

FCC TEST REPORT

 REPORT NO.:
 RF120607D15B

 MODEL NO.:
 LD-6T

 FCC ID:
 QE9LD-6T

 RECEIVED:
 Jul. 11, 2013

 TESTED:
 Jul. 14 ~ 23, 2013

 ISSUED:
 Jul. 24, 2013

APPLICANT: Quuppa Oy

ADDRESS: Otaniementie 19, FI-02150 Espoo, FINLAND

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City 244, Taiwan (R.O.C.)

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or or mission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

RELE	EASE CONTROL RECORD	4
1.	CERTIFICATION	5
2.	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	6
3.	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	DESCRIPTION OF SUPPORT UNITS	
3.3.1	CONFIGURATION OF SYSTEM UNDER TEST	11
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	12
4.	TEST TYPES AND RESULTS	13
4.1	CONDUCTED EMISSION MEASUREMENT	
4.2	RADIATED EMISSION AND BANDEDGE MEASUREMENT	13
4.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	13
4.2.2	TEST INSTRUMENTS	14
4.2.3	TEST PROCEDURES	15
4.2.4	DEVIATION FROM TEST STANDARD	15
4.2.5	TEST SETUP	16
4.2.6	EUT OPERATING CONDITIONS	16
4.2.7	TEST RESULTS	17
4.3	6DB BANDWIDTH MEASUREMENT	22
4.3.1	LIMITS OF 6DB BANDWIDTH MEASUREMENT	22
4.3.2	TEST SETUP	22
4.3.3	TEST INSTRUMENTS	22
4.3.4	TEST PROCEDURE	22
	DEVIATION FROM TEST STANDARD	
4.3.6	EUT OPERATING CONDITIONS	22
4.3.7	TEST RESULTS	
4.4	CONDUCTED OUTPUT POWER	24
4.4.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	24
4.4.2	TEST SETUP	24
4.4.3	TEST INSTRUMENTS	24
4.4.4	TEST PROCEDURES	24
4.4.5	DEVIATION FROM TEST STANDARD	24
4.4.6	EUT OPERATING CONDITIONS	24
	TEST RESULTS	
4.5	POWER SPECTRAL DENSITY MEASUREMENT	26
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	26
	TEST SETUP	
4.5.3	TEST INSTRUMENTS	26

		A D I
4.5.4	TEST PROCEDURE	26
4.5.5	DEVIATION FROM TEST STANDARD	26
4.5.6	EUT OPERATING CONDITION	26
4.5.7	TEST RESULTS	27
4.6	CONDUCTED OUT OF BAND EMISSION MEASUREMENT	
4.6.1	LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT	Г28
4.6.2	TEST SETUP	28
4.6.3	TEST INSTRUMENTS	28
4.6.4	TEST PROCEDURE	28
4.6.5	DEVIATION FROM TEST STANDARD	29
4.6.6	EUT OPERATING CONDITION	29
4.6.7	TEST RESULTS	29
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	31
6.	INFORMATION ON THE TESTING LABORATORIES	32
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	33

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF120607D15B	Original release	Jul. 24, 2012

1. CERTIFICATION

PRODUCT:	HAIP Tag
BRAND NAME:	Quuppa
MODEL NO.:	LD-6T
APPLICANT:	Quuppa Oy
TESTED:	Jul. 14 ~ 23, 2013
TEST SAMPLE:	ENGINEERING SAMPLE
STANDARDS:	FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10-2009

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY :

Jesu

ica Charg, DATE: Jul. 24, 2013

(Jessica Cheng / Specialist)

APPROVED BY :

(Ken Liu / Senior Manager)

-1, DATE: Jul. 24, 2013

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC PART 15, SUBPART C							
STANDARD SECTION	TEST TYPE	RESULT	REMARK					
15.207	AC Power Conducted Emission	N/A	Power supply is 3.0Vdc from battery					
15.247(d) 15.209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -7.4dB at 2390.00MHz.					
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.					
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.					
15.247(b)	Conducted power	PASS	Meet the requirement of limit.					
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.					
15.203	Antenna Requirement	PASS	No antenna connector is used.					

