

TEST REPORT FROM RADIO FREQUENCY INVESTIGATION LTD.

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 and 24

Test Report Serial No: RFI/MPTB3/RP44497JD02C

Supersedes Test Report Serial No:

RFI/MPTB1/RP44497JD02A & RFI/MPTB1/RP44497JD02C& RFI/MPTB2/RP44497JD02C

This Test Report Is Issued Under The Authority Of Richard Jacklin, Operations Director:	Checked By:
Tested By: pp	Release Version No: PDF01
Sling Long Way	
Issue Date: 09 June 2003	Test Dates: 17 April 2003 to 14 May 2003

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields. Furthermore, the date of creation must match the issue date stated above.

This report may be copied in full.

The results in this report apply only to the sample(s) tested.

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 2 of 78

Issue Date: 09 June 2003

This page has been left intentionally blank.

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 3 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

Table of Contents

1. Client Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods And Procedures	10
4. Deviations From The Test Specification	12
5. Operation Of The EUT During Testing	13
6. Summary Of Test Results	15
7. Measurements, Examinations And Derived Results	17
8. Test Results FCC Part 22	18
9. Measurement Methods – Part 22	35
10. Test Results FCC Part 24	44
11. Measurement Methods – Part 24	64
12. Measurement Uncertainty	73
Appendix 1. Test Equipment Used	74
Appendix 2. Test Configuration Drawings	76
Appendix 2. 1001 Comigaration Diamingo	

Operations Department

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 4 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

1. Client Information

Company Name:	Nokia Mobile Phones
Address:	Nokia House Summit Avenue Southwood Farnborough Hants GU14 0NG UK
Contact Name:	Mr A White

Operations Department

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 5 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

2. Equipment Under Test (EUT)

The following information (with the exception of the Date of Receipt) has been supplied by the client:

2.1. Identification Of Equipment Under Test (EUT)

Brand Name:	Nokia
Model Name or Number:	3600
Unique Type Identification:	NHM-10
IMEI Number:	004400071717365
Country of Manufacture:	Finland
Date of Receipt:	17 April 2003

2.2. Description Of EUT

The equipment under test is a dual-band (850, 1900) camera mobile handset, which supports IR and Bluetooth.

2.3. Modifications Incorporated In EUT

The EUT has not been modified from what is described by the Model Number and Unique Type Identification stated above.

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 6 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

2.4. Additional Information Related To Testing

Power Supply Requirement: (Internal, non-removable lithium ion battery)	4.2 V DC
Declared Battery End Point Voltage	3.45 V DC
Power Supply Requirement: (AC Battery Charger)	Nominal 115 V 60 Hz AC Mains supply
Intended Operating Environment:	Within GSM/Bluetooth Network Coverage
Equipment Category:	Portable
Type of Unit:	Handset
Weight:	130 g
Dimensions:	130 x 55 x 23 mm
Interface Ports:	Charger Connection Accessory Connection
Highest Fundamental Frequency	1989.8 MHz
Highest Oscillator Frequency	3980.0 MHz

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C

Page 7 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

<u>Part 22</u>

Transmit Frequency Range	824 MHz to 848 MHz		
Transmit Channels Tested	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	128	824.2
	Middle	190	836.6
	Тор	251	848.8
Receive Frequency Range	869 MHz to 894 MHz		
Receive Channels Tested	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	128	869.2
	Middle	190	881.6
	Тор	251	893.8
Maximum Power Output (ERP)	31.7 dBm		

Operations Department

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 8 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

<u>Part 24</u>

Transmit Frequency Range	1850 MHz to 1910 MHz		
Transmit Channels Tested	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	512	1850.2
	Middle	660	1879.8
	Тор	810	1909.8
Receive Frequency Range	1930 MHz to 1990 MHz		
Receive Channels Tested	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	512	1930.2
	Middle	660	1960.0
	Тор	810	1989.8
Maximum Power Output (EIRP)	29.2 dBm		

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 9 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Li-ion Battery
Brand Name:	Nokia
Model Name or Number:	BL-5C
Serial Number:	067040063663222411
Cable Length And Type:	N/A
Connected to Port:	Battery

Description:	AC Power Supply
Brand Name:	Nokia
Model Name or Number:	Travel Charger
Serial Number:	ACP-12U
Cable Length And Type:	175 cm
Connected to Port:	Charger

Description:	Headset
Brand Name:	Nokia
Model Name or Number:	Headset
Serial Number:	HDE-2
Cable Length And Type:	108 cm
Connected to Port:	Headset Jack

Operations Department

Test Of:

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C

Page 10 of 78 Issue Date: 09 June 2003

Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

3. Test Specification, Methods And Procedures

3.1. Test Specifications

Reference:	FCC Part 22 Subpart H: 2002 (Cellular Radiotelephone Service)
Title:	Code of Federal Regulations, Part 22 (47CFR22) Personal Communication Services.
Comments:	A description of the test facility used for this test is on file with, and has been accepted by, the Federal Communications Commission as required by Section 2.948 of Federal Rules.
Purpose of Test:	To determine whether the equipment complied with the requirements of the specification for the purposes of certification.

Reference:	FCC Part 24 Subpart E: 2002 (Broadband PCS)
Title:	Code of Federal Regulations, Part 24 (47CFR24) Personal Communication Services.
Comments:	A description of the test facility used for this test is on file with, and has been accepted by, the Federal Communications Commission as required by Section 2.948 of Federal Rules.
Purpose of Test:	To determine whether the equipment complied with the requirements of the specification for the purposes of certification.

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 11 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

3.2. Methods And Procedures

The methods and procedures used were as detailed in:

ANSI C63.2 (1987)

Title: American National Standard for Instrumentation - Electromagnetic noise and field strength.

ANSI C63.4 (2001)

Title: American National Standard Methods of Measurement of Electromagnetic Emissions from Low Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

ANSI C63.5 (1988)

Title: American National Standard for the Calibration of antennas used for Radiated Emission measurements in Electromagnetic Interference (EMI) control.

ANSI C63.7 (1988)

Title: American National Standard Guide for Construction of Open Area Test Sites for performing Radiated Emission Measurements.

CISPR 16-1: (1999)

Title: Specification For Radio Disturbance and Immunity Measuring Apparatus and Methods. Part 1: Radio Disturbance and Immunity Measuring Apparatus.

DA00-705 (2000)

Title: Filing and Frequency Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

3.3. Definition Of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the Methods & Procedures section above. Appendix 1 contains a list of the test equipment used.

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 12 of 78

Issue Date: 09 June 2003

4. Deviations From The Test Specification

None.

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 13 of 78

Issue Date: 09 June 2003

5. Operation Of The EUT During Testing

5.1. Operating Conditions

The EUT was tested in a normal laboratory environment.

During testing, the EUT was powered by a Nominal 115 V 60 Hz AC Mains supply

5.2. Operating Modes

The EUT was tested in the following operating modes, unless otherwise stated.

Preliminary radiated scans were performed on the DUT with the accessories stated in section 2.1 of this report connected and then disconnected. The combination that exhibited the worse case mode of operation was then used to perform final measurements.

Transmitter Modes:

For carrier EIRP, occupied bandwidth and final transmitter radiated measurements, testing was performed at full power on top, middle and bottom channels of the assigned frequency block.

For frequency stability testing, measurements were performed at full power on the top and bottom channels of the assigned frequency block at –30.0 °C through to +50.0 °C in 10 degree increments.

All transmitter radiated spurious pre-scan tests were performed at full power on the middle channel of the assigned frequency block. Final measurements were then performed on the Top, Middle and Bottom channels if an emission was identified.

Receiver Modes:

Testing was performed with the call terminated from the GSM Test Simulator and the phone left in its receive mode.

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 14 of 78

Issue Date: 09 June 2003

5.3. Configuration And Peripherals

The EUT was tested in the following configuration:

Configured with hands free kit, AC battery charger and internal battery.

All tests were performed with the EUT connected via an air link or directly to a GSM test set

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 15 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

6. Summary Of Test Results

Part 22

Range Of Measurements	Specification Reference	Port Type	Compliancy Status
Receiver AC Conducted Spurious Emissions (150 kHz to 30 MHz)	C.F.R. 47 FCC Part 15: 2002 Section 15.107	AC Mains Input	Complied
Receiver Radiated Emissions	C.F.R. 47 FCC Part 15: 2002 Section 15.109	Antenna	Complied
Transmitter Effective Radiated Power (ERP)	C.F.R. 47 FCC Part 22: 2002 Section 22.913(a)	Antenna	Complied
Transmitter Frequency Stability (Temperature Variation)	C.F.R. 47 FCC Part 22: 2002 Section 22:355	Antenna Terminals	Complied
Transmitter Frequency Stability (Voltage Variation)	C.F.R. 47 FCC Part 22: 2002 Section 22.355	Antenna Terminals	Complied
Transmitter Occupied Bandwidth	C.F.R. 47 FCC Part 22: 2002 Section 2.1049(i)	Antenna Terminals	Complied
Transmitter Conducted Emissions at Block Edges	C.F.R. 47 FCC Part 22: 2002 Section 2.1051/22.917	Antenna Terminals	Complied
Transmitter Radiated Out of Band Emissions	C.F.R. 47 FCC Part 22: 2002 Section 2.1053/22.917	Antenna	Complied
Radiated Band Edges	C.F.R. 47 FCC Part 2: 2002 Section 2.1053	Antenna	Complied

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 16 of 78

Page 16 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

Summary Of Test Results (Continued)

Part 24

Range Of Measurements	Specification Reference	Port Type	Compliancy Status
Receiver AC Conducted Spurious Emissions (150 kHz to 30 MHz)	C.F.R. 47 FCC Part 15: 2002 Section 15.107	AC Mains Input	Complied
Receiver/Idle Radiated Spurious Emissions	C.F.R. 47 FCC Part 15: 2002 Section 15.109	Enclosure	Complied
Transmitter Effective Isotropic Radiated Power (EIRP)	C.F.R. 47 FCC Part 24: 2002 Section 24.232	Antenna	Complied
Transmitter Frequency Stability (Temperature Variation)	C.F.R. 47 FCC Part 24: 2002 Section 24.235	Antenna Terminals	Complied
Transmitter Frequency Stability (Voltage Variation)	C.F.R. 47 FCC Part 24: 2002 Section 24.235	Antenna Terminals	Complied
Transmitter Occupied Bandwidth	C.F.R. 47 FCC Part 24: 2002 Section 24.238	Antenna Terminals	Complied
Transmitter Conducted Emissions at Block Edges	C.F.R. 47 FCC Part 24: 2002 Section 2.1051/24.238	Antenna Terminals	Complied
Transmitter Out of Band Emissions	C.F.R. 47 FCC Part 24: 2002 Section 2.1053/24.238	Antenna	Complied
Radiated Band Edges	C.F.R. 47 FCC Part 2: 2002 Section 2.1053/24.238	Antenna	Complied

6.1. Location Of Tests

All the measurements described in this report were performed at the premises of Radio Frequency Investigation Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ, England.

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 17 of 78

Issue Date: 09 June 2003

7. Measurements, Examinations And Derived Results

7.1. General Comments

- 7.1.1. This section contains test results only.
- 7.1.2. Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 8 for details of measurement uncertainties.

Operations Department

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 18 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

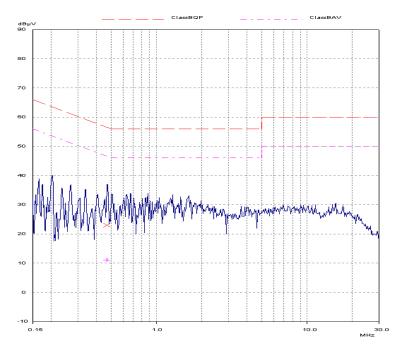
3600 Imaging Phone

To: FCC Part 22 & 24

8. Test Results FCC Part 22

8.1. Receiver AC Conducted Spurious Emissions: Section 15.107

- 8.1.1. The EUT was configured as for AC conducted emissions measurements as described in Section 9 of this report.
- 8.1.2. Tests were performed to identify the maximum emissions levels on the AC mains line of the EUT.


