

# Report on the FCC and IC Testing of the Agrident GmbH AWR300

In accordance with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN and FCC 47 CFR Part 15B and ICES-003

Prepared for: Agrident GmbH  
Steinklippenstraße 10  
D-30890 Barsinghausen

FCC ID: QG2AWR300  
IC: 6252A-AWR300



Product Service

Choose certainty.  
Add value.

## COMMERCIAL-IN-CONFIDENCE

Date: 2019-07-29

Document Number: TR-09774-38374-02 | Issue: 02

| RESPONSIBLE FOR      | NAME            | DATE       | SIGNATURE |
|----------------------|-----------------|------------|-----------|
| Project Management   | Alex Fink       | 2019-07-29 |           |
| Authorised Signatory | Markus Biberger | 2019-07-29 |           |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

### ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN and FCC 47 CFR Part 15B and ICES-003. The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR | NAME      | DATE       | SIGNATURE |
|-----------------|-----------|------------|-----------|
| Testing         | Alex Fink | 2019-07-29 |           |

Laboratory Accreditation  
DAkkS Reg. No. D-PL-11321-11-02

Laboratory recognition

Registration No. BNetzA-CAB-16/21-15

ISED Canada test site registration

3050A-2

### EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN:2016, Issue 09 (08-2016), Issue 04 (11-2014) and FCC 47 CFR Part 15B and ICES-003:2017 and 2016.

#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2019 TÜV SÜD Product Service.

#### ACCREDITATION

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

Trade Register Munich  
HRB 85742  
VAT ID No. DE129484267  
Information pursuant to Section 2(1)  
DL-InfoV (Germany) at  
[www.tuev-sued.com/imprint](http://www.tuev-sued.com/imprint)

Managing Directors:  
Dr. Peter Havel (CEO)  
Dr. Jens Butenandt

Phone: +49 (0) 9421 55 22-0  
Fax: +49 (0) 9421 55 22-99  
[www.tuev-sued.de](http://www.tuev-sued.de)

TÜV SÜD Product Service GmbH  
Äußere Frühlingstraße 45  
94315 Straubing  
Germany

## Contents

|          |                                                       |           |
|----------|-------------------------------------------------------|-----------|
| <b>1</b> | <b>Report Summary .....</b>                           | <b>2</b>  |
| 1.1      | Report Modification Record.....                       | 2         |
| 1.2      | Introduction.....                                     | 2         |
| 1.3      | Brief Summary of Results .....                        | 3         |
| 1.4      | Application Form .....                                | 4         |
| 1.5      | Product Information .....                             | 7         |
| 1.6      | Deviations from the Standard.....                     | 7         |
| 1.7      | EUT Modification Record .....                         | 7         |
| 1.8      | Test Location.....                                    | 7         |
| <b>2</b> | <b>Test Details .....</b>                             | <b>9</b>  |
| 2.1      | Frequency Tolerance Under Temperature Variations..... | 9         |
| 2.2      | Field Strength of any Emission .....                  | 11        |
| 2.3      | 20 dB Bandwidth .....                                 | 20        |
| 2.4      | AC Power Line Conducted Emissions .....               | 23        |
| 2.5      | Restricted Band Edges.....                            | 27        |
| 2.6      | Exposure of Humans to RF Fields .....                 | 29        |
| 2.7      | Radiated Disturbance.....                             | 43        |
| 2.8      | Conducted Disturbance at Mains Terminals .....        | 51        |
| <b>3</b> | <b>Photographs .....</b>                              | <b>54</b> |
| 3.1      | Equipment Under Test (EUT).....                       | 54        |
| <b>4</b> | <b>Measurement Uncertainty .....</b>                  | <b>57</b> |

## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change                                              | Date of Issue |
|-------|--------------------------------------------------------------------|---------------|
| 1     | First Issue                                                        | 2019-03-18    |
| 2     | RF Exposure Evaluation for Wifi and Bluetooth in chapter 2.6 added | 2019-07-29    |

**Table 1**

### 1.2 Introduction

|                               |                                                                                                                                                                  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant                     | Agriident GmbH                                                                                                                                                   |
| Manufacturer                  | Agriident GmbH                                                                                                                                                   |
| Model Number(s)               | AWR300                                                                                                                                                           |
| Serial Number(s)              | 1244002065                                                                                                                                                       |
| Hardware Version(s)           | N/A                                                                                                                                                              |
| Software Version(s)           | N/A                                                                                                                                                              |
| Number of Samples Tested      | 1                                                                                                                                                                |
| Test Specification/Issue/Date | FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN:2016, Issue 09 (08-2016), Issue 04 (11-2014) and FCC 47 CFR Part 15B and ICES-003:2017 and 2016 |
| Test Plan/Issue/Date          | N/A                                                                                                                                                              |
| Order Number                  | 2199                                                                                                                                                             |
| Date                          | 2018-07-11                                                                                                                                                       |
| Date of Receipt of EUT        | 2019-01-11                                                                                                                                                       |
| Start of Test                 | 2019-02-20                                                                                                                                                       |
| Finish of Test                | 2019-03-11                                                                                                                                                       |
| Name of Engineer(s)           | Alex Fink, Matthias Stumpe                                                                                                                                       |
| Related Document(s)           | ANSI C63.10 (2013)<br>ANSI C63.4: 2014                                                                                                                           |



### 1.3 Brief Summary

### of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN and FCC 47 CFR Part 15B and ICES-003 is shown below.

| Section                                                                      | Specification Clause        | Test Description                                 | Result | Comments/Base Standard |
|------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|--------|------------------------|
| Configuration and Mode: 7.2 V Battery Supply - Continuously reading RFID Tag |                             |                                                  |        |                        |
| 2.1                                                                          | 15.249 (b)(2), N/A and 6.11 | Frequency Tolerance Under Temperature Variations | Pass   | ANSI C63.10 (2013)     |
| 2.2                                                                          | 15.209, 4.3 and 6.13        | Field Strength of any Emission                   | Pass   | ANSI C63.10 (2013)     |
| 2.3                                                                          | 15.215 (c), N/A and 6.6     | 20 dB Bandwidth                                  | Pass   | ANSI C63.10 (2013)     |
| 2.4                                                                          | 15.207, N/A and 8.8         | AC Power Line Conducted Emissions                | Pass   | ANSI C63.10 (2013)     |
| 2.5                                                                          | 15.205, 4.1 and 8.10        | Restricted Band Edges                            | Pass   | ANSI C63.10 (2013)     |
| 2.6                                                                          | 15.107 and 6.1              | Exposure of Humans to RF Fields                  | Pass   | ANSI C63.4: 2014       |
| Configuration and Mode: 7.2 V Battery Supply – normal operation mode         |                             |                                                  |        |                        |
| 2.7                                                                          | 15.109 and 6.2              | Radiated Disturbance                             | Pass   | ANSI C63.4: 2014       |
| 2.8                                                                          | 15.107 and 6.1              | Conducted Disturbance at Mains Terminals         | Pass   | ANSI C63.4: 2014       |

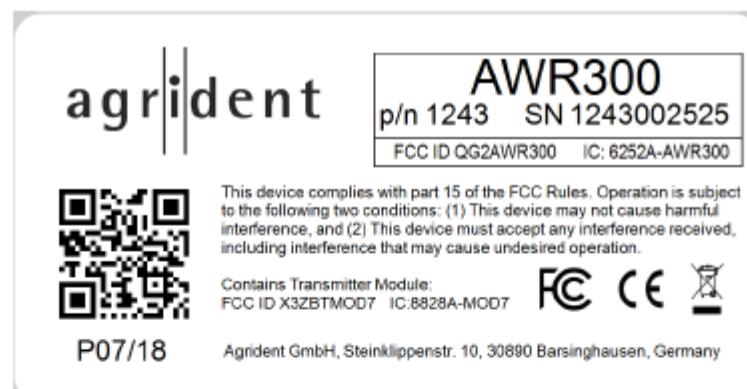
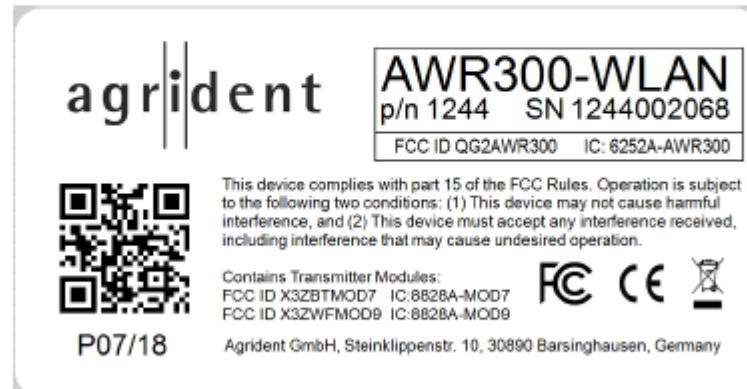
**Table 2**

## 1.4 Application Form

### Test sample basic information

Please enter the information below in english language, since it is directly copied to the reports, thank you!

| General information (for report)                |                                                                                                         |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Ordernumber (your PO number)                    | 1275 (AWR300-WLAN Set), 1274 (AWR300 Set),<br>1276 (AWR300-WLAN 'Tepari' Set) (details on page 2 and 3) |
| Applicant<br>(incl. address and contact person) | Agrent GmbH, Steinklippenstr. 10, 30890 Barsinghausen, Germany,<br>Mr. Helmut Ruppert                   |
| Manufacturer<br>(when different to applicant)   |                                                                                                         |
| Name and address of factory(ies)                | Agrent GmbH, Steinklippenstr. 10, 30890 Barsinghausen, Germany                                          |



| Equipment characteristics:                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|
| Type of equipment:                                                                                                          | Mobile RFID Reader for electronic animal identification                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                              |
| Type designation*:                                                                                                          | AWR300-WLAN, AWR300                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                              |
| *Please consider:                                                                                                           | <p>If the type designation has to be changed in the report the whole test of the product has to be repeated!</p> <p>More Info:</p> <p>Only available in german language:<br/><a href="http://www.dakks.de/sites/default/files/dokumente/71_sd_0_019_beschluessse_horizonta_l_20160914_v1.0.pdf">http://www.dakks.de/sites/default/files/dokumente/71_sd_0_019_beschluessse_horizonta_l_20160914_v1.0.pdf</a></p> |                                                                       |                                                              |
| Parts of the system:                                                                                                        | AWR300 Stickreader, Y-Cable (for USB and Charger Power Supply)*, RS232 Cable*, Charger Power Supply* (* -> supporting devices only)                                                                                                                                                                                                                                                                              |                                                                       |                                                              |
| Commercial value:                                                                                                           | 1.596,00€ (for two complete sets)                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                              |
| Version of EUT:<br><small>In case of already tested products please describe the differences to the original sample</small> | Original Equipment                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                              |
| Serial number:                                                                                                              | 1244002065, 1244002066                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                              |
| Power supply:                                                                                                               | <input type="checkbox"/> AC*<br>Nominal: V<br>Minimum: V<br>Maximum: V<br>Nominal frequency: Hz                                                                                                                                                                                                                                                                                                                  | <input type="checkbox"/> DC<br>Nominal: V<br>Minimum: V<br>Maximum: V | <input checked="" type="checkbox"/> Battery<br>Nominal: 7.2V |

The AC Power Supply for internal battery charging is a supporting device only and is not part of the AWR300 approval.



|                                                    |                                                            |
|----------------------------------------------------|------------------------------------------------------------|
| highest frequency generated or used within the EUT | 62.00 MHz<br><input checked="" type="checkbox"/> < 108 MHz |
|----------------------------------------------------|------------------------------------------------------------|

| Marking plate (may only be a draft) |
|-------------------------------------|
|-------------------------------------|



Explanations regarding order numbers and versions:

AWR300-WLAN: Part-Number: 1244 (the reader only, with WLAN)

AWR300-WLAN Set: Part Number: 1275 (contains accessories, like USB-Cable and Power-Supply)

AWR300-WLAN 'Tepari': Part-Number: 1247 (the reader only, with WLAN, blue sealing & other display foil)

AWR300-WLAN 'Tepari' Set: Part Number: 1276 (contains accessories, like USB-Cable and Power-Supply)

AWR300: Part-Number: 1243 (the reader only, without WLAN)

AWR300 Set: Part Number: 1274 (contains accessories, like USB-Cable and Power-Supply)

The versions with or without WLAN only differ in:

- Presence of the WLAN Module (assembled or not)
- Part Numbers
- Label

Differences between P/N 1244 (1275) and 1247 (1276) (both with WLAN):

- The sealing of the housing is blue instead red.
- The display foil has a different design (sold under a different brand name)
- Part Numbers
- Labels

Beside that, the different models are 100 percent identical.

| Operating mode(s) // Methods of Observation  |                                                                                                                                       |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Operating mode(s) for emission tests:        | <ul style="list-style-type: none"><li>▪ Continuous Reading Mode</li><li>▪ FDX-B and HDX Transponder within the reading zone</li></ul> |
| Operating mode(s) for immunity tests:        | <ul style="list-style-type: none"><li>▪ Continuous Reading Mode</li><li>▪ FDX-B and HDX Transponder within the reading zone</li></ul> |
| Methods of observation during immunity tests |                                                                                                                                       |

| List of ports and cables |                         |                             |            |                   |                                   |
|--------------------------|-------------------------|-----------------------------|------------|-------------------|-----------------------------------|
| No.                      | Description             | Classification <sup>1</sup> | Cable type | Cable length used | Cable length maximum <sup>2</sup> |
| D1                       | Power Supply to AWR300* | dc power                    | Unshielded | 1.5 m**           | 1.5 m**                           |
| S2                       | Y-Cable (USB + Charge)  | signal/control port         | Shielded   | 1.1 m             | 1.1 m                             |

\* The AC Power Supply for internal battery charging is a supporting device only and is not part of the AWR300 approval.

\*\* This is the cable length of the plug-in power supply. Another 1.1m are added by the Y-Cable.

For the items listed below, two of each have been provided:

| List of devices connected to EUT |             |                  |                  |
|----------------------------------|-------------|------------------|------------------|
| No.                              | Description | Type designation | Serial no. or ID |
| 1                                | ...         | ...              |                  |
| 2                                | ...         | ...              |                  |

| List of support devices |                        |                                  |                  |
|-------------------------|------------------------|----------------------------------|------------------|
| No.                     | Description            | Type designation                 | Serial no. or ID |
| 1                       | APS300 Power Supply    | XP1515-1201000<br>(SF15-120125X) | -                |
| 2                       | Y-Cable (USB + Charge) | APC300                           | -                |

## 1.5 Product Information

### 1.5.1 Technical Description

Mobile RFID Reader for electronic animal identification

### 1.6 Deviations from the Standard

none

### 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.  
The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State | Description of Modification still fitted to EUT | Modification Fitted By | Date Modification Fitted |
|--------------------|-------------------------------------------------|------------------------|--------------------------|
| 0                  | As supplied by the customer                     | Not Applicable         | Not Applicable           |

Table 3

### 1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

| Test Name                                                                    | Name of Engineer(s)        |
|------------------------------------------------------------------------------|----------------------------|
| Configuration and Mode: 7.2 V Battery Supply - Continuously reading RFID Tag |                            |
| Frequency Tolerance Under Temperature Variations                             | Alex Fink                  |
| Field Strength of any Emission                                               | Alex Fink, Matthias Stumpe |
| 20 dB Bandwidth                                                              | Alex Fink                  |
| AC Power Line Conducted Emissions                                            | Matthias Stumpe            |
| Restricted Band Edges                                                        | Alex Fink                  |
| Configuration and Mode: 7.2 V Battery Supply – normal operation mode         |                            |
| Radiated Disturbance                                                         | Alex Fink, Matthias Stumpe |
| Conducted Disturbance at Mains Terminals                                     | Matthias Stumpe            |

**Table 4**

Office Address:

Äußere Frühlingstraße 45  
94315 Straubing  
Germany

## 2 Test Details

### 2.1 Frequency Tolerance Under Temperature Variations

#### 2.1.1 Specification Reference

ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause N/A and 6.11

#### 2.1.2 Equipment Under Test and Modification State

AWR300, S/N: 1244002065 - Modification State 0

#### 2.1.3 Date of Test

2019-03-06

#### 2.1.4 Test Method

The EUT was set to transmit on maximum power with normal modulation. A frequency counter, was used to measure the frequency error. The temperature was adjusted between - 20°C and +50°C.