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

MEASUREMENT	FREQUENCY	UNCERTAINTY
Padiated amiggiona	30MHz ~ 1GHz	4.30 dB
Radiated emissions	Above 1GHz	3.36 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	HAIP Tag
MODEL NO.	LD-6T
POWER SUPPLY	3Vdc from battery
MODULATION TYPE	GFSK
OPERATING FREQUENCY	2401 ~ 2481MHz
NUMBER OF CHANNEL	81
OUTPUT POWER	2.6mW
ANTENNA TYPE	Printed antenna with 0dBi gain
ANTENNA CONNECTOR	N/A
DATA CABLE	N/A
I/O PORTS	N/A
ACCESSORY DEVICES	N/A

NOTE:

- 1. The EUT is a HAIP Tag.
- 2. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2401	21	2422	42	2443	63	2464
1	2402	22	2423	43	2444	64	2465
2	2403	23	2424	44	2445	65	2466
3	2404	24	2425	45	2446	66	2467
4	2405	25	2426	46	2447	67	2468
5	2406	26	2427	47	2448	68	2469
6	2407	27	2428	48	2449	69	2470
7	2408	28	2429	49	2450	70	2471
8	2409	29	2430	50	2451	71	2472
9	2410	30	2431	51	2452	72	2473
10	2411	31	2432	52	2453	73	2474
11	2412	32	2433	53	2454	74	2475
12	2413	33	2434	54	2455	75	2476
13	2414	34	2435	55	2456	76	2477
14	2415	35	2436	56	2457	77	2478
15	2416	36	2437	57	2458	78	2479
16	2417	37	2438	58	2459	79	2480
17	2418	38	2439	59	2460	80	2481
18	2419	39	2440	60	2461		
19	2420	40	2441	61	2462		
20	2421	41	2442	62	2463		

81 channels are provided to this EUT:

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

 between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EUT AVAILABLE TESTED MODULATION CHANNEL CHANNEL TYPE 0 to 80 0, 40, 80 GFSK CADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combina between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 	0.0.LUE: 0		APPLICABLE TO						
'here PLC: Power Line Conducted Emission RE < 1G: Radiated Emission below 1GHz		PLC	RE < 1G	RE ³ 1G	APCM	ОВ		DESCRIPTION	
RE ^a 1G: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement OB: Conducted Out-Band Emission Measurement IOTE: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane. 2. No need to concern of Conducted Emission due to the EUT is powered by battery. CADIATED EMISSION TEST (ABOVE 1GHz): Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pollowing channel(s) was (were) selected for the final test as listed below. Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pollowing channel(s) was (were) selected for the final test as listed below. Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case m	-	NOTE 2		\checkmark		\checkmark	-	-	
 OB: Conducted Out-Band Emission Measurement IOTE: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane. 2. No need to concern of Conducted Emission due to the EUT is powered by battery. ADIATED EMISSION TEST (ABOVE 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combina between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EUT AVAILABLE TESTED MODULATION TYPE 0 to 80 0, 40, 80 GFSK ADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Pre-Scan has been conducted to determine the worst-case mode from all possible combination of the second diversity architecture. ADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combination of the second diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EUT	here PLC: Power Line Conducted Emission RE < 1G: Radiated Emission below 1GHz								
 No need to concern of Conducted Emission due to the EUT is powered by battery. 2. No need to concern of Conducted Emission due to the EUT is powered by battery. CADIATED EMISSION TEST (ABOVE 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combina between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EUT AVAILABLE TESTED MODULATION TYPE 0 to 80 0, 40, 80 GFSK EXADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combina between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). EDIOWING the provided to determine the worst-case mode from all possible combina between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EDIOME CHANNEL CHANNEL TYPE • 0 to 80 0, 40, 80 GFSK EDIOME CONFIGURE (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combina between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. Fut	RE ³ 1G : Radiated Emission above 1GHz APCM : Antenna Port Conducted Measurement								
on Z-plane. 2. No need to concern of Conducted Emission due to the EUT is powered by battery. XADIATED EMISSION TEST (ABOVE 1GHz): Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Following channel(s) was (were) selected for the final test as listed below. Image: EUT between available modulations at the test of the final test as listed below. Image: EUT between available modulation between between between between between between between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the test as listed below. Image: Pre-Sca							ot oo	so was found when positioned	
RADIATED EMISSION TEST (ABOVE 1GHz): Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the final test as listed below. Image: Pre-Scan has been conducted to determine the final test as listed below. Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination of the final test as listed below. Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination of the final test as listed below. Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenn			e-tested on	the positioned		s. The wo	sica	se was found when positioned	
 Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EUT AVAILABLE TESTED MODULATION CONFIGURE AVAILABLE TESTED CHANNEL TYPE 0 to 80 0, 40, 80 GFSK CADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 	2. No nee	d to concern c	f Conducted	Emission due	e to the EUT is	powered	by ba	attery.	
 Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EUT AVAILABLE TESTED MODULATION CONFIGURE AVAILABLE TESTED CHANNEL TYPE 0 to 80 0, 40, 80 GFSK ADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 									
architecture). Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the selected for the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below. Image: Solution of the selected for the final test as listed below.	<u>ADIAI ED EI</u>	MISSION II	<u>EST (ABC</u>	<u>)VE 1GHZ)</u>	<u> </u>				
architecture). Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below. Image: Selected for the final test as listed below.								•	
 Following channel(s) was (were) selected for the final test as listed below. EUT AVAILABLE TESTED MODULATION CHANNEL CHANNEL TYPE 0 to 80 0, 40, 80 GFSK ADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 			dulations,	data rates	and antenn	a ports	IT E	UT with antenna diversity	
CONFIGURE MODE AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE - 0 to 80 0, 40, 80 GFSK RADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Following channel(s) was (were) selected for the final test as listed below.		,	was (were) selected f	or the final	test as l	stec	d below.	
CONFIGURE MODE CHANNEL TYPE - 0 to 80 0, 40, 80 GFSK RADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combina between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.	EUT	AVAILAB		ESTED	MODULATI	ON			
- 0 to 80 0, 40, 80 GFSK RADIATED EMISSION TEST (BELOW 1GHz): Image: Second constraints Image: Second constraints <		ONFIGURE CHANNEL CHANNEL TYPE							
 RADIATED EMISSION TEST (BELOW 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinate between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 	MODE								
FUT									
	Pre-Scan h between av architectur	MISSION TI has been cc vailable mo e).	EST (BEL onducted t dulations,	OW 1GHz) o determine data rates	: e the worst- and antenn	a ports	if E	UT with antenna diversity	
CONFIGURE CHANNEL CHANNEL TYPE	 Pre-Scan h between av architectur Following of 	MISSION TI has been cc vailable mo e).	EST (BEL onducted t dulations,	OW 1GHz) o determine data rates	the worst- and antenn	a ports test as l	if E	UT with antenna diversity	
- 0 to 80 0 GFSK	 Pre-Scan h between av architectur Following o EUT CONFIGURE 	MISSION TI nas been co vailable mo e). channel(s) v	EST (BEL onducted t dulations, was (were	OW 1GHz) o determine data rates) selected f ESTED	the worst- and antenn or the final	a ports test as l	if E	UT with antenna diversity	
	 Pre-Scan h between av architectur Following of EUT CONFIGURE MODE 	MISSION TI nas been co vailable mo e). channel(s) v AVAILAB CHANNI	EST (BEL onducted t dulations, was (were sLE T EL CH	OW 1GHz) o determine data rates) selected f ESTED HANNEL	the worst- and antenn or the final MODULATI TYPE	a ports test as l	if E	UT with antenna diversity	

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
-	0 to 80	0, 80	GFSK

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
-	0 to 80	0, 40, 80	GFSK

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE<1G	25deg. C, 81%RH	3Vdc	Dalen Dai
RE ³ 1G	25deg. C, 81%RH	3Vdc	Dalen Dai
APCM	25deg. C, 81%RH	3Vdc	Dalen Dai
ОВ	25deg. C, 81%RH	3Vdc	Dalen Dai

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together without any necessary accessory or support unit.