Results: Quasi-Peak Detector Measurements On Live And Neutral Lines

Frequency (MHz)	Line	Q-P Level (dBμV)	Q-P Limit (dBμV)	Margin (dB)	Result
0.46752	Live	22.91	56.56	33.65	Complied

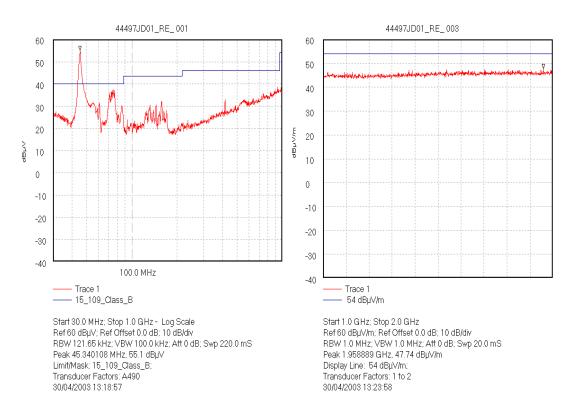
Results: Average Detector Measurements On Live And Neutral Lines

Frequency (MHz)	Line	Av. Level (dBμV)	Av. Limit (dBμV)	Margin (dB)	Result
0.46752	Neutral	11.10	46.56	35.46	Complied

Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

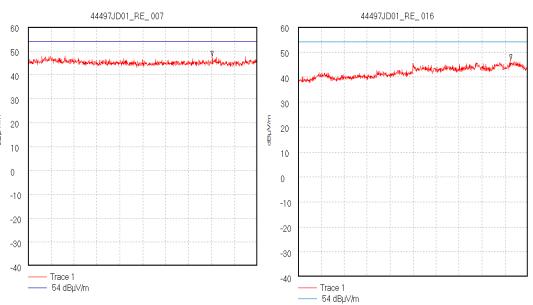

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 19 of 78

Issue Date: 09 June 2003

8.2. Receiver Radiated Emission: Section 15.109

- 8.2.1. The EUT was configured as for receiver-radiated emissions testing as described in Section 9 of this report.
- 8.2.2. Tests were performed to identify the maximum receiver or standby radiated emissions levels.

Result:


Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

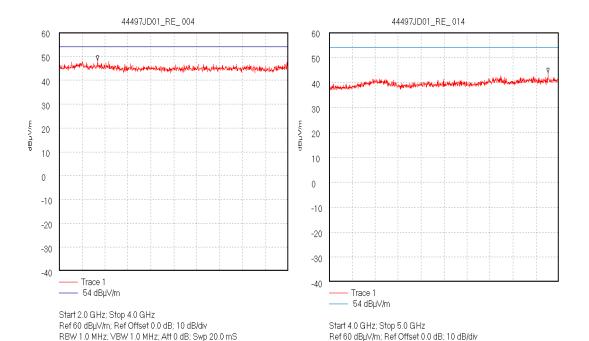
To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 20 of 78 Issue Date: 09 June 2003

Start 2.0 GHz; Stop 4.0 GHz
Ref 60 dBµV/m; Ref Offset 0.0 dB; 10 dB/div
RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS
Peak 3.606667 GHz, 47.99 dBµV/m
Display Line: 54 dBµV/m;
Transducer Factors: 2 to 4
30/04/2003 13:35:19

Peak 2.335556 GHz, 48.32 dBµV/m

Display Line: 54 dBµV/m; Transducer Factors: 2 to 4


30/04/2003 13:26:47

Start 4.0 GHz; Stop 6.0 GHz Ref 60 dBμV/m; Ref Offset 0.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS Peak 5.851111 dBμV/m Display Line: 54 dBμV/m; 02/05/2003 11:37:02

RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS

Peak 4.953333 GHz, 43.83 dBμV/m

Display Line: 54 dBμV/m; 02/05/2003 11:29:46

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C

Page 21 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

8.3. Transmitter Effective Radiated Power (ERP): Section 22.913(a)

8.3.1. The EUT was configured as for Effective Radiated Power as described in Section 9 of this report.

8.3.2. Tests were performed to identify the maximum Effective Radiated Power (ERP).

Results:

Channel	Measured Frequency (MHz)	Antenna Polarity	Maximum Transmitter ERP (dBm)	Limit ERP (dBm)	Margin (dB)	Result
Bottom	824.2	V	29.3	38.45	9.15	Complied
Middle	836.6	V	31.7	38.45	6.75	Complied
Тор	848.8	V	31.6	38.45	6.85	Complied

Operations Department

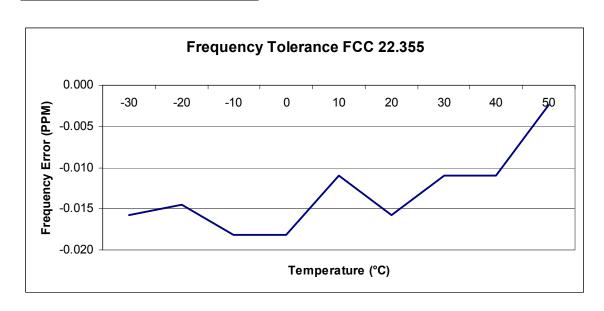
TEST REPORT S.No. RFI/MPTB3/RP44497JD02C

Page 22 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24


8.4. Transmitter Frequency Stability (Temperature Variation): Section 22.355

- 8.4.1. The EUT was configured as for frequency stability measurements as described in Section 9 of this report.
- 8.4.2. Tests were performed to identify the maximum frequency error of the EUT with variations in ambient temperature.

Results Bottom Channel (824.2 MHz)

Temperatur e (°C)	Nominal Frequency	Measured Frequency	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Margin (ppm)	Result
-30	824.2	824.199987	-13	-0.016	2.5	2.484	Complied
-20	824.2	824.199988	-12	-0.015	2.5	2.485	Complied
-10	824.2	824.199985	-15	-0.018	2.5	2.482	Complied
0	824.2	824.199985	-15	-0.018	2.5	2.482	Complied
10	824.2	824.199991	-9	-0.011	2.5	2.489	Complied
20	824.2	824.199987	-13	-0.016	2.5	2.484	Complied
30	824.2	824.199991	-9	-0.011	2.5	2.489	Complied
40	824.2	824.199991	-9	-0.011	2.5	2.489	Complied
50	824.2	824.199998	-2	-0.002	2.5	2.498	Complied

Frequency Variation From 824.2MHz

Operations Department

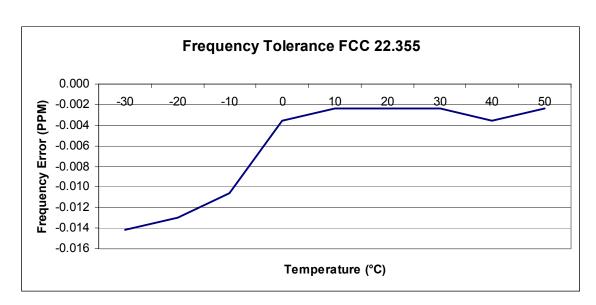
TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 23 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.


3600 Imaging Phone

To: FCC Part 22 & 24

<u>Transmitter Frequency Stability (Temperature Variation): Section 22.355 (Continued)</u> Results Top Channel (848.8 MHz)

Supply Voltage (V)	Nominal Frequency	Measured Frequency	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Margin (ppm)	Result
-30	848.8	848.799988	-12	-0.014	2.5	2.486	Complied
-20	848.8	848.799989	-11	-0.013	2.5	2.487	Complied
-10	848.8	848.799991	-9	-0.011	2.5	2.489	Complied
0	848.8	848.799997	-3	-0.004	2.5	2.496	Complied
10	848.8	848.799998	-2	-0.002	2.5	2.498	Complied
20	848.8	848.799998	-2	-0.002	2.5	2.498	Complied
30	848.8	848.799998	-2	-0.002	2.5	2.498	Complied
40	848.8	848.799997	-3	-0.004	2.5	2.496	Complied
50	848.8	848.799998	-2	-0.002	2.5	2.498	Complied

Frequency Variation From 848.8MHz

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 24 of 78

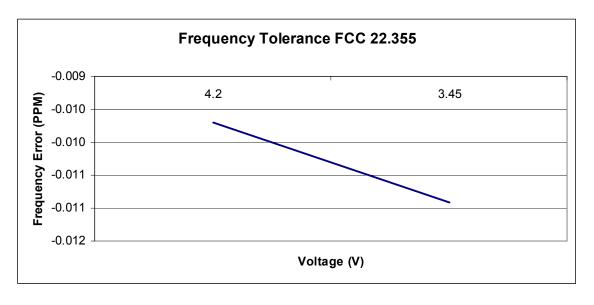
Issue Date: 09 June 2003

Operations Department

Test Of:

Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24


8.5. Transmitter Frequency Stability (Voltage Variation): Section 22.355

- 8.5.1. The EUT was configured as for frequency stability measurements as described in Section 9 of this report.
- 8.5.2. Tests were performed to identify the maximum frequency error of the EUT with variations in nominal operating voltage.

Results Bottom Channel (824.2 MHz)

Supply Voltage (V)	Nominal Frequency	Measured Frequency	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Margin (ppm)	Result
4.2	824.2	824.199992	-8	-0.010	2.5	2.490	Complied
3.45	824.2	824.199991	-9	-0.011	2.5	2.489	Complied

Frequency Variation From 824.2MHz

Operations Department

TEST REPORT

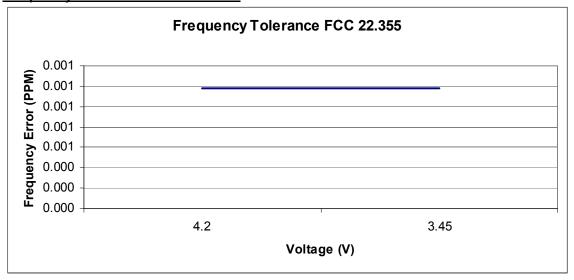
S.No. RFI/MPTB3/RP44497JD02C

Page 25 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone


To: FCC Part 22 & 24

<u>Transmitter Frequency Stability (Voltage Variation): Section 22.355 (Continued)</u>

Results Top Channel (848.8 MHz)

Supply Voltage (V)	Nominal Frequency	Measured Frequency	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Margin (ppm)	Result
4.2	848.8	848.800001	1	0.001	2.5	2.501	Complied
3.45	848.8	848.800001	1	0.001	2.5	2.501	Complied

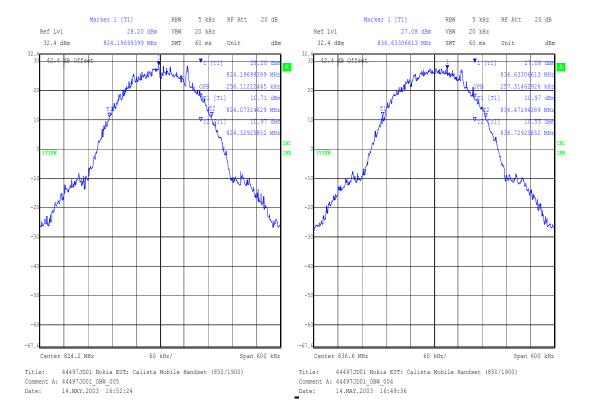
Frequency Variation From 848.8MHz

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 26 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

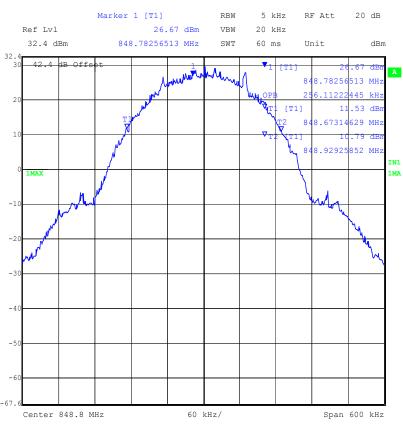

8.6. Transmitter Occupied Bandwidth: Section 2.1049(i)

8.6.1. The EUT was configured as for Occupied Bandwidth measurements as described in Section 9 of this report.

8.6.2. Tests were performed to identify the maximum bandwidth occupied by the fundamental frequency of the EUT.

Results:

Channel	Frequency (MHz)	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (kHz)
Bottom	824.2	5.0	20.0	256.112
Middle	836.6	5.0	20.0	257.314
Тор	848.8	5.0	20.0	256.112



Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 27 of 78 Issue Date: 09 June 2003

Title: 44497JD01 Nokia EUT: Calista Mobile Handset (850/1900)

Comment A: 44497JD01_OBW_001 Date: 14.MAY.2003 16:39:14

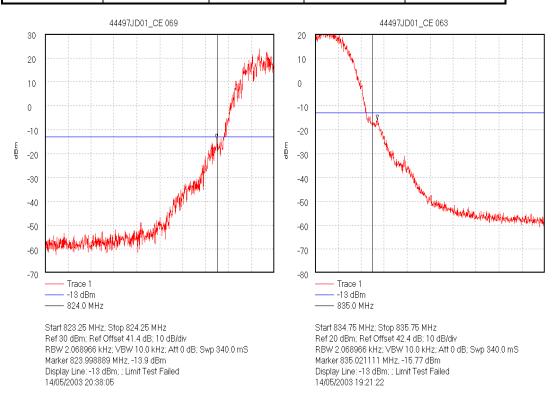
3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 28 of 78 Issue Date: 09 June 2003


8.7. Transmitter Conducted Emissions at Block Edges: Section 2.1051 & 22.917

8.7.1. Tests were performed to identify the maximum emissions level at the band edges of the frequency block that the EUT will operate over.