#### 2.1.5 Environmental Conditions

Ambient Temperature 22.0 °C

Relative Humidity 32.0 %

#### 2.1.6 Test Results

##### 7.2 V Battery Supply - Continuously reading RFID Tag

| Temperature | Voltage  | kHz       |
|-------------|----------|-----------|
| - 20°C      | 7.2 V DC | 134.19938 |
| + 20°C      | 6.6 V DC | 134.19875 |
| + 20°C      | 7.2 V DC | 134.19938 |
| + 20°C      | 8.4 V DC | 134.19938 |
| + 50°C      | 7.2 V DC | 134.19750 |

**Table 5**

##### ISED Canada RSS-210 Limit Clause

None specified

### 2.1.7 Test Location and Test Equipment Used

This test was carried out in a non-shielded room.

| Instrument            | Manufacturer    | Type No | TE No | Calibration Period (months) | Calibration Due |
|-----------------------|-----------------|---------|-------|-----------------------------|-----------------|
| Spectrum Analyzer     | Rohde & Schwarz | FSV40   | 20219 | 12                          | 2020-01-31      |
| Climatic test chamber | ESPEC           | PL-2J   | 18843 | 24                          | 2019-03-31      |

**Table 6**

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable



## **2.2 Field Strength of any Emission**

### **2.2.1 Specification Reference**

FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause 15.209, 4.3 and 6.13

### **2.2.2 Equipment Under Test and Modification State**

AWR300, S/N: 1244002065 - Modification State 0

### **2.2.3 Date of Test**

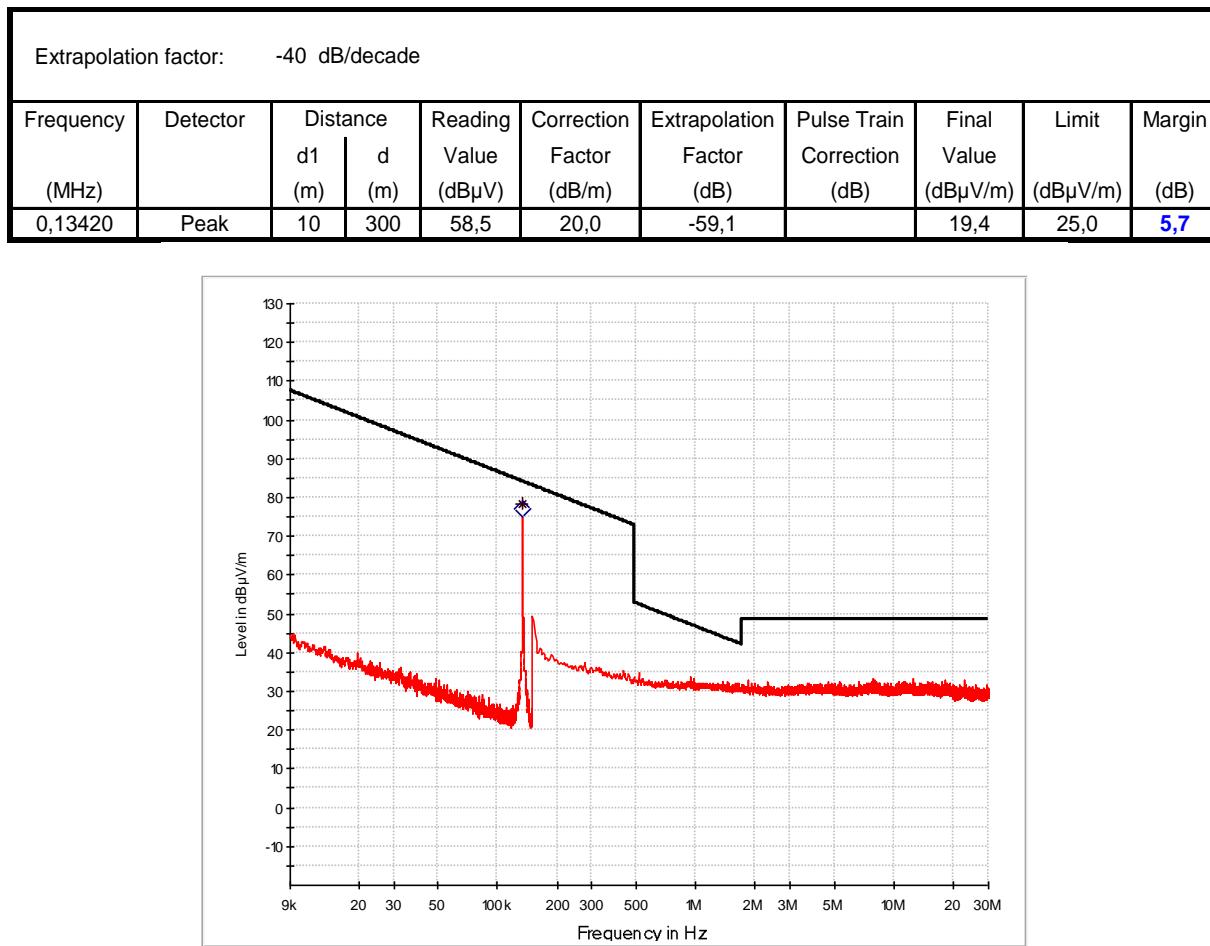
2019-02-20 to 2019-03-11

### **2.2.4 Test Method**

This test was performed in accordance with ANSI C63.10, clause 6.3, 6.4 and 6.5. and ISED Canada RSS-Gen clause 6.13.

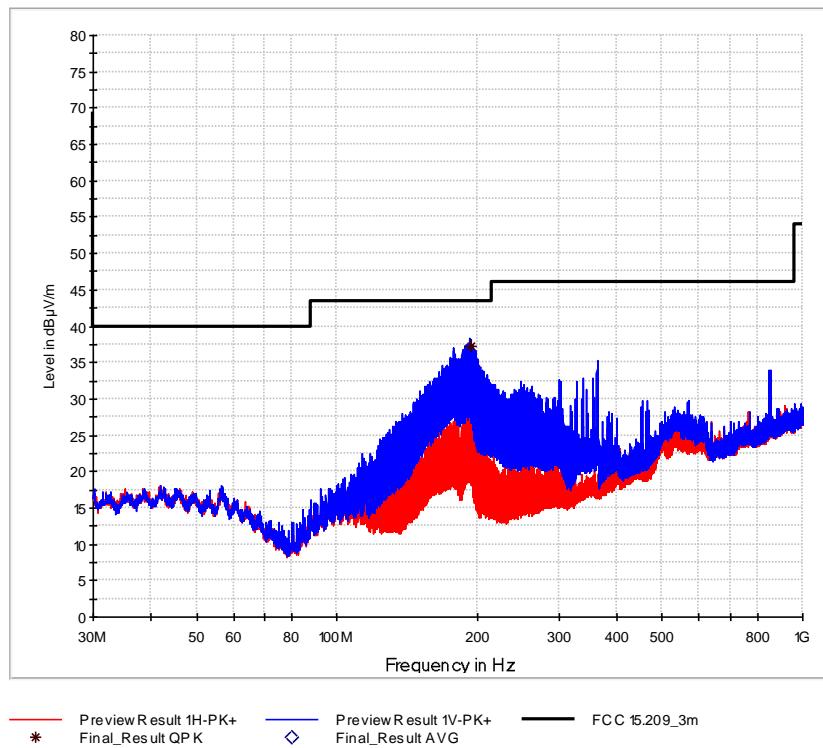
Measurements were made at a distance of 3 m. The limit lines shown on the plot were extrapolated from either 300 m or 30 m to the measurement distance of 3 m in accordance with ANSI C63.10 Clause 6.4.4.2.

For any emissions detected within 20 dB of the limit, a final measurement was made and recorded in the table below. The detector used for these measurements was a quasi-peak detector except for emissions within the bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where a CISPR average detector was used.


### **2.2.5 Environmental Conditions**

|                     |         |
|---------------------|---------|
| Ambient Temperature | 22.0 °C |
| Relative Humidity   | 32.0 %  |

## 2.2.6 Test Results

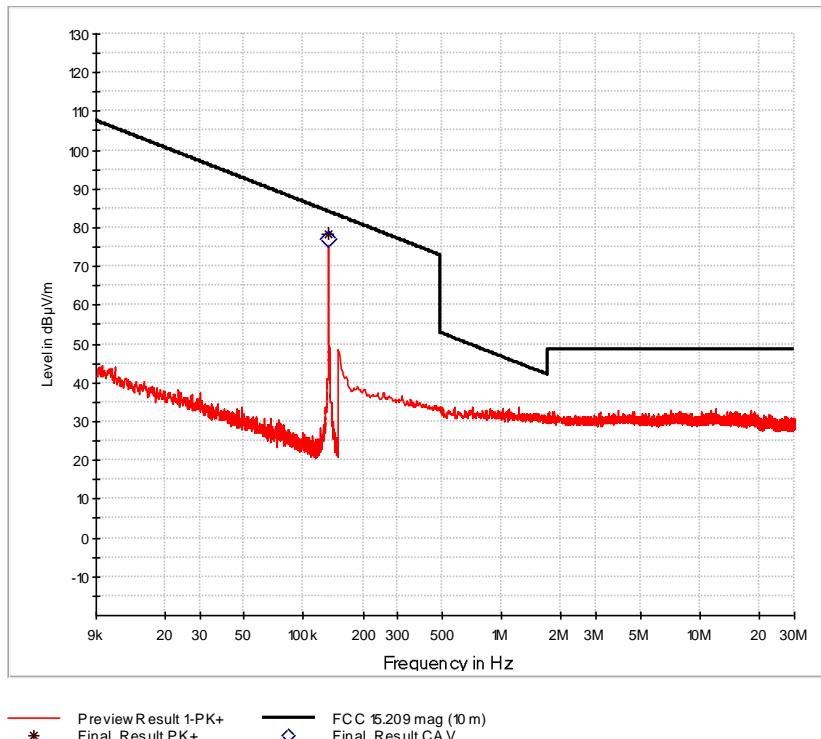

### 7.2 V Battery Supply - Continuously reading RFID Tag

#### 1. Orthogonal axis



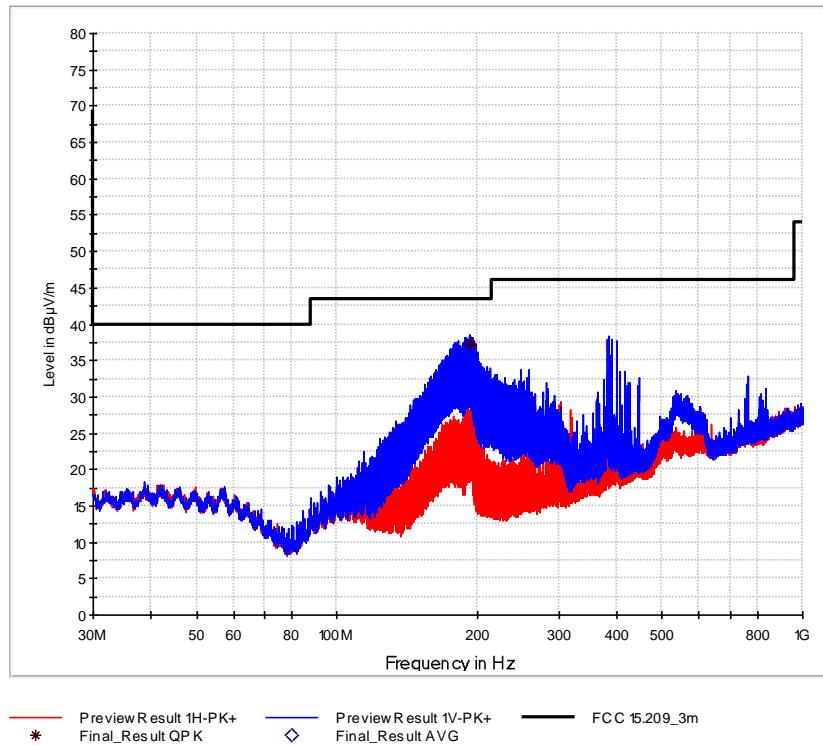
#### Final Results:

| Frequency<br>MHz | MaxPeak<br>dB $\mu$ V/m | CAverage<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Meas.<br>Time<br>ms | Bandwidth<br>kHz | Pol | Azimuth<br>deg | Corr.<br>dB |
|------------------|-------------------------|--------------------------|-----------------------|--------------|---------------------|------------------|-----|----------------|-------------|
| 0.134200         | 78.47                   | ---                      | 84.14                 | 5.67         | 1000.0              | 0.200            | H   | -75.0          | 20.0        |
| 0.134200         | ---                     | 77.04                    | ---                   | ---          | 1000.0              | 0.200            | H   | -75.0          | 20.0        |




