

廠商會檢定中心

TEST REPORT

Report No.	:	AU0018844(3)	Date :	05 Apr 2016			
Application No.	:	LU007428(0)					
Applicant	:	Kid Galaxy Inc 150 Dow Street, Unit 425B Manchester, NH03101, U.S.A.					
Sample Description	:	One(1) item of submitted sample stated to	be :				
	-	Sample Description	Model numb	ber			
		Remote of Mega Morphibian Shark	10199				
		Remote of Mega Morphibian Snake	10193				
		Remote of Mega Morphibian Crocodile	10194				
		Remote of Mega Morphibian Lobster	10195				
		Remote of Mega Morphibian Turtle	10196				
		Remote of Mega Morphibian Rhino	10100				
		Kentote of Wiega Worphiotan Kinto	10200				
		Sample registration no.: RU018969-001Radio Frequency: 2425MHz - 24Rating: 2 x 1.5V AAANo. of submitted sample: Nine(9) piece (1)	72MHz Trans size batteries	sceiver			
Date Received	:	24 Mar 2016	(5)				
Test Period	•	07 Mar 2016 to 30 Mar 2016.					
1050101100	•	07 Mai 2010 to 30 Mai 2010.					
Test Requested Test Method	:	FCC Part 15 Certificate 47 CFR Part 15 (10-1-15 Edition), ANSI C	63.4 – 2014, A	ANSI C63.10 - 2013			
Test Engineer	:	Mr. LEUNG Shu-kan, Ken					
Test Result	:	See attached sheet(s) from page 2 to 27.					
Conclusion	:	The submitted sample was found to comply Subpart B and C.	y with require	ment of FCC Part 15			
Remark	:	All six models are the same in circuity and therefore model 10199 was chosen to be th difference(s) between the tested model and and outlook.	e representativ	ve of the test sample. The			
		For and on behalf of CMA Industrial Development Founda	tion Limited				
Authorized Signature : Page 1 of 27 Mr. WONG Lap-pont, Andrew Manager Electrical Division							
FCC ID: QEA-S615)-2G	41					

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing

TEST REPORT

Report No. AU0018844(3) :

Date :

05 Apr 2016

Table of Contents

1	General Information	
1	1 General Description	
1	2 Location of the test site	
1	3 List of measuring equipment	5
1	4 Measurement Uncertainty	6
2	Description of the radiated emission test	7
2		
2	2 Test Result	
2		
3	Description of the Line-conducted Test	
3	1 Test Procedure	
3		
3	3 Graph and Table of Conducted Emission Measurement Data	
4	Photograph	
4	1 Photographs of the Test Setup for Radiated Emission and Conducted Emission	
4	2 Photographs of the External and Internal Configurations of the EUT	
5	Supplementary document	
5	1 Bandwidth	
5	2 Antenna requirement	
6	Appendices	

FCC ID: QEA-S615-2G4T

Page 2 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

1 General Information

1.1 General Description

The equipment under test (EUT) is a controller for Mega Morphibian series. The EUT is power by 2 x 1.5V AAA size batteries. It operates at 2425MHz - 2472MHz. There are joysticks on the EUT. When the the joysticks are moved, the EUT will transmit the radio control signal to receiver.

The brief circuit description is listed as follows:

- U2	and its associated circuit act as encoder
- U1	and its associated circuit act as RF circuit
- X1	and its associated circuit act as oscillator
- K1, K2, K3, K4	and its associated circuit act as car control

FCC ID: QEA-S615-2G4T

Page 3 of 27

This document is issued subject to the latest CMA Testing General Tenns and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

1.2 Location of the test site

FCC Registered Test Site Number: 552221

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013. A Semi-Anechoic Chamber Testing Site is set up for investigation and located at:

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.10 - 2013. A shielded room is located at :

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

FCC ID: QEA-S615-2G4T

Page 4 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

TEST REPORT

Report No. : AU0018844(3)