Results: Block A

Lower Band Edge

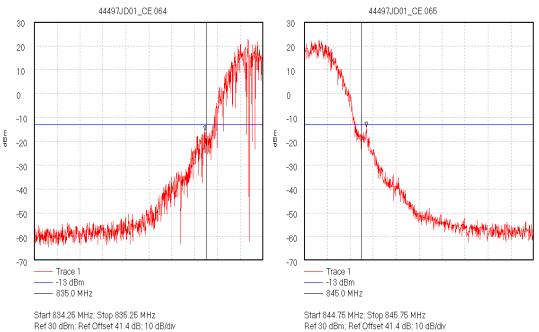
Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
823.999	-13.90	-13.0	0.9	Complied
835.021	-15.77	-13.0	2.77	Complied

3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24


TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 29 of 78 Issue Date: 09 June 2003

<u>Transmitter Conducted Emissions at Block Edges: Section 2.1051 & 22.917</u> (Continued)

Results: Block B

Lower Band Edge

== · · · · = · · · · · = · · · · · · ·							
Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result			
834.996	-15.37	-13.0	2.37	Complied			
845.021	-13.98	-13.0	0.98	Complied			

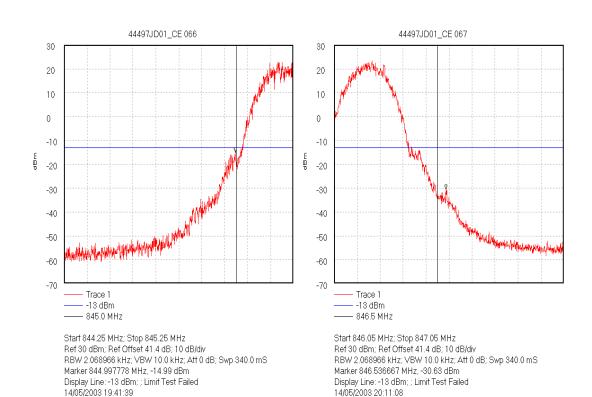
Start 834.25 MHz; Stop 835.25 MHz Ref 30 dBm; Ref Offset 41.4 dB; 10 dB/div RBW 2.068966 kHz; VBW 10.0 kHz; Att 0 dB; Swp 340.0 mS Marker 834.995556 MHz, -15.37 dBm Display Line: -13 dBm; ; Limit Test Failed 14/05/2003 19:38:04 Start 844.75 MHz; Stop 845.75 MHz Ref 30 dBm; Ref Offset 41.4 dB; 10 dB/div RBW 2.068966 kHz; VBW 10.0 kHz; Att 0 dB; Swp 340.0 mS Marker 845.021111 MHz, -13.98 dBm Display Line: -13 dBm; ; Limit Test Failed 14/05/2003 19:40:09

3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24


TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 30 of 78 Issue Date: 09 June 2003

<u>Transmitter Conducted Emissions at Block Edges: Section 2.1051 & 22.917</u> (Continued)

Results: Block A

Lower Band Edge

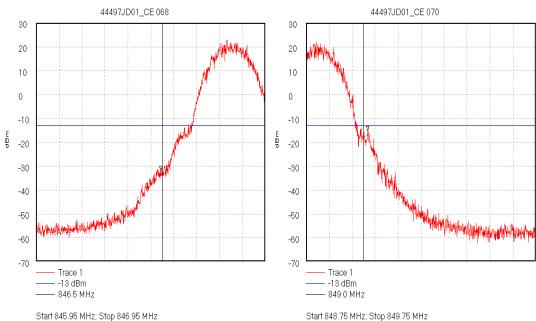
Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
844.998	-14.99	-13.0	1.99	Complied
846.537	-30.63	-13.0	17.63	Complied

3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24


TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 31 of 78 Issue Date: 09 June 2003

<u>Transmitter Conducted Emissions at Block Edges: Section 2.1051 & 22.917</u> (Continued)

Results: Block B

Lower Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
846.494	-31.85	-13.0	18.85	Complied
849.017	-15.22	-13.0	2.22	Complied

Start 845.95 MHz; Stop 846.95 MHz Ref 30 dBm; Ref Offset 41.4 dB; 10 dB/div RBW 2.068966 kHz; VBW 10.0 kHz; Att 0 dB; Swp 340.0 mS Marker 846.494444 MHz, -31.85 dBm Display Line: -13 dBm; ; Limit Test Failed 14/05/2003 20:14:35 Start 848.75 MHz; Stop 849.75 MHz Ref 30 dBm; Ref Offset 41.4 dB; 10 dB/div RBW 2.068966 kHz; VBW 10.0 kHz; Att 0 dB; Swp 340.0 mS Marker 849.01778 MHz, -15.22 dBm Display Line: -13 dBm; ; Limit Test Failed 14/05/2003 20:39.41

Operations Department

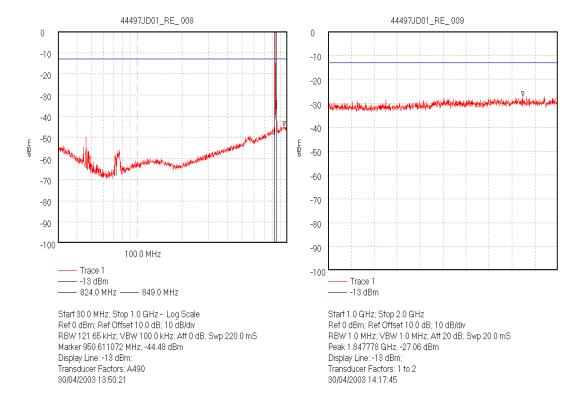
S.No. RFI/MPTB3/RP44497JD02C Page 32 of 78

TEST REPORT

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

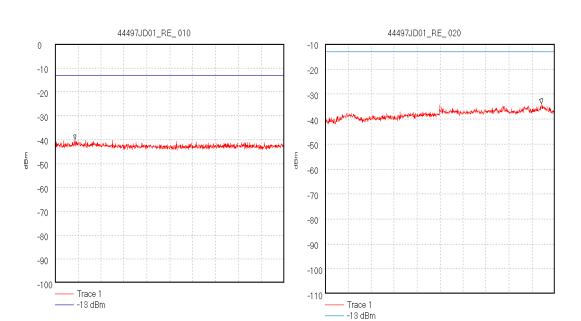

8.8. Transmitter Out of Band Emissions: Section 2.1053 & 22.917

- 8.8.1. The EUT was configured as for transmitter-radiated emissions testing as described in Section 9 of this report.
- 8.8.2. Tests were performed to identify the maximum transmitter radiated emission levels.

Result: Middle Channel

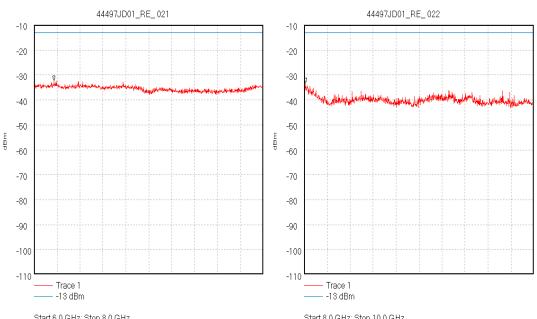
Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
17957.222	-32.8	-13.0	19.8	Complied

Note: As no radiated spurious emissions were present in the pre-scans, the highest noise floor level was recorded.



Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone


To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 33 of 78 Issue Date: 09 June 2003

Start 2.0 GHz; Stop 4.0 GHz Ref 0 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS Peak 2.173833 GHz, -40.04 dBm Display Line: -13 dBm; Transducer Factors: 2 to 4 30/04/2003 14:21:07

Start 4.0 GHz; Stop 6.0 GHz Ref -10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 15 dB; Swp 20.0 mS Peak 5.882222 GHz, -33.92 dBm Display Line: -13 dBm; 02/05/2003 14:22:37

Start 6.0 GHz; Stop 8.0 GHz Ref -10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 15 dB; Swp 20.0 mS Peak 6.173333 GHz, -32.32 dBm Display Line: -13 dBm; 02/05/2003 14:26:53 Start 8.0 GHz; Stop 10.0 GHz Ref -10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 10 dB; Swp 20.0 mS Peak 8.011111 GHz, -33.15 dBm Display Line: -13 dBm; 02/05/2003 14:31:55

Operations Department

Test Of: Nokia Mobile Phones.

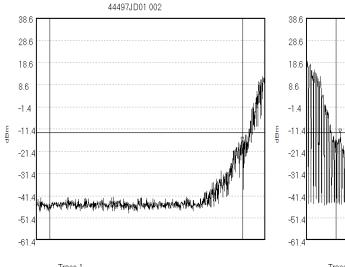
3600 Imaging Phone

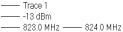
To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 34 of 78 Issue Date: 09 June 2003

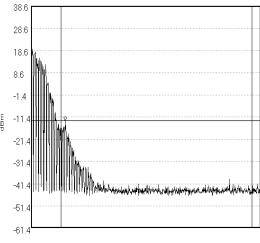
8.9. Transmitter Radiated Emissions At Band Edges: Section 2.1053

- 8.9.1. The EUT was configured as for transmitter radiated emissions testing described in Section 9 of this report.
- 8.9.2. Tests were performed to identify the maximum emissions level at the band edges of the frequency block that the EUT will operate over.

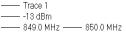

Results:


Bottom Band Edge

Frequency (MHz)	Spurious Emission (dBm)	Limit (dBm)	Margin (dB)	Result
823.998	-17.06	-13.0	4.06	Complied


Top Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
849.023	-13.22	-13.0	0.22	Complied



Start 822.929071 MHz; Stop 824.116857 MHz - Log Scale Ref 38.6 dBm; Ref Offset 38.6 dB; 10 dB/div RBW 3.0 kHz; VBW 30.0 kHz; Att 30 dB; Swp 400.0 mS Marker 823.996759 MHz, -17.06 dBm Display Line: -13 dBm; 15/05/2003 22:05:35

44497JD01 003

Start 848.845235 MHz; Stop 850.045833 MHz - Log Scale Ref 38.6 dBm; Ref Offset 38.6 dB; 10 dB/div RBW 3.0 kHz; VBW 30.0 kHz; Att 30 dB; Swp 420.0 mS Marker 849.022657 MHz, -13.22 dBm Display Line: -13 dBm; 15/05/2003 22:07:47

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 35 of 78 Issue Date: 09 June 2003

9. Measurement Methods - Part 22

3600 Imaging Phone

9.1. Effective Radiated Power (ERP)

ERP measurements were performed in accordance with the standard, against appropriate limits.