### Final Results:

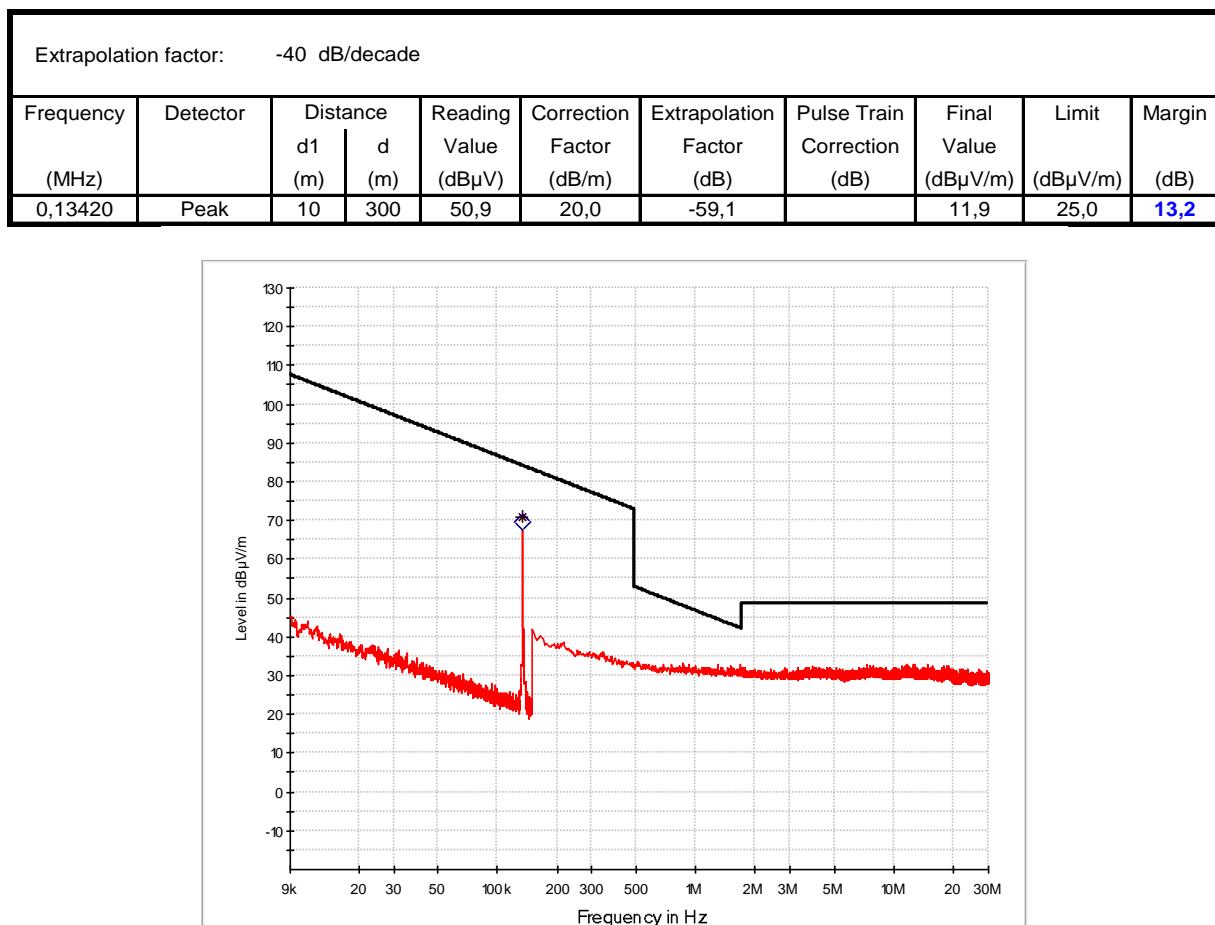
| Frequency<br>MHz | QuasiPeak<br>dB $\mu$ V/m | Average<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Meas.<br>Time<br>ms | Bandwidth<br>kHz | Height<br>cm | Pol | Azimuth<br>deg | Corr.<br>dB |
|------------------|---------------------------|-------------------------|-----------------------|--------------|---------------------|------------------|--------------|-----|----------------|-------------|
| 193.525000       | 37.18                     | ---                     | 43.50                 | 6.32         | 1000.0              | 120.000          | 155.0        | V   | -30.0          | 12.9        |


## 2. Orthogonal axis

| Frequency<br>(MHz) | Detector | Distance<br>d1<br>(m) | Distance<br>d<br>(m) | Reading<br>Value<br>(dB $\mu$ V) | Correction<br>Factor<br>(dB/m) | Extrapolation<br>Factor<br>(dB) | Pulse Train<br>Correction<br>(dB) | Final<br>Value<br>(dB $\mu$ V/m) | Limit<br>(dB $\mu$ V/m) | Margin<br>(dB) |
|--------------------|----------|-----------------------|----------------------|----------------------------------|--------------------------------|---------------------------------|-----------------------------------|----------------------------------|-------------------------|----------------|
| 0,13420            | Peak     | 10                    | 300                  | 58,5                             | 20,0                           | -59,1                           |                                   | 19,4                             | 25,0                    | 5,6            |
|                    |          |                       |                      |                                  |                                |                                 |                                   |                                  |                         |                |

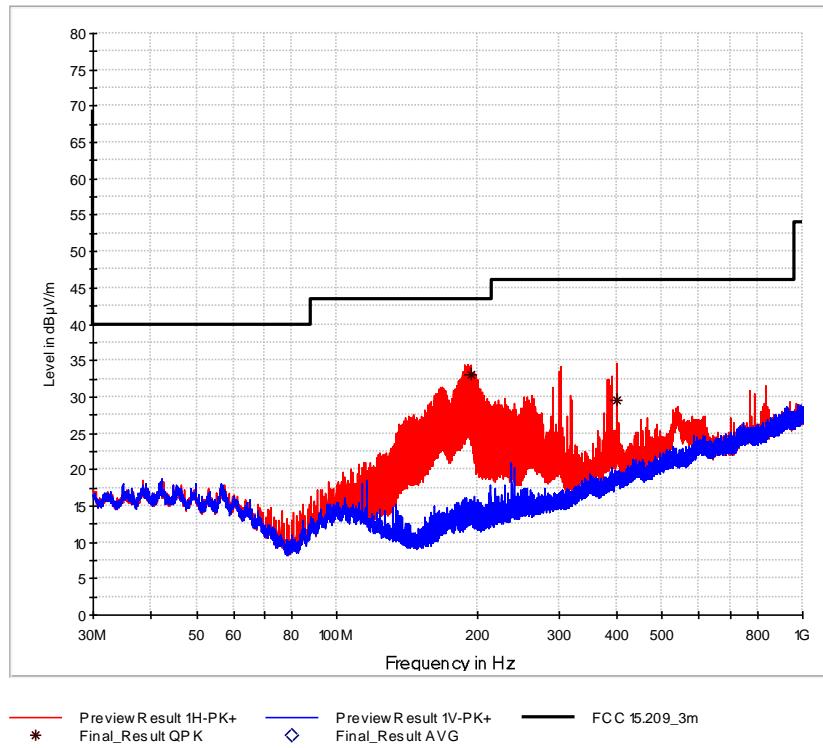


## Final Results:


| Frequency<br>MHz | MaxPeak<br>dB $\mu$ V/m | CAverage<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Meas.<br>Time<br>ms | Bandwidth<br>kHz | Pol | Azimuth<br>deg | Corr.<br>dB |
|------------------|-------------------------|--------------------------|-----------------------|--------------|---------------------|------------------|-----|----------------|-------------|
| 0.134200         | ---                     | 77.08                    | ---                   | ---          | 1000.0              | 0.200            | H   | -73.0          | 20.0        |
| 0.134200         | 78.51                   | ---                      | 84.14                 | 5.63         | 1000.0              | 0.200            | H   | -73.0          | 20.0        |



### Final Results:


| Frequency<br>MHz | QuasiPeak<br>dB $\mu$ V/m | Average<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Meas.<br>Time<br>ms | Bandwidth<br>kHz | Height<br>cm | Pol | Azimuth<br>deg | Corr.<br>dB |
|------------------|---------------------------|-------------------------|-----------------------|--------------|---------------------|------------------|--------------|-----|----------------|-------------|
| 193.525000       | 37.29                     | ---                     | 43.50                 | 6.21         | 1000.0              | 120.000          | 154.0        | V   | 144.0          | 12.9        |

### 3. Orthogonal axis



### Final Results:

| Frequency<br>MHz | MaxPeak<br>dB $\mu$ V/m | CAverage<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Meas.<br>Time<br>ms | Bandwidth<br>kHz | Pol | Azimuth<br>deg | Corr.<br>dB |
|------------------|-------------------------|--------------------------|-----------------------|--------------|---------------------|------------------|-----|----------------|-------------|
| 0.134200         | ---                     | 69.81                    | ---                   | ---          | 1000.0              | 0.200            | H   | 195.0          | 20.0        |
| 0.134200         | 70.94                   | ---                      | 84.14                 | 13.20        | 1000.0              | 0.200            | H   | 195.0          | 20.0        |



### Final Results:

| Frequency<br>MHz | QuasiPeak<br>dB $\mu$ V/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Meas.<br>Time<br>ms | Bandwidth<br>kHz | Height<br>cm | Pol | Azimuth<br>deg | Corr.<br>dB |
|------------------|---------------------------|-----------------------|--------------|---------------------|------------------|--------------|-----|----------------|-------------|
| 193.505000       | 33.13                     | 43.50                 | 10.37        | 1000.0              | 120.000          | 208.0        | H   | -129.0         | 12.9        |
| 400.440000       | 29.55                     | 46.00                 | 16.45        | 1000.0              | 120.000          | 110.0        | H   | 150.0          | 17.8        |



FCC 47 CFR Part 15, Limit Clause 15.209

| Frequency (MHz) | Field Strength ( $\mu$ V/m) | Measurement Distance (m) |
|-----------------|-----------------------------|--------------------------|
| 0.009 to 0.490  | 2400/F (kHz)                | 300                      |
| 0.490 to 1.705  | 24000/F (kHz)               | 30                       |
| 1.705 to 30     | 30                          | 30                       |
| 30 to 88        | 100**                       | 3                        |
| 88 to 216       | 150**                       | 3                        |
| 216 to 960      | 200**                       | 3                        |
| Above 960       | 500                         | 3                        |

**Table 7 - FCC Limit**

NOTE: The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission.

ISED Canada RSS-210, Limit Clause 4.4

Under no circumstance shall the level of any unwanted emissions exceed the level of the fundamental emissions.

ISED Canada RSS-Gen, Limit Clause 8.9

| Frequency (MHz) | Field Strength ( $\mu$ V/m) | Measurement Distance (m) |
|-----------------|-----------------------------|--------------------------|
| 0.009 to 0.490  | 2400/F (kHz)                | 300                      |
| 0.490 to 1.705  | 24000/F (kHz)               | 30                       |
| 1705 to 30      | 30                          | 30                       |

**Table 8 - IC Limit, Below 30 MHz**

| Frequency (MHz) | Field Strength ( $\mu$ V/m at 3 metres) |
|-----------------|-----------------------------------------|
| 30 to 88        | 100                                     |
| 88 to 216       | 150                                     |
| 216 to 960      | 200                                     |
| Above 960       | 500                                     |

**Table 9 - IC Limit, Above 30 MHz**

### 2.2.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

| Instrument               | Manufacturer    | Type No   | TE No | Calibration Period (months) | Calibration Due |
|--------------------------|-----------------|-----------|-------|-----------------------------|-----------------|
| Loop Antenna             | Rohde & Schwarz | HFH2-Z2   | 18876 | 36                          | 2019-07-31      |
| TRILOG Antenna           | Schwarzbeck     | VULB 9163 | 19691 | 24                          | 2020-12-31      |
| EMI test receiver        | Rohde & Schwarz | ESW26     | 28268 | 12                          | 2019-05-31      |
| EMC measurement software | Rohde & Schwarz | EMC32-ME+ | 19719 | N/A                         | N/A             |

**Table 10**

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

## 2.3 20 dB Bandwidth

### 2.3.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause 15.215 (c), N/A and 6.6

### 2.3.2 Equipment Under Test and Modification State

AWR300, S/N: 1244002065 - Modification State 0

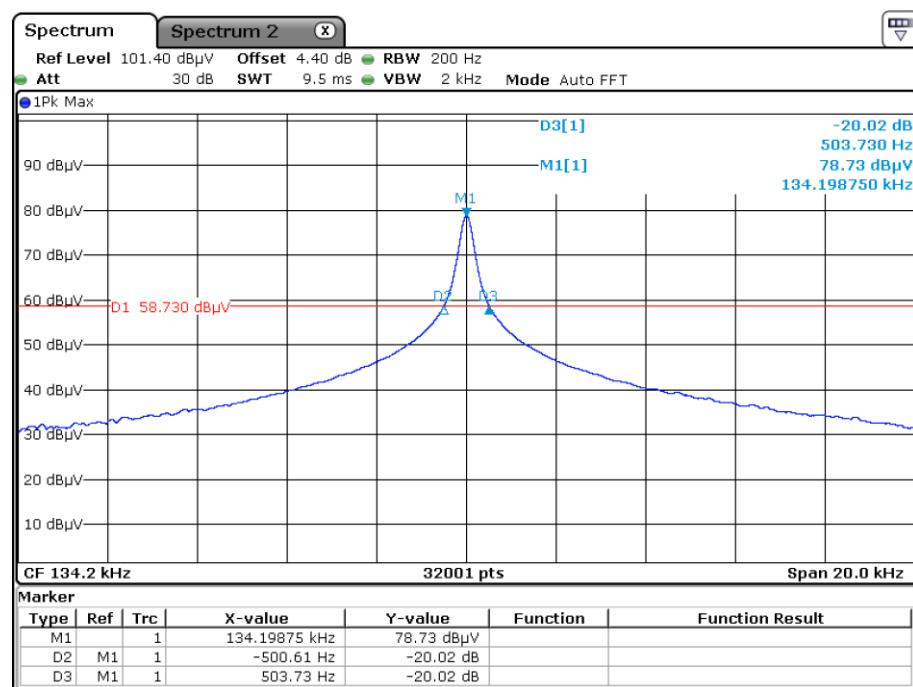
### 2.3.3 Date of Test

2019-03-06

### 2.3.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.9.1.

### 2.3.5 Environmental Conditions


Ambient Temperature 22.0 °C  
Relative Humidity 32.0 %

### 2.3.6 Test Results

#### 7.2 V Battery Supply - Continuously reading RFID Tag

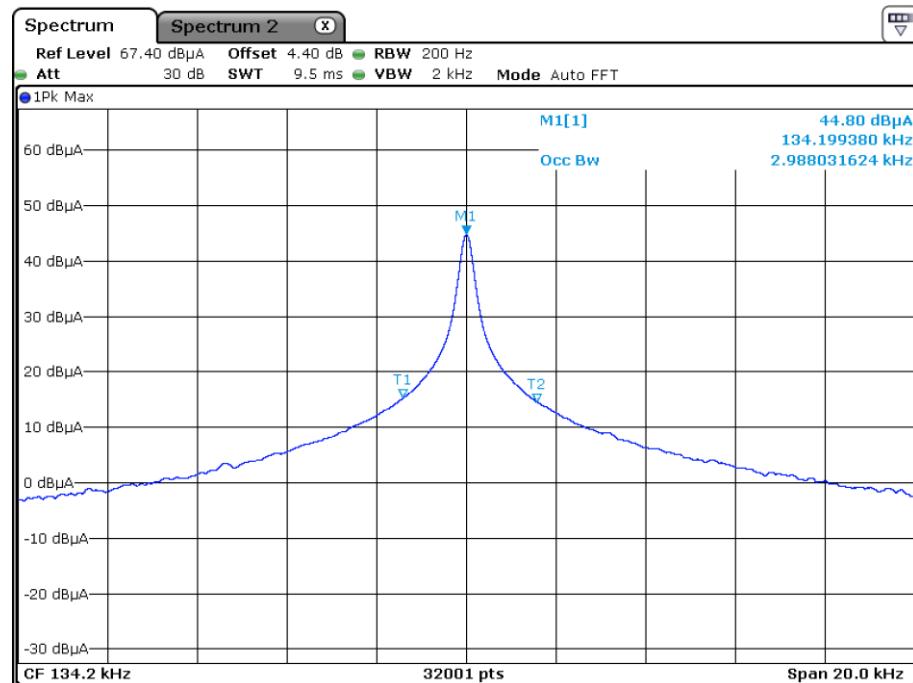

| Frequency (kHz) | 20 dB Bandwidth (kHz) | 99% Occupied Bandwidth (kHz) | F <sub>LOWER</sub> (MHz) | F <sub>UPPER</sub> (MHz) |
|-----------------|-----------------------|------------------------------|--------------------------|--------------------------|
| 134.2           | 1.004                 | 2.988                        | 133.7                    | 134.7                    |

Table 11



Date: 6 MAR. 2019 14:25:50

## 20 dB Bandwidth



Date: 6 MAR 2019 14:17:05

**99% Occupied Bandwidth**

### FCC 47 CFR Part 15, Limit Clause 15.215 (c)

The 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

### ISED Canada RSS 210 and ISED Canada RSS GEN, Limit Clause

None specified.