Date : 03

05 Apr 2016

1.3 List of measuring equipment

Equipment	Manufacturer	Model No.	Serial No.	Calibration Due Date	Calibration Period
EMI Test Receiver	R&S	ESCI	100152	27 Sep 2016	1Year
Spectrum Analyzer	R&S	FSV40	100628	09 Feb 2017	1Year
Broadband Antenna	Schaffner	CBL6112B	2718	15 Mar 2017	2Years
Loop Antenna	EMCO	6502	00056620	25 Jan 2018	2Years
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-531	24 Nov 2016	2Years
Broadband Pre-Amplifier	Schwarzbeck	BBV 9718	9718-119	24 Nov 2016	2Years
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170442	07 Aug 2017	2Years
Broadband Pre-Amplifier	Schwarzbeck	BBV 9719	9719-010	07 Aug 2017	2Years
Coaxial Cable	Schaffner	RG 213/U	N/A	18 May 2016	1Year
Coaxial Cable	Suhner	RG 214/U	N/A	18 May 2016	1Year
Coaxial Cable	Suhner	Sucoflex_104	N/A	13 Dec 2016	1Year

FCC ID: QEA-S615-2G4T

Page 5 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

廠商會檢定中心

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

1.4 Measurement Uncertainty

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

Radiated emissions						
Frequency	Uncertainty (U _{lab})					
30MHz ~ 200MHz (Horizontal)	4.83dB					
30MHz ~ 200MHz (Vertical)	4.84dB					
200MHz ~1000MHz (Horizontal)	4.87dB					
200MHz ~1000MHz (Vertical)	5.94dB					
1GHz ~6GHz	4.41dB					
6GHz ~18GMHz	4.64dB					

Conducted emissions

Frequency	Uncertainty (U _{lab})		
150kHz~30MHz	3.44dB		

FCC ID: QEA-S615-2G4T

Page 6 of 27

This document is issued subject to the latest CMA Testing General Tenns and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

2 Description of the radiated emission test

2.1 Test Procedure

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013.

The equipment under test (EUT) was placed on a non-conductive turntable with dimensions of 1.5m x 1m and 0.8m high above the ground for below 1GHz measurement and 1.5m high above the ground for above 1GHz measurement. 3m from the EUT, a broadband antenna mounting on the mast received the signal strength. The turntable was rotated to maximize the emission level. The antenna was then moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated.

For below 30MHz, a loop antenna with its vertical plane is placed 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1 m above the ground.

For 30MHz to 1GHz, broadband antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. And the reference point of antenna shall be 1 m above the ground.

For above 1GHz, horn antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. Preamplifier and High Pass filter was used for measurements. The reference point of antenna shall be 1 m above the ground.

The device was rotated through three orthogonal to determine which attitude and configuration produce the highest emission during measurement for Radiated Emission measurement.

FCC ID: QEA-S615-2G4T

Page 7 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

2.2 Test Result

Subpart C:

Peak Detector data were measured unless otherwise stated.

"#" means emissions appear within the restricted bands shall follow the requirement of section 15.205.

The frequencies from fundamental up to that tenth harmonics were investigated, and emissions more 20dB below limit were not reported. Thus, those highest emissions were presented in next page (section 2.3).

Subpart B:

Quasi-Peak Detector data were measured unless otherwise stated.

"#" means emissions appear within the restricted bands shall follow the requirement of section 15.205.

The emissions meet the requirement of section 15.109 are based on measurements employing the CISPR quasi-peak detector below 1000MHz and average detector for frequencies above 1000MHz.

The frequencies from 30MHz to 1000MHz were investigated, and emissions more 20dB below limit were not reported. Thus, those highest emissions were presented in next page (section 2.3).

It was found that the EUT meet the FCC requirement.