3.3.1 CONFIGURATION OF SYSTEM UNDER TEST

	EU (Power from	JT m battery)			
			Те	st table	

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) 558074 D01 DTS Meas Guidance v02 ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

N/A

4.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

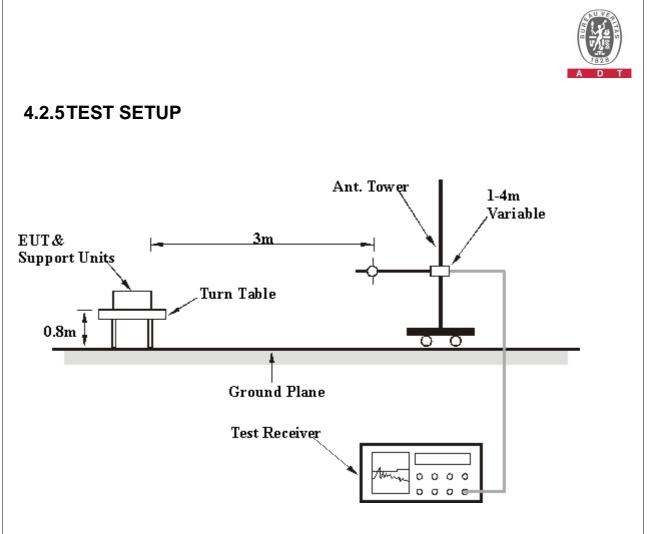
4.2.2TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 26, 2013	Feb. 25, 2014
HP Preamplifier	8449B	3008A01201	Feb. 26, 2013	Feb. 25, 2014
Agilent TEST RECEIVER	N9038A	MY51210129	Jan. 03, 2013	Jan. 02, 2014
Schwarzbeck Antenna	VULB 9168	137	Mar. 20, 2013	Mar. 19, 2014
Schwarzbeck Antenna	VHBA 9123	480	May 29, 2013	May 28, 2014
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V 7.6.15.9.2	NA	NA	NA
SUHNER RF cable	SF102	CABLE-CH6	Aug. 19, 2012	Aug. 18, 2013
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	May 13, 2013	May 12, 2014
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
Anritsu Power Sensor	MA2411B	0738404	Apr. 24, 2013	Apr. 23, 2014
Anritsu Power Meter	ML2495A	0842014	Apr. 25, 2013	Apr. 24, 2014

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3. The test was performed in Chamber No. 6.
- 4. The Industry Canada Reference No. IC 7450E-6.
- 5. The FCC Site Registration No. is 447212.

4.2.3TEST PROCEDURES


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3kHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

ABOVE 1GHz DATA

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	2390.00	56.3 PK	74.0	-17.7	1.06 H	103	60.06	-3.75			
2	2390.00	44.0 AV	54.0	-10.0	1.06 H	103	47.73	-3.75			
3	#2400.00	61.4 PK	78.4	-17.0	1.06 H	103	65.14	-3.70			
4	#2400.00	26.2 AV	43.2	-17.0	1.06 H	103	29.94	-3.70			
5	*2401.00	98.4 PK			1.06 H	103	102.14	-3.70			
6	*2401.00	63.2 AV			1.06 H	103	66.94	-3.70			
7	4802.00	46.4 PK	74.0	-27.6	1.39 H	127	42.67	3.71			
8	4802.00	33.6 AV	54.0	-20.4	1.39 H	127	29.85	3.71			
		ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	2390.00	57.4 PK	74.0	-16.6	1.05 V	233	61.17	-3.75			
2	2390.00	46.6 AV	54.0	-7.4	1.05 V	233	50.36	-3.75			
3	#2400.00	66.7 PK	83.7	-17.0	1.05 V	233	70.42	-3.70			
4	#2400.00	31.5 AV	48.5	-17.0	1.05 V	233	35.22	-3.70			

REMARKS:

*2401.00

*2401.00

4802.00

4802.00

5

6

7

8

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

-24.8

-18.5

1.05 V

1.05 V

1.13 V

1.13 V

233

233

313

313

107.42

72.22

45.52

31.77

-3.70

-3.70

3.71

3.71

3. The other emission levels were very low against the limit.

74.0

54.0

- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

103.7 PK

68.5 AV

49.2 PK

35.5 AV

- 6. " # ": The radiated frequency is out of the restricted band.
- 7. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:
 20 log (Duty cycle) = 20 log (1.74 ms / 100 ms) = -35.2 dB

Please see page 20 for plotted duty.