#### **2.3.7 Test Location and Test Equipment Used**

This test was carried out in a non-shielded room.

| Instrument            | Manufacturer    | Type No | TE No | Calibration Period (months) | Calibration Due |
|-----------------------|-----------------|---------|-------|-----------------------------|-----------------|
| Spectrum Analyzer     | Rohde & Schwarz | FSV40   | 20219 | 12                          | 2020-01-31      |
| Climatic test chamber | ESPEC           | PL-2J   | 18843 | 24                          | 2019-03-31      |

**Table 12**

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable



## **2.4 AC Power Line Conducted Emissions**

### **2.4.1 Specification Reference**

FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause 15.207, N/A and 8.8

### **2.4.2 Equipment Under Test and Modification State**

AWR300, S/N: 1244002065 - Modification State 0

### **2.4.3 Date of Test**

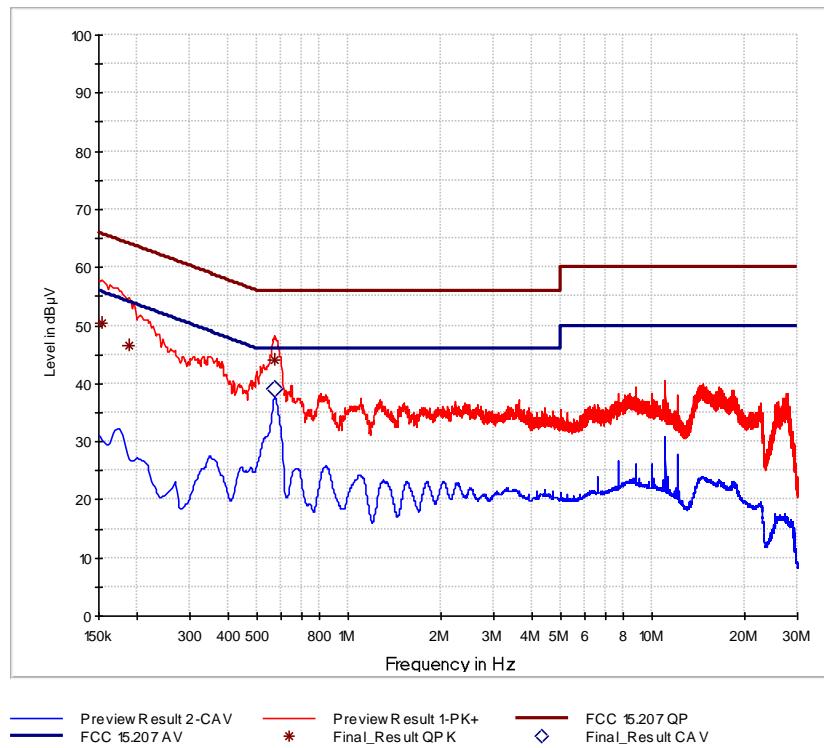
2019-02-21

### **2.4.4 Test Method**

---

### **2.4.5 Environmental Conditions**

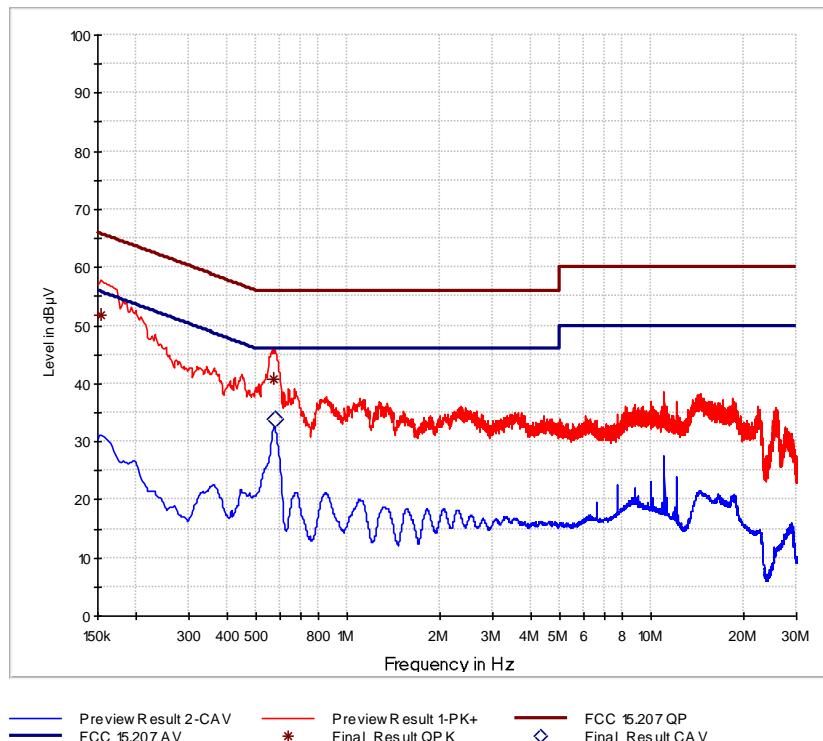
Ambient Temperature 22.0 °C  
Relative Humidity 32.0 %


### **2.4.6 Test Results**

#### 7.2 V Battery Supply - Continuously reading RFID Tag

Applied supply Voltage: 115 V AC  
Applied supply frequency: 60 Hz




### L1-Line - 150k to 30 MHz



### Final Results:

| Frequency MHz | QuasiPeak dBµV | CAverage dBµV | Limit dBµV | Margin dB | Meas. Time ms | Bandwidth kHz | Line | PE  | Corr. dB |
|---------------|----------------|---------------|------------|-----------|---------------|---------------|------|-----|----------|
| 0.154500      | 50.41          | ---           | 65.75      | 15.35     | 1000.0        | 9.000         | L1   | GND | 0.0      |
| 0.188250      | 46.59          | ---           | 64.11      | 1753      | 1000.0        | 9.000         | L1   | GND | 0.0      |
| 0.566250      | 44.13          | ---           | 56.00      | 11.87     | 1000.0        | 9.000         | L1   | GND | 0.0      |
| 0.568500      | ---            | 39.01         | 46.00      | 6.99      | 1000.0        | 9.000         | L1   | GND | 0.0      |

### N-Line - 150k to 30 MHz



### Final Results:

| Frequency MHz | QuasiPeak dBµV | CAverage dBµV | Limit dBµV | Margin dB | Meas. Time ms | Bandwidth kHz | Line | PE  | Corr. dB |
|---------------|----------------|---------------|------------|-----------|---------------|---------------|------|-----|----------|
| 0.154500      | 51.83          | ---           | 65.75      | 13.92     | 1000.0        | 9.000         | N    | GND | 0.0      |
| 0.568500      | 40.67          | ---           | 56.00      | 15.33     | 1000.0        | 9.000         | N    | GND | 0.0      |
| 0.573000      | ---            | 33.93         | 46.00      | 12.07     | 1000.0        | 9.000         | N    | GND | 0.0      |



**FCC 47 CFR Part 15, Limit Clause 15.207 and ISED Canada RSS-GEN, Limit Clause 8.8**

| Frequency of Emission (MHz) | Conducted Limit (dB $\mu$ V) |           |
|-----------------------------|------------------------------|-----------|
|                             | Quasi-Peak                   | Average   |
| 0.15 to 0.5                 | 66 to 56*                    | 56 to 46* |
| 0.5 to 5                    | 56                           | 46        |
| 5 to 30                     | 60                           | 50        |

**Table 13**

\*Decreases with the logarithm of the frequency.

**2.4.7 Test Location and Test Equipment Used**

This test was carried out in a non-shielded room.

| Instrument               | Manufacturer    | Type No    | TE No | Calibration Period (months) | Calibration Due |
|--------------------------|-----------------|------------|-------|-----------------------------|-----------------|
| EMI test receiver        | Rohde & Schwarz | 100008     | 19730 | 18                          | 2019-04-30      |
| V-network                | Rohde & Schwarz | 894785/005 | 18919 | 36                          | 2019-10-31      |
| EMC measurement software | Rohde & Schwarz | EMC32-MEB  | 20090 | N/A                         | N/A             |

**Table 14**

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

## 2.5 Restricted Band Edges

### 2.5.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause 15.205, 4.1 and 8.10

### 2.5.2 Equipment Under Test and Modification State

AWR300, S/N: 1244002065 - Modification State 0

### 2.5.3 Date of Test

2019-03-06

### 2.5.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.13.1.

Plots for average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.3.

Final average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.2.

### 2.5.5 Environmental Conditions

Ambient Temperature 22.0 °C  
Relative Humidity 32.0 %

### 2.5.6 Test Results

#### 7.2 V Battery Supply - Continuously reading RFID Tag

See chapter 2.2 for results.

#### FCC 47 CFR Part 15, Limit Clause 15.205

|                               | Peak (dB $\mu$ V/m) | Average (dB $\mu$ V/m) |
|-------------------------------|---------------------|------------------------|
| Restricted Bands of Operation | 74                  | 54                     |

**Table 15**

#### ISED Canada RSS-GEN, Limit Clause 8.9

| Frequency (MHz) | Field Strength ( $\mu$ V/m at 3 metres) |
|-----------------|-----------------------------------------|
| 30-88           | 100                                     |
| 88-216          | 150                                     |
| 216-960         | 200                                     |
| Above 960*      | 500                                     |

**Table 16**

\*Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

### 2.5.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

| Instrument               | Manufacturer    | Type No   | TE No | Calibration Period (months) | Calibration Due |
|--------------------------|-----------------|-----------|-------|-----------------------------|-----------------|
| Loop Antenna             | Rohde & Schwarz | HFH2-Z2   | 18876 | 36                          | 2019-07-31      |
| EMI test receiver        | Rohde & Schwarz | ESW26     | 28268 | 12                          | 2019-05-31      |
| EMC measurement software | Rohde & Schwarz | EMC32-ME+ | 19719 | N/A                         | N/A             |

**Table 17**

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable



## **2.6 Exposure of Humans to RF Fields**

### **2.6.1 Specification Reference**

IC RSS-GEN Issue 4, section 3.2 and  
IC RSS-102, Issue 5, section 2.5  
KDB 447498 D01 General RF Exposure Guidance v06, chapter 4.3.1

### **2.6.2 Guide**

IC RSS-102 Issue 5, section 2.5

### **2.6.3 Equipment Under Test and Modification State**

AWR300, S/N: 1244002065 - Modification State 0

### **2.6.4 Date of Test**

2019-02-20 to 2019-03-11

### **2.6.5 Test Results**

RFID Evaluation:

| Exposure of Humans to RF Fields                                                                                                           |  | Applicable | Declared by applicant | Measured | Exemption |
|-------------------------------------------------------------------------------------------------------------------------------------------|--|------------|-----------------------|----------|-----------|
| The antenna is                                                                                                                            |  |            |                       |          |           |
| <input type="checkbox"/> detachable                                                                                                       |  |            |                       |          |           |
| The conducted output power (CP in watts) is measured at the antenna connector:<br>$CP = \dots \text{ W}$                                  |  |            |                       |          |           |
| The effective isotropic radiated power (EIRP in watts) is calculated using                                                                |  |            |                       |          |           |
| <input type="checkbox"/> the numerical antenna gain: $G = \dots$                                                                          |  |            |                       |          |           |
| $EIRP = G \cdot CP \Rightarrow EIRP = \dots \text{ W}$                                                                                    |  |            |                       |          |           |
| <input type="checkbox"/> the field strength <sup>1</sup> in V/m: $FS = \dots \text{ V/m}$                                                 |  |            |                       |          |           |
| $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots \text{ W}$                                                                     |  |            |                       |          |           |
| with:<br>Distance between the antennas in m: $D = \dots \text{ m}$                                                                        |  |            |                       |          |           |
| <input checked="" type="checkbox"/> not detachable                                                                                        |  |            |                       |          |           |
| A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by:                        |  |            |                       |          |           |
| $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \mathbf{0.2344 \text{ mW}}$                                                          |  |            |                       |          |           |
| with:<br>Field strength in V/m: $FS = \mathbf{0.008385}$                                                                                  |  |            |                       |          |           |
| Distance between the two antennas in m: $D = \mathbf{10}$                                                                                 |  |            |                       |          |           |
| Selection of output power                                                                                                                 |  |            |                       |          |           |
| The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):<br>$TP = \mathbf{0.2344 \text{ mW}}$ |  |            |                       |          |           |

<sup>1</sup> The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.



| Exposure of Humans to RF Fields (continued)                                                                 |  | Applicable               | Declared by applicant    | Measured                 | Exemption                |
|-------------------------------------------------------------------------------------------------------------|--|--------------------------|--------------------------|--------------------------|--------------------------|
| Separation distance between the user and the transmitting device is                                         |  |                          |                          |                          |                          |
| <input checked="" type="checkbox"/> less than or equal to 20 cm <input type="checkbox"/> greater than 20 cm |  | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| Transmitting device is                                                                                      |  |                          |                          |                          |                          |
| <input type="checkbox"/> in the vicinity of the human head <input type="checkbox"/> body-worn               |  | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |

| SAR evaluation     |                                                              |       |       |       |       |       |       |       |       |        |
|--------------------|--------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Frequency<br>(MHz) | Exemption limits (mW) <sup>2</sup> at separation distance of |       |       |       |       |       |       |       |       |        |
|                    | ≤5 mm                                                        | 10 mm | 15 mm | 20 mm | 25 mm | 30 mm | 35 mm | 40 mm | 45 mm | ≥50 mm |
| ≤300 <sup>3</sup>  | 71                                                           | 101   | 132   | 162   | 193   | 223   | 254   | 284   | 315   | 345    |
| 450                | 52                                                           | 70    | 88    | 106   | 123   | 141   | 159   | 177   | 195   | 213    |
| 835                | 17                                                           | 30    | 42    | 55    | 67    | 80    | 92    | 105   | 117   | 130    |
| 1900               | 7                                                            | 10    | 18    | 34    | 60    | 99    | 153   | 225   | 316   | 431    |
| 2450               | 4                                                            | 7     | 15    | 30    | 52    | 83    | 123   | 173   | 235   | 309    |
| 3500               | 2                                                            | 6     | 16    | 32    | 55    | 86    | 124   | 170   | 225   | 290    |
| 5800               | 1                                                            | 6     | 15    | 27    | 41    | 56    | 71    | 85    | 97    | 106    |

<sup>2</sup> The exemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

<sup>3</sup> Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.