The ERP was measured with the EUT arranged on a non-conducting turn table on a standard test site compliant with ANSI C63.4 – 2001 Clause 5.4. The transmitter was fitted with an integral antenna; as such all radiated tests were performed with the unit operating into the integral antenna.

The level of the ERP was measured using a spectrum analyser.

The test antenna was positioned in the horizontal plane. The EUT was oriented in the X plane. The test antenna was then raised and lowered until a maximum peak was observed. The turntable was then rotated through 360 degrees and the maximum peak reading obtained. The height search was then repeated to take into consideration the new angular position of the turntable. The maximum reading observed was then recorded. This procedure was then repeated with the EUT oriented in the Y and Z planes. The highest reading taken in all 3 planes was recorded. The entire procedure was then repeated with the test antenna set in the Vertical polarity.

Once the final amplitude (maximised) had been obtained, the EUT was substituted with a substitution antenna. For ERP measurements a dipole antenna was used. The centre of the substitution antenna was set to approximately the same centre location as the EUT. The substitution antenna was set to the horizontal polarity. The substitution antenna was matched into a signal generator using a 6dB or greater PAD. The signal generator was tuned to the EUT's frequency under test.

The test antenna was then raised and lowered to obtain a maximum reading on the spectrum analyser. The level of the signal generator output was then adjusted until the maximum recorded EUT level was observed. The signal generator level was noted. This procedure was repeated with both test antenna and substitution antenna vertically polarised. The ERP was calculated as:-

ERP = Signal Generator Level - Cable Loss + Antenna Gain

Note that an ideal dipole has 0dBd of gain, however, realistically this isn't the case and any gain/or loss present is taken into consideration.

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 36 of 78 Issue Date: 09 June 2003

Effective Radiated Power (ERP) (Continued)

3600 Imaging Phone

Circumstances where the signal generator could not produce the desired power substitution was performed with the signal generator set to 0 dBm. The radiated signal was maximised as previously described. The level indicated on the measuring receiver was noted. The delta between this level and the maximum level for the EUT was calculated and also noted. The ERP of the signal generator was calculated using the above formulae. The recorded delta was added to the calculated ERP to obtain the substituted EUT ERP.

The test equipment settings for ERP measurements were as follows:

Receiver Function	Setting	
Detector Type:	Peak	
Mode:	Not applicable	
Bandwidth:	>= Emission Bandwidth	
Amplitude Range:	100 dB	
Sweep Time:	Coupled	

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 37 of 78 Issue Date: 09 June 2003

9.2. FCC Part 2.1055: Frequency Stability

3600 Imaging Phone

The EUT was situated within an environmental test chamber and connected to test equipment via and access port.

Measurements were performed with the EUT operating under extremes of temperature in 10 degree increments within the range –30 to 50 Deg C.

Measurements were also performed at voltage extremes between the declared nominal supply voltage and at the declared endpoint voltage.

The requirement was to determine the frequency stability of the device under specified environmental operating conditions.

Measurements were made on the top, middle and bottom channels.

The EUT was switched off for a minimum of 30 minutes between each stage of testing while the environmental chamber stabilised at the next temperature within the stated temperature range.

The frequency error measured was converted to an error in ppm using the following formula as defined by TIA EIA 603A:-

ppm error =
$$\left(\frac{MCF_{MHz}}{ACF_{MHz}}-1\right) * 10^6$$

where MCF_{MHz} is the measured carrier frequency in MHz ACF_{MHz} is the assigned carrier frequency in MHz

The measured ppm had to be less then the relevant limits in order to comply.

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 38 of 78 Issue Date: 09 June 2003

9.3. Occupied Bandwidth

The EUT was connected to a spectrum analyser enabled with an occupied bandwidth function and a GSM test set via a bi-directional coupler to its antenna port. If the EUT was not fitted with an antenna port as standard, the client made a temporary antenna port available.

Measurements were performed to determine the Occupied Bandwidth in accordance with FCC Part 2.1049. The Occupied Bandwidth was measured from the fundamental emission at the bottom middle and top channels.

As EUT is a PCS phone, no modulation input port was available. A call was thus setup using the PCS/GSM simulator and using normal modulation. The Occupied Bandwidth was measured in this configuration.

The Occupied Bandwidth was measured using the built in occupied bandwidth function of the Rohde and Schwarz FSEB spectrum analyser. It was set to measure the bandwidth where 99% of the signal power was contained. The analyser settings were set as per those outlined in the FSEB user manual for this measurement, i.e., RBW <= 1/20 of occupied bandwidth. A value of 3kHz was used.

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 39 of 78 Issue Date: 09 June 2003

h----

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

9.4. FCC Part 15: AC Mains Conducted Emissions

AC mains conducted emissions measurements were performed in accordance with the standard, against appropriate limits for each detector function.

The test was performed in a shielded enclosure with the equipment arranged as detailed in the standard on a wooden bench using the floor of the screened enclosure as the ground reference plane.

Initial measurements in the form of swept scans covering the entire measurement band were performed in order to identify frequencies on which the EUT was generating interference. In order to minimise the time taken for these swept measurements, a Peak detector was used in conjunction with the appropriate detector IF measuring bandwidths (see table below). Repetitive scans were performed to allow for emissions with low repetition rates, and the duty cycle of the EUT. The test configuration was the same for the initial scans as for the final measurements.

During the swept measurements (and also during subsequent final measurements on single frequencies) any signals found to be between the limit and a level 6 dB below it were further maximised by changing the configuration of the EUT, e.g. re-routing cables to peripherals and moving peripherals with respect to the EUT.

Following the initial scans, a graph was produced giving an overview of the emissions from the EUT plotted against the appropriate specification limit. A tolerance line was set 6 dB below the specification limit and levels above the tolerance line were re-tested (at individual frequencies) using the appropriate detector function.

The test equipment settings for conducted emissions measurements were as follows:

Receiver Function	Initial Scan	Final Measurements	
Detector Type:	Peak	Quasi-Peak (CISPR)/Average	
Mode:	Max Hold	Not applicable	
Bandwidth:	10 kHz*	9 kHz*	
Amplitude Range:	60 dB	20 dB	
Measurement Time:	Not applicable	> 1 s	
Observation Time:	Not applicable	> 15 s	
Step Size:	Continuous sweep	Not applicable	
Sweep Time:	Coupled	Not applicable	

Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 40 of 78 Issue Date: 09 June 2003

9.5. Transmitter Radiated Emissions

Radiated emissions measurements were performed in accordance with the standard, against appropriate limits for each detector function.

Initial pre-scans covering the entire measurement band from the lowest generated frequency declared up to 10 times the highest fundamental frequency stated in section 2.5 of this report. The scans were performed within a screened chamber in order to identify frequencies on which the EUT was generating spurious. This procedure identified the frequencies from the EUT which required further examination. Repetitive scans were performed to allow for emissions with low repetition rates, and for the duty cycle of the EUT.

The initial scans were performed using an antenna height of 1.5 m and a measurement distance of 3 m. A limit line was set to the specification limit by characterising the screen room using a known signal source set at exactly the same location as the EUT. The signal source was derived from either a horn antenna or a dipole dependant on the frequency band under investigation. Any levels within 20dB of this limit were measured where possible, on occasion; the receiver noise floor came within the 20dB boundary. On these occasions, the system noise floor may have been recorded.

An open area test site using the appropriate test distance and measuring receiver with a Peak detector was used for final measurements at each frequency recorded in the screen room.

The levels were maximised by initially rotating the turntable through 360° and then varying the antenna height between 1 m and 4 m in the vertical polarisation. At this point, any signals found to be between the limit and a level 6 dB below it were further maximised by changing the configuration of the EUT, e.g. re-routing cables to peripherals and moving peripherals with respect to the EUT. The procedure was repeated for the horizontal polarisation.

Once the final amplitude (maximised) had been obtained, the EUT was substituted with a substitution antenna. For EIRP measurements a Horn antenna whose gain was based on an isotropic antenna was used, ERP measurements were done using a dipole. The centre of the substitution antenna was set to approximately the same centre location as the EUT. The substitution antenna was set to the horizontal polarity. The substitution antenna was matched into a signal generator using a 6dB or greater PAD. The signal generator was tuned to the EUT's frequency under test.

The test antenna was then raised and lowered to obtain a maximum reading on the spectrum analyser. The level of the signal generator output was then adjusted until the maximum recorded EUT level was observed. The signal generator level was noted. This procedure was repeated with both test antenna and substitution antenna vertically polarised. The radiated power was calculated as:-

EIRP/ERP = Signal Generator Level - Cable Loss + Antenna Gain

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 41 of 78 Issue Date: 09 June 2003

Transmitter Radiated Emissions (Continued)

The limit in the standard states that emissions shall be attenuated by at least 43+10 Log(P) dB below the transmitter power (P), where (P) is the maximum measured fundamental power for the channel under test. This limit always reduces to -13dBm as such, the limit line presented on the accompanying plots is set to -13dBm.

Any spurious measured were then compared to the –13dBm limit. The requirement is for the emission to be less than –13dBm. The margin between emission and limit is recorded and should always be positive to indicate compliance.

All measurements were performed using broadband Horn antennas.

It should be noted that FCC Part 22.917 states that the 1st MHz band immediately adjacent to the applicants declared frequency block may be measured using a resolution bandwidth of at least 1% of the emission bandwidth. This bandwidth was found to be 3 kHz

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 42 of 78

Issue Date: 09 June 2003

9.6. Receiver Radiated Emissions

Radiated emissions measurements were performed in accordance with the standard, against appropriate limits for each detector function.

Initial pre-scans covering the entire measurement band from the lowest generated frequency declared up to 5 times the highest clock frequency stated in section 2.5 of this report were performed within a screened chamber in order to identify frequencies on which the EUT was generating interference. This determined the frequencies from the EUT which required further examination. In order to minimise the time taken for the swept measurements, a peak detector was used in conjunction with the appropriate detector measuring bandwidth (see table below). Repetitive scans were performed to allow for emissions with low repetition rates, and for the duty cycle of the EUT.

The initial scans were performed using an antenna height of 1.5 m and a measurement distance of 3 m. A limit line was set to the specification limit. Levels within 20dB of this limit were measured where possible, on occasion, the receiver noise floor came within the 20dB boundary. On these occasions, the system noise floor may have been recorded.

An open area test site using the appropriate test distance and measuring receiver with a Quasi-Peak detector was used for measurements below 1000 MHz, for measurements above 1000 MHz average and peak detectors were used.

For the final measurements the EUT was arranged on a non-conducting turn table on a standard test site compliant with ANSI C63.4 – 2001 Clause 5.4.

On the open area test site, at each frequency where a signal was found, the levels were maximised by initially rotating the turntable through 360° and then varying the antenna height between 1 m and 4 m in the horizontal polarisation. At this point, any signals found to be between the limit and a level 6 dB below it were further maximised by changing the configuration of the EUT, e.g. re-routing cables to peripherals and moving peripherals with respect to the EUT. The procedure was repeated for the vertical polarisation.

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 43 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

Receiver Radiated Emissions (Continued)

The final field strength was determined as the indicated level in dBuV plus cable loss and antenna factor.