FCC ID: QEA-S615-2G4T

Page 8 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u> This document shall not be reproduced except in full or with written approval by CMA Testing

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

2.3 Radiated Emission Measurement Data

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

Parameter	Recorded value	
Ambient temperature:	23	° C
Relative humidity:	73	%

Measurement: Peak RBW: 1MHz VBW: 3MHz Operation mode: Transmission Testing frequency range: 9kHz to 25GHz

Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
2424.999	Н	63.0	- 4.2	58.8	114.0	- 55.2
4849.994	V	44.1	3.7	52.2	74.0	- 21.8
4850.012	Н	48.5	3.7	47.8	74.0	- 26.2
	•			•		
2443.936	Н	62.3	- 4.2	58.1	114.0	- 55.9
4887.950	Н	47.9	3.7	51.6	74.0	- 22.4
4887.986	V	43.9	3.7	47.6	74.0	- 26.4
	•			•		
2471.976	Н	62.1	- 4.3	57.8	114.0	- 56.2
4943.894	Н	46.6	4.0	50.6	74.0	- 23.4
4943.954	V	39.0	4.0	43.0	74.0	- 31.0

Remark: Other emissions more than 20dB below the limit are not reported.

Peak measurement values are lower than average limit, therefore average measurement is not necessary.

EUT was placed flat on the table for maximum emission

FCC ID: QEA-S615-2G4T

Page 9 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:	_	
Parameter	Recorded value	
Ambient temperature:	23	° C
Relative humidity:	73	%

Detector: Quasi-peak RBW: 120kHz VBW: 300kHz

Testing frequency range: 9kHz to 25GHz Operation mode: Transmission

Frequency (MHz)	Polarity (H/V)	Reading at 3m	Antenna Factor and Cable Loss	Field Strength at 3m	Limit at 3m (dBµV/m)	Margin (dB)
		(dBµV)	(dB/m)	(dBµV/m)		
53.465	Н	6.7	10.6	17.3	40.0	- 22.7
95.226	Н	9.2	10.1	19.3	43.5	- 24.2
143.357	Н	8.1	14.1	22.2	43.5	- 21.3
198.861	Н	9.3	11.2	20.5	43.5	- 23.0
#242.342	Н	9.6	13.2	22.8	46.0	- 23.2
#279.984	Н	9.0	15.4	24.4	46.0	- 21.6
312.292	Н	8.4	16.8	25.2	46.0	- 20.8

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: QEA-S615-2G4T

Page 10 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

CMA and Labo

CMA Testing and Certification Laboratories

廠商會檢定中心

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

2.3 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart B

Environmental conditions:	_	
Parameter	Recorded value	
Ambient temperature:	23	° C
Relative humidity:	73	%

Detector: Quasi-peak RBW: 120kHz VBW: 300kHz

Testing frequency range: 9kHz to 25GHz Operation mode: Receiving

Frequency (MHz)	Polarity (H/V)	Reading at 3m	Antenna Factor and Cable Loss	Field Strength at 3m	Limit at 3m (dBµV/m)	Margin (dB)
(11112)	(11, 1)	(dBµV)	(dB/m)	$(dB\mu V/m)$	(uDµ V/III)	(02)
56.080	Н	5.8	10.6	16.4	40.0	- 23.6
93.126	Н	8.7	10.1	18.8	43.5	- 24.7
#136.984	Н	8.5	14.1	22.6	43.5	- 20.9
194.014	Н	9.2	11.2	20.4	43.5	- 23.1
#244.669	Н	10.0	13.2	23.2	46.0	- 22.8
287.911	Н	9.1	15.4	24.5	46.0	- 21.5
317.465	Н	8.6	16.8	25.4	46.0	- 20.6

Remark: Other emissions more than 20dB below the limit are not reported.

FCC ID: QEA-S615-2G4T

Page 11 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com. This document shall not be reproduced except in full or with written approval by CMA Testing.

CMA Industrial Development Foundation Limited

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

3 Description of the Line-conducted Test

3.1 Test Procedure

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.10 - 2013. The EUT was setup as described in the procedures, and both lines were measured.

3.2 Test Result

No measurement is required as the EUT is a battery-operated product.

3.3 Graph and Table of Conducted Emission Measurement Data

Not Applicable

FCC ID: QEA-S615-2G4T

Page 12 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing.

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

4 Photograph

4.1 Photographs of the Test Setup for Radiated Emission and Conducted Emission

For electronic filing, the photos are saved with filename QEA-S615-2G4T TSup.pdf.