|                                                                              |              |             |  |  |  |                                     |
|------------------------------------------------------------------------------|--------------|-------------|--|--|--|-------------------------------------|
| Carrier frequency:                                                           | $f$          | = 134.2 kHz |  |  |  |                                     |
| Distance:                                                                    | $d$          | = 5 mm      |  |  |  |                                     |
| Transmitter output power:                                                    | $TP$         | = 0.2344 mW |  |  |  |                                     |
| Limit:                                                                       | $TP_{limit}$ | = 71 mW     |  |  |  | <input checked="" type="checkbox"/> |
| <input type="checkbox"/> SAR evaluation is documented in test report no. ... |              |             |  |  |  |                                     |

|                 |                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Specifications: | RSS-102, Issue 5, Section 4, Table 4, Uncontrolled Environment<br>SPR-002, Issue 1                                                                 |
| Operation mode: | 7.2 V Battery Supply - Continuously reading RFID Tag                                                                                               |
| Comment:        | The nerve stimulation exposure limit is defined for the frequency range 3 kHz to 10 MHz, only. Thus, the carrier at 134.2 kHz was evaluated, only. |

| Test procedure:       | IEC 62236-1, Section 4.2 "Measurement to show accordance to the reference levels"                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                          |   |                       |                                      |                                      |                          |  |            |    |    |               |  |          |     |          |  |   |          |                     |     |  |   |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|---|-----------------------|--------------------------------------|--------------------------------------|--------------------------|--|------------|----|----|---------------|--|----------|-----|----------|--|---|----------|---------------------|-----|--|---|--|
| Test distance:        | Direct contact to EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |   |                       |                                      |                                      |                          |  |            |    |    |               |  |          |     |          |  |   |          |                     |     |  |   |  |
| Limit:                | <table> <thead> <tr> <th>Frequency Range (MHz)</th> <th>Electric Field (V/m<sub>rms</sub>)</th> <th>Magnetic Field (A/m<sub>rms</sub>)</th> <th>Preference Periode (min)</th> <th></th> </tr> </thead> <tbody> <tr> <td>0.003 – 10</td> <td>83</td> <td>90</td> <td>Instantaneous</td> <td></td> </tr> <tr> <td>0.1 – 10</td> <td>---</td> <td>0.73 / f</td> <td></td> <td>6</td> </tr> <tr> <td>1.1 - 10</td> <td>87/f<sup>0.5</sup></td> <td>---</td> <td></td> <td>6</td> </tr> </tbody> </table> |                                      |                          |   | Frequency Range (MHz) | Electric Field (V/m <sub>rms</sub> ) | Magnetic Field (A/m <sub>rms</sub> ) | Preference Periode (min) |  | 0.003 – 10 | 83 | 90 | Instantaneous |  | 0.1 – 10 | --- | 0.73 / f |  | 6 | 1.1 - 10 | 87/f <sup>0.5</sup> | --- |  | 6 |  |
| Frequency Range (MHz) | Electric Field (V/m <sub>rms</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Magnetic Field (A/m <sub>rms</sub> ) | Preference Periode (min) |   |                       |                                      |                                      |                          |  |            |    |    |               |  |          |     |          |  |   |          |                     |     |  |   |  |
| 0.003 – 10            | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90                                   | Instantaneous            |   |                       |                                      |                                      |                          |  |            |    |    |               |  |          |     |          |  |   |          |                     |     |  |   |  |
| 0.1 – 10              | ---                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.73 / f                             |                          | 6 |                       |                                      |                                      |                          |  |            |    |    |               |  |          |     |          |  |   |          |                     |     |  |   |  |
| 1.1 - 10              | 87/f <sup>0.5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ---                                  |                          | 6 |                       |                                      |                                      |                          |  |            |    |    |               |  |          |     |          |  |   |          |                     |     |  |   |  |
| Test positions:       | f in MHz<br>All surfaces: The antenna was moved all over the equipment under test using a test distance as stated above.                                                                                                                                                                                                                                                                                                                                                                             |                                      |                          |   |                       |                                      |                                      |                          |  |            |    |    |               |  |          |     |          |  |   |          |                     |     |  |   |  |

| Measured maximum value (V/m) | Maximum Limit at 134.2 kHz (V/m) | Margin to reference value (V/m) |
|------------------------------|----------------------------------|---------------------------------|
| 13.53                        | 83.00                            | 69.47                           |

| Measured maximum value (A/m) | Maximum Limit at 134.2 kHz (A/m) | Margin to reference value (A/m) |
|------------------------------|----------------------------------|---------------------------------|
| 14.90                        | 90.00                            | 75.1                            |

| Measured average value (A/m) | Average Limit at 134.2 kHz (A/m) | Margin to reference value (A/m) |
|------------------------------|----------------------------------|---------------------------------|
| 1.29                         | 5.84                             | 4.55                            |



## Wifi Evaluation

acc. to KDB 447498 D01:

|                                                 |                      |
|-------------------------------------------------|----------------------|
| Maximum measured Radiated Power (EIRP) Pmax:    | 10.5 dBm = 11.2 mW   |
| Compliance Boundary d:                          | 10 mm                |
| Frequency f:                                    | 2472 MHz = 2.472 GHz |
| Numeric Threshold (Pmax / d) (f) <sup>0.5</sup> | 1.76                 |
| Numeric Threshold Limit (1 g SAR):              | 3.0                  |

acc. to IC RSS-GEN Issue 4, section 3.2 and IC RSS-102, Issue 5, section 2.5:

| Exposure of Humans to RF Fields                                                                                    |  |  |  | Applicable | Declared by applicant    | Measured                 | Exemption                |
|--------------------------------------------------------------------------------------------------------------------|--|--|--|------------|--------------------------|--------------------------|--------------------------|
| The antenna is                                                                                                     |  |  |  |            |                          |                          |                          |
| <input type="checkbox"/> detachable                                                                                |  |  |  |            |                          |                          |                          |
| The conducted output power (CP in watts) is measured at the antenna connector:                                     |  |  |  |            |                          |                          |                          |
| $CP =$                                                                                                             |  |  |  |            | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |
| The effective isotropic radiated power (EIRP in watts) is calculated using                                         |  |  |  |            |                          |                          |                          |
| <input type="checkbox"/> the numerical antenna gain: $G$                                                           |  |  |  |            | <input type="checkbox"/> |                          |                          |
| $EIRP = G \cdot CP \Rightarrow EIRP$                                                                               |  |  |  |            |                          |                          |                          |
| <input type="checkbox"/> the field strength <sup>4</sup> in V/m: $FS = \dots$ V/m                                  |  |  |  |            |                          | <input type="checkbox"/> |                          |
| $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP =$                                                              |  |  |  |            |                          |                          |                          |
| with:                                                                                                              |  |  |  |            |                          |                          |                          |
| Distance between the antennas in m: $D =$                                                                          |  |  |  |            | <input type="checkbox"/> |                          |                          |
| <input checked="" type="checkbox"/> not detachable                                                                 |  |  |  |            |                          |                          |                          |
| A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by: |  |  |  |            |                          |                          |                          |
| $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP \text{ (10.5 dBm measured)} = 11.22 \text{ mW}$                 |  |  |  |            |                          |                          |                          |
| with:                                                                                                              |  |  |  |            |                          |                          |                          |
| Field strength in V/m: $FS = \dots \text{ dB}\mu\text{V/m}$                                                        |  |  |  |            |                          | <input type="checkbox"/> |                          |
|                                                                                                                    |  |  |  |            |                          |                          |                          |
| Distance between the two antennas in m: $D =$                                                                      |  |  |  |            |                          | <input type="checkbox"/> |                          |
| Selection of output power                                                                                          |  |  |  |            |                          |                          |                          |
| The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):               |  |  |  |            |                          |                          |                          |
| $TP = 11.22 \text{ mW}$                                                                                            |  |  |  |            |                          |                          |                          |

<sup>4</sup> The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.



| Exposure of Humans to RF Fields (continued)                         |  | Applicable                                  | Declared by applicant | Measured                            | Exemption                |
|---------------------------------------------------------------------|--|---------------------------------------------|-----------------------|-------------------------------------|--------------------------|
| Separation distance between the user and the transmitting device is |  |                                             |                       |                                     |                          |
| <input checked="" type="checkbox"/> less than or equal to 20 cm     |  | <input type="checkbox"/> greater than 20 cm |                       | <input checked="" type="checkbox"/> | <input type="checkbox"/> |
| Transmitting device is                                              |  |                                             |                       |                                     |                          |
| <input type="checkbox"/> in the vicinity of the human head          |  | <input type="checkbox"/> body-worn          |                       | <input type="checkbox"/>            | <input type="checkbox"/> |

| SAR evaluation            |                                                              |       |       |       |       |       |       |       |       |        |
|---------------------------|--------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Frequency<br>(MHz)        | Exemption limits (mW) <sup>5</sup> at separation distance of |       |       |       |       |       |       |       |       |        |
|                           | ≤5 mm                                                        | 10 mm | 15 mm | 20 mm | 25 mm | 30 mm | 35 mm | 40 mm | 45 mm | ≥50 mm |
| 450                       | 52                                                           | 70    | 88    | 106   | 123   | 141   | 159   | 177   | 195   | 213    |
| 835                       | 17                                                           | 30    | 42    | 55    | 67    | 80    | 92    | 105   | 117   | 130    |
| 1900                      | 7                                                            | 10    | 18    | 34    | 60    | 99    | 153   | 225   | 316   | 431    |
| 2450                      | 4                                                            | 7     | 15    | 30    | 52    | 83    | 123   | 173   | 235   | 309    |
| 3500                      | 2                                                            | 6     | 16    | 32    | 55    | 86    | 124   | 170   | 225   | 290    |
| 5800                      | 1                                                            | 6     | 15    | 27    | 41    | 56    | 71    | 85    | 97    | 106    |
| Carrier frequency:        | $f = 2472 \text{ MHz}$                                       |       |       |       |       |       |       |       |       |        |
| Distance:                 | $d = 10 \text{ mm}$                                          |       |       |       |       |       |       |       |       |        |
| Transmitter output power: | $TP = 11.22 \text{ mW}$                                      |       |       |       |       |       |       |       |       |        |
| Limit:                    | $TP_{limit} = 17.5 \text{ mW}$                               |       |       |       |       |       |       |       |       |        |

<sup>5</sup> The exemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.



## Bluetooth Evaluation

acc. to KDB 447498 D01:

|                                                 |                      |
|-------------------------------------------------|----------------------|
| Maximum measured Radiated Power (EIRP) Pmax:    | - 0.8 dBm = 0.83 mW  |
| Compliance Boundary d:                          | 10 mm                |
| Frequency f:                                    | 2480 MHz = 2.480 GHz |
| Numeric Threshold (Pmax / d) (f) <sup>0.5</sup> | 0.13                 |
| Numeric Threshold Limit (1 g SAR):              | 3.0                  |

acc. to IC RSS-GEN Issue 4, section 3.2 and IC RSS-102, Issue 5, section 2.5:

| Exposure of Humans to RF Fields                                                                                    |  | Applicable               | Declared by applicant    | Measured | Exemption |
|--------------------------------------------------------------------------------------------------------------------|--|--------------------------|--------------------------|----------|-----------|
| The antenna is                                                                                                     |  |                          |                          |          |           |
| <input type="checkbox"/> detachable                                                                                |  |                          |                          |          |           |
| The conducted output power (CP in watts) is measured at the antenna connector:<br>$CP =$                           |  |                          |                          |          |           |
| The effective isotropic radiated power (EIRP in watts) is calculated using                                         |  |                          |                          |          |           |
| <input type="checkbox"/> the numerical antenna gain: $G$                                                           |  | <input type="checkbox"/> |                          |          |           |
| $EIRP = G \cdot CP \Rightarrow EIRP$                                                                               |  |                          |                          |          |           |
| <input type="checkbox"/> the field strength <sup>6</sup> in V/m: $FS = \dots$ V/m                                  |  |                          | <input type="checkbox"/> |          |           |
| $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP =$                                                              |  |                          |                          |          |           |
| with:                                                                                                              |  |                          |                          |          |           |
| Distance between the antennas in m: $D =$                                                                          |  | <input type="checkbox"/> |                          |          |           |
| <input checked="" type="checkbox"/> not detachable                                                                 |  |                          |                          |          |           |
| A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by: |  |                          |                          |          |           |
| $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP \text{ (-0.8 dBm measured)} = 0.83 \text{ mW}$                  |  |                          |                          |          |           |
| with:                                                                                                              |  |                          |                          |          |           |
| Field strength in V/m: $FS = \text{dB}\mu\text{V/m}$                                                               |  |                          | <input type="checkbox"/> |          |           |
|                                                                                                                    |  |                          |                          |          |           |
| Distance between the two antennas in m: $D =$                                                                      |  |                          | <input type="checkbox"/> |          |           |
| Selection of output power                                                                                          |  |                          |                          |          |           |
| The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):               |  |                          |                          |          |           |
| $TP = 0.83 \text{ mW}$                                                                                             |  |                          |                          |          |           |

<sup>6</sup> The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.



| Exposure of Humans to RF Fields (continued)                         |  | Applicable                                  | Declared by applicant | Measured                            | Exemption                |
|---------------------------------------------------------------------|--|---------------------------------------------|-----------------------|-------------------------------------|--------------------------|
| Separation distance between the user and the transmitting device is |  |                                             |                       |                                     |                          |
| <input checked="" type="checkbox"/> less than or equal to 20 cm     |  | <input type="checkbox"/> greater than 20 cm |                       | <input checked="" type="checkbox"/> | <input type="checkbox"/> |
| Transmitting device is                                              |  |                                             |                       |                                     |                          |
| <input type="checkbox"/> in the vicinity of the human head          |  | <input type="checkbox"/> body-worn          |                       | <input type="checkbox"/>            | <input type="checkbox"/> |

| SAR evaluation            |                                                              |       |       |       |       |       |       |       |       |        |
|---------------------------|--------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Frequency<br>(MHz)        | Exemption limits (mW) <sup>7</sup> at separation distance of |       |       |       |       |       |       |       |       |        |
|                           | ≤5 mm                                                        | 10 mm | 15 mm | 20 mm | 25 mm | 30 mm | 35 mm | 40 mm | 45 mm | ≥50 mm |
| 450                       | 52                                                           | 70    | 88    | 106   | 123   | 141   | 159   | 177   | 195   | 213    |
| 835                       | 17                                                           | 30    | 42    | 55    | 67    | 80    | 92    | 105   | 117   | 130    |
| 1900                      | 7                                                            | 10    | 18    | 34    | 60    | 99    | 153   | 225   | 316   | 431    |
| 2450                      | 4                                                            | 7     | 15    | 30    | 52    | 83    | 123   | 173   | 235   | 309    |
| 3500                      | 2                                                            | 6     | 16    | 32    | 55    | 86    | 124   | 170   | 225   | 290    |
| 5800                      | 1                                                            | 6     | 15    | 27    | 41    | 56    | 71    | 85    | 97    | 106    |
| Carrier frequency:        | $f = 2480 \text{ MHz}$                                       |       |       |       |       |       |       |       |       |        |
| Distance:                 | $d = 10 \text{ mm}$                                          |       |       |       |       |       |       |       |       |        |
| Transmitter output power: | $TP = 0.83 \text{ mW}$                                       |       |       |       |       |       |       |       |       |        |
| Limit:                    | $TP_{limit} = 17.5 \text{ mW}$                               |       |       |       |       |       |       |       |       |        |