The test equipment settings for radiated emissions measurements were as follows:

Receiver Function	Initial Scan	Final Measurements Below 1GHz	Final Measurements Above 1 GHz
Detector Type:	Peak	Quasi-Peak (CISPR)	Peak/Average
Mode:	Max Hold	Not applicable	Not applicable
Bandwidth:	(120 kHz < 1GHz) (1MHz > 1GHz)	120 kHz	1 MHz (If Applicable)
Amplitude Range:	60 dB	20 dB	20 dB (typical)
Step Size:	Continuous sweep	Not applicable	Not applicable
Sweep Time:	Coupled	Not applicable	Not applicable

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C

Page 44 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

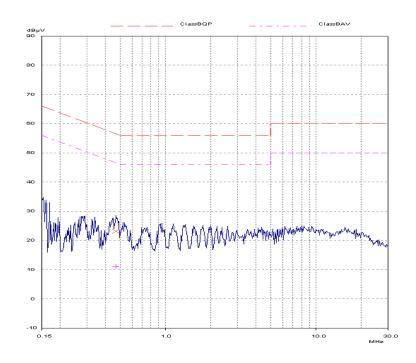
To: FCC Part 22 & 24

10. Test Results FCC Part 24

10.1. Receive AC Conducted Spurious Emissions: Section 15.107

10.1.1. The EUT was configured as for AC conducted emissions measurements as described in Section 11 of this report.


10.1.2. Tests were performed to identify the maximum emissions levels on the AC mains line of the EUT.


Results: Quasi-Peak Detector Measurements On Live And Neutral Lines

Frequency (MHz)	Line	Q-P Level (dBμV)	Q-P Limit (dBμV)	Margin (dB)	Result
0.46752	Live	23.15	56.56	33.42	Complied

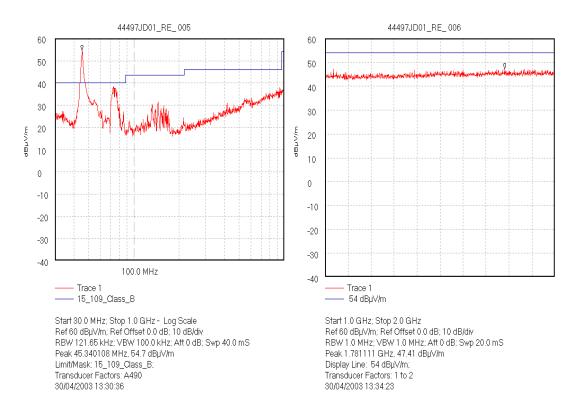
Results: Average Detector Measurements On Live And Neutral Lines

Frequency (MHz)	Line	Av. Level (dBμV)	Av. Limit (dBμV)	Margin (dB)	Result
0.46752	Neutral	11.13	46.56	35.43	Complied

Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24


TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 45 of 78 Issue Date: 09 June 2003

10.2. Receiver/Idle Radiated Spurious Emission: Section 15.109

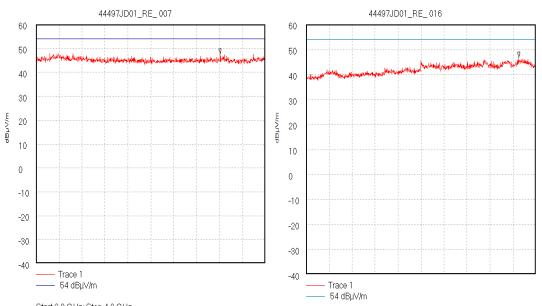
10.2.1. The EUT was configured as for receiver radiated emissions testing as described in Section 11 of this report.

10.2.2. Tests were performed to identify the maximum receiver or standby radiated emissions levels.

Result:

Operations Department

Display Line: 54 dBµV/m;


02/05/2003 11:52:09

Test Of: Nokia Mobile Phones.

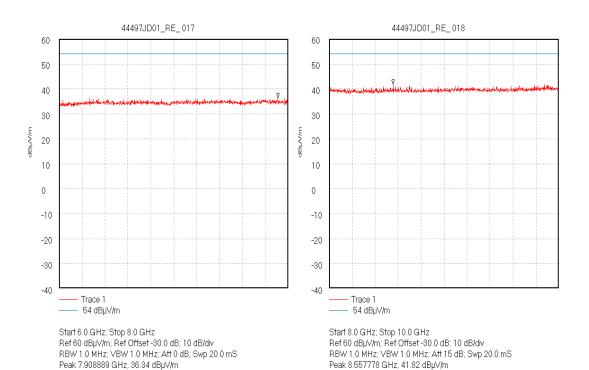
3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 46 of 78 Issue Date: 09 June 2003

 Start 2.0 GHz; Stop 4.0 GHz

 Ref 60 dBμV/m; Ref Offset 0.0 dB; 10 dB/div
 Start 4.0 GHz; Stop 6.0 GHz


 RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS
 Ref 60 dBμV/m; Ref Offset 0.0 dB; 10 dB/div

 Peak 3.606667 GHz, 47.99 dBμV/m
 RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS

 Display Line: 54 dBμV/m;
 Peak 5.8511111 GHz, 47.11 dBμV/m

 Transducer Factors: 2 to 4
 Display Line: 54 dBμV/m;

 30/04/2003 13:35:19
 02/05/2003 11:37.02

Display Line: 54 dBµV/m;

02/05/2003 13:53:15

Operations Department

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 47 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

10.3. Transmitter Effective Isotropic Radiated Power (EIRP): Section 24.232

10.3.1. The EUT was configured as for Effective Isotropic Radiated Power as described in Section 11 of this report.

10.3.2. Tests were performed to identify the maximum Effective Isotropic Radiated Power (EIRP).

Results:

Channel	Measured Frequency (MHz)	Antenna Polarity	Maximum Transmitter EIRP (dBm)	Limit EIRP (dBm)	Margin (dB)	Result
Bottom	1850.2	V	29.2	33.0	3.8	Complied
Middle	1879.8	V	28.4	33.0	4.6	Complied
Тор	1909.8	V	27.8	33.0	5.2	Complied

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C

Page 48 of 78

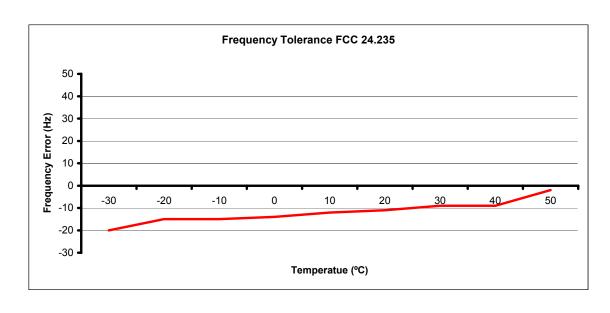
Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

10.4. Transmitter Frequency Stability (Temperature Variation): Section 24.235


10.4.1. The EUT was configured as for frequency stability measurements as described in Section 11 of this report.

10.4.2. Tests were performed to identify the maximum frequency error of the EUT with variations in ambient temperature.

Results Bottom Channel (1850.2 MHz)

Temp (°C)	Frequency Error (Hz)	Measured Frequency (MHz)	Lower Band Edge Limit (MHz)	Margin (MHz)	Result
-30	-20	1850.199980	1850.0	0.199980	Complied
-20	-15	1850.199985	1850.0	0.199985	Complied
-10	-15	1850.199985	1850.0	0.199985	Complied
0	-14	1850.199986	1850.0	0.199986	Complied
10	-12	1850.199988	1850.0	0.199988	Complied
20	-11	1850.199989	1850.0	0.199989	Complied
30	-9	1850.199991	1850.0	0.199991	Complied
40	-9	1850.199991	1850.0	0.199991	Complied
50	-2	1850.199998	1850.0	0.199998	Complied

Frequency Variation From 1850.2MHz

Operations Department

TEST REPORT

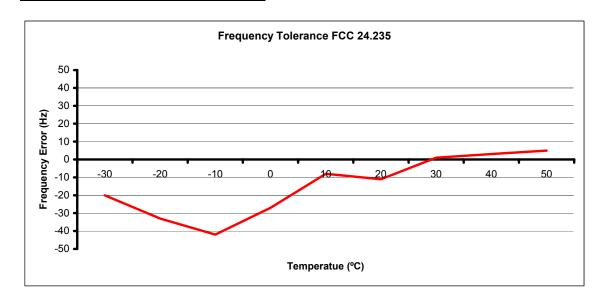
S.No. RFI/MPTB3/RP44497JD02C

Page 49 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone


To: FCC Part 22 & 24

<u>Transmitter Frequency Stability (Temperature Variation): Section 24.235 (continued)</u>

Results Top Channel (1909.8 MHz)

Temp (°C)	Frequency Error (Hz)	Measured Frequency (MHz)	Upper Band Edge Limit (MHz)	Margin (MHz)	Result
-30	-20	1909.799980	1910.0	0.200020	Complied
-20	-33	1909.799967	1910.0	0.200033	Complied
-10	-42	1909.799958	1910.0	0.200042	Complied
0	-27	1909.799973	1910.0	0.200027	Complied
10	-8	1909.799992	1910.0	0.200008	Complied
20	-11	1909.799989	1910.0	0.200011	Complied
30	1	1909.799999	1910.0	0.200001	Complied
40	3	1909.799997	1910.0	0.200003	Complied
50	5	1909.799995	1910.0	0.200005	Complied

Frequency Variation From 1909.8MHz

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 50 of 78

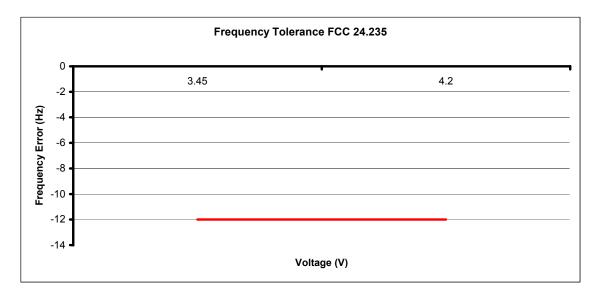
Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

10.5. Transmitter Frequency Stability (Voltage Variation): Section 24.235


10.5.1. The EUT was configured as for frequency stability measurements as described in Section 11 of this report.

10.5.2. Tests were performed to identify the maximum frequency error of the EUT with variations in nominal operating voltage.

Results Bottom Channel (1850.2 MHz)

Supply Voltage (V)	Frequency Error (Hz)	Measured Frequency (MHz) Lower Band Edge Limit (MHz) (MHz)		_	Result
4.2	-12	1850.199988	1850	0.199988	Complied
3.45	-12	1850.199988	1850	0.199988	Complied

Frequency Variation From 1850.2MHz

Operations Department

TEST REPORT

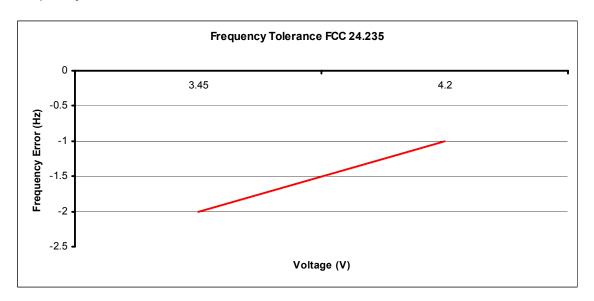
S.No. RFI/MPTB3/RP44497JD02C

Page 51 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone


To: FCC Part 22 & 24

<u>Transmitter Frequency Stability (Voltage Variation): Section 24.235 (Continued)</u>

Results Top Channel (1909.8 MHz)

Supply Voltage (V)	Frequency Error (Hz)	Measured Frequency (MHz)	Lower Band Edge Limit (MHz)	Margin (MHz)	Result
4.2	-1	1909.799999	1910	0.200001	Complied
3.45	-2	1909.799998	1910	0.200002	Complied

Frequency Variation From 1909.8MHz

Operations Department

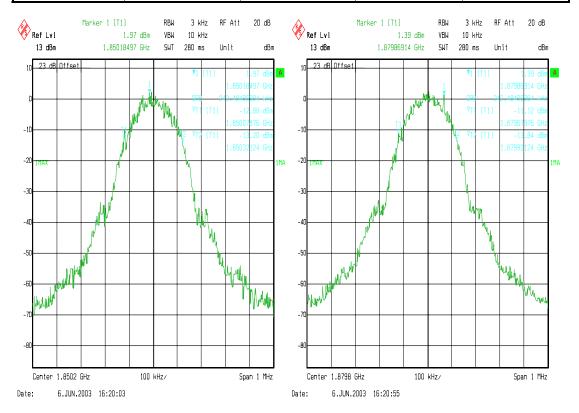
TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 52 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24


10.6. Transmitter Occupied Bandwidth: Section 24.238

10.6.1. The EUT was configured as for Occupied Bandwidth measurements as described in Section 11 of this report.

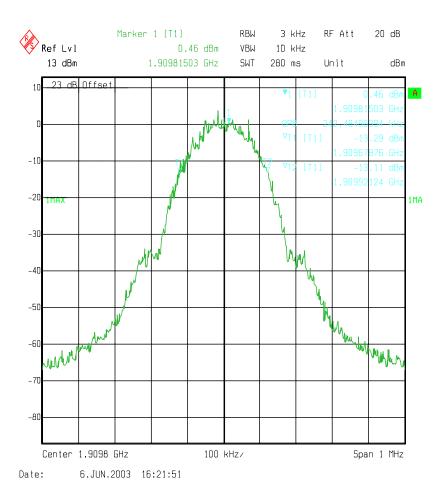
10.6.2. Tests were performed to identify the maximum bandwidth occupied by the fundamental frequency of the EUT.