4.2 Photographs of the External and Internal Configurations of the EUT

For electronic filing, the photos are saved with filename QEA-S615-2G4T ExPho.pdf and QEA-S615-2G4T InPho.pdf.

FCC ID: QEA-S615-2G4T

Page 13 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing.

> CMA Industrial Development Foundation Limited Room 1302, Yan Hing Centre, 9-13 Wong Chuk Yeung St., Fo Tan, Shatin, N.T., Hong Kong.

Tel: (852) 2698 8198 Fax: (852) 2695 4177 E-mail: info@cmatcl.com Web Site: http://www.cmatcl.com

廠商會檢定中心

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

5 Supplementary document

The following document were submitted by applicant, and for electronic filing, the document are saved with the following filenames:

Document	Filename
ID Label/Location	LabelSmp.jpg
Block Diagram	BlkDia.pdf
Schematic Diagram	Schem.pdf
Users Manual	UserMan.pdf
Operational Description	OpDes.pdf

5.1 Bandwidth

The plot saved in TestRpt2.pdf shows the fundamental emission is confined in the specified band. It shows the 20dB bandwidth met the 15.215 requirement for frequency band 2400 to 2483.5 MHz.

The plot saved in TestRpt3.pdf shows the band edge is fulfil 15.209 requirement.

5.2 Antenna requirement

Appendices A4 shows the antenna is permanently attached and cannot be changed. Therefore it fulfils the section 15.203 requirement

FCC ID: QEA-S615-2G4T

Page 14 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website www.cmatcl.com This document shall not be reproduced except in full or with written approval by CMA Testing

廠商會檢定中心

TEST REPORT

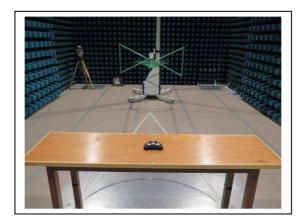
Repo	ort No.	: AU0018844(3)		Date :	05 Apr 2016							
6	Appendices											
	A1	Photos of the set-up of Radiated Emissions	3	pages								
	A2	Photos of External Configurations	2	pages								
	A3	Photos of Internal Configurations	1	page								
	A4	EUT Antenna	1	page								
	A5	ID Label/Location	1	page								
	A6	Band Edge	2	pages								
	A7	20dB Bandwidth Plot	2	pages								

FCC ID: QEA-S615-2G4T

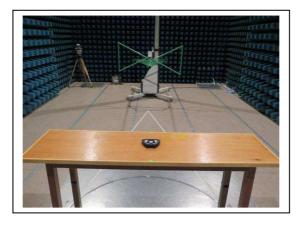
Page 15 of 27

This document is issued subject to the latest CMA Testing General Terms and Conditions of Testing and Inspection Services, available on request or accessible at website <u>www.cmatcl.com</u>. This document shall not be reproduced except in full or with written approval by CMA Testing

CMA Industrial Development Foundation Limited


TEST REPORT

Report No. AU0018844(3) :


Date :

05 Apr 2016

Photos of the set-up of Radiated Emissions A1.

(Front view, 30MHz - 1GHz)

(Back view, 30MHz - 1GHz)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

FCC ID: QEA-S615-2G4T

Page 16 of 27

TEST REPORT

Report No. AU0018844(3) :

Date :

05 Apr 2016

Photos of the set-up of Radiated Emissions A1.

(Front view, 9KHz - 30MHz)

(Back view, 9KHz - 30MHz)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 17 of 27

TEST REPORT

Report No. AU0018844(3) :

Date :

05 Apr 2016

Photos of the set-up of Radiated Emissions A1.

(front view, 1GHz - 25GHz)

(rear view, 1GHz – 25GHz)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

FCC ID: QEA-S615-2G4T

Page 18 of 27

TEST REPORT

Report No. :

AU0018844(3)

Date :

05 Apr 2016

Photos of External Configuration A2.

