FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Misiu System LLC

Wireless, Personal Security Alarm Systems--Personal Transmitter Unit

Model Number: RGR-4101

Trade Name: RealGuard

Prepared for

Misiu System LLC 3808 209th Place SE Bothell, WA 98021

Prepared by

Compliance Certification Services Inc.
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang,
Taoyuan Hsien, (338) Taiwan, R.O.C.
TEL: 886-3-324-0332

Date of Issue: May 10, 2004

FAX: 886-3-324-5235

Date of Issue: May 10, 2004

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE.	
3.3	GENERAL TEST PROCEDURES.	
3.4		6
3.5		
4. IN	NSTRUMENT CALIBRATION	7
5. F	ACILITIES AND ACCREDITATIONS	8
5.1	FACILITIES	8
5.2		
5.3	LABORATORY ACCREDITATIONS AND LISTING	8
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	9
6. Sl	ETUP OF EQUIPMENT UNDER TEST	10
6.1	SETUP CONFIGURATION OF EUT	10
6.2	SUPPORT EQUIPMENT	
7. F	CC PART 15.249 REQUIREMENTS	11
7.1	SPURIOUS EMISSION	11
7.2	DOWEDLINE CONDUCTED EMISSIONS	

TEST RESULT CERTIFICATION

Applicant: Misiu System LLC

3808 209th Place SE Bothell, WA 98021

Equipment Under Test: Wireless, Personal Security Alarm Systems--Personal Transmitter

Unit

RealGuard Trade Name:

Model Number: RGR-4101

Date of Test: April 15, 2004

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC Part 15 Subpart C No non-compliance noted					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209 and 15.249.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Reviewed by:

Harris. W. Lai

Director of Linkou Laboratory

Compliance Certification Services Inc.

James Lee Section Manager

Compliance Certification Services Inc.

Date of Issue: May 10, 2004

2. EUT DESCRIPTION

Product	Wireless, Personal Security Alarm SystemsPersonal Transmitter Unit	
Trade Name	RealGuard	
Model Number	RGR-4101	
Model Discrepancy	N/A	
Power Supply	Powered by AAA batteries (Rating: 2 × 1.5Vdc)	
Frequency Range	915 MHz	
Modulation Technique	FM Modulation	
Antenna Gain	0dBi (Max)	
Antenna Designation	Monopole Antenna	

Date of Issue: May 10, 2004

Note: This submittal(s) (test report) is intended for FCC ID: <u>QGP-RG4101-1</u> filing to comply with Section 15.207, 15.209 and 15.249 of the FCC Part 15, Subpart C Rules.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.249.

Date of Issue: May 10, 2004

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Date of Issue: May 10, 2004

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293		3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725 240 - 285		3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT has been tested under engineering test mode condition and the EUT staying in continuous transmitting mode.

The field strength of spurious radiation emission was measured in the following position: EUT stand-up position (X mode), lied down position (Y, Z mode) and the position which the EUT is put onto the cradle. The following data show only with the worst case setup.

The worst case (X axis) was reported.

² Above 38.6

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: May 10, 2004

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at	
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.	
No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.	
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 at CISPR Publication 22.	nd

Date of Issue: May 10, 2004

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

Date of Issue: May 10, 2004

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS CISPR 22, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1/2, EN 300 220-1/2/3, EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3, 47 CFR FCC Part 15 Subpart C/D/E, EN 55013, CNS 13439, EN 55014-1, CNS 13783-1, EN 55022, CNS 13438, CISPR 22, AS/NZS 3548, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, IEEE Std 1528, FCC OET Bulletin, 65+Supplement C, EN50360, EN50361, EN50371, RSS102	0 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canada IC 3991-3 IC 3991-4

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Date of Issue: May 10, 2004

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.249 REQUIREMENTS

7.1 SPURIOUS EMISSION

7.2.1 Radiated Emissions

LIMIT

1. In the section 15.249(a):

Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field Strength of Fundamental	Field Strength of Harmonics
Frequency	Field Strength (mV/m)	$(\mu V/m)$
902-928 MHz	50	500
2400 - 2483.5 MHz	50	500
5725 - 5875 MHz	50	500
24.0 - 24.25 GHz	250	2500