Results:

Channel	Frequency (MHz)	Resolution Bandwidth (kHz)	Video Bandwidth (kHz)	Occupied Bandwidth (kHz)
Bottom	1850.2	3.0	10.0	242.485
Middle	1879.8	3.0	10.0	242.485
Тор	1909.8	3.0	10.0	242.485

Operations Department

Page 53 of 78


TEST REPORT

Issue Date: 09 June 2003

S.No. RFI/MPTB3/RP44497JD02C

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C

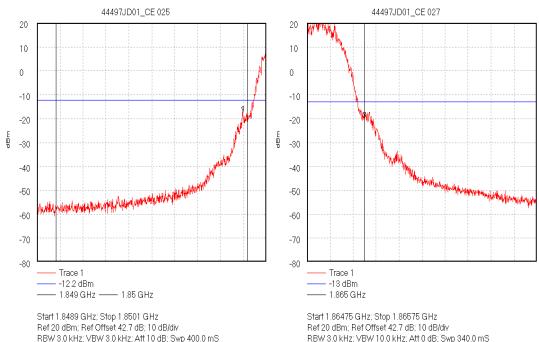
Page 54 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24


10.7.Transmitter Conducted Emissions at Block Edges: Section 2.1051/24.238

10.7.1. Tests were performed to identify the maximum emissions level at the band edges of the frequency block that the EUT will operate over.

Results: Block A

Lower Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
1849.977	-16.94	-13.0	3.94	Complied
1865.001	-19.30	-13.0	6.30	Complied

Start 1.8489 GHz; Stop 1.8501 GHz Ref 20 dBm; Ref Offset 42.7 dB; 10 dB/div RBW 3.0 kHz; VBW 3.0 kHz; Att 10 dB; Swp 400.0 mS Marker 1.849977 GHz, -16.94 dBm Display Line: -12.2 dBm; 12/05/2003 16:11:36

Staft 1,864/6 GHz; Stop 1,866/6 GHz

Ref 20 dBm; Ref Offset 42.7 dB; 10 dB/div

RBW 3.0 kHz; VBW 10.0 kHz; Att 0 dB; Swp 340.0 mS

Marker 1,865001 GHz, -19.3 dBm

Display Line: -13 dBm;

14/05/2003 10:37:27

Operations Department

TEST REPORT

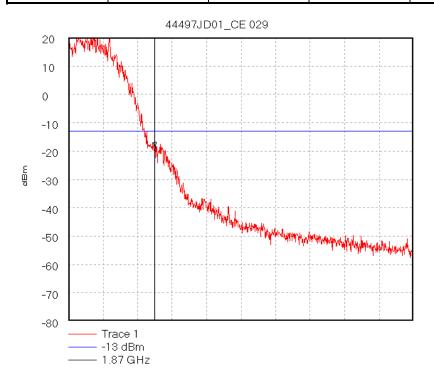
S.No. RFI/MPTB3/RP44497JD02C

Page 55 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone


To: FCC Part 22 & 24

<u>Transmitter Conducted Emissions at Block Edges: Section 2.1051/24.238</u> (Continued)

Results: Block D

Lower Band Edge

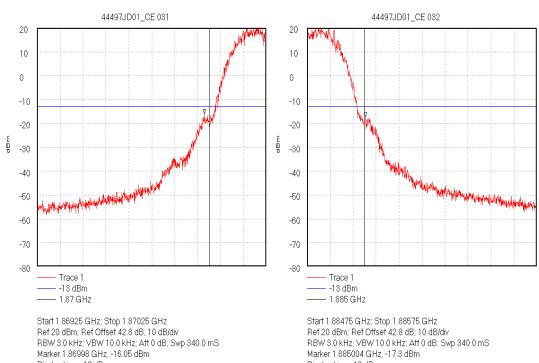
Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result		
1865.000	-17.48	-13.0	4.48	Complied		
1870.001	-18.80	-13.0	5.80	Complied		

Start 1.86975 GHz; Stop 1.87075 GHz Ref 20 dBm; Ref Offset 42.8 dB; 10 dB/div RBW 3.0 kHz; VBW 10.0 kHz; Att 0 dB; Swp 340.0 mS Marker 1.870001 GHz, -18.8 dBm Display Line: -13 dBm; 14/05/2003 10:46:40

3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.


To: FCC Part 22 & 24 **TEST REPORT** S.No. RFI/MPTB3/RP44497JD02C Page 56 of 78 Issue Date: 09 June 2003

Transmitter Conducted Emissions at Block Edges: Section 2.1051/24.238 (Continued)

Results: Block B

Lower Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
1869.980	-16.05	42.2	3.05	Complied
1885.004	-17.30	42.2	4.30	Complied

Display Line: -13 dBm; 14/05/2003 10:50:29

Display Line: -13 dBm; 14/05/2003 10:54:34

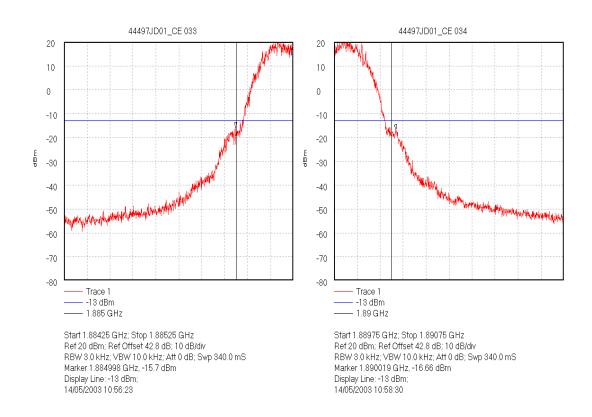
3600 Imaging Phone

Operations Department

Test Of:

Nokia Mobile Phones.

To: FCC Part 22 & 24


TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 57 of 78 Issue Date: 09 June 2003

<u>Transmitter Conducted Emissions at Block Edges: Section 2.1051/24.238 (Continued)</u>

Results: Block E

Lower Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
1884.998	-15.70	-13.0	2.70	Complied
1890.019	-16.66	-13.0	3.66	Complied

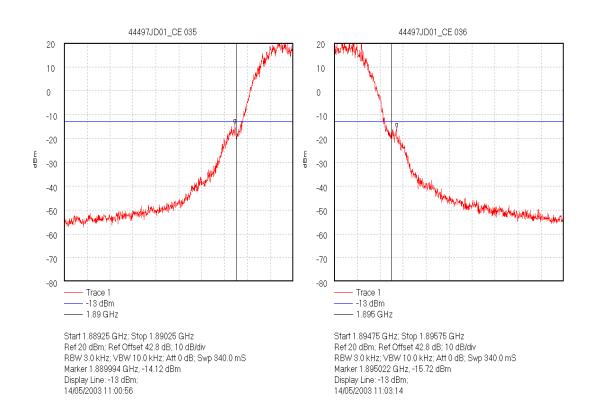
Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 58 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone


To: FCC Part 22 & 24

<u>Transmitter Conducted Emissions at Block Edges: Section 2.1051/24.238 (Continued)</u>

Results: Block F

Lower Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
1889.994	-14.12	-13.0	1.12	Complied
1895.022	-15.72	-13.0	2.72	Complied

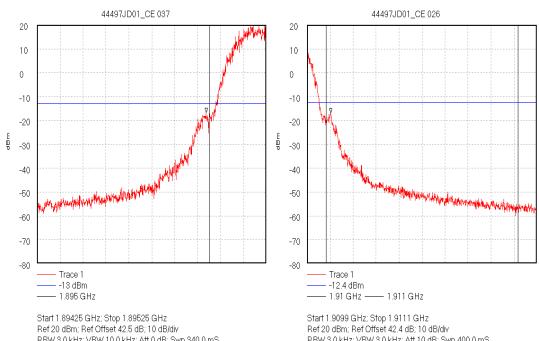
Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 59 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone


To: FCC Part 22 & 24

<u>Transmitter Conducted Emissions at Block Edges: Section 2.1051/24.238 (Continued)</u>

Results: Block C

Lower Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm	Margin (dB)	Result
1894.988	-16.76	-13.0	3.76	Complied
1910.024	-16.99	-13.0	3.99	Complied

Start 1.89425 GHz; Stop 1.89525 GHz Ref 20 dBm; Ref Offset 42.5 dB; 10 dB/div RBW 3.0 kHz; VBW 10.0 kHz; Att 0 dB; Swp 340.0 mS Marker 1.894988 GHz, -16.76 dBm Display Line: -13 dBm; 14/05/2003 11:06:17

Start 1,9099 GHz; Stop 1,9111 GHz Ref 20 dBm; Ref Offset 42,4 dB; 10 dB/div RBW 3.0 kHz; VBW 3.0 kHz; Att 10 dB; Swp 400.0 mS Marker 1,910024 GHz, -16,99 dBm Display Line: -12,4 dBm; 12/05/2003 16:14:04

3600 Imaging Phone

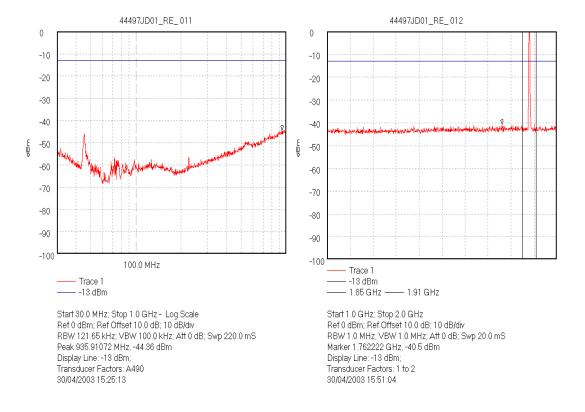
Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 60 of 78 Issue Date: 09 June 2003

10.8. Transmitter Out of Band Emissions: Section 2.1053/24.238


10.8.1. The EUT was configured as for transmitter radiated emissions testing as described in Section 11 of this report.

10.8.2. Tests were performed to identify the maximum transmitter radiated emission levels.

Result: Middle Channel

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
17957.222	-32.8	-13.0	19.8	Complied

Note: As no radiated spurious emissions were present in the pre-scans, the highest noise floor level was recorded.

Operations Department

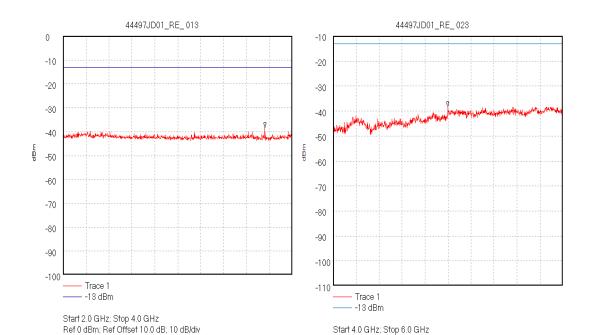
Test Of: Nokia Mobile Phones.

RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS

Peak 3.76 GHz, -38.19 dBm Display Line: -13 dBm;

Transducer Factors: 2 to 4 30/04/2003 15:56:11

3600 Imaging Phone

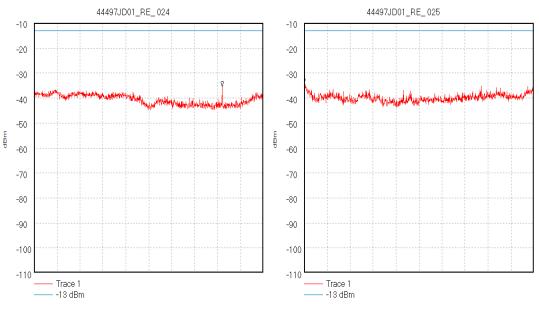

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 61 of 78 Issue Date: 09 June 2003

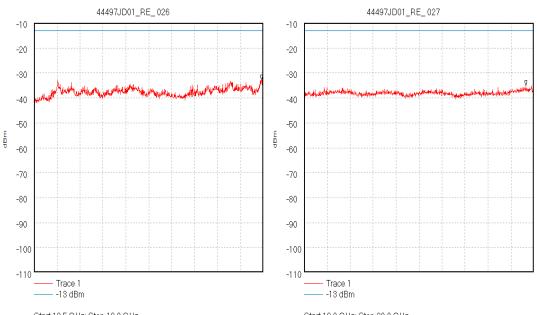
Ref -10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 10 dB; Swp 20.0 mS

Peak 4.997778 GHz, -38.23 dBm

Display Line: -13 dBm; 02/05/2003 14:40:10


Operations Department

Test Of: Nokia Mobile Phones.


3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 62 of 78 Issue Date: 09 June 2003

Start 6.0 GHz; Stop 8.0 GHz Ref-10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 10 dB; Swp 20.0 mS Peak 7.642222 GHz, -35.52 dBm Display Line: -13 dBm; 02/05/2003 14:44:32 Start 8.0 GHz; Stop 12.5 GHz Ref -10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 10 dB; Swp 20.0 mS Peak 8.0 GHz, -34.32 dBm Display Line: -13 dBm; 02/05/2003 14:48:32

Start 12.5 GHz; Stop 18.0 GHz Ref -10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 5 dB; Swp 40.0 mS Peak 17.957222 GHz, -32.8 dBm Display Line: -13 dBm; 02/05/2003 14:54:59 Start 18.0 GHz; Stop 20.0 GHz Ref -10 dBm; Ref Offset 10.0 dB; 10 dB/div RBW 1.0 MHz; VBW 1.0 MHz; Att 0 dB; Swp 20.0 mS Peak 19.931111 GHz, -35.08 dBm Display Line: -13 dBm; 02/05/2003 14:59:50

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 63 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

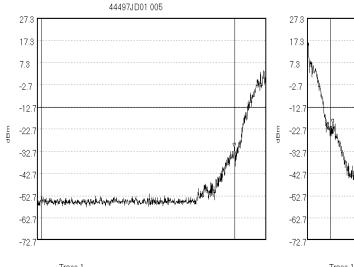
3600 Imaging Phone

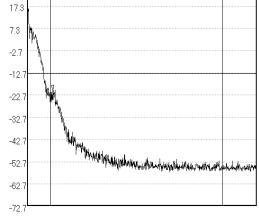
To: FCC Part 22 & 24

10.9. Transmitter Radiated Emissions At Band Edges: Section 2.1053/24.238

10.9.1. The EUT was configured as for transmitter radiated emissions testing described in Section 11 of this report.

10.9.2. Tests were performed to identify the maximum emissions level at the band edges of the frequency block that the EUT will operate over.


Results:


Bottom Band Edge

	Frequency (MHz)	Spurious Emission (dBm)	Limit (dBm)	Margin (dB)	Result
Ì	1849.998	-30.9	-13.0	17.9	Complied

Top Band Edge

Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
1910.014	-20.18	-13.0	7.18	Complied

44497JD01 004

—— Trace 1 —— -13 dBm

—— 1.849 GHz —— 1.85 GHz

Start 1.848978 GHz; Stop 1.850164 GHz - Log Scale Ref 27.3 dBm; Ref Offset 47.3 dB; 10 dB/div RBW 3.0 kHz; VBW 3.0 kHz; Att 10 dB; Swp 400.0 mS Marker 1.849998 GHz, -30.9 dBm Display Line: -13 dBm; 15/05/2003 22:52:14 —— Trace 1 —— -13 dBm —— 1.91 GHz —— 1.911 GHz

Start 1.909864 GHz; Stop 1.9112 GHz - Log Scale Ref 27.3 dBm; Ref Offset 47.3 dB; 10 dB/div RBW 3.0 kHz; VBW 3.0 kHz; Att 10 dB; Swp 460.0 mS Marker 1.910014 GHz, -20.18 dBm Display Line: -13 dBm; 15/05/2003 22:49:45

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 64 of 78 Issue Date: 09 June 2003

11. Measurement Methods – Part 24

3600 Imaging Phone

11.1. Effective Isotropic Radiated Power (EIRP)

EIRP measurements were performed in accordance with the standard, against appropriate limits.

The EIRP was measured with the EUT arranged on a non-conducting turn table on a standard test site compliant with ANSI C63.4 – 2001 Clause 5.4. The transmitter was fitted with an integral antenna; as such all radiated tests were performed with the unit operating into the integral antenna.

The level of the EIRP was measured using a spectrum analyser.

The test antenna was positioned in the horizontal plane. The EUT was oriented in the X plane. The test antenna was then raised and lowered until a maximum peak was observed. The turntable was then rotated through 360 degrees and the maximum peak reading obtained. The height search was then repeated to take into consideration the new angular position of the turntable. The maximum reading observed was then recorded. This procedure was then repeated with the EUT oriented in the Y and Z planes. The highest reading taken in all 3 planes was recorded. The entire procedure was then repeated with the test antenna set in the Vertical polarity.

Once the final amplitude (maximised) had been obtained, the EUT was substituted with a substitution antenna. For EIRP measurements a Horn antenna whose gain was based on an isotropic antenna was used, ERP measurements were done using a dipole. The centre of the substitution antenna was set to approximately the same centre location as the EUT. The substitution antenna was set to the horizontal polarity. The substitution antenna was matched into a signal generator using a 6dB or greater PAD. The signal generator was tuned to the EUT's frequency under test.

The test antenna was then raised and lowered to obtain a maximum reading on the spectrum analyser. The level of the signal generator output was then adjusted until the maximum recorded EUT level was observed. The signal generator level was noted. This procedure was repeated with both test antenna and substitution antenna vertically polarised. The EIRP was calculated as:-

EIRP = Signal Generator Level - Cable Loss + Antenna Gain

All measurements were performed using broadband Horn antennas.

3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 65 of 78 Issue Date: 09 June 2003

Effective Isotropic Radiated Power (EIRP) (Continued)

Circumstances where the signal generator could not produce the desired power substitution was performed with the signal generator set to 0 dBm. The radiated signal was maximised as previously described. The level indicated on the measuring receiver was noted. The delta between this level and the maximum level for the EUT was calculated and also noted. The EIRP of the signal generator was calculated using the above formulae. The recorded delta was added to the calculated EIRP to obtain the substituted EUT EIRP.

The test equipment settings for EIRP measurements were as follows:

Receiver Function	Setting
Detector Type:	Peak
Mode:	Not applicable
Bandwidth:	1 MHz
Amplitude Range:	100 dB
Sweep Time:	Coupled

Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 66 of 78 Issue Date: 09 June 2003

11.2. Frequency Stability

The EUT was situated within an environmental test chamber and connected directly to the GSM test set via an access port.

Measurements were performed with the EUT operating under extremes of temperature in 10 degree increments within the range –30 to 50 Deg C.

Measurements were also performed at voltage extremes between the declared nominal supply voltage and at the declared endpoint voltage.

The requirement was to determine the frequency stability of the device under specified environmental operating conditions and ensure they remained within specified operating parameters.

Measurements were made on the top, and bottom channels using the GSM test set described in Appendix 1.

The EUT was switched off for a minimum of 30 minutes between each stage of testing while the environmental chamber stabilised at the next temperature within the stated temperature range.

Once the environmental chamber had reached thermal equilibrium, the nominal frequency of the EUT was measured and recorded. The recorded frequency was compared to the applicants declared operating frequency band edges.

In order to show compliance, the measured frequency must remain within the declared frequency band.

The reported data shows the nominal frequency drift and its margin from the band edge. If this margin is positive, the result is compliant. If it goes negative, the result is a none compliance. There is also a frequency graph presented offering the frequency variation around nominal frequency.

3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 67 of 78 Issue Date: 09 June 2003

11.3. Occupied Bandwidth

The EUT was connected to a spectrum analyser enabled with an occupied bandwidth function and a GSM test set via a bi-directional coupler to its antenna port. If the EUT was not fitted with an antenna port as standard, the client made a temporary antenna port available.

Measurements were performed to determine the Occupied Bandwidth in accordance with FCC Part 2.1049. The Occupied Bandwidth was measured from the fundamental emission at the bottom middle and top channels.

As EUT is a PCS phone, no modulation input port was available. A call was thus setup using the PCS/GSM simulator and using normal modulation. The Occupied Bandwidth was measured in this configuration.

The Occupied Bandwidth was measured using the built in occupied bandwidth function of the Rohde and Schwarz FSEB spectrum analyser. It was set to measure the bandwidth where 99% of the signal power was contained. The analyser settings were set as per those outlined in the FSEB user manual for this measurement, i.e., RBW <= 1/20 of occupied bandwidth. A value of 3kHz was used.

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 68 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

11.4. AC Mains Conducted Emissions

AC mains conducted emissions measurements were performed in accordance with the standard, against appropriate limits for each detector function.

The test was performed in a shielded enclosure with the equipment arranged as detailed in the standard on a wooden bench using the floor of the screened enclosure as the ground reference plane.

Initial measurements in the form of swept scans covering the entire measurement band were performed in order to identify frequencies on which the EUT was generating interference. In order to minimise the time taken for these swept measurements, a Peak detector was used in conjunction with the appropriate detector IF measuring bandwidths (see table below). Repetitive scans were performed to allow for emissions with low repetition rates, and the duty cycle of the EUT. The test configuration was the same for the initial scans as for the final measurements.

During the swept measurements (and also during subsequent final measurements on single frequencies) any signals found to be between the limit and a level 6 dB below it were further maximised by changing the configuration of the EUT, e.g. re-routing cables to peripherals and moving peripherals with respect to the EUT.

Following the initial scans, a graph was produced giving an overview of the emissions from the EUT plotted against the appropriate specification limit. A tolerance line was set 6 dB below the specification limit and levels above the tolerance line were re-tested (at individual frequencies) using the appropriate detector function.

The test equipment settings for conducted emissions measurements were as follows:

Receiver Function	Initial Scan	Final Measurements
Detector Type:	Peak	Quasi-Peak (CISPR)/Average
Mode:	Max Hold	Not applicable
Bandwidth:	10 kHz*	9 kHz*
Amplitude Range:	60 dB	20 dB
Measurement Time:	Not applicable	> 1 s
Observation Time:	Observation Time: Not applicable	
Step Size:	Continuous sweep	Not applicable
Sweep Time:	Coupled	Not applicable

Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 69 of 78 Issue Date: 09 June 2003

11.5. Transmitter Radiated Emissions

Radiated emissions measurements were performed in accordance with the standard, against appropriate limits for each detector function.

Initial pre-scans covering the entire measurement band from the lowest generated frequency declared up to 10 times the highest fundamental frequency stated in section 2.5 of this report. The scans were performed within a screened chamber in order to identify frequencies on which the EUT was generating spurious. This procedure identified the frequencies from the EUT which required further examination. Repetitive scans were performed to allow for emissions with low repetition rates, and for the duty cycle of the EUT.

The initial scans were performed using an antenna height of 1.5 m and a measurement distance of 3 m. A limit line was set to the specification limit by characterising the screen room using a known signal source set at exactly the same location as the EUT. The signal source was derived from either a horn antenna or a dipole dependant on the frequency band under investigation. Any levels within 20dB of this limit were measured where possible, on occasion; the receiver noise floor came within the 20dB boundary. On these occasions, the system noise floor may have been recorded.

An open area test site using the appropriate test distance and measuring receiver with a Peak detector was used for final measurements at each frequency recorded in the screen room.

The levels were maximised by initially rotating the turntable through 360° and then varying the antenna height between 1 m and 4 m in the vertical polarisation. At this point, any signals found to be between the limit and a level 6 dB below it were further maximised by changing the configuration of the EUT, e.g. re-routing cables to peripherals and moving peripherals with respect to the EUT. The procedure was repeated for the horizontal polarisation.

