

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM160100013003 Page: 1 of 29

FCC REPORT

Application No. :	SZEM1601000130CR (SGS SZ No.:T51510270125EM)		
Applicant:	KID GALAXY INC.		
Product Name:	2.4G Claw Climber RC tiger, 2.4G Claw Climber RC cheetah, 2.4G Claw Climber RC rhino		
Model No.(EUT):	10300		
Add Model No.:	10301, 10302		
FCC ID:	QEA-T689-24GR		
Standards:	47 CFR Part 15, Subpart C (2015)		
Date of Receipt:	2016-01-08		
Date of Test:	2016-02-02 to 2016-03-02		
Date of Issue:	2016-03-04		
Test Result:	PASS *		

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

 Report No.:
 SZEM160100013003

 Page:
 2 of 29

2 Version

	Revision Record							
Version	Modifier	Remark						
00		2016-03-04		Original				

Authorized for issue by:		
Tested By	Peter Gene	2016-03-02
	(Peter Geng) /Project Engineer	Date
Prepared By	Iris Zhou	2016-03-04
	(Iris Zhou) /Clerk	Date
Checked By	Eric Fu	2016-03-04
	(Eric Fu) /Reviewer	Date

 Report No.:
 SZEM160100013003

 Page:
 3 of 29

3 Test Summary

Test Item	Test Item Test Requirement		Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2013)	PASS
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	•		PASS

Remark:

Model No.: 10300, 10301, 10302

Only the model 10300 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on shape and color.

Report No.: SZEM160100013003 Page: 4 of 29

4 Contents

	Page
COVER PAGE	1
VERSION	2
TEST SUMMARY	3
CONTENTS	4
GENERAL INFORMATION	5
5.10 EQUIPMENT LIST	9
TEST RESULTS AND MEASUREMENT DATA	
6.1 ANTENNA REQUIREMENT	
I Contraction of the second seco	
6.4 20DB BANDWIDTH	
PHOTOGRAPHS	
7.1 RADIATED EMISSION TEST SETUP	
	 5.2 GENERAL DESCRIPTION OF EUT

 Report No.:
 SZEM160100013003

 Page:
 5 of 29

5 General Information

5.1 Client Information

Applicant:	KID GALAXY INC.
Address of Applicant:	150 Dow Street, Tower 2, Unit 425B, Manchester, New Hampshire 03101 U.S.A

5.2 General Description of EUT

Product Name:	2.4G Claw Climber RC tiger, 2.4G Claw Climber RC cheetah, 2.4G Claw Climber RC rhino	
Model No.:	10300	
Country of Origin:	CHINA	
Request Age Grading:	5+	
Frequency Range:	2405MHz-2468MHz	
Modulation Type:	GFSK	
Number of Channels:	6 (declared by the client)	
Channel List:	Please refer to the next page	
Sample Type:	Mobile production	
Antenna Type:	Integral	
Antenna Gain:	0dBi	
Power Supply:	9.0V DC (6 x 1.5V "AA" Size Battery)	

Report No.: SZEM160100013003 Page: 6 of 29

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1CH	2405 MHz	N/A		N/A			
2CH	2415 MHz	N/A		N/A			
ЗCH	2428 MHz	N/A		N/A			
4CH	2442 MHz	N/A		N/A			
5CH	2458 MHz	N/A		N/A			
6CH	2468 MHz	N/A		N/A			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	2405MHz
The Middle channel(CH4)	2442MHz
The Highest channel(CH6)	2468MHz

 Report No.:
 SZEM160100013003

 Page:
 7 of 29

5.3 Test Environment and Mode

Operating Environment:	Operating Environment:				
Temperature: 25.0 °C					
Humidity: 50 % RH					
Atmospheric Pressure:	1015 mbar				
Test mode:	Test mode:				
Transmitting mode: Keep the EUT in transmitting mode with modulation.					

5.4 Description of Support Units

The EUT has been tested independently.