<sup>7</sup> The exemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

## 2.6.6 Test Location and Test Equipment Used

This test was carried out in a Shielded room - cabin no. 4.

| Instrument                      | Manufacturer | Type No   | TE No | Calibration Period (months) | Calibration Due |
|---------------------------------|--------------|-----------|-------|-----------------------------|-----------------|
| Electromagnetic radiation meter | Narda Safety | EMR-200   | 19590 | 36                          | 2019-10-31      |
| Electric field probe            | Narda Safety | Type 8.3  | 19591 | 36                          | 2019-10-31      |
| Magnetic field probe            | Narda Safety | Type 12.1 | 19592 | 36                          | 2019-10-31      |
| Exposure level tester           | Narda Safety | ELT-400   | 19725 | 24                          | 2020-06-30      |

**Table 18**

## **2.7 Radiated Disturbance**

### **2.7.1 Specification Reference**

FCC 47 CFR Part 15B and ICES-003, Clause 15.109 and 6.2

### **2.7.2 Equipment Under Test and Modification State**

AWR300, S/N: 1244002065 - Modification State 0

### **2.7.3 Date of Test**

2019-03-11

### **2.7.4 Test Method**

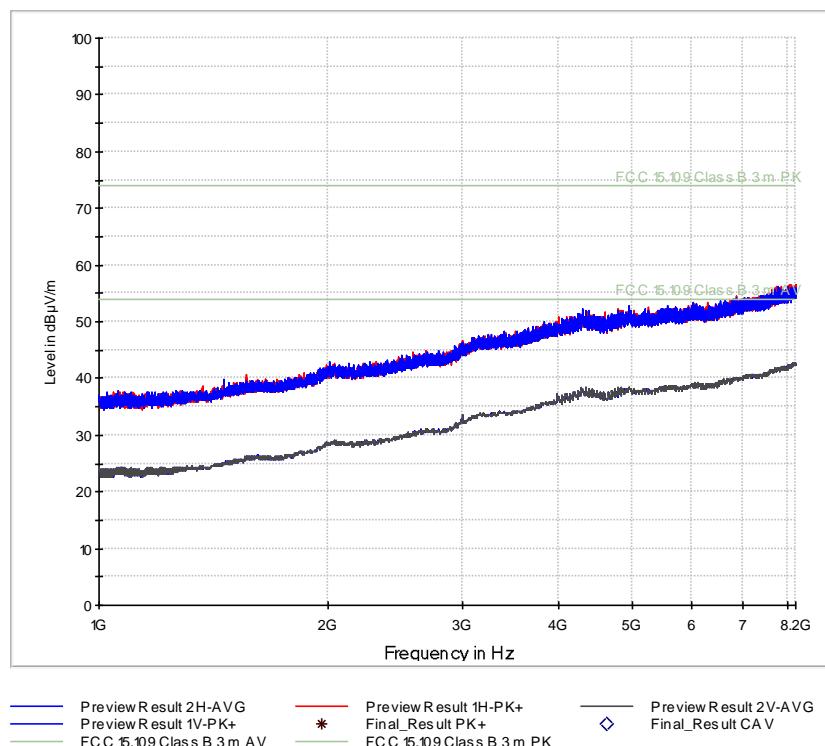
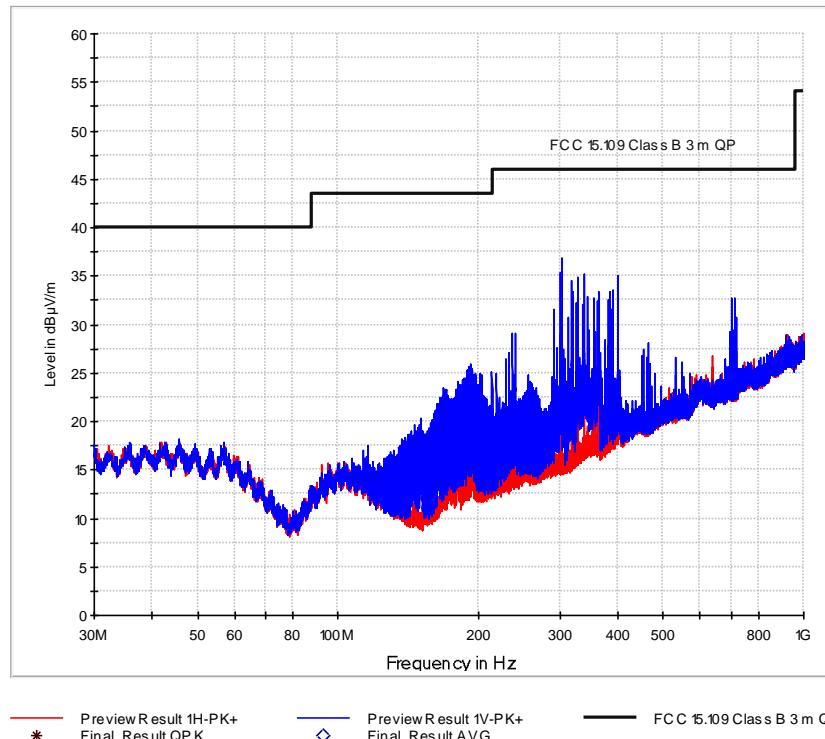
The EUT was set up in a semi-anechoic chamber on a remotely controlled turntable and placed on a non-conductive table 0.8m above a reference ground plane.

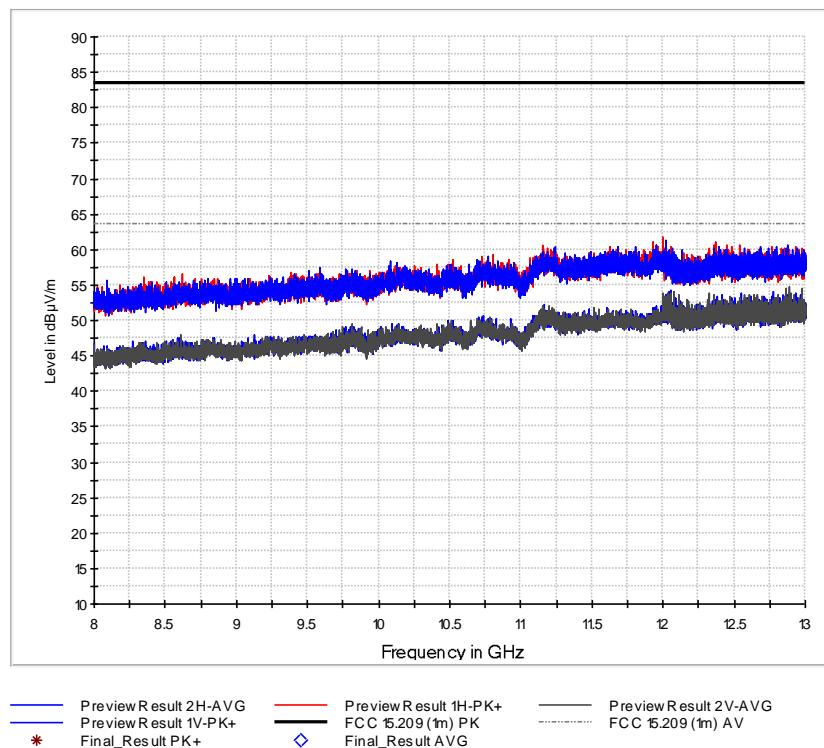
A pre-scan of the EUT emissions profile was made while varying the antenna-to-EUT azimuth and antenna-to-EUT polarisation using a peak detector; measurements were taken at a 3m distance. Using the pre-scan list of the highest emissions detected, their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak, Average detector as appropriate. The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

### **2.7.5 Environmental Conditions**

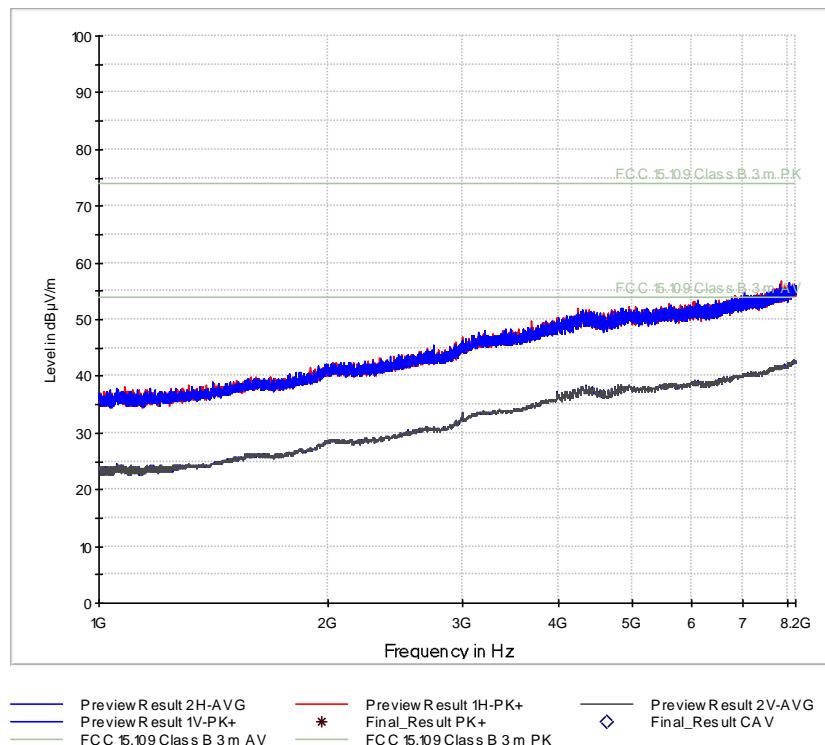
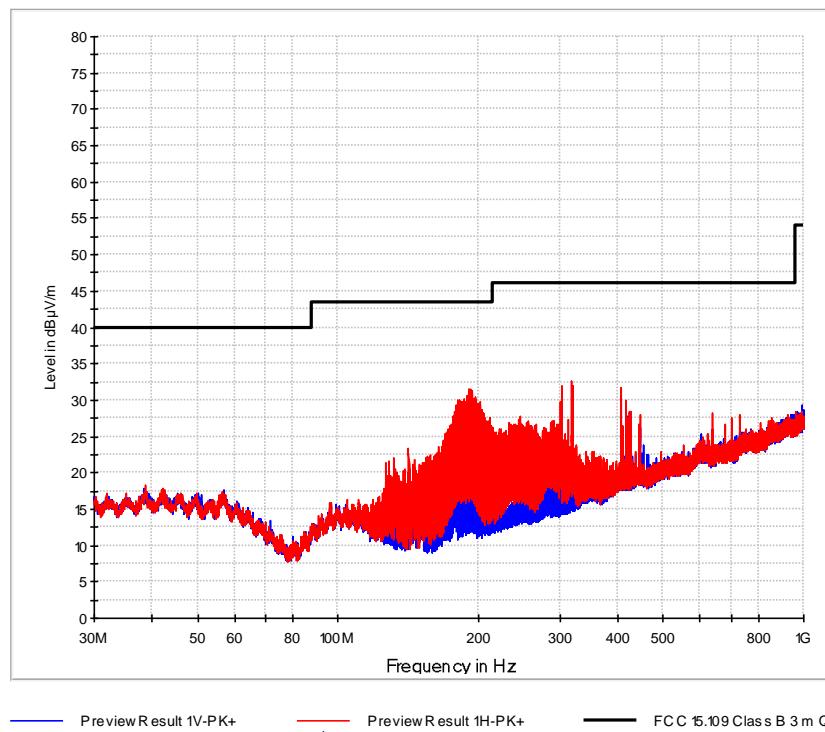
Ambient Temperature 21.0 °C  
Relative Humidity 29.0 %

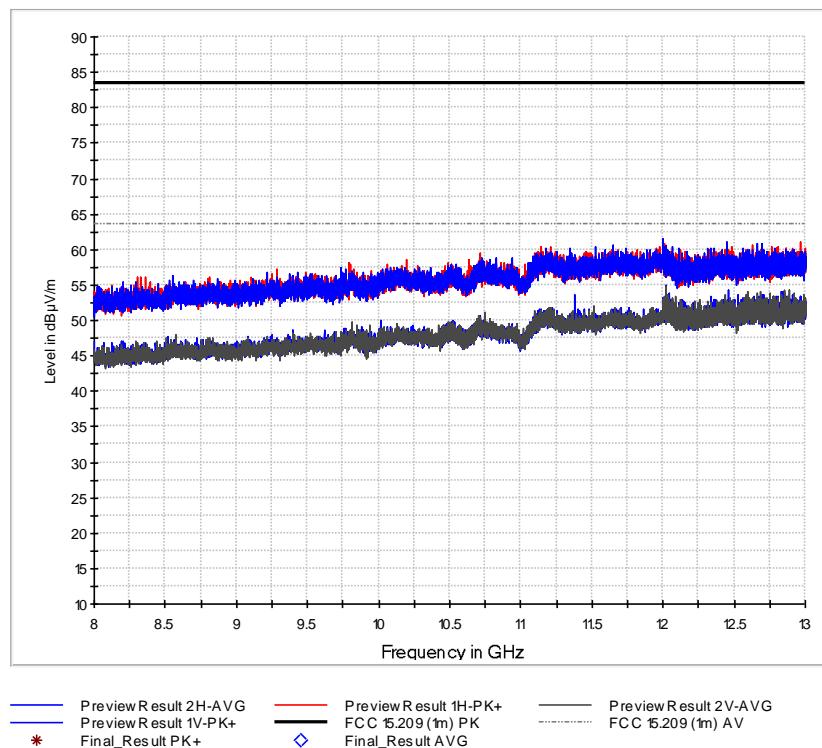
### **2.7.6 Test Results**



#### 7.4 V Battery Supply - normal operation mode

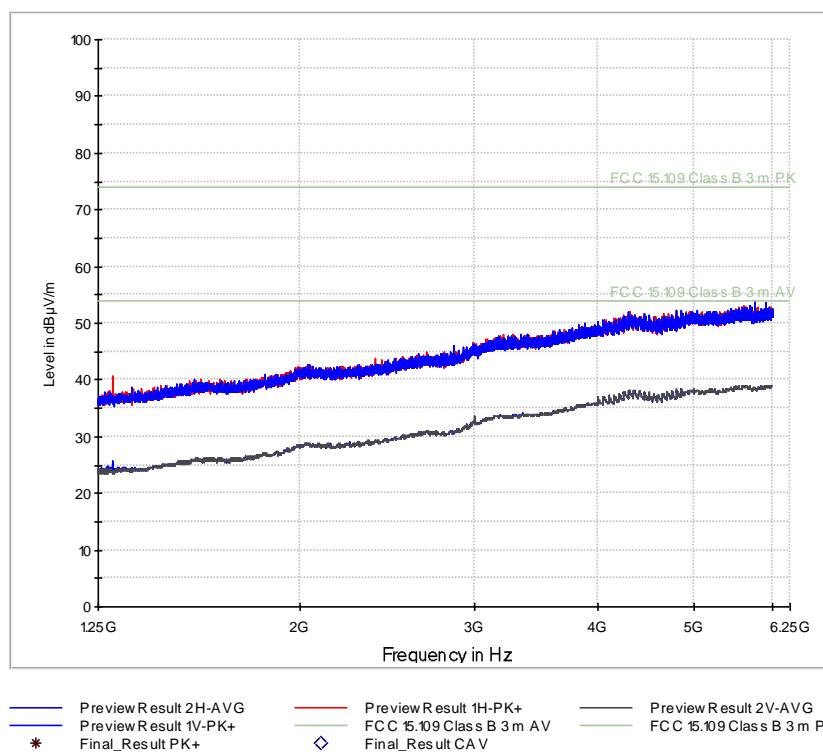
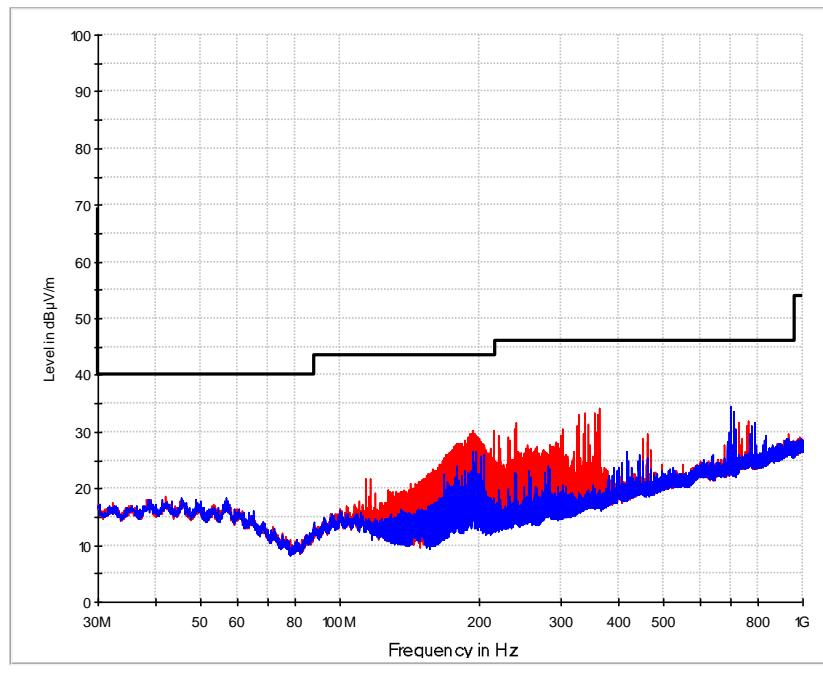