Date of Issue: May 10, 2004

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

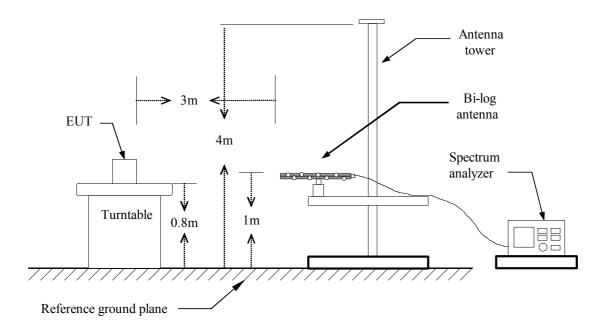
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

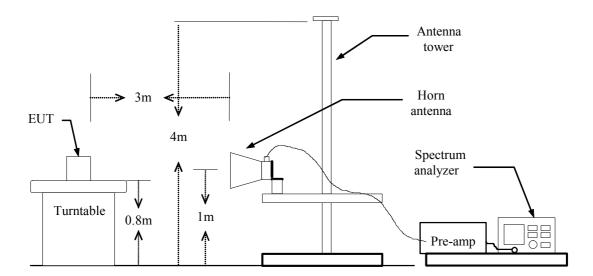
2. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

MEASUREMENT EQUIPMENT USED


Open Area Test Site # 3						
Name of Equipment	Manufacturer	nufacturer Model Serial Nu		Calibration Due		
Spectrum Analyzer	ADVANTEST	R3261A	N/A	N.C.R		
EMI Test Receiver	R&S	ESVS20	838804/004	01/08/2005		
Pre-Amplifier	НР	8447D	2944A09173	03/02/2005		
Bilog Antenna	SCHWAZBECK	VULB9163	145	12/26/2004		
Turn Table	EMCO	2081-1.21	9709-1885	N.C.R		
Antenna Tower	EMCO	2075-2	9707-2060	N.C.R		
Controller	EMCO	2090	9709-1256	N.C.R		
RF Switch	ANRITSU	MP59B	M53867	N.C.R		
Site NSA	C&C	N/A	N/A	09/05/2004		
Horn antenna	Schwarzbeck	BBHA 9120	D210	02/23/2005		
Loop Antenna	EMCO	6502	2356	07/10/2004		
Pre-Amplifier	НР	8449B	3008B00965	10/02/2004		

Date of Issue: May 10, 2004


Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Below 1 GHz

Above 1 GHz

Date of Issue: May 10, 2004

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation Mode: Personal Tx **Test Date:** April 15, 2004

Date of Issue: May 10, 2004

Temperature: 25°C **Tested by:** Max Yan

Humidity: 68% RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
915.00	V	QP	63.87	28.36	92.23	94.00	-1.77
71.85	V	Peak	4.99	10.02	15.01	40.00	-24.99
N/A							
N/A							
N/A							
N/A							
N/A							
915.00	Н	QP	59.77	28.36	88.13	94.00	-5.87
57.45	Н	Peak	5.37	13.97	19.34	40.00	-20.66
N/A							
N/A							
N/A							
N/A							
N/A							

Notes:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Above 1 GHz

Operation Mode: Personal Tx Test Date: April 15, 2004

Date of Issue: May 10, 2004

Temperature:25°CTested by:Max YanHumidity:68% RHPolarity:Ver. / Hor.

Frog	Ant. Pol	Peak	AV	Ant. / CL	Actual Fs		Peak	AV	Margin	
Freq. (MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(JD)	Remark
1826.67	V	56.00		-5.56	50.44		74.00	54.00	-3.56	Peak
2740.00	V	47.00		-2.13	44.87		74.00	54.00	-9.13	Peak
3650.00	V	47.17		1.06	48.23		74.00	54.00	-5.77	Peak
N/A										
N/A										
N/A										
1826.67	Н	47.84		-5.56	42.28		74.00	54.00	-11.72	Peak
2740.00	Н	48.67		-2.13	46.54		74.00	54.00	-7.46	Peak
N/A										
N/A										
N/A										
N/A										

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

7.2 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Date of Issue: May 10, 2004

Frequency Range (MHz)	Limits (dBµV)				
rrequency Range (MIIIZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCS30	845552/030	03/14/2005
LISN	R&S	ESH2-Z5	843285/010	01/08/2005
LISN	EMCO	3825/2	9003-1628	07/27/2004
Spectrum Analyzer	ADVANTEST	R3261C	81720301	N.C.R
ISN	FCC	FCC-TLISN-T4	20065	05/08/2005
ISN	FCC	FCC-TLISN-T8-02	20148	02/06/2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Test Results

Not Applicable.