Once the final amplitude (maximised) had been obtained, the EUT was substituted with a substitution antenna. For EIRP measurements a Horn antenna whose gain was based on an isotropic antenna was used, ERP measurements were done using a dipole. The centre of the substitution antenna was set to approximately the same centre location as the EUT. The substitution antenna was set to the horizontal polarity. The substitution antenna was matched into a signal generator using a 6dB or greater PAD. The signal generator was tuned to the EUT's frequency under test.

The test antenna was then raised and lowered to obtain a maximum reading on the spectrum analyser. The level of the signal generator output was then adjusted until the maximum recorded EUT level was observed. The signal generator level was noted. This procedure was repeated with both test antenna and substitution antenna vertically polarised. The EIRP was calculated as:-

EIRP = Signal Generator Level - Cable Loss + Antenna Gain

Operations Department

Test Of: Nokia Mobile Phones. 3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 70 of 78 Issue Date: 09 June 2003

Transmitter Radiated Emissions (Continued)

The limit in the standard states that emissions shall be attenuated by at least 43+10 Log(P) dB below the transmitter power (P), where (P) is the maximum measured fundamental power for the channel under test. This limit always reduces to -13dBm as such, the limit line presented on the accompanying plots is set to -13dBm.

Any spurious measured were then compared to the -13dBm limit. The requirement is for the emission to be less than -13dBm. The margin between emission and limit is recorded and should always be positive to indicate compliance.

All measurements were performed using broadband Horn antennas.

It should be noted that FCC Part 24.238 states that the 1^{st} MHz band immediately adjacent to the applicants declared frequency block may be measured using a resolution bandwidth of at least 1% of the emission bandwidth. This bandwidth was found to be 3 kHz

Operations Department

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 71 of 78 Issue Date: 09 June 2003

11.6. Receiver Radiated Emissions

Radiated emissions measurements were performed in accordance with the standard, against appropriate limits for each detector function.

Initial pre-scans covering the entire measurement band from the lowest generated frequency declared up to 5 times the highest clock frequency stated in section 2.5 of this report were performed within a screened chamber in order to identify frequencies on which the EUT was generating interference. This determined the frequencies from the EUT which required further examination. In order to minimise the time taken for the swept measurements, a peak detector was used in conjunction with the appropriate detector measuring bandwidth (see table below). Repetitive scans were performed to allow for emissions with low repetition rates, and for the duty cycle of the EUT.

The initial scans were performed using an antenna height of 1.5 m and a measurement distance of 3 m. A limit line was set to the specification limit. Levels within 20dB of this limit were measured where possible, on occasion, the receiver noise floor came within the 20dB boundary. On these occasions, the system noise floor may have been recorded.

An open area test site using the appropriate test distance and measuring receiver with a Quasi-Peak detector was used for measurements below 1000 MHz, for measurements above 1000 MHz average and peak detectors were used.

For the final measurements the EUT was arranged on a non-conducting turn table on a standard test site compliant with ANSI C63.4 – 2001 Clause 5.4.

On the open area test site, at each frequency where a signal was found, the levels were maximised by initially rotating the turntable through 360° and then varying the antenna height between 1 m and 4 m in the horizontal polarisation. At this point, any signals found to be between the limit and a level 6 dB below it were further maximised by changing the configuration of the EUT, e.g. re-routing cables to peripherals and moving peripherals with respect to the EUT. The procedure was repeated for the vertical polarisation.

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 72 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

Receiver Radiated Emissions (Continued)

The final field strength was determined as the indicated level in dBuV plus cable loss and antenna factor.

The test equipment settings for radiated emissions measurements were as follows:

Receiver Function	Initial Scan	Final Measurements Below 1GHz	Final Measurements Above 1 GHz
Detector Type:	Peak	Quasi-Peak (CISPR)	Peak/Average
Mode:	Max Hold	Not applicable	Not applicable
Bandwidth:	(120 kHz < 1GHz) (1MHz > 1GHz)	120 kHz	1 MHz (If Applicable)
Amplitude Range:	60 dB	20 dB	20 dB (typical)
Step Size:	Continuous sweep	Not applicable	Not applicable
Sweep Time:	Coupled	Not applicable	Not applicable

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 73 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

12. Measurement Uncertainty

- 12.1. No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.
- 12.2. The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.
- 12.3. The uncertainty of the result may need to be taken into account when interpreting the measurement results.
- 12.4. The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
AC Conducted Spurious Emissions	0.15 MHz to 30.0 MHz	95%	+/- 3.25 dB
Effective Isotropic Radiated Power (EIRP)	Not applicable	95%	+/- 1.78 dB
Frequency Stability	Not applicable	95%	+/- 20 Hz
Minimum Bandwidth	Not applicable	95%	+/- 0.12 %
Occupied Bandwidth	1850 to 1910 MHz	95%	+/- 0.12 %
Radiated Spurious Emissions	30.0 MHz to 1000.0 MHz	95%	+/- 5.26 dB
Radiated Spurious Emissions	1.0 GHz to 26.0 GHz	95%	+/- 1.78 dB
Spectral Power Density	Not applicable	95%	+/- 1.2 dB

12.5. The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

3600 Imaging Phone

Operations Department

Test Of: Nokia Mobile Phones.

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 74 of 78 Issue Date: 09 June 2003

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.
A003	ESH3-Z2 Pulse Limiter	Rohde & Schwarz	ESH3-Z2	357 881/052
A027	Horn Antenna	Eaton	9188-2	301
A031	2 to 4 GHz Eaton Horn Antenna	Eaton	91889-2	557
A067	LISN	Rohde & Schwarz	ESH3-Z5	890603/002
A1141	HP 11691D	Hewlett Packard	11691D	1212A02494
A145	10 dB Attenuator	Narda	NONE	NONE
A197	Site 2 Controller SC144	Unknown	SC144	150720
A247	10 dB Attenuator	Narda	769-10	03712
A254	WG 14 Microwave Horn	Flann Microwave	14240-20	139
A255	WG 16 Microwave Horn	Flann Microwave	16240-20	519
A428	WG 12 horn	Flann	12240-20	134
A430	WG 18 horn	Flann	18240-20	425
A433	WG 27 Straight	Flann	27441	None
A553	Bi-log Antenna	Chase	CBL6111A	1593
A649	LISN	Rohde & Schwarz	ESH3-Z5	825562/008
C1067	Rosenberger	Rosenberger	001	001
C1071	3m Rosenberger Cable	Rosenberger	FA21A1030M5050	Not Stated
C1077	1m Rosenberger Cable	Rosenberger	FA210A1010M5050	28462-2
C1079	Rosenberger 1m Cable	Rosenberger	FA210A1010M5050	28462-1
C1082	Rosenberger Cable 2m	Rosenberger	FA210A1020M5050	28463-1
C160	Cables	Rosenberger	UFA210A-1-1181- 70x70	None
C202	Rosenberger cable	Rosenberger	UFA 210A-1-1180- 70X70	1543
C222	Cable	Rosenberger	UFA210A-1-1181- 70x70	None
C346	Coaxial Cable	Rosenberger	UFA210A-1-1181- 70x70	1932
C363	BNC Cable	Rosenberger	RG142	None
C364	BNC Cable	Rosenberger	RG142	None

Operations Department

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 75 of 78 Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

Test Equipment Used (Continued)

RFI No.	Instrument	Manufacturer	Type No.	Serial No.
C453	Cable	Rosenberger	RG142XX-001-RFIB	C453-10081998
C457	Cable	Rosenberger	RG142XX-002-RFIB	C457-10081998
C564	C564-N-2	Rosenberger	UFA 210A-1-0787- 70x70	96L0226
G085	Generator	Hewlett Packard	83650L	3614A00104
M072	FSM Spectrum Analyser	Rohde & Schwarz	FSM	862 967/010 (RF) & 863 912/048 (Display)
M090	Receiver / Spectrum Analyser System	Rohde & Schwarz	ESBI	DU:838494/005 RU:836833/001
M1013	GSM Test set	Hewlett Packard	8922M	3503U00372
M1014	DCS Test set	Hewlett Packard	83220E	3741U02702
M115	Temperature/ Humidity Meter	RS Components	212-146	None
M139	Digital Multimeter	Fluke	11	65830028
M505	Analyser Display Unit	Rohde & Schwarz	ESAI-D	825316/010
M506	RF unit	Rohde & Schwarz	ESBI-RF	827060/004
S003	Power Control	Zen	E08	736699
S202	Site 2	RFI	2	S202-15011990
S207	Site 7	RFI	7	862 967/010 (RF) & 863 912/048 (Display)
S209	Site 9	RFI	9	-
S212	Site 12	RFI	12	-

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

Operations Department

TEST REPORT

S.No. RFI/MPTB3/RP44497JD02C

Page 76 of 78

Issue Date: 09 June 2003

Test Of: Nokia Mobile Phones.

3600 Imaging Phone

To: FCC Part 22 & 24

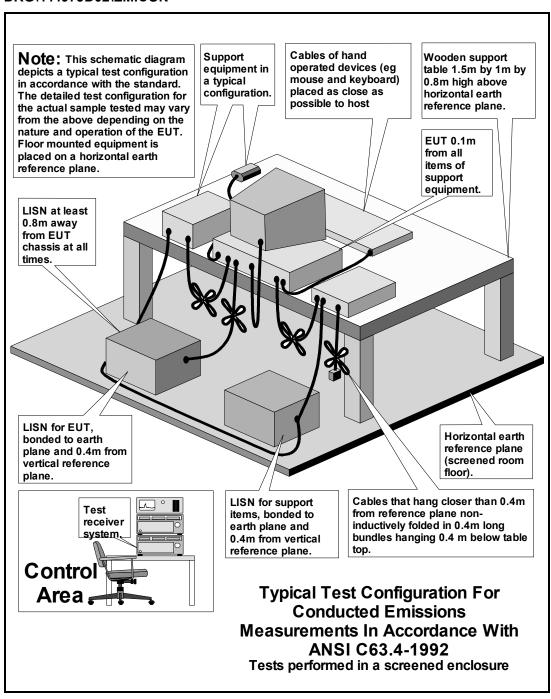
Appendix 2. Test Configuration Drawings

This appendix contains the following drawings:

Drawing Reference Number	Title	
DRG\44497JD02\EMICON	Test configuration for measurement of conducted emissions	
DRG\44497JD02\EMIRAD	Test configuration for measurement of radiated emissions	

Operations Department

Test Of: Nokia Mobile Phones.


3600 Imaging Phone

To: FCC Part 22 & 24

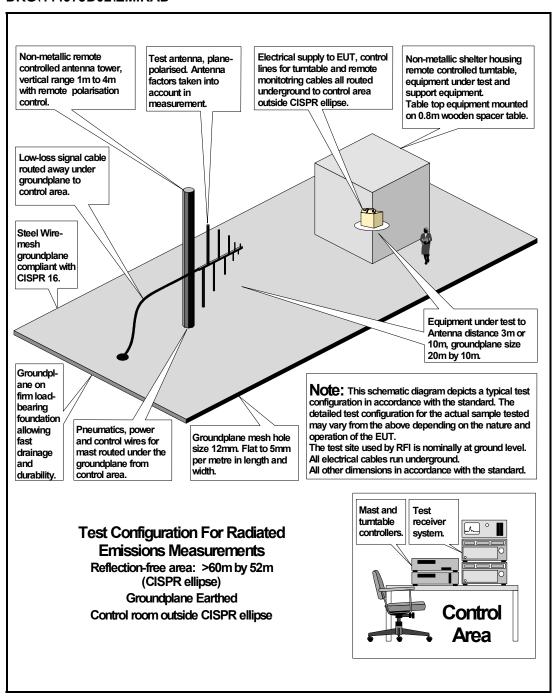
TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 77 of 78

Issue Date: 09 June 2003

DRG\44497JD02\EMICON

Operations Department

Test Of: Nokia Mobile Phones.


3600 Imaging Phone

To: FCC Part 22 & 24

TEST REPORT S.No. RFI/MPTB3/RP44497JD02C Page 78 of 78

Issue Date: 09 June 2003

DRG\44497JD02\EMIRAD