Performance assessment of the EUT made during this test: Pass.

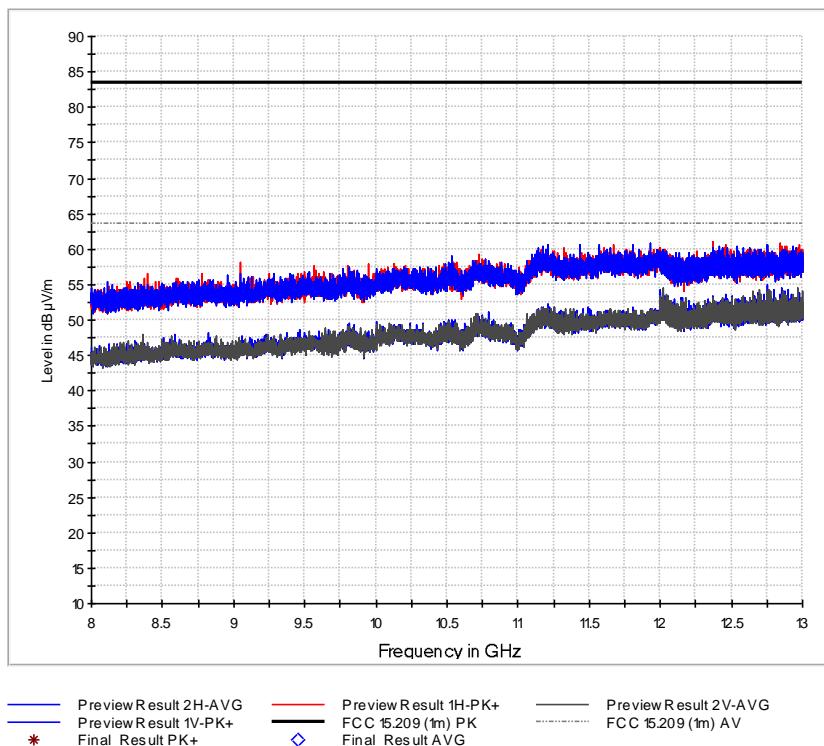
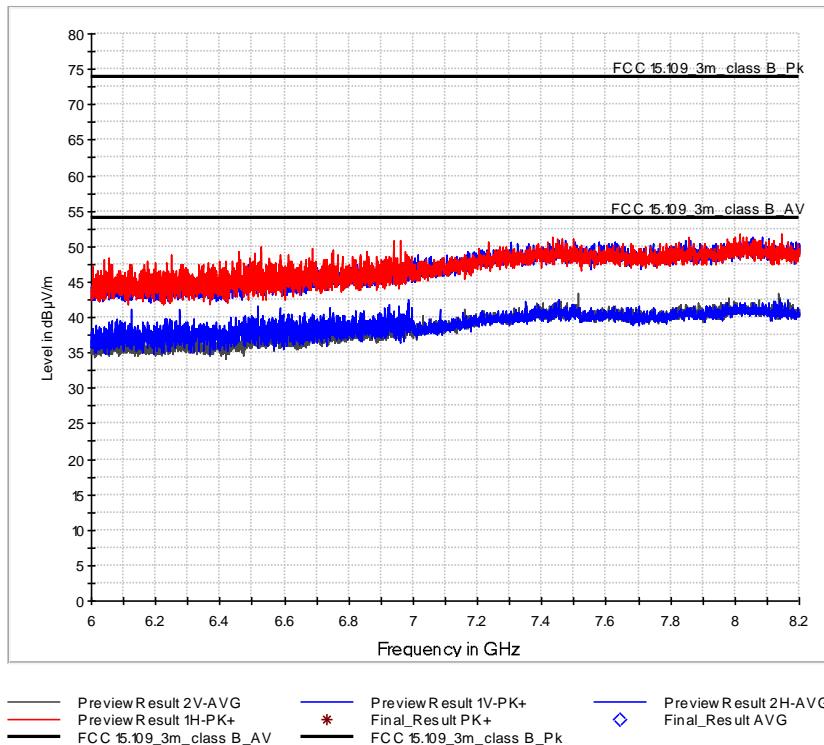
Detailed results are shown below.



Highest frequency generated or used within the EUT: 2483.5 MHz  
Which necessitates an upper frequency test limit of: 12.5 GHz


## 1. Orthogonal axis






## 2. Orthogonal axis





### 3. Orthogonal axis





### 2.7.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

| Instrument                           | Manufacturer    | Type No   | TE No | Calibration Period (months) | Calibration Due |
|--------------------------------------|-----------------|-----------|-------|-----------------------------|-----------------|
| Double ridged waveguide horn antenna | Rohde & Schwarz | 3115      | 19383 | 36                          | 2020-02-29      |
| TRILOG Antenna                       | Schwarzbeck     | VULB 9163 | 19691 | 24                          | 2020-12-31      |
| EMI test receiver                    | Rohde & Schwarz | ESW26     | 28268 | 12                          | 2019-05-31      |
| EMC measurement software             | Rohde & Schwarz | EMC32-ME+ | 19719 | N/A                         | N/A             |

**Table 19**

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

## **2.8 Conducted Disturbance at Mains Terminals**

### **2.8.1 Specification Reference**

FCC 47 CFR Part 15B and ICES-003, Clause 15.107 and 6.1

### **2.8.2 Equipment Under Test and Modification State**

AWR300, S/N: 1244002065 - Modification State 0

### **2.8.3 Date of Test**

2019-02-21

### **2.8.4 Test Method**

The EUT was placed on a non-conductive table 0.8m above a reference ground plane and 0.4m away from a vertical coupling plane.

All power was connected to the EUT through an Artificial Mains Network (AMN). Conducted disturbance voltage measurements on mains lines were made at the output of the AMN. The AMN was placed 0.8m from the boundary of the EUT and bonded to the reference ground plane.

### **2.8.5 Environmental Conditions**

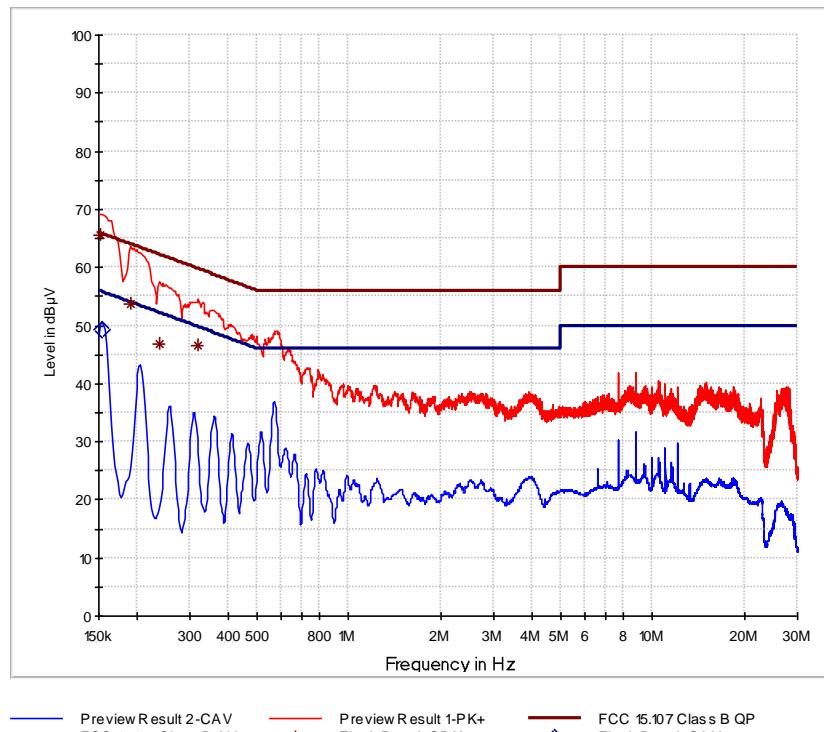
Ambient Temperature 22.0 °C

Relative Humidity 32.0 %

### **2.8.6 Test Results**

#### 7.4 V Battery Supply - normal operation mode

Performance assessment of the EUT made during this test: Pass.

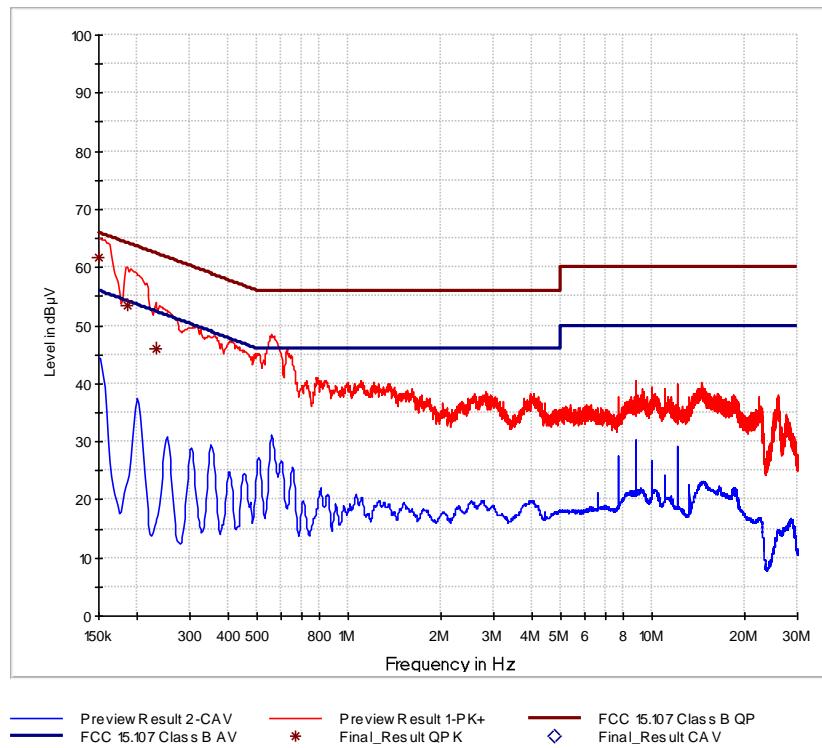

Applied supply Voltage: 115 V AC

Applied supply frequency: 60 Hz

Detailed results are shown below.



### L1-Line - 150k to 30 MHz




### Final Results:

| Frequency MHz | QuasiPeak dBµV | CAverage dBµV | Limit dBµV | Margin dB | Meas. Time ms | Bandwidth kHz | Line | PE  | Corr. dB |
|---------------|----------------|---------------|------------|-----------|---------------|---------------|------|-----|----------|
| 0.152250      | 65.65          | ---           | 65.88      | 0.23      | 1000.0        | 9.000         | L1   | GND | 0.0      |
| 0.154500      | ---            | 49.21         | 55.75      | 6.54      | 1000.0        | 9.000         | L1   | GND | 0.0      |
| 0.190500      | 53.58          | ---           | 64.02      | 10.43     | 1000.0        | 9.000         | L1   | GND | 0.0      |
| 0.237750      | 46.94          | ---           | 62.17      | 15.24     | 1000.0        | 9.000         | L1   | GND | 0.0      |
| 0.318750      | 46.69          | ---           | 59.74      | 13.05     | 1000.0        | 9.000         | L1   | GND | 0.0      |