5.5 Test Location

All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab, No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057. Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

 Report No.:
 SZEM160100013003

 Page:
 8 of 29

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM160100013003 Page: 9 of 29

5.10 Equipment List

	RE in Chamber					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-05-13	2016-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	2016-09-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-11-15	2017-11-15
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-17	2016-10-17
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-11-24	2017-11-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-13	2016-05-13
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-17	2016-10-17
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-13	2016-05-13
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-13	2016-05-13
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-13	2016-05-13
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13
13	Band filter	Amindeon	82346	SEL0094	2015-05-13	2016-05-13
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-13	2016-05-13
18	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-05-13	2016-05-13

Report No.: SZEM160100013003 Page: 10 of 29

	RF connected test								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09			
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24	2016-10-24			
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-17	2016-10-17			
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13			
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-13	2016-05-13			
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-13	2016-05-13			
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-04-25	2016-04-25			
8	POWER METER	R & S	NRVS	SEL0144	2015-10-09	2016-10-09			
9	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-04-25	2016-04-25			

Report No.: SZEM160100013003 Page: 11 of 29

6 Test results and Measurement Data

6.1 Antenna Requirement

 Standard requirement:
 47 CFR Part 15C Section 15.203

 15.203 requirement:
 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the

 unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

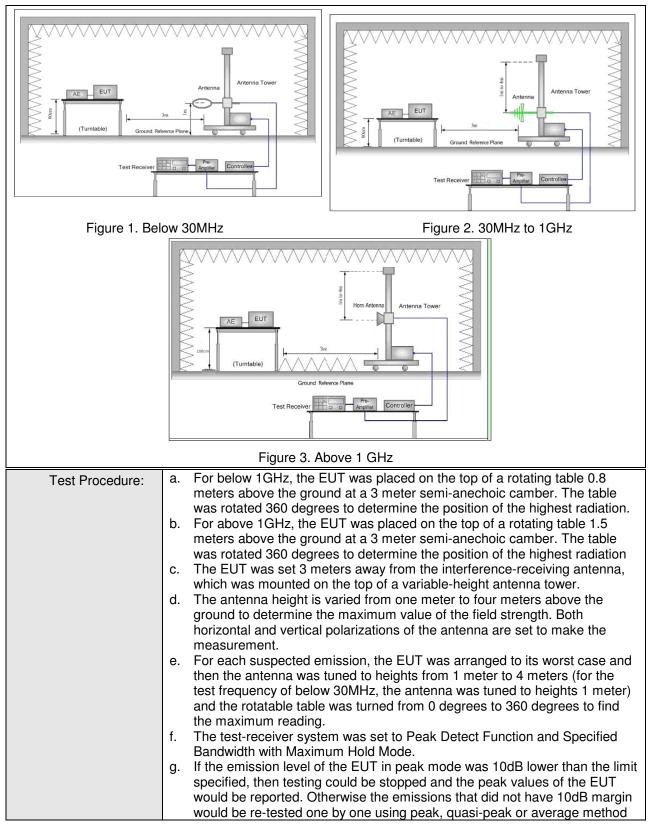
 EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

 Report No.:
 SZEM160100013003

 Page:
 12 of 29

6.2 Spurious Emissions


6.2.1 Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.249 and 15.209								
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance: 3m								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30KHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30KHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above TGHZ	Peak	1MHz	10Hz	Average				
Limit: (Spurious Emissions)	Frequency	Field strength (microvolt/ meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless emissions is 20d applicable to the peak emission lev	B above the ma	aximum perm er test. This p	nitted average	emission limit				
Limit:	Frequency	Limit (dBu	ıV/m @3m)	Remar	k				
(Field strength of the		9	4.0	Average V	'alue				
fundamental signal)	2400MHz-2483.5MHz 114.0 Peak Value								
- /									

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM160100013003 Page: 13 of 29

Report No.: SZEM160100013003

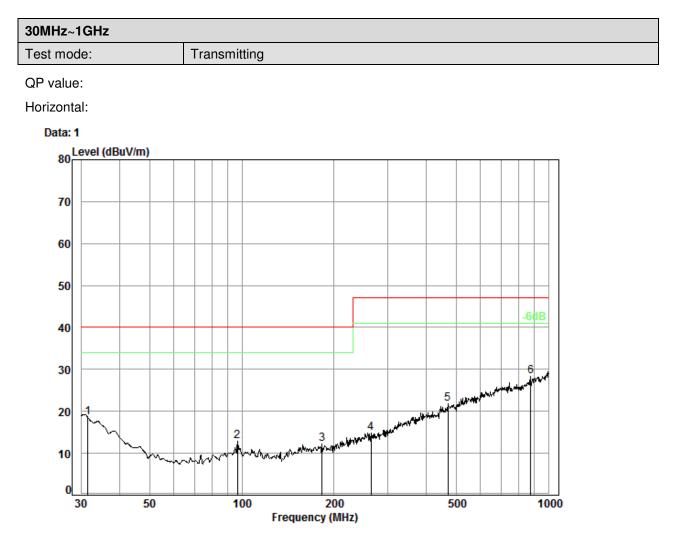
Page: 14 of 29

	8
	 as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 5.10 for details
Exploratory Test Mode:	Transmitting mode
Final Test Mode:	Transmitting mode
Test Results:	Pass