External Configuration 1

External Configuration 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 19 of 27

TEST REPORT

Report No. :

AU0018844(3)

Date :

05 Apr 2016

Photos of External Configuration A2.

External Configuration 3

External Configuration 4

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 20 of 27

TEST REPORT

Report No. :

AU0018844(3)


Date :

05 Apr 2016

Photos of Internal Configuration A3.

Internal Configuration 1

Internal Configuration 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 21 of 27

TEST REPORT

Report No. : AU0018844(3)

Date : 05 Apr 2016

A4. EUT Antenna

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: P-R

Mr. WONG Lap-pong, Andrew

Page 22 of 27

TEST REPORT

Report No. AU0018844(3) :

Date : 05 Apr 2016

A5. **ID** Label/Location

ID Label 1

FCC ID:QEA-S615-2G4T This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)This device may not cause harmful interference, and (2)This device must accept any interference received, including interference that may cause undesired operation.

ID Label 2

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

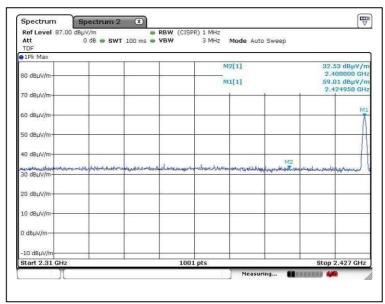
Mr. WONG Lap-pong, Andrew

FCC ID: QEA-S615-2G4T

Page 23 of 27

廠商會檢定中心

TEST REPORT


Report No.

AU0018844(3)

:

Date :

05 Apr 2016

A6. Band Edge

Lower edge (Peak measurement)

Ref Level 87.0 Att TDF	0 dB 🥯	SWT 100 s 🖷 YBV	(CISPR) 1 MHz 10 Hz		weep		
●1Pk Max●2AP	Clrw		Î	M2[1]		19.42 dBµV/n	
80 dBµV/m-	-			M1[1]		2.400000 GH 58.63 dBµV/n	
70 dBµV/m	1					2.424950 GH	
60 dBµV/m						M	
50 dBµV/m			-	_			
40 dBµV/m							
30 dBµV/m-			-	-			
20-dBµV/m	-				M2		
10 dBµV/m	=		10	-			
0 dBµV/m							
-10 dBµV/m							
Start 2.31 GHz			1001 pts			Stop 2.427 GHz	

Lower edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: V.

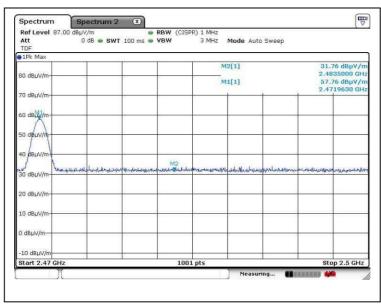
Mr. WONG Lap-pong, Andrew

FCC ID: QEA-S615-2G4T

Page 24 of 27

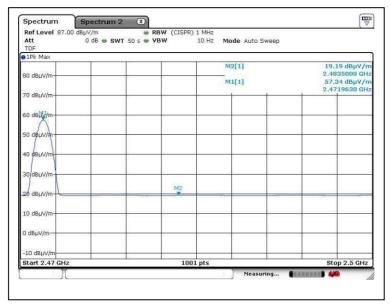
廠商會檢定中心

TEST REPORT


Report No.

AU0018844(3)

:


Date :

05 Apr 2016

A6. Band Edge

Upper edge (Peak measurement)

Upper edge (Average measurement)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by: V-C.

Mr. WONG Lap-pong, Andrew

Page 25 of 27

廠商會檢定中心

TEST REPORT

Report No.