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

			POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*2441.00	95.1 PK			1.03 H	291	98.58	-3.51
2	*2441.00	59.9 AV			1.03 H	291	63.38	-3.51
3	4882.00	46.3 PK	74.0	-27.7	1.26 H	105	42.57	3.76
4	4882.00	33.3 AV	54.0	-20.7	1.26 H	105	29.53	3.76
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	LIMIT ANTENNA RAW VALUE							Correction Factor (dB/m)
1	*2441.00	99.1 PK			1.00 V	237	102.56	-3.51
2	*2441.00	63.9 AV			1.00 V	237	67.36	-3.51
3	4882.00	48.6 PK	74.0	-25.5	1.00 V	327	44.79	3.76
4	4882.00	35.0 AV	54.0	-19.0	1.00 V	327	31.27	3.76

REMARKS:

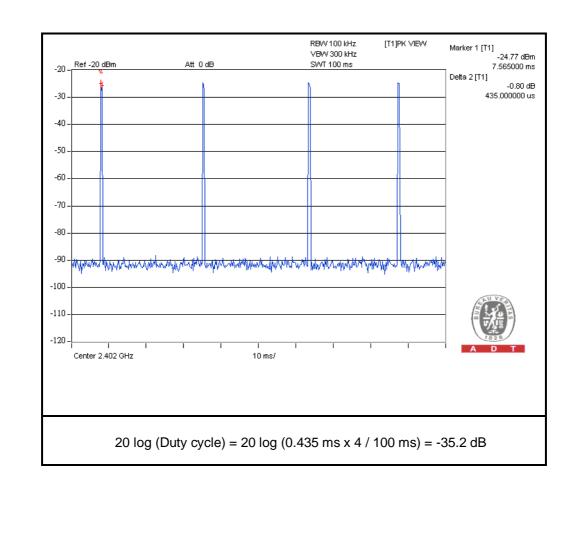
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log (Duty cycle) = 20 log (1.74 ms / 100 ms) = -35.2 dB Please see page 20 for plotted duty.

CHANNEL	TX Channel 80	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	*2481.00	92.8 PK			1.13 H	16	96.15	-3.33			
2	*2481.00	57.6 AV			1.13 H	16	60.95	-3.33			
3	2483.50	39.3 PK	74.0	-34.7	1.13 H	16	42.64	-3.32			
4	2483.50	4.1 AV	54.0	-49.9	1.13 H	16	7.44	-3.32			
5	4962.00	46.2 PK	74.0	-27.8	1.39 H	208	42.48	3.70			
6	4962.00	33.6 AV	54.0	-20.4	1.39 H	208	29.87	3.70			
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2481.00	99.4 PK			1.03 V	313	102.75	-3.33			
2	*2481.00	64.2 AV			1.03 V	313	67.55	-3.33			
3	2483.50	45.9 PK	74.0	-28.1	1.03 V	313	49.24	-3.32			
4	2483.50	10.7 AV	54.0	-43.3	1.03 V	313	14.04	-3.32			
5	4962.00	48.4 PK	74.0	-25.6	1.20 V	193	44.69	3.70			
6	4962.00	35.5 AV	54.0	-18.5	1.20 V	193	31.76	3.70			

REMARKS:


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log (Duty cycle) = 20 log (1.74 ms / 100 ms) = -35.2 dB

Please see page 20 for plotted duty.

BELOW 1GHz WORST-CASE DATA

CHANNEL	TX Channel 0	DETECTOR	Queei Beek (QD)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	39.75	16.2 QP	40.0	-23.8	1.71 H	277	30.98	-14.76			
2	160.95	13.2 QP	43.5	-30.4	1.03 H	253	26.21	-13.06			
3	173.88	13.5 QP	43.5	-30.0	1.08 H	122	27.59	-14.12			
4	396.98	17.6 QP	46.0	-28.4	1.69 H	10	27.22	-9.61			
5	503.68	20.8 QP	46.0	-25.2	1.14 H	10	28.14	-7.34			
6	589.37	22.8 QP	46.0	-23.2	1.89 H	132	28.28	-5.50			
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	39.74	21.8 QP	40.0	-18.2	1.31 V	10	36.60	-14.76			
2	105.98	25.4 QP	43.5	-18.1	1.73 V	119	42.79	-17.35			
3	138.32	20.6 QP	43.5	-22.9	1.08 V	357	34.76	-14.12			
4	183.58	15.1 QP	43.5	-28.4	1.91 V	64	30.21	-15.09			
5	471.35	19.9 QP	46.0	-26.1	1.14 V	10	27.83	-7.96			
6	587.75	22.6 QP	46.0	-23.4	1.00 V	149	28.10	-5.51			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2TEST SETUP

4.3.3TEST INSTRUMENTS

Refer to section 4.2.2 to get information of above instrument.