Report No.: SZEM160100013003 Page: 15 of 29

Measurement Data

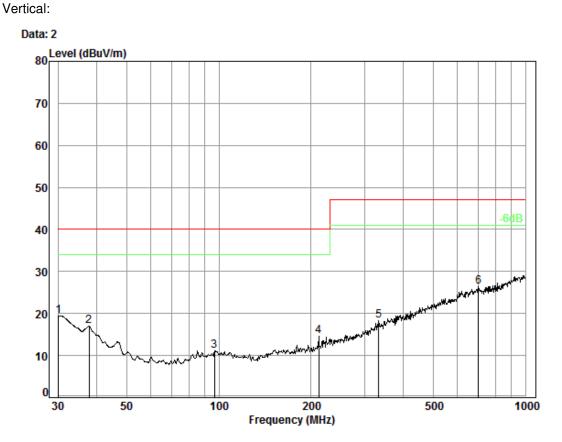
6.2.1.1 Field Strength Of The Fundamental Signal


Peak value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2405	28.63	5.35	38.11	77.69	73.56	114.00	-40.44	Horizontal
2405	28.62	5.35	38.11	75.04	70.90	114.00	-43.10	Vertical
2442	28.80	5.38	38.11	81.64	77.71	114.00	-36.29	Horizontal
2442	28.79	5.38	38.11	74.68	70.74	114.00	-43.26	Vertical
2468	28.91	5.40	38.12	76.06	72.25	114.00	-41.75	Horizontal
2468	28.91	5.40	38.12	75.11	71.30	114.00	-42.7	Vertical

Report No.: SZEM160100013003 Page: 16 of 29

6.2.1.2 Spurious Emissions



Test mode: TX

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.51	0.60	18.01	26.00	25.93	18.54	40.00	-21.46
2	96.77	1.17	9.01	25.90	28.49	12.77	40.00	-27.23
3	182.56	1.37	9.95	25.79	26.62	12.15	40.00	-27.85
4	263.82	1.74	12.48	25.72	26.32	14.82	47.00	-32.18
5	468.88	2.49	17.51	25.64	27.34	21.70	47.00	-25.30
6	875.25	3.51	22.80	25.24	27.22	28.29	47.00	-18.71

Report No.: SZEM160100013003 Page: 17 of 29

Condition:	3m VERTICAL
Job No. :	0130CR
Test mode:	ТХ

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5	30.00 37.81 96.77 211.53 332.52	1.17 1.47	14.33 9.01 10.77	26.00 25.98 25.90 25.76 25.69	28.15 26.87 28.20	17.10 11.15 14.68	40.00 40.00 40.00	-22.90 -28.85 -25.32
6	701.76			25.71				

Report No.: SZEM160100013003 Page: 18 of 29

Above 1GHz	Above 1GHz								
Test mode:	Tra	nsmitting	Test cha	nnel:	Lowest	Remark:	Р	eak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
3870.060	32.97	7.77	38.51	45.38	47.61	74	-26.39	Vertical	
4810.000	34.11	8.88	38.75	45.51	49.75	74	-24.25	Vertical	
5982.226	34.66	10.51	38.96	46.24	52.45	74	-21.55	Vertical	
7215.000	35.59	10.68	37.63	41.06	49.70	74	-24.30	Vertical	
9620.000	37.10	12.51	36.33	35.77	49.05	74	-24.95	Vertical	
12603.270	37.90	14.44	37.75	37.48	52.07	74	-21.93	Vertical	
3892.524	32.99	7.77	38.52	45.81	48.05	74	-25.95	Horizontal	
4810.000	34.11	8.88	38.75	47.00	51.24	74	-22.76	Horizontal	
6087.002	34.74	10.45	38.85	45.59	51.93	74	-22.07	Horizontal	
7215.000	35.59	10.68	37.63	42.48	51.12	74	-22.88	Horizontal	
9620.000	37.10	12.51	36.33	35.56	48.84	74	-25.16	Horizontal	
12603.270	37.90	14.44	37.75	37.60	52.19	74	-21.81	Horizontal	

