AC Line Conducted Emission FCC Rule 15.207

AC line conducted emission test was performed according the ANSI C63.4 standard. The CISPR 22 Limit was used. The EUT was connected to DC Power Supply which was connected to AC Line through the LISNs.

For the test result, see attached plots. The Fair-Rite Snap-its ferrite, p/n 0443167251 with 2 turns was used on DC power cable.

EUT passed by 1 dB.

Date of Test: September 5-October 14, 2002

4.8 Transmitter Duty Cycle Calculation / Measurements FCC Rule 15.35(b), (c)

The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEEP function on the analyzer was set to ZERO SPAN. The transmitter ON time was determined from the resultant time-amplitude display:

Duty cycle = Maximum ON time in 100 msec/100

Duty cycle correction, dB = 20 * log (DC)

Duty cycle correction was not used.

FCC ID: QGQ-AM581 Date of Test: September 5-October 14, 2002

5.0 List of Test Equipment

Equipment	Manufacturer	Model/Type	Serial #	Cal	Cal Due
				Int	
BI-Log Antenna	EMCO	3143	9509-1164	12	3/04/03
Pre-Amplifier	Sonoma Inst.	310	185634	12	01/10/03
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	7/16/03
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	7/16/03
Spectrum Analyzer	Tektronix	2784	B3020108	12	8/08/03
Spectrum Analyzer w/8650	Hewlett Packard	8568B	1912A0053	12	3/15/03
QP Adapter			2521A01021		
Double-ridged Horn	EMCO	3115	8812-3049	12	4/03/03
Antenna					
Horn Antenna	EMCO	3160-09	-	#	#
Horn Antenna	EMCO	3160-10	-	#	#
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	04/05/03
Pre-amplifier	CTT	ACO/400	47526	12	9/5/03
Pre-Amplifier	Avantek	AFT-18855	8723H705	12	9/5/03
Power Meter	Hewlett Packard	8900D	3607U00673	12	7/8/03
LISN	FCC	FCC-LISN-50-50-M-H	2011	12	1/02/03

[#] No calibration required

Date of Test: September 5-October 14, 2002

6.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 30332141	SS	September 30, 2002	Original document