AU0018844(3)

:

Date : 05 Apr 2016

Spectrum Ref Level 87.00 Att µV/m ● RBW 100 kHz 0 dB ● SWT 100 ms ● VBW 300 kHz Mode Auto Sweep TDF 1Pk M M1[1] 58.62 dBµV/i 80 dBµV 2.424987100 GH 20.00 d ndB 70 dBuV 303 7 00 kH Qfi 7984 60 d8u SD dB 40 d 30 dE 20 dBµV 10 dBµV 0 dBuV/n 10 dBµ CF 2.4249891 GHz 1001 pts Span 1.0 MHz 1ark Type | Ref | Trc Stimulus Response Function Function Result 7 kHz 30 dB 84.9 2.4249871 2.4248363 2.4251399 38.62

A7. 20dB Bandwidth Plot

Bandwidth 1 (2425MHz)

3	rum vel 8	7.00 dBµ	Dectrum 2 (X) V/m D dB = SWT 100 ms	 RBW 100 kHz VBW 300 kHz 	Mode Auto S	weep		
●1Pk M	ах							
80 dBµV	Im		~		M1[1]	57.85 dBµV/n 2.443990000 GH		
ou upp	200 T				ndB	2.443990000 GH		
70 dBuy	//m-				Bw	291,70000000 kH		
1000	100				O factor	8378.		
60 dBµ\	//m			M1	A CONTRACTOR			
50 dBµ\	//m		-	1				
			T1,	/	T2			
40 dBµN	//m-		y		X			
30 dBuV	1100		when			Made		
JO UDD	1	مىلىلىدى.	is master a committee			The mal makes work to a sub out our and		
20 dBµ\	//m-	road shalls from				and the rest of the section of the		
1000000000	199752							
10 dBµ\	//m		-	-				
0 dBµV/	m							
-10 dBµ	con l							
CF 2.4		0.01		1001 pt		Span 1.0 MHz		
Marker	13900	5 GHZ		1001 þú	3	3pail 1.0 MHz		
Type	Ref	Trc	Stimulus	Response	Function	Function Result		
M1		1	2.44399 GHz	57.85 dBµV/m	ndB down	291.7 kHz		
		2.4438421 GHz	37.78 dBµV/m	ndB	20.00 dB			
T2		1	2.4441339 GHz	37.79 dBµV/m	Q factor	8378.2		

Bandwidth 2 (2444MHz)

Reviewed by:

Tested by:

Mr. LEUNG Shu-kan, Ken

Mr. WONG Lap-pong, Andrew

Page 26 of 27

TEST REPORT

Report No.

AU0018844(3)

:

Date : 05 Apr 2016

Spectrum	Sp	bectrum 2	×						
Ref Level 87.				RBW 100 kH		ora - constantin	- 1918		
Att TDF	U	I dB 🥌 SWT	100 ms	9 VBW 300 kH	JZ MI	ode Auto Sw	/eep		
1Pk Max				2.4 D					
						M1[1]			44 dBµ∀/r
80 dBµV/m-		1				_		2.4719	86780 GH
10.10						ndB			20.00 d
70 dBµV/m		1				BW		295.6800	000000 kH
20 10				M		Q factor	2	14	8359.
60 dBµV/m-							-		
					-	~			
50 dBµV/m-				1	-	1		1	
10 10 111			TI			T2			
40 dBµV/m			S		-	A.			
00 40 31/-			and a state of the			N	the second second second		
30 dBµV/m		- herespectual	-				Witheleston and	were to a h	and the second se
20 dBuV/m	a Hadaba Ala	deal-see .						margar per particul	and the server
50 gBho/m-									
10 dBuV/m-									
10 06µV/III-									
0 dBµV/m				-			-	-	
o dopw/m									
-10 dBµV/m								-	
CF 2.4719877	8 GHz			1001	pts			Spa	n 1.0 MHz
Marker									
Type Ref 1	rc	Stimulus	: 1	Response	F	unction	Function Result		
M1	1	2.4719867	8 GHz	57.44 dBµV/i	n	ndB down			295.68 kHz
T1	1	2.4718398	8 GHz	37.23 dBµV/i		ndB			20.00 dB
T2	1	2.4721356	8 GHz	37.34 dBµV/i	n	Q factor			8359.7
17						1	suring	AN THE REAL PROPERTY AND	-

A6. **20dB Bandwidth Plot**

Bandwidth 3 (2472MHz)

***** End of Report *****

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 27 of 27