4.3.4TEST PROCEDURE

- a. Set resolution bandwidth (RBW) = approximately 1% of the emission bandwidth
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2401	0.62	0.5	PASS
40	2441	0.63	0.5	PASS
80	2481	0.67	0.5	PASS



4.4 CONDUCTED OUTPUT POWER

4.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2TEST SETUP

4.4.3TEST INSTRUMENTS

Refer to section 4.2.2 to get information of above instrument.

4.4.4TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the peak power level.

4.4.5 DEVIATION FROM TEST STANDARD

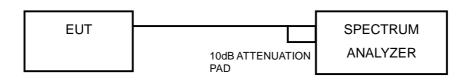
No deviation.

4.4.6 EUT OPERATING CONDITIONS

Same as Item 4.3.6.

4.4.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	PEAK POWER (mW)	PEAK POWER (dBm)	LIMIT (dBm)	PASS/FAIL
0	2401	2.6	4.2	30	PASS
40	2441	2.5	3.9	30	PASS
80	2481	2.2	3.3	30	PASS



4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.2.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.5.5 DEVIATION FROM TEST STANDARD

No deviation.

4.5.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.5.7 TEST RESULTS

Channel	FREQ. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
0	2401	-3.49	8	PASS
40	2441	-4.40	8	PASS
80	2481	-4.39	8	PASS

4.6 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2TEST SETUP

4.6.3TEST INSTRUMENTS

Refer to section 4.2.2 to get information of above instrument.

4.6.4TEST PROCEDURE

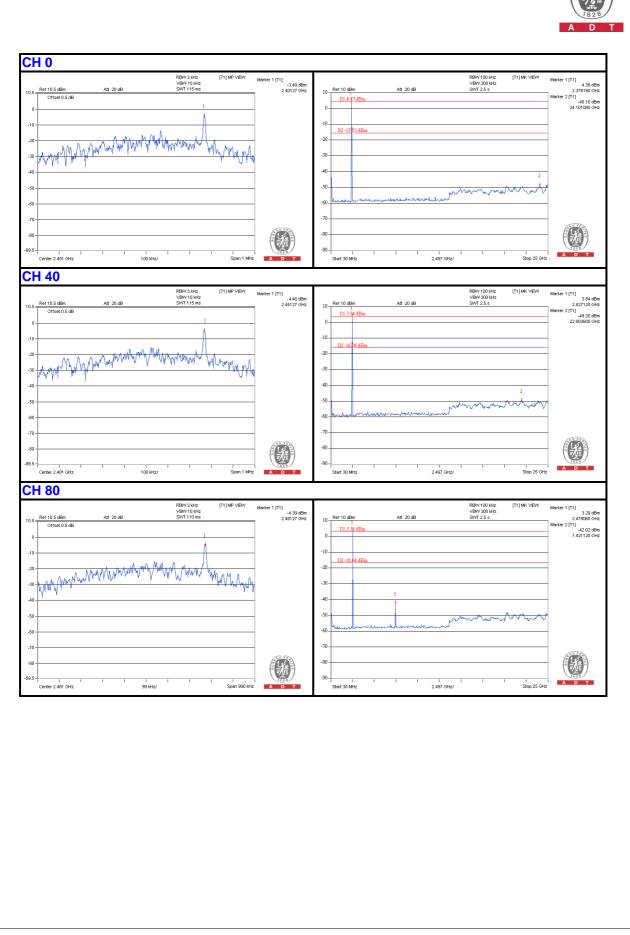
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

4.6.5 DEVIATION FROM TEST STANDARD


No deviation.

4.6.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.6.7 TEST RESULTS

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---END----