### N-Line - 150k to 30 MHz

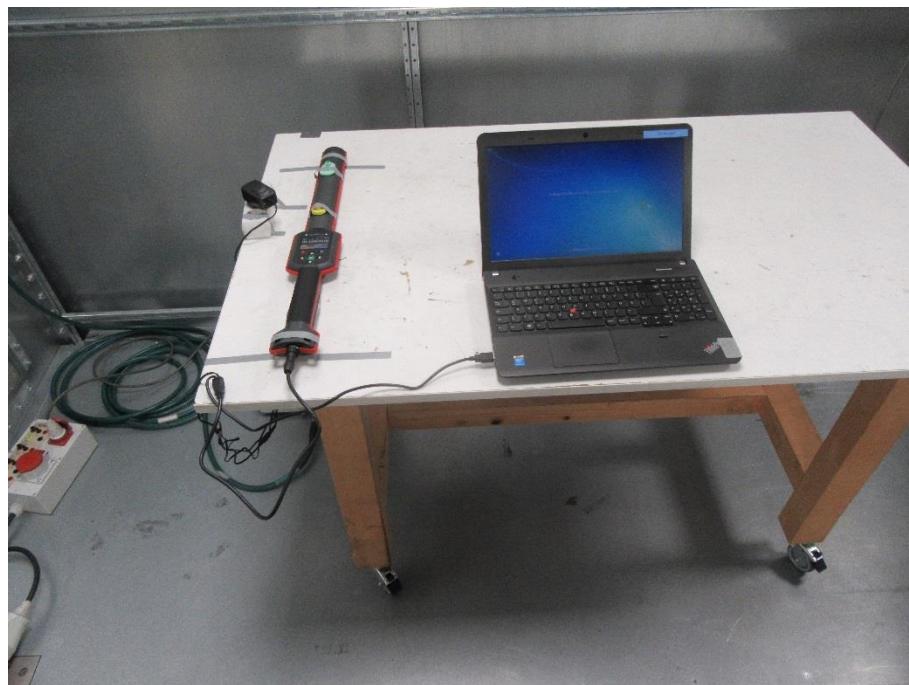


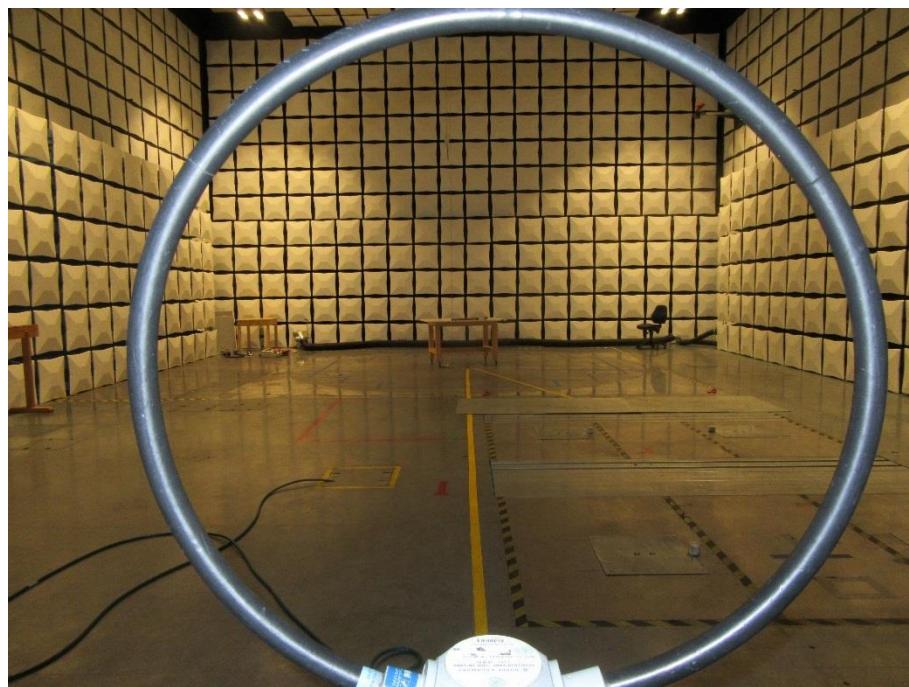
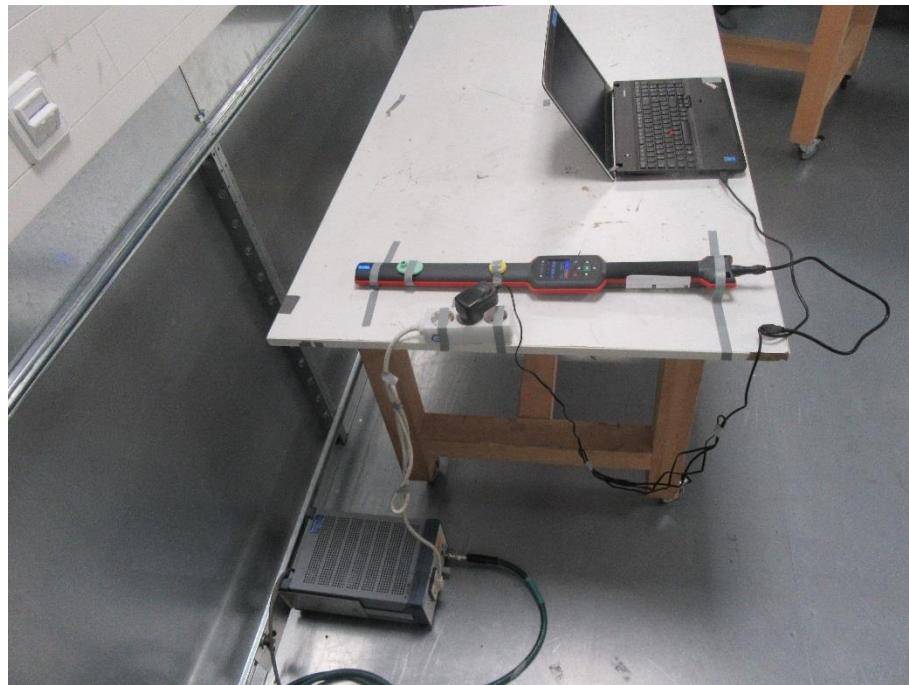
### Final Results:

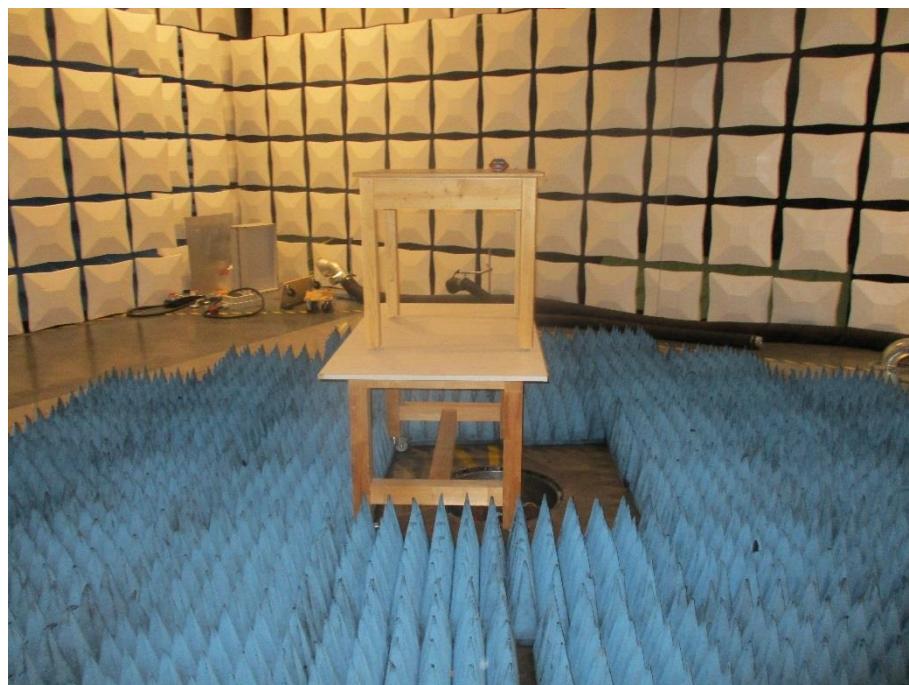
| Frequency MHz | QuasiPeak dB $\mu$ V | CAverage dB $\mu$ V | Limit dB $\mu$ V | Margin dB | Meas. Time ms | Bandwidth kHz | Line | PE  | Corr. dB |
|---------------|----------------------|---------------------|------------------|-----------|---------------|---------------|------|-----|----------|
| 0.150000      | 61.57                | ---                 | 66.00            | 4.43      | 1000.0        | 9.000         | N    | GND | 0.0      |
| 0.186000      | 53.50                | ---                 | 64.21            | 10.72     | 1000.0        | 9.000         | N    | GND | 0.0      |
| 0.231000      | 46.05                | ---                 | 62.41            | 16.36     | 1000.0        | 9.000         | N    | GND | 0.0      |

### 2.8.7 Test Location and Test Equipment Used

This test was carried out in Shielded room - cabin no. 1.


| Instrument               | Manufacturer    | Type No    | TE No | Calibration Period (months) | Calibration Due |
|--------------------------|-----------------|------------|-------|-----------------------------|-----------------|
| EMI test receiver        | Rohde & Schwarz | 100008     | 19730 | 18                          | 2019-04-30      |
| V-network                | Rohde & Schwarz | 894785/005 | 18919 | 36                          | 2019-10-31      |
| EMC measurement software | Rohde & Schwarz | EMC32-MEB  | 20090 | N/A                         | N/A             |



Table 20


TU - Traceability Unscheduled  
 O/P Mon – Output Monitored using calibrated equipment  
 N/A - Not Applicable

### 3 Photographs

#### 3.1 Equipment Under Test (EUT)







## 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Radio Testing                           |      |                                     |      |
|-----------------------------------------|------|-------------------------------------|------|
| Test Name                               | kp   | Expanded Uncertainty                | Note |
| Occupied Bandwidth                      | 2.0  | $\pm 1.14 \%$                       | 2    |
| RF-Frequency error                      | 1.96 | $\pm 1 \cdot 10^{-7}$               | 7    |
| RF-Power, conducted carrier             | 2    | $\pm 0.079 \text{ dB}$              | 2    |
| RF-Power uncertainty for given BER      | 1.96 | $+0.94 \text{ dB} / -1.05$          | 7    |
| RF power, conducted, spurious emissions | 1.96 | $+1.4 \text{ dB} / -1.6 \text{ dB}$ | 7    |
| RF power, radiated                      |      |                                     |      |
| 25 MHz – 4 GHz                          | 1.96 | $+3.6 \text{ dB} / -5.2 \text{ dB}$ | 8    |
| 1 GHz – 18 GHz                          | 1.96 | $+3.8 \text{ dB} / -5.6 \text{ dB}$ | 8    |
| 18 GHz – 26.5 GHz                       | 1.96 | $+3.4 \text{ dB} / -4.5 \text{ dB}$ | 8    |
| 40 GHz – 170 GHz                        | 1.96 | $+4.2 \text{ dB} / -7.1 \text{ dB}$ | 8    |
| Spectral Power Density, conducted       | 2.0  | $\pm 0.53 \text{ dB}$               | 2    |
| Maximum frequency deviation             |      |                                     |      |
| 300 Hz – 6 kHz                          | 2    | $\pm 2.89 \%$                       | 2    |
| 6 kHz – 25 kHz                          | 2    | $\pm 0.2 \text{ dB}$                | 2    |
| Maximum frequency deviation for FM      | 2    | $\pm 2.89 \%$                       | 2    |
| Adjacent channel power 25 MHz – 1 GHz   | 2    | $\pm 2.31 \%$                       | 2    |
| Temperature                             | 2    | $\pm 0.39 \text{ K}$                | 4    |
| (Relative) Humidity                     | 2    | $\pm 2.28 \%$                       | 2    |
| DC- and low frequency AC voltage        |      |                                     |      |
| DC voltage                              | 2    | $\pm 0.01 \%$                       | 2    |
| AC voltage up to 1 kHz                  | 2    | $\pm 1.2 \%$                        | 2    |
| Time                                    | 2    | $\pm 0.6 \%$                        | 2    |

Table 21

| Radio Interference Emission Testing               |    |                      |      |
|---------------------------------------------------|----|----------------------|------|
| Test Name                                         | kp | Expanded Uncertainty | Note |
| Conducted Voltage Emission                        |    |                      |      |
| 9 kHz to 150 kHz (50Ω/50µH AMN)                   | 2  | ± 3.8 dB             | 1    |
| 150 kHz to 30 MHz (50Ω/50µH AMN)                  | 2  | ± 3.4 dB             | 1    |
| 100 kHz to 200 MHz (50Ω/5µH AMN)                  | 2  | ± 3.6 dB             | 1    |
| Discontinuous Conducted Emission                  |    |                      |      |
| 9 kHz to 150 kHz (50Ω/50µH AMN)                   | 2  | ± 3.8 dB             | 1    |
| 150 kHz to 30 MHz (50Ω/50µH AMN)                  | 2  | ± 3.4 dB             | 1    |
| Conducted Current Emission                        |    |                      |      |
| 9 kHz to 200 MHz                                  | 2  | ± 3.5 dB             | 1    |
| Magnetic Fieldstrength                            |    |                      |      |
| 9 kHz to 30 MHz (with loop antenna)               | 2  | ± 3.9 dB             | 1    |
| 9 kHz to 30 MHz (large-loop antenna 2 m)          | 2  | ± 3.5 dB             | 1    |
| Radiated Emission                                 |    |                      |      |
| Test distance 1 m (ALSE)                          |    |                      |      |
| 9 kHz to 150 kHz                                  | 2  | ± 4.6 dB             | 1    |
| 150 kHz to 30 MHz                                 | 2  | ± 4.1 dB             | 1    |
| 30 MHz to 200 MHz                                 | 2  | ± 5.2 dB             | 1    |
| 200 MHz to 2 GHz                                  | 2  | ± 4.4 dB             | 1    |
| 2 GHz to 3 GHz                                    | 2  | ± 4.6 dB             | 1    |
| Test distance 3 m                                 |    |                      |      |
| 30 MHz to 300 MHz                                 | 2  | ± 4.9 dB             | 1    |
| 300 MHz to 1 GHz                                  | 2  | ± 5.0 dB             | 1    |
| 1 GHz to 6 GHz                                    | 2  | ± 4.6 dB             | 1    |
| Test distance 10 m                                |    |                      |      |
| 30 MHz to 300 MHz                                 | 2  | ± 4.9 dB             | 1    |
| 300 MHz to 1 GHz                                  | 2  | ± 4.9 dB             | 1    |
| Radio Interference Power                          |    |                      |      |
| 30 MHz to 300 MHz                                 | 2  | ± 3.5 dB             | 1    |
| Harmonic Current Emissions                        |    |                      | 4    |
| Voltage Changes, Voltage Fluctuations and Flicker |    |                      | 4    |

Table 22

| Immunity Testing                                         |      |                      |      |
|----------------------------------------------------------|------|----------------------|------|
| Test Name                                                | kp   | Expanded Uncertainty | Note |
| Electrostatic Discharges                                 |      |                      | 4    |
| Radiated RF-Field                                        |      |                      |      |
| Pre-calibrated field level                               | 2    | +32.2 / -24.3 %      | 5    |
| Dynamic feedback field level                             | 2.05 | +21.2 / -17.5 %      | 3    |
| Electrical Fast Transients (EFT) / Bursts                |      |                      | 4    |
| Surges                                                   |      |                      | 4    |
| Conducted Disturbances, induced by RF-Fields             |      |                      |      |
| via CDN                                                  | 2    | +15.1 / -13.1 %      | 6    |
| via EM clamp                                             | 2    | +42.6 / -29.9 %      | 6    |
| via current clamp                                        | 2    | +43.9 / -30.5 %      | 6    |
| Power Frequency Magnetic Field                           | 2    | +20.7 / -17.1 %      | 2    |
| Pulse Magnetic Field                                     |      |                      | 4    |
| Voltage Dips, Short Interruptions and Voltage Variations |      |                      | 4    |
| Oscillatory Waves                                        |      |                      | 4    |
| Conducted Low Frequency Disturbances                     |      |                      |      |
| Voltage setting                                          | 2    | ± 0.9 %              | 2    |
| Frequency setting                                        | 2    | ± 0.1 %              | 2    |
| Electrical Transient Transmission in Road Vehicles       |      |                      | 4    |

**Table 23**

Note 1:

The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of  $kp = 2$ , providing a level of confidence of  $p = 95.45\%$

Note 2:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of  $kp = 2$ , providing a level of confidence of  $p = 95.45\%$

Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of  $kp = 2.05$ , providing a level of confidence of  $p = 95.45\%$

Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95% confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of  $kp = 2$ , providing a level of confidence of  $p = 95.45\%$

Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of  $kp = 2$ , providing a level of confidence of  $p = 95.45\%$

Note 7:

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of  $kp = 1.96$ , providing a level of confidence of  $p = 95.45\%$

Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of  $kp = 1.96$ , providing a level of confidence of  $p = 95.45\%$