
Page 151 of 272

TRAFFIC

Page 152 of 272

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 18.86%

Page 153 of 272

5.8.3. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J

Page 154 of 272

5.8.4. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE CAC CYCLE TIME

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

Page 155 of 272

QUANTITATIVE RESULTS

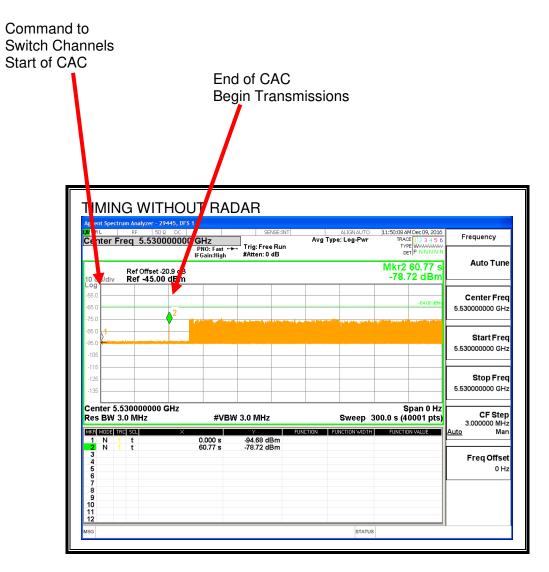
No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	60.8	60.77

Radar Near Beginning of CAC

Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC
(sec)	(sec)	(sec)
0	2.880	2.88

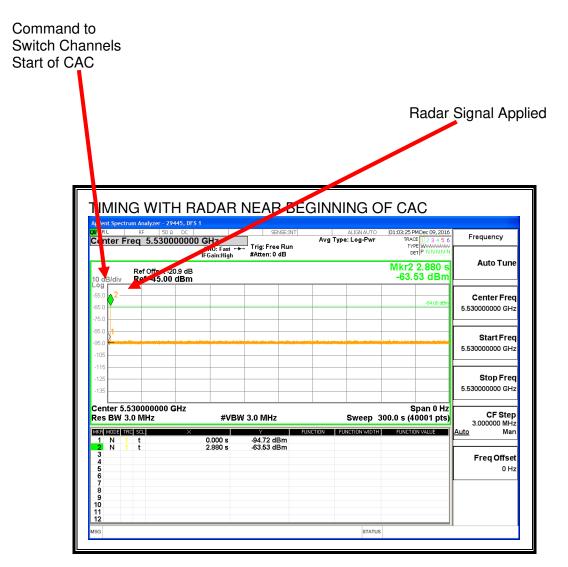
Radar Near End of CAC


Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC	
(sec)	(sec)	(sec)	
0	56.86	56.86	

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

Page 156 of 272


TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the CAC period.

Page 157 of 272

TIMING WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 158 of 272

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

Ref Offset :20.9 dB Avg Type: Log-Pwr #Atten: 0 dB Mkr2 56.86 -63.69 dE 0 0 0 -63.69 dE -63.69 dE -63.69 dE -64.00		Radar					
ent Spectrum Analyzer - 29445, DFS 1 RL RF S0 2 DC PHO: Fage PHO:			D OF CAC		RADAR	WITH B	IING
PNO: Fast Trig. Free Autin FG0:// FG0:// FG0 Mkr2 56.86 Bidiv Ref -45.00 dBm	Frequency	01:10:44 PMDec 09, 2016	ALIGN AUTO		FS 1	nalyzer - 29445, DFS = 50 Ω DC	Spectrum A
Ref 45.00 dBm -63.69 dE 2		DET P NNNN	Avg Type: Log-Pwr		PNO: Fast	5.53000000	er Freq
2	Auto Tune	Mkr2 56.86 s -63.69 dBm					
Image: Second state X Y Function Function <t< td=""><td>Center Free</td><td>-64.00 dBm</td><td></td><td></td><td></td><td>¢2</td><td></td></t<>	Center Free	-64.00 dBm				¢2	
Image: State of the s	5.530000000 GH;						
5 6 5 7 6 7 7 7 7	Start Fred 5.530000000 GH;						1
5 Span 0 nter 5.530000000 GHz Span 0 s BW 3.0 MHz #VBW 3.0 MHz Sweep 300.0 s (40001 p Model TFC SCL X Y Function Function whight p N 1 t 0.000 s -94.66 dBm Function whight p Function while p N 1 t 56.86 s -63.69 dBm Function while p Function while p							
S BW 3.0 MHz #VBW 3.0 MHz Sweep 300.0 s (40001 p MODE FUNCTION FUNCTION WIDTH FUNCTION WIDTH N 1 t 0.000 s -94.66 dBm N 1 t 56.86 s -63.69 dBm	Stop Free 5.530000000 GH:						
MODE TRE Scl. X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 t 0.000 s -94.66 dBm		Span 0 Hz	0		<i>#</i>) (D)		
N 1 t 56.86 s -63.69 dBm	3.000000 MH: <u>Auto</u> Mar	,	•	Y FL			ODE TRC SC
	Freq Offse						
	0 H:						

No EUT transmissions were observed after the radar signal.

Page 159 of 272

5.8.5. ZERO WAIT CHANNEL AVAILABILITY CHECK TIME (NON-DFS CHANNEL TO DFS CHANNEL)

PROCEDURE TO DETERMINE CAC CYCLE TIME

A link was established and traffic with a channel loading of less than 16% was started on a Non-DFS channel. When the traffic loading is greater than 16% the Zero-Wait CAC function will be abandoned per manufacturer design and declaration.

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change from the Non-DFS channel to the DFS test channel. After the command to change channels was issued a CAC period commenced on the test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel and commence a CAC period. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

After the EUT was reset a sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel and commence a CAC period. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was created indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

Page 160 of 272

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	61.3	61.3

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	4.118	4.118

Radar Near End of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	57.88	57.88


If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

Page 161 of 272

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the CAC period.

Page 162 of 272

Log File of CAC Timing Without Radar

wl chanspec 36/80 (0xe02a)

wl dfs_ap_move 100/80

CONSOLE: 028688.579 wlc_dfs_doiovar scan channel: e06a, current channel e02a

CONSOLE: 028688.723 wl0: downgraded phy to 3+1

CONSOLE: 028688.723 wl0 wlc_dfs_handle_modeswitch: downgrade completed 1390

CONSOLE: 028688.723 wl0: since phymode is 3x1 using scan core with chanspec e06a

CONSOLE: 028688.724 wl0: chanspec e06a, 60 second CAC time CONSOLE: 028688.724 DFS State IDLE -> PRE-ISM Channel Availability Check

CONSOLE: 028688.724 wl0.. wlc_dfs_scan_start txdur_start 6069608us

CONSOLE: 028749.171 wl0: wlc_dfs_get_radar DFS radar=1

CONSOLE: 028749.171 wl0: chanspec e06a, 60 second CAC time CONSOLE: 028749.171 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM)

CONSOLE: 028749.547 wl0: dfs : state to In-Service Monitoring(ISM) chanspec 100/80 at 60300ms

CONSOLE: 028749.700 wl0: upgraded phy to 4x4

Page 163 of 272

TIMING WITH RADAR NEAR BEGINNING OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Page 164 of 272

Log File of Radar at the Beginning of CAC

wl chanspec 36/80 (0xe02a) # # wl dfs ap move 100/80 # CONSOLE: 026805.892 wlc dfs doiovar scan channel: e06a, current channel e02a CONSOLE: 026805.893 wl0 wlc dfs scan 1355 chspec=e06a CONSOLE: 026806.156 wl0: downgraded phy to 3+1 CONSOLE: 026806.156 wl0 wlc dfs handle modeswitch: downgrade completed 1390 CONSOLE: 026806.157 wl0: chanspec e06a, 60 second CAC time CONSOLE: 026806.157 DFS State IDLE -> PRE-ISM Channel Availability Check CONSOLE: 026809.006 WLO: DFS: UNCLASSIFIED ########### RADAR SC DETECTED ON CHANNEL 100/80 ######### min pw=23, subband result=6, AT 2700MS CONSOLE: 026809.006 wl0: dfs : state to IDLE chanspec 36/80 at 2700ms CONSOLE: 026809.007 wl0: upgraded phy to 4x4 CONSOLE: 026809.007 wl0 wlc dfs handle modeswitch: upgrade completed 1402 CONSOLE: 026809.007 wl0: channel 104 put out of service chspecd068 CONSOLE: 026809.007 wl0: channel 108 put out of service chspecd06c

Page 165 of 272

AP Target Chanspec 100/80 (0xe06a) Radar Found On Channel

# wl chan info		
Channel 36	A Band,	Passive
Channel 40	A Band,	Passive
Channel 44	A Band,	Passive
Channel 48	A Band,	Passive
Channel 52	A Band,	RADAR Sensitive, Passive
Channel 56	A Band,	RADAR Sensitive, Passive
Channel 60	A Band,	RADAR Sensitive, Passive
Channel 64	A Band,	RADAR Sensitive, Passive
Channel 100	A Band,	RADAR Sensitive, Passive
Channel 104	A Band,	RADAR Sensitive, Passive, Temporarily Out of
Service for 31	minutes	
Channel 108	A Band,	RADAR Sensitive, Passive, Temporarily Out of
Service for 31	minutes	
Channel 112	A Band,	RADAR Sensitive, Passive
Channel 116	A Band,	RADAR Sensitive, Passive
Channel 120	A Band,	RADAR Sensitive, Passive
Channel 124	A Band,	RADAR Sensitive, Passive
Channel 128	A Band,	RADAR Sensitive, Passive
Channel 132	A Band,	RADAR Sensitive, Passive
Channel 136	A Band,	RADAR Sensitive, Passive
Channel 140	-	RADAR Sensitive, Passive
Channel 144	A Band,	RADAR Sensitive, Passive
Channel 149	A Band	
Channel 153	A Band	
Channel 157	A Band	
Channel 161		
Channel 165	A Band	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 166 of 272

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

MING V	VITH RAD	AR	NEAR EN	D OF CAC		
RL RF	yzer - 29445, DFS 1 50 Ω DC 5.5300000000 GH	7	SENSE:INT	ALIGN AUTO	03:05:19 PMDec 06, 2016 TRACE 1 2 3 4 5 6	Frequency
Ref C	PNC): Fast ↔ in:High	rig: Free Run #Atten: 0 dB		Mkr2 57.88 s -64.56 dBm	Auto Tune
0	2				-64.00 dBm	Center Freq 5.530000000 GHz
.0 .0 .0						Start Freq 5.530000000 GHz
25						Stop Freq 5.53000000 GHz
enter 5.53000 Is BW 3.0 MH		#VBV	V 3.0 MHz	Sweep 3	Span 0 Hz 00.0 s (40001 pts)	CF Step 3.000000 MHz Auto Man
		000 s .88 s	-94.78 dBm -64.56 dBm			Freq Offset 0 Hz

No EUT transmissions were observed after the radar signal.

Page 167 of 272

Log File of Radar at the End of CAC

wl chanspec 36/80 (0xe02a) # wl dfs ap move 100/80 # CONSOLE: 027673.777 wlc dfs doiovar scan channel: e06a, current channel e02a CONSOLE: 027673.845 wl0: downgraded phy to 3+1 CONSOLE: 027673.845 wl0 wlc dfs handle modeswitch: downgrade completed 1390 CONSOLE: 027673.845 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 027673.846 wl0: chanspec e06a, 60 second CAC time CONSOLE: 027673.846 DFS State IDLE -> PRE-ISM Channel Availability Check CONSOLE: 027673.846 wl0.. wlc dfs scan start txdur start 9641283us CONSOLE: 027730.845 WLO: DFS: UNCLASSIFIED ########### RADAR SC DETECTED ON CHANNEL 100/80 ########## min pw=23, subband result=6, AT 56850MS CONSOLE: 027730.845 wl0: dfs : state to IDLE chanspec 36/80 at 56850ms CONSOLE: 027730.845 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 027730.846 wl0: upgraded phy to 4x4 CONSOLE: 027730.846 wl0 wlc dfs handle modeswitch: upgrade completed 1402 CONSOLE: 027730.846 wl0: channel 104 put out of service chspecd068 CONSOLE: 027730.846 wl0: channel 108 put out of service chspecd06c # wl chanspec 36/80 (0xe02a)

Page 168 of 272

wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 108 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive Channel 132 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 136 Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 169 of 272

5.8.6. ZERO WAIT CHANNEL AVAILABILITY CHECK TIME (DFS CHANNEL TO DFS CHANNEL / RADAR APPLIED TO THE CHANNEL PERFORMING CAC)

PROCEDURE TO DETERMINE CAC CYCLE TIME

A link was established and traffic with a channel loading of less than 16% was started on an operating DFS channel. When the traffic loading is greater than 16% the Zero-Wait CAC function will be abandoned per manufacturer design and declaration.