Test mode:	Tran	smitting	Test char	nnel:	Mi	ddle	Remark:	P	eak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3892.524	32.99	7.77	38.52	45.58		47.82	74	-26.18	Vertical
4884.000	34.18	8.98	38.77	46.62		51.01	74	-22.99	Vertical
6016.949	34.71	10.54	38.94	46.65		52.96	74	-21.04	Vertical
7326.000	35.54	10.73	37.59	41.13		49.81	74	-24.19	Vertical
9768.000	37.10	12.59	36.13	37.92		51.48	74	-22.52	Vertical
12603.270	37.90	14.44	37.75	37.22		51.81	74	-22.19	Vertical
3770.567	32.78	7.73	38.47	45.15		47.19	74	-26.81	Horizontal
4884.000	34.18	8.98	38.77	46.61		51.00	74	-23.00	Horizontal
6016.949	34.71	10.54	38.94	46.08		52.39	74	-21.61	Horizontal
7326.000	35.54	10.73	37.59	42.47		51.15	74	-22.85	Horizontal
9768.000	37.10	12.59	36.13	37.44		51.00	74	-23.00	Horizontal
12603.270	37.90	14.44	37.75	37.35		51.94	74	-22.06	Horizontal

Report No.: SZEM160100013003 Page: 19 of 29

Test mode:	Tran	smitting	Test char	nnel:	Highest	Remark:	Pe	ak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3892.524	32.99	7.77	38.52	46.36	48.60	74	-25.40	Vertical
4936.000	34.24	9.05	38.78	46.03	50.54	74	-23.46	Vertical
5999.562	34.70	10.56	38.96	46.64	52.94	74	-21.06	Vertical
7404.000	35.51	10.75	37.55	39.32	48.03	74	-25.97	Vertical
9872.000	37.17	12.64	36.00	38.54	52.35	74	-21.65	Vertical
12639.790	37.92	14.55	37.79	37.23	51.91	74	-22.09	Vertical
3825.521	32.93	7.75	38.49	45.66	47.85	74	-26.15	Horizontal
4936.000	34.24	9.05	38.78	46.02	50.53	74	-23.47	Horizontal
5982.226	34.66	10.51	38.96	47.12	53.33	74	-20.67	Horizontal
7404.000	35.51	10.75	37.55	39.80	48.51	74	-25.49	Horizontal
9872.000	37.17	12.64	36.00	38.74	52.55	74	-21.45	Horizontal
12494.320	37.79	14.15	37.65	37.76	52.05	74	-21.95	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM160100013003 Page: 20 of 29

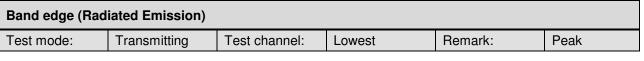
6.3 Restricted bands around fundamental frequency

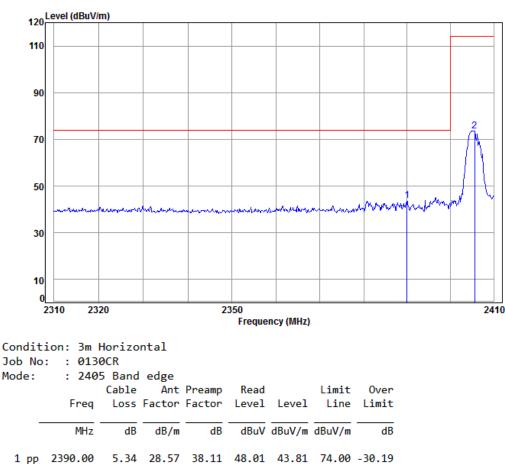
Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.205		
Test Method:	ANSI C63.10: 2013			
Test site:	Measurement Distance:	3m		
Limit(band edge):	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.			
	Frequency	Limit (dBuV/m @3m)	Remark	
	30MHz-88MHz	40.0	Quasi-peak Value	
	88MHz-216MHz	43.5	Quasi-peak Value	
	216MHz-960MHz	46.0	Quasi-peak Value	
	960MHz-1GHz	54.0	Quasi-peak Value	
	Above 1GHz	54.0	Average Value	
	Above IGHZ	74.0	Peak Value	
Test Setup:				
AE EUT (Turntable) Test Receiver	Antenna Tower	AE EUT (Turntable) Ground Retence Plan Test Receiver	Horn Antenna Tower	

Report No.: SZEM160100013003

Page: 21 d	of 29
------------	-------

	Fage. 210129
Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning which it is worse case j. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 5.10 for details
Exploratory Test Mode:	Transmitting mode
Final Test Mode:	Transmitting mode
Test Results:	Pass

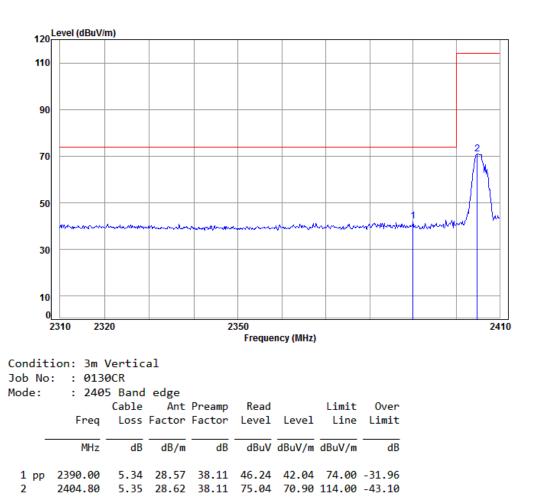



Report No.: SZEM160100013003

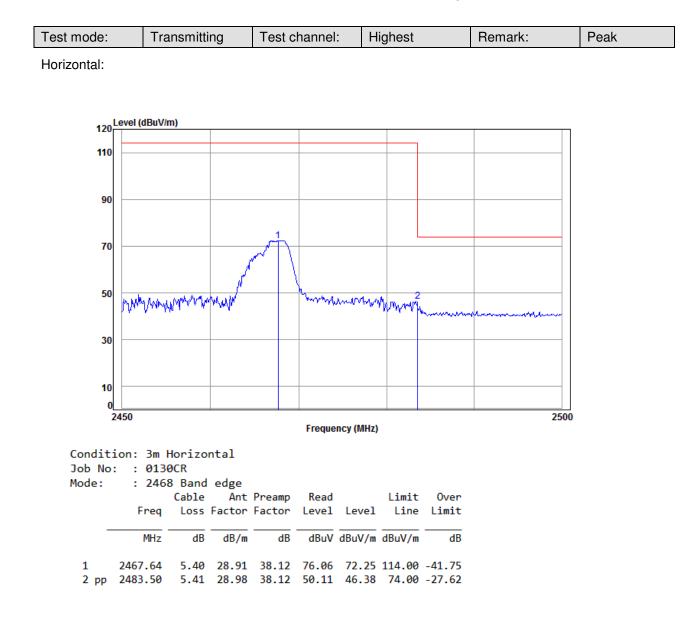
Page:

22 of 29

Horizontal:

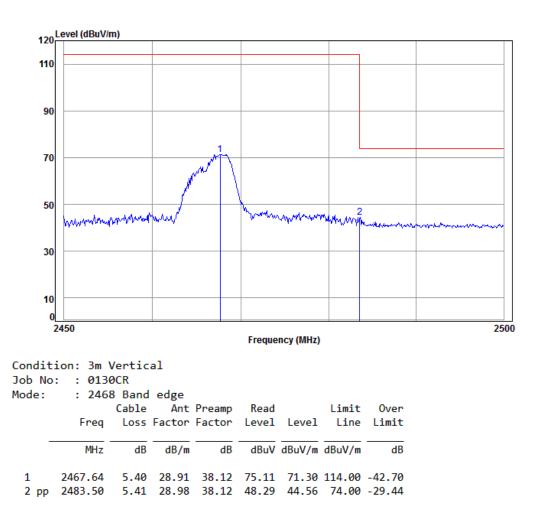

2 2405.61 5.35 28.63 38.11 77.69 73.56 114.00 -40.44

 Report No.:
 SZEM160100013003


 Page:
 23 of 29

Vertical:

Report No.: SZEM160100013003 Page: 24 of 29



 Report No.:
 SZEM160100013003

 Page:
 25 of 29

Vertical:

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

2)Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

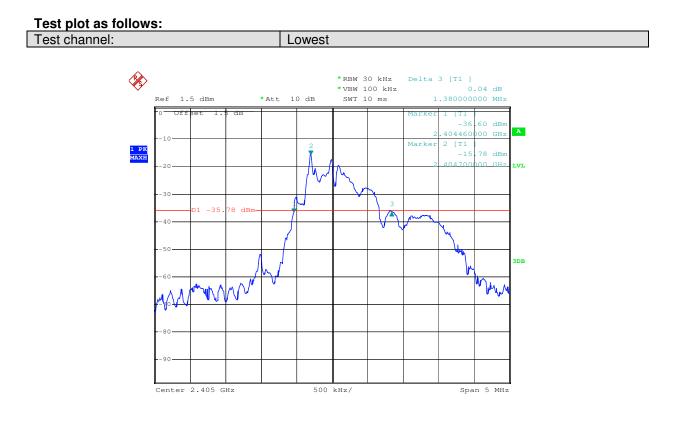
3) The spurious emissions in the restricted band with Peak detector are below the Average limit, so the tests with Average detector is no need to conduct. It is deemed to comply with the requirement.

 Report No.:
 SZEM160100013003

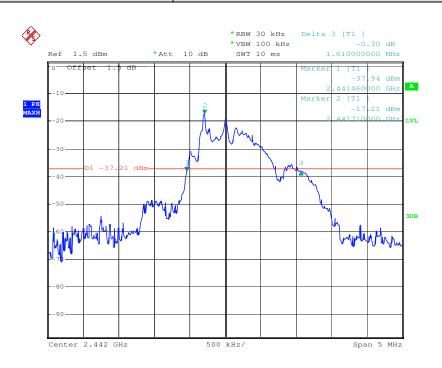
 Page:
 26 of 29

6.4 20dB Bandwidth

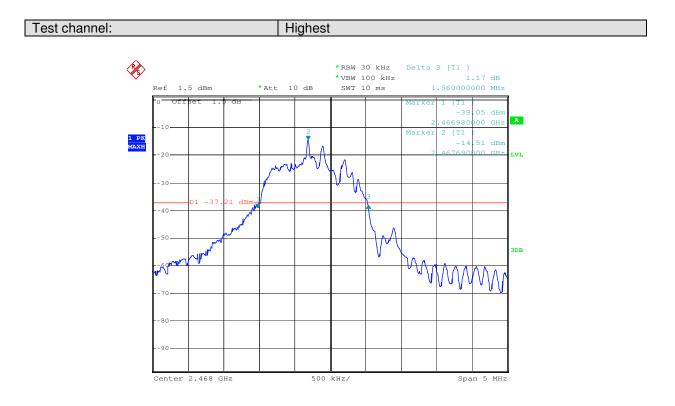
Test Requirement:	47 CFR Part 15C Section 15.215	
Test Method:	ANSI C63.10:2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Instruments Used:	Refer to section 5.10 for details	
Test mode:	Transmitting mode	
Limit:	Within the band 2400MHz-2483.5MHz	
Test Results:	Pass	


Measurement Data

Test channel	20dB bandwidth (MHz)	Results
Lowest	1.380	Pass
Middle	1.610	Pass
Highest	1.560	Pass


 Report No.:
 SZEM160100013003

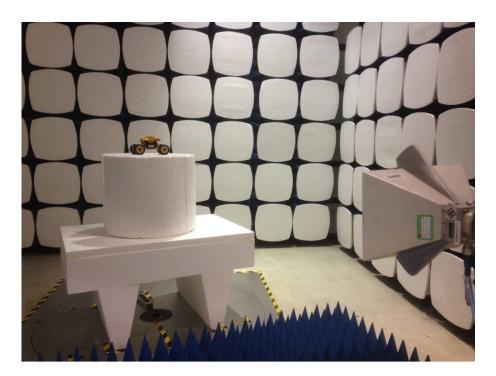
 Page:
 27 of 29


Middle

 Report No.:
 SZEM160100013003

 Page:
 28 of 29

 Report No.:
 SZEM160100013003


 Page:
 29 of 29

7 Photographs

Test model No.: 10300

7.1 Radiated Emission Test Setup