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

After the EUT was reset a sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

Page 170 of 272

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	61.41	61.4

Radar Near Beginning of CAC

Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC		
(sec)	(sec)	(sec)		
0	4.418	4.418		

Radar Near End of CAC

Beginning	Timing of	Radar Relative		
of CAC	Radar Burst	to Start of CAC		
(sec)	(sec)	(sec)		
0	57.81	57.81		

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

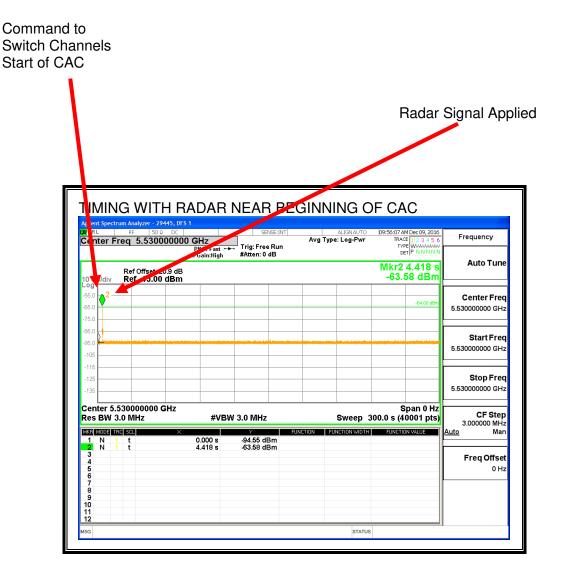
TIMING WITHOUT RADAR DURING CAC

Command to Switch Channels Start of CAC

Transmissions begin on channel after completion of the CAC period.

Page 172 of 272

Log File of CAC Timing Without Radar


wl chanspec 52/80 (0xe03a) # CONSOLE: 030403.354 wlc dfs doiovar scan channel: e06a, current channel e03a CONSOLE: 030403.355 wl0 wlc dfs scan 1355 chspec=e06a CONSOLE: 030403.705 wl0: downgraded phy to 3+1 CONSOLE: 030403.705 wl0 wlc dfs handle modeswitch: downgrade completed 1390 CONSOLE: 030403.706 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 030403.706 wl0: chanspec e06a, 60 second CAC time CONSOLE: 030403.706 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check CONSOLE: 030463.749 wl0.. wlc dfs scan complete sc chan=e06a (106) reason 0 CONSOLE: 030463.749 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM) CONSOLE: 030463.750 wl0: dfs : state to In-Service Monitoring(ISM) chanspec 52/80 at 60000ms CONSOLE: 030463.750 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 030463.899 wl0: upgraded phy to 4x4 CONSOLE: 030463.899 wl0 wlc dfs handle modeswitch: upgrade completed 1402 CONSOLE: 030463.899 wl0 wlc dfs handle modeswitch: new state 4 in idle state CONSOLE: 030464.002 DFS State In-Service Monitoring(ISM) -> In-Service Monitoring (ISM) # wl chanspec 100/80 (0xe06a)

Page 173 of 272

# wl cha	an_in:	fo	
Channel	36 A	Band,	Passive
Channel	40 A	Band,	Passive
Channel	44 A	Band,	Passive
Channel	48 A	Band,	Passive
Channel	52 A	Band,	RADAR Sensitive, Passive
Channel	56 A	Band,	RADAR Sensitive, Passive
Channel	60 A	Band,	RADAR Sensitive, Passive
Channel	64 A	Band,	RADAR Sensitive, Passive
Channel	100	A	Band, RADAR Sensitive
Channel	104	A	Band, RADAR Sensitive
Channel	108	A	Band, RADAR Sensitive
Channel	112	A	Band, RADAR Sensitive
Channel	116	A	Band, RADAR Sensitive, Passive
Channel	120	A	Band, RADAR Sensitive, Passive
Channel	124	A	Band, RADAR Sensitive, Passive
Channel	128	A	Band, RADAR Sensitive, Passive
Channel	132	A	Band, RADAR Sensitive, Passive
Channel	136	A	Band, RADAR Sensitive, Passive
Channel	140	A	Band, RADAR Sensitive, Passive
Channel	144	A	Band, RADAR Sensitive, Passive
Channel	149	A	Band
Channel	153	A	Band
Channel	157	A	Band
Channel	161	A	Band
Channel	165	A	Band

Page 174 of 272

TIMING WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 175 of 272

Log File of Radar at the Beginning of CAC

wl chanspec 60/80 (0xe23a)
wl dfs_ap_move 100/80
<pre># CONSOLE: 031748.826 wlc_dfs_doiovar scan channel: e06a, current channel e23a</pre>
CONSOLE: 031748.827 wl0 wlc_dfs_scan 1355 chspec=e06a
CONSOLE: 031748.827 wl0: mode switch down scheduled = 1 opmode: $0x22$, bw: $0x02$
CONSOLE: 031749.478 wl0: downgraded phy to 3+1
CONSOLE: 031749.478 wl0 wlc_dfs_handle_modeswitch: downgrade completed 1390
CONSOLE: 031749.479 wl0: since phymode is 3x1 using scan core with chanspec e06a
CONSOLE: 031749.479 wl0: chanspec e06a, 60 second CAC time
CONSOLE: 031749.479 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check
CONSOLE: 031752.727 wl0: DFS: radar_info=0x18167, radar_info_2=0x00000
CONSOLE: 031752.727 WLO: DFS: UNCLASSIFIED ############## RADAR_SC DETECTED ON CHANNEL 100/80 ########### min_pw=22, subband_result=6, AT 3150MS
CONSOLE: 031752.727 wl0 wlc_dfs_scan_complete_sc chan=e06a (106)
reason 1 CONSOLE: 031752.727 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM)
CONSOLE: 031752.728 wl0: dfs : state to In-Service Monitoring(ISM) chanspec 60/80 at 3150ms
CONSOLE: 031752.728 wl0: since phymode is 3x1 using scan core with chanspec e06a
CONSOLE: 031752.728 wl0: channel 104 put out of service chspecd068
CONSOLE: 031752.728 wl0: channel 108 put out of service chspecd06c CONSOLE: 031752.877 wl0: upgraded phy to 4x4
CONSOLE: 031752.877 wl0 wlc_dfs_handle_modeswitch: upgrade completed 1402
Page 176 of 272 ULVERIFICATION SERVICES INC FORM NO: CCSUP4701.1

CONSOLE: 031752.877 wl0 wlc dfs handle modeswitch: new state 4 in idle state wl chanspec 60/80 (0xe23a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive Channel 56 A Band, RADAR Sensitive Channel 60 A Band, RADAR Sensitive Channel 64 A Band, RADAR Sensitive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 30 minutes Channel 108 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 30 minutes Channel 112 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 116 Channel 120 A Band, RADAR Sensitive, Passive Channel 124 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 128 Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 144 A Band Channel 149 Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 177 of 272

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

				Radar	Signal App
MING WITH	H RADAR	NEAR EN	D OF CAC		
ent Spectrum Analyzer - 294 RL RF 50 Ω		SENSE:INT	ALIGN AUTO	10:35:06 AM Dec 09, 2016	_
enter Freq 5.5300	PNO: East	. Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N	Frequency
Ref Offset -20 ctv/div Ref -45.00		#Atten: 0 dB		Mkr2 57.81 s -63.81 dBm	Auto Tune
5.0	2				Center Freq
5.0				-64.00 dBm	5.530000000 GHz
5.0 1					Start Freq
05	and a second			and the set of the second dimension of the second	5.530000000 GHz
15					
35					Stop Freq 5.53000000 GHz
enter 5.530000000 G	H7			Span 0 Hz	
es BW 3.0 MHz		N 3.0 MHz	•	00.0 s (40001 pts)	CF Step 3.000000 MHz
R MODE TRC SCL 1 N 1 t 2 N 1 t	× 0.000 s 57.81 s	-95.14 dBm -63.81 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
3	57.01 \$	-05.01 0.011			Freq Offset
4 5 6 7 8					0 Hz
7 8 9					
0 1					
2			STATUS		

No EUT transmissions were observed after the radar signal.

Page 178 of 272

Log File of Radar at the End of CAC

wl chanspec 60/80 (0xe23a) # wl dfs ap move 100/80 # CONSOLE: 033991.207 wlc dfs doiovar scan channel: e06a, current channel e23a CONSOLE: 033991.207 wl0 wlc dfs scan 1355 chspec=e06a CONSOLE: 033991.207 wl0: mode switch down scheduled = 1 opmode: 0x22, bw: 0x0 2 CONSOLE: 033991.294 wl0: downgraded phy to 3+1 CONSOLE: 033991.294 wl0 wlc dfs handle modeswitch: downgrade completed 1390 CONSOLE: 033991.295 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 033991.295 wl0: chanspec e06a, 60 second CAC time CONSOLE: 033991.295 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check CONSOLE: 033991.295 wl0.. wlc dfs scan start txdur start 5582902us ÔÊjõl é 034048.318 wl0: DFS: radar info=0x18187, radar info 2=0x00000 CONSOLE: 034048.318 WLO: DFS: UNCLASSIFIED ########### RADAR SC DETECTED ON CHANNEL 100/80 ########## min pw=24, subband result=6, AT 57000MS CONSOLE: 034048.318 wl0.. wlc dfs scan complete sc chan=e06a (106) reason 1 CONSOLE: 034048.318 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM) CONSOLE: 034048.318 wl0: dfs : state to In-Service Monitoring(ISM) chanspec 60/80 at 57000ms CONSOLE: 034048.319 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 034048.319 wl0: channel 104 put out of service chspecd068 CONSOLE: 034048.319 wl0: channel 108 put out of service chspecd06c

Page 179 of 272 UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. CONSOLE: 034048.468 wl0: upgraded phy to 4x4 CONSOLE: 034048.468 wl0 wlc dfs handle modeswitch: upgrade completed 1402 CONSOLE: 034048.468 wl0 wlc dfs handle modeswitch: new state 4 in idle state # wl chanspec 60/80 (0xe23a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive Channel 56 A Band, RADAR Sensitive Channel 60 A Band, RADAR Sensitive Channel 64 A Band, RADAR Sensitive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 30 minutes Channel 108 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 30 minutes Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 144 Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

REPORT NO: 11533080-E2V1

FCC ID: QDS-BRCM1091

Page 180 of 272

5.8.7. ZERO WAIT CHANNEL AVAILABILITY CHECK TIME (DFS CHANNEL TO DFS CHANNEL / RADAR APPLIED TO THE OPERATING DFS CHANNEL)

PROCEDURE TO DETERMINE CAC CYCLE TIME

A link was established and traffic with a channel loading of less than 16% was started on an operating DFS channel. When the traffic loading is greater than 16% the Zero-Wait CAC function will be abandoned per manufacturer design and declaration.

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the operating DFS channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the operating DFS channel and that the operating DFS channel was temporarily removed from service for a period of 31-minutes. In addition the CAC being performed on the DFS test channel was abandoned and the EUT moved service to a Non-DFS channel.

After the EUT was reset a sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the operating DFS channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the operating DFS channel and that the operating DFS channel was temporarily removed from service for a period of 31-minutes. In addition the CAC being performed on the DFS test channel was abandoned and the EUT moved service to a Non-DFS channel.

Page 181 of 272

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

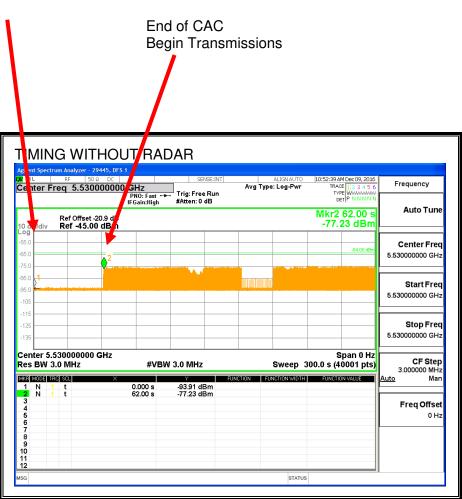
Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	62.0	62.0

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative		
of CAC	Radar Burst	to Start of CAC		
(sec)	(sec)	(sec)		
0	3.000	3.000		

Radar Near End of CAC

Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC		
(sec)	(sec)	(sec)		
0	57.00	57.00		


If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC

Command to Switch Channels Start of CAC

Transmissions begin on channel after completion of the CAC period.

Page 183 of 272

Log File of CAC Timing Without Radar

# wl chanspec 52/80 (0xe03a)					
<pre># wl dfs_ap_move 100/80</pre>					
<pre># CONSOLE: 027633.154 wlc_dfs_doiovar scan channel: e06a, current channel e03a</pre>					
CONSOLE: 027633.155 wl0 wlc_dfs_scan 1355 chspec=e06a					
CONSOLE: 027633.155 wl0: mode switch down scheduled = 1 opmode: 0x22, bw: $0x02$					
CONSOLE: 027633.468 wl0: downgraded phy to 3+1					
CONSOLE: 027633.468 wl0 wlc_dfs_handle_modeswitch: downgrade completed 1390					
CONSOLE: 027633.469 wl0: since phymode is 3x1 using scan core with chanspec e06a					
CONSOLE: 027633.469 wl0: chanspec e06a, 60 second CAC time					
CONSOLE: 027633.469 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check					
CONSOLE: 027693.584 wl0 wlc_dfs_scan_complete_sc chan=e06a (106) reason 0					
CONSOLE: 027693.584 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM)					
CONSOLE: 027693.585 wl0: since phymode is 3x1 using scan core with chanspec e06a					
CONSOLE: 027693.734 wl0: upgraded phy to 4x4					
CONSOLE: 027693.734 wl0 wlc_dfs_handle_modeswitch: upgrade completed 1402					
CONSOLE: 027693.734 wl0 wlc_dfs_handle_modeswitch: new state 4 in idle state					
CONSOLE: 027694.257 wl0: dfs : state to In-Service Monitoring(ISM) chanspec 100/80 at 300ms					
wl chanspec 100/80 (0xe06a)					
# wl chan_info					
Page 184 of 272					

	~ ~	_						
Channel	36	А	Band					
Channel	40	А	Band					
Channel	44	А	Band					
Channel	48	А	Band					
Channel	52	А	Band,	RADAR	Sensi	tive,	Passi	ve
Channel	56	А	Band,	RADAR	Sensi	tive,	Passi	ve
Channel	60	А	Band,	RADAR	Sensi	tive,	Passi	ve
Channel	64	А	Band,	RADAR	Sensi	tive,	Passi	ve
Channel	100)	A	Band,	RADAR	Sensi	tive	
Channel	104	1	A	Band,	RADAR	Sensi	tive	
Channel	108	3	A	Band,	RADAR	Sensi	tive	
Channel	112	2	A	Band,	RADAR	Sensi	tive	
Channel	110	5	A	Band,	RADAR	Sensi	tive,	Passive
Channel	120	C	A	Band,	RADAR	Sensi	tive,	Passive
Channel	124	1	A	Band,	RADAR	Sensi	tive,	Passive
Channel	128	3	A	Band,	RADAR	Sensi	tive,	Passive
Channel	132	2	A	Band,	RADAR	Sensi	tive,	Passive
Channel	130	5	A	Band,	RADAR	Sensi	tive,	Passive
Channel	14(C	A	Band,	RADAR	Sensi	tive,	Passive
Channel	144	1	A	Band,	RADAR	Sensi	tive,	Passive
Channel	149	9	A	Band				
Channel	153	3	A	Band				
Channel	15	7	A	Band				
Channel	161	1	A	Band				
Channel	165	5	A	Band				

Log File of CAC Timing Without Radar

Command to Switch Channels Start of CAC

Ref Offset -20.9 dB Marker Marker 1 also offset -20.9 dB Marker 2 3.000 s Brdiv Ref Offset -20.9 dB Mktra: 0 dB Mktra: 0 dB Brdiv Ref -45.00 dBm -94.25 dBm 0 -94.25 dBm -94.25 dBm 1 1 -94.25 dBm 1 1 -94.25 dBm 1 -94.25 dBm -94.25 dBm					Radar	Signal App
Price Spectrum Analyzer - 29445, DFS 1 Rt FF 50 ° CC SPINOT Autonation 11:17:35AM Dec 09, 2016 Marker PNO: Fast						
Price Spectrum Analyzer - 29445, DFS 1 Rt FF 50 ° CC SPINOT Autonation 11:17:35AM Dec 09, 2016 Marker PNO: Fast						
Rt PF 90.0 Column State of the second			NEAR BE	GINNING O	F CAC	
If Generating building Watter: 0 dB Det (P NNNN) Marker Table on Bid Mkr2 3.000 s -94.25 dBm Mkr2 3.000 s -94.25 dBm Marker Count (off) Image: Space of the state of the sta		DC			TRACE 1 2 3 4 5 6	Marker
Bidliv Ref 045.00 dBm -94.25 dBm 0 -94.25 dBm Marker Count 0 -94.25 dBm Marker Count 0 -94.25 dBm Couple 0 -94.25 dBm Marker Count 0 -94.25 dBm Marker Count 0 -94.25 dBm Couple 0 -94.25 dBm Marker Count 0 -94.25 dBm -94.25 dBm 1 t 0.000 s 94.25 dBm -94.25 dBm 1 1 -94.25 dBm 1 1 -94.25 dBm 1 -94.25 dBm 1 -94.25 dBm 1 -94.25 dBm	Def Officer (20)	IFGain:High			DET P N N N N N	Marker Table
Image: Second and the second						
Couple Couple 0 2 1 <	5.0				-64.00 dBm	
Model Inclusion Span O Hz N 1 t 0.000 s -94.25 dBm -94.26 dBm - <td>5.0 × 2</td> <td></td> <td></td> <td>ken kennen städen er och en lärer restäre</td> <td></td> <td>Markers</td>	5.0 × 2			ken kennen städen er och en lärer restäre		Markers
Solution Solution Function	15					
s BW 3.0 MHz #VBW 3.0 MHz Sweep 300.0 s (40001 pts) Note Telepiser Function Function <t< td=""><td>35</td><td></td><td></td><td></td><td></td><td></td></t<>	35					
N 1 t 0.000 s .94.72 dBm N 1 t 3.000 s .94.25 dBm All Markers Off	enter 5.530000000 GH es BW 3.0 MHz		V 3.0 MHz	Sweep 3		
More	2 N 1 t	0.000 s	-94.72 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	
	3 4 5 5 7					All Markers Off
2 of 2	7 3 9 0					
	2					2 of 2

No EUT transmissions were observed after the radar signal.

Page 186 of 272

Log File of Radar at the Beginning of CAC

wl chanspec 52/80 (0xe03a)
wl dfs_ap_move 100/80
<pre># CONSOLE: 028818.213 wlc_dfs_doiovar scan channel: e06a, current channel e03</pre>
CONSOLE: 028818.213 wl0 wlc_dfs_scan 1355 chspec=e06a
CONSOLE: 028818.543 wl0: downgraded phy to 3+1
CONSOLE: 028818.543 wl0 wlc_dfs_handle_modeswitch: downgrade completed 1390
CONSOLE: 028818.544 wl0: since phymode is 3x1 using scan core with chanspec e06a
CONSOLE: 028818.544 wl0: chanspec e06a, 60 second CAC time
CONSOLE: 028821.199 wl0: DFS: radar_info=0x181c7, radar_info_2=0x00000
CONSOLE: 028821.199 WL0: DFS: UNCLASSIFIED ########### RADAR DETECTED ON CHANNEL 52/80 ########### min_pw=28, subband_result=6, AT 2550MS
CONSOLE: 028821.199 wl0: since phymode is 3x1 using scan core with chanspec e06a
CONSOLE: 028821.199 wl0: chanspec e06a, 60 second CAC time
CONSOLE: 028821.200 wl0: upgraded phy to 4x4
CONSOLE: 028821.200 wl0 wlc_dfs_handle_modeswitch: upgrade completed 1402
CONSOLE: 028821.200 wl0: channel 56 put out of service chspecd038
CONSOLE: 028821.200 wl0: channel 60 put out of service chspecd03c
CONSOLE: 028821.200 no usable channels found in dfs_channel_forced list; going random now
CONSOLE: 028821.200 wl0: DFS WLC_E_RADAR_DETECTED 181c7/0000 on ch 0xe03a going to ch 0xe09b
CONSOLE: 028821.206 DFS State IDLE -> IDLE
CONSOLE: 028821.206 wl0: dfs : state to IDLE chanspec 149/80 at Oms
Bogo 197 of 979

Page 187 of 272

REPORT NO: 11533080-E2V1 FCC ID: QDS-BRCM1091

CONSOLE: 028821.206 wl0: Skip CAC - channel 0xe09b is already available. Zero duration. # wl chanspec 149/80 (0xe09b) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 60 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 112 Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 124 Channel 128 A Band, RADAR Sensitive, Passive Channel 132 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 136 Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 188 of 272

TIMING WITH RADAR NEAR END OF CAC

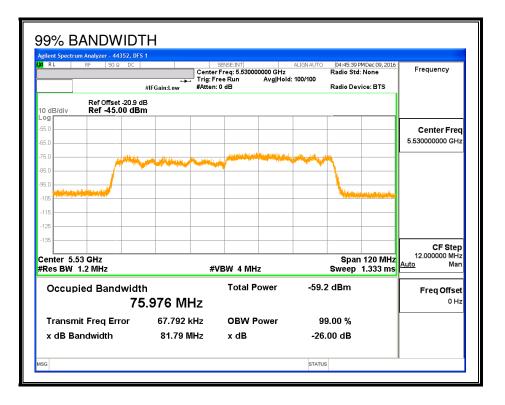
Command to Switch Channels Start of CAC

				Radar	Signal App
MING WITI		NEAR EN	D OF CAC		
ent Spectrum Analyzer - 29- RL RF 50 ឆ enter Freq 5.5300	DC 00000 GHz	SENSE 1	ALIGN AUTO Avg Type: Log-Pwr	11:30:48 AM Dec 09, 2016 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Frequency
Ref Offset -20 B/div Ref -45.00		, Trig:FreeRun #Atrin:0 dB		Mkr2 57.00 s -94.53 dBm	Auto Tune
5.0				-64.00 dBm	Center Freq 5.530000000 GHz
5.0 1 5.0 1 5.0 1	2			d a land, seatting that he are a statistication	Start Freq 5.530000000 GHz
15					Stop Freq 5.53000000 GHz
enter 5.530000000 C es BW 3.0 MHz E 1100 TRO SCL	#VB		Sweep 3	Span 0 Hz 00.0 s (40001 pts) FUNCTION VALUE	CF Step 3.000000 MHz <u>Auto</u> Man
1 N 1 t 2 N 1 t 3 4 5 5 7 7	0.000 s 57.00 s	-94.63 dBm -94.53 dBm			Freq Offset 0 Hz
9 0 1 2					

No EUT transmissions were observed after the radar signal.

Page 189 of 272

Log File of Radar at the End of CAC


wl chanspec 52/80 (0xe03a) # wl dfs ap move 100/80 # CONSOLE: 029707.647 wlc dfs doiovar scan channel: e06a, current channel e03a CONSOLE: 029707.647 wl0 wlc dfs scan 1355 chspec=e06a CONSOLE: 029707.647 wl0: mode switch down scheduled = 1 opmode: 0x22, bw: 0x02 CONSOLE: 029707.902 wl0: downgraded phy to 3+1 CONSOLE: 029707.902 wl0 wlc dfs handle modeswitch: downgrade completed 1390 CONSOLE: 029707.903 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 029707.903 wl0: chanspec e06a, 60 second CAC time CONSOLE: 029707.903 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check ÔÊjõl é 029764.936 wl0: DFS: radar info=0x181b7, radar info 2=0x00000 CONSOLE: 029764.936 WLO: DFS: UNCLASSIFIED ############ RADAR DETECTED ON CHANNEL 52/80 ########### min pw=27, subband result=6, AT 57000MS CONSOLE: 029764.936 wl0.. wlc dfs scan complete chan=e03a (58) reason CONSOLE: 029764.936 DFS State PRE-ISM Channel Availability Check -> TDLE CONSOLE: 029764.936 wl0: dfs : state to IDLE chanspec 52/80 at 57000ms CONSOLE: 029764.936 wl0: since phymode is 3x1 using scan core with chanspec e06a CONSOLE: 029764.936 wl0: chanspec e06a, 60 second CAC time CONSOLE: 029764.937 wl0: upgraded phy to 4x4 CONSOLE: 029764.937 wl0 wlc dfs handle modeswitch: upgrade completed 1402 CONSOLE: 029764.937 wl0 wlc dfs handle modeswitch: new state 4 in idle state Page 190 of 272

CONSOLE: 029764.937 wl0: channel 56 put out of service chspecd038 CONSOLE: 029764.937 wl0: channel 60 put out of service chspecd03c CONSOLE: 029764.937 wl0: DFS WLC E RADAR DETECTED 181b7/0000 on ch 0xe03a going to ch 0xe09b CONSOLE: 029764.943 wl0: dfs : state to IDLE chanspec 149/80 at 0ms CONSOLE: 029764.943 wl0: Skip CAC - channel 0xe09b is already available. Zero duration. # wl chanspec 149/80 (0xe09b) # wl chan info Channel $3\overline{6}$ A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 60 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 120 Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 132 A Band, RADAR Sensitive, Passive Channel 136 Channel 140 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 144 Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 191 of 272

5.8.8. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5490	5569	79	75.976	104.0	100

Page 192 of 272

DETECTION BANDWIDTH PROBABILITY

Frequency (MHz)Number of TrialsNumber DetectedDetection (%)Mark54891000054901010100FL54951010100100550010101001005505101010010055101010100100551510101001005520101010010055251010101005530101010010055351010101005540101010010055551010101005555101010100556610101001005566101010010055681010100100		BANDWIDTH P dwidth Test Res aveform: 1 us P	sults	44352	DFS 1 Ises per Burst
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frequency	Number	Number	Detection	Mark
5490 10 10 100 FL 5495 10 10 10 100 10 5500 10 10 100 100 10 5505 10 10 100 100 100 5510 10 10 100 100 100 5515 10 10 100 100 100 5520 10 10 100 100 100 5525 10 10 100 100 100 5530 10 10 100 100 100 5535 10 10 100 100 100 5540 10 10 100 100 100 100 100 100 100 100 100 15555 10 10 100 100 100 100 15565 10 10 100 100 100 100 15565 10 10	(MHz)	of Trials	Detected	(%)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5489	10	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5490	10	10	100	FL
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5495	10	10	100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5500	10	10	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5505	10	10	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5510	10	10	100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5515	10	10	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5520	10	10	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5525	10	10	100	
5540 10 10 100 5545 10 10 100 5550 10 10 100 5555 10 10 100 5555 10 10 100 5560 10 10 100 5565 10 9 90 5566 10 10 100 5567 10 10 100	5530	10	10	100	
5545 10 10 100 5550 10 10 100 5555 10 10 100 5560 10 10 100 5565 10 9 90 5566 10 10 100 5567 10 10 100	5535	10	10	100	
5550 10 10 100 5555 10 10 100 5560 10 10 100 5565 10 9 90 5566 10 10 100 5567 10 10 100	5540	10	10	100	
5555 10 10 100 5555 10 10 100 5560 10 10 100 5565 10 9 90 5566 10 10 100 5567 10 10 100	5545	10	10	100	
5560 10 10 100 5565 10 9 90 5566 10 10 100 5567 10 10 100	5550	10	10	100	
5565 10 9 90 5566 10 10 100 5567 10 10 100	5555	10	10	100	
5566 10 10 100 5567 10 10 100	5560	10	10	100	
5567 10 10 100	5565	10	9	90	
	5566	10	10	100	
5568 10 10 100	5567	10	10	100	
	5568	10	10	100	
5569 10 10 100 FH	5569	10	10	100	FH
5570 1 0 0	5570	1	0	0	

Page 193 of 272

5.8.9. IN-SERVICE MONITORING

RESULTS

Signal Type	Number	Detection	Limit	Pass/Fail		ction width		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	96.67	60	Pass	5490	5569	75.98	DFS 1	29445	Version 3.0
FCC Short Pulse Type 2	30	80.00	60	Pass	5490	5569	75.98	DFS 1	29445	Version 3.0
FCC Short Pulse Type 3	30	76.67	60	Pass	5490	5569	75.98	DFS 1	29445	Version 3.0
FCC Short Pulse Type 4	30	76.67	60	Pass	5490	5569	75.98	DFS 1	29445	Version 3.0
Aggregate		82.50	80	Pass						
FCC Long Pulse Type 5	30	83.33	80	Pass	5490	5569	75.98	DFS 1	29445	Version 3.0
FCC Hopping Type 6	80	97.50	70	Pass	5490	5569	75.98	DFS 1	44352	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 194 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	A	5530	No
1002	1	938	57	Α	5530	Yes
1003	1	638	83	А	5530	Yes
1004	1	758	70	А	5530	Yes
1005	1	738	72	А	5530	Yes
1006	1	878	61	А	5530	Yes
1007	1	818	65	Α	5530	Yes
1008	1	618	86	Α	5530	Yes
1009	1	658	81	Α	5530	Yes
1010	1	898	59	Α	5530	Yes
1011	1	518	102	Α	5530	Yes
1012	1	778	68	Α	5530	Yes
1013	1	718	74	Α	5530	Yes
1014	1	858	62	А	5530	Yes
1015	1	838	63	А	5530	Yes
1016	1	1493	36	В	5530	Yes
1017	1	1514	35	В	5530	Yes
1018	1	2017	27	В	5530	Yes
1019	1	2167	25	В	5530	Yes
1020	1	2800	19	В	5530	Yes
1021	1	1885	28	В	5530	Yes
1022	1	2647	20	В	5530	Yes
1023	1	667	80	В	5530	Yes
1024	1	1558	34	В	5530	Yes
1025	1	2255	24	В	5530	Yes
1026	1	2082	26	В	5530	Yes
1027	1	2909	19	В	5530	Yes
1028	1	2864	19	В	5530	Yes
1029	1	2626	21	В	5530	Yes
1030	1	2712	20	В	5530	Yes

Page 195 of 272

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Frequency	Successful Detection
	(us)	(us)		(MHz)	(Yes/No)
2001	3	158	27	5530	Yes
2002	2.2	223	27	5530	Yes
2003	2	195	28	5530	Yes
2004	1.5	183	25	5530	Yes
2005	3.7	164	26	5530	Yes
2006	1.4	156	27	5530	Yes
2007	3.8	179	29	5530	Yes
2008	1.8	218	24	5530	No
2009	4.4	208	29	5530	Yes
2010	2.6	170	24	5530	Yes
2011	1.5	163	23	5530	Yes
2012	4	210	29	5530	Yes
2013	1	170	29	5530	No
2014	1.8	183	28	5530	No
2015	1.1	228	25	5530	Yes
2016	2.1	203	27	5530	No
2017	3.6	171	28	5530	No
2018	2.9	154	28	5530	No
2019	4.8	170	29	5530	Yes
2020	4.3	195	26	5530	Yes
2021	4.3	176	27	5530	Yes
2022	2.1	168	28	5530	Yes
2023	4.4	192	23	5530	Yes
2024	2.4	230	25	5530	Yes
2025	5	220	24	5530	Yes
2026	1.3	182	25	5530	Yes
2027	2.1	176	24	5530	Yes
2028	4.6	223	23	5530	Yes
2029	3.8	183	23	5530	Yes
2030	2.4	196	29	5530	Yes

Page 196 of 272

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Frequency	Successful Detection
	(us)	(us)		(MHz)	(Yes/No)
3001	6.8	281	17	5530	Yes
3002	7.7	335	18	5530	Yes
3003	9.5	487	17	5530	Yes
3004	6.6	436	18	5530	Yes
3005	8.5	483	17	5530	Yes
3006	8	445	16	5530	Yes
3007	6.1	254	17	5530	Yes
3008	9.9	479	17	5530	Yes
3009	8.2	434	18	5530	Yes
3010	6.1	421	18	5530	Yes
3011	6.8	389	18	5530	Yes
3012	9.1	271	16	5530	Yes
3013	9.9	251	18	5530	No
3014	8.3	279	18	5530	Yes
3015	7.5	273	18	5530	No
3016	6.1	314	17	5530	Yes
3017	9.6	453	16	5530	Yes
3018	8.6	256	17	5530	No
3019	8.2	290	16	5530	Yes
3020	9.4	357	18	5530	Yes
3021	7.2	404	16	5530	No
3022	6.7	365	18	5530	Yes
3023	8.9	425	17	5530	Yes
3024	8.6	399	16	5530	No
3025	6.9	354	17	5530	Yes
3026	8.9	341	17	5530	No
3027	9.6	309	17	5530	Yes
3028	7.8	442	18	5530	Yes
3029	8.6	423	17	5530	No
3030	7	451	17	5530	Yes

Page 197 of 272

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
4001	11.5	444	16	5530	Yes
4002	13.2	485	16	5530	Yes
4003	16.1	374	16	5530	No
4004	14	427	13	5530	Yes
4005	13	462	16	5530	Yes
4006	15.7	277	13	5530	Yes
4007	20	324	16	5530	Yes
4008	18.9	286	12	5530	Yes
4009	14.6	346	13	5530	Yes
4010	13.9	320	16	5530	Yes
4011	19.2	275	15	5530	No
4012	14.7	262	13	5530	No
4013	16.2	481	12	5530	Yes
4014	12.1	363	14	5530	Yes
4015	14.1	477	16	5530	No
4016	19.6	372	12	5530	No
4017	17.7	498	15	5530	Yes
4018	19.4	406	14	5530	Yes
4019	18	294	12	5530	Yes
4020	11.1	348	16	5530	Yes
4021	19.3	382	12	5530	No
4022	13.9	347	15	5530	Yes
4023	13.5	394	15	5530	No
4024	12.3	355	13	5530	Yes
4025	17.1	415	14	5530	Yes
4026	16.4	390	12	5530	Yes
4027	17.4	345	16	5530	Yes
4028	17.2	332	15	5530	Yes
4029	18.7	299	14	5530	Yes
4030	14.6	432	13	5530	Yes

Page 198 of 272

TYPE 5 DETECTION PROBABILITY

Trial		Radar Type 5 Successful Detection
	(MHz)	(Yes/No)
1	5530	Yes
2	5530	Yes
3	5530	Yes
4	5530	Yes
5	5530	Yes
6	5530	No
7	5530	Yes
8	5530	Yes
9	5530	Yes
10	5530	Yes
11	5499	No
12	5498	Yes
13	5497	No
14	5499	Yes
15	5495	Yes
16	5499	No
17	5499	No
18	5496	Yes
19	5498	Yes
20	5500	Yes
21	5565	Yes
22	5565	Yes
23	5562	Yes
24	5560	Yes
25	5563	Yes
26	5562	Yes
27	5563	Yes
28	5564	Yes
29	5562	Yes
30	5564	Yes

Note: The Type 5 randomized parameters tested are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

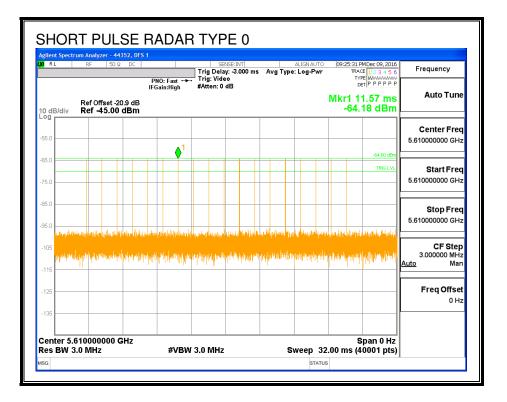
1 us Pulse	for FCC Hopping Rada Width, 333 us PRI, 9 ust 2005 Hopping Se	9 Pulses per Burst,	1 Burst per Hop	
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	180	5490	20	Yes
2	655	5491	15	Yes
3	1130	5492	15	Yes
4	1605	5493	12	Yes
5	2080	5494	18	No
6 7	2555 3030	5495 5496	17 20	Yes Yes
8	3505	5496	20	Yes
9	3980	5497	10	Yes
	4455	5499	20	Yes
11	4930	5500	13	Yes
12	5405	5501	16	Yes
13	5880	5502	17	Yes
14	6355	5503	15	Yes
15	6830	5504	19	Yes
16	7305	5505	18	Yes
17	7780	5506	23	Yes
18	8255	5507	14	Yes
19	8730	5508	16	Yes
20	9205	5509	25	Yes
21	9680	5510	18	Yes
22	10155	5511	11	Yes
23	10630	5512	15	Yes
24	11105	5513	20	Yes
25	11580	5514	17	Yes
26	12055	5515	15	Yes
27	12530	5516	18	Yes
28	13005 13480	5517 5518	21 16	Yes
29 30	13955	5519	10	Yes Yes
31	14430	5520	21	Yes
32	14905	5521	18	Yes
33	15380	5522	16	Yes
34	15855	5523	15	Yes
35	16330	5524	21	Yes
36	16805	5525	15	Yes
37	17280	5526	15	Yes
38	17755	5527	20	Yes
39	18230	5528	15	Yes

Page 200 of 272

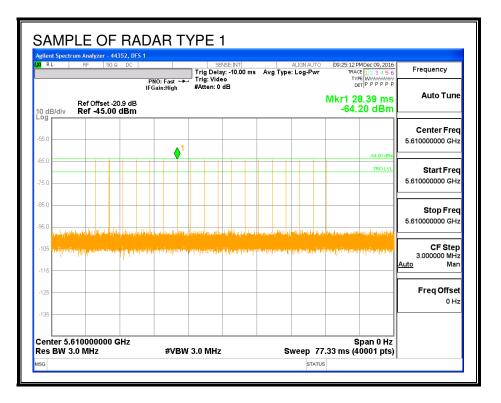
TYPE 6 DETECTION PROBABILITY (CONTINUED)

40	10705	6620	15	Vac
40 41	18705	5529	23	Yes
	19180	5530		Yes
42	19655	5531	18	Yes
43	20130	5532	24	Yes
44	20605	5533	15	Yes
45	21080	5534	7	No
46	21555	5535	15	Yes
47	22030	5536	14	Yes
48	22505	5537	17	Yes
49	22980	5538	18	Yes
50	23455	5539	20	Yes
51	23930	5540	16	Yes
52	24405	5541	13	Yes
53	24880	5542	15	Yes
54	25355	5543	13	Yes
55	25830	5544	17	Yes
56	26305	5545	17	Yes
57	26780	5546	18	Yes
58	27255	5547	13	Yes
59	27730	5548	10	Yes
60	28205	5549	16	Yes
61	28680	5550	17	Yes
62	29155	5551	19	Yes
63	29630	5552	16	Yes
64	30105	5553	18	Yes
65	30580	5554	10	Yes
66	31055	5555	19	Yes
67			19	
	31530	5556		Yes
68	32005	5557	11	Yes
69	32480	5558	15	Yes
70	32955	5559	14	Yes
71	33430	5560	7	Yes
72	33905	5561	20	Yes
73	34380	5562	15	Yes
74	34855	5563	13	Yes
75	35330	5564	17	Yes
76	35805	5565	11	Yes
77	36280	5566	19	Yes
78	36755	5567	19	Yes
79	37230	5568	12	Yes
80	37705	5569	12	Yes

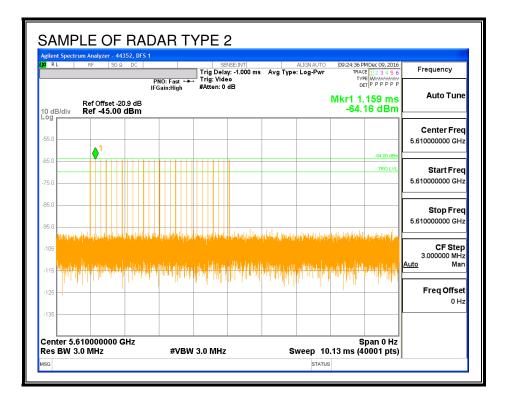
Page 201 of 272

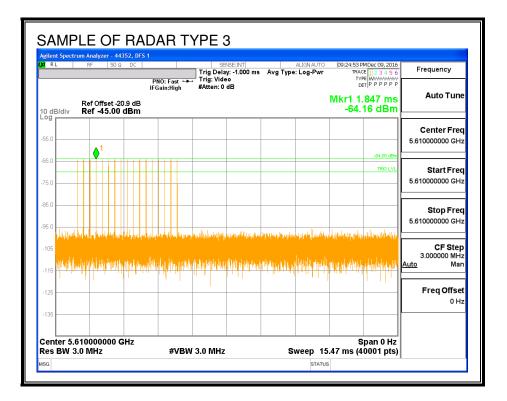

5.9. HIGH BAND RESULTS FOR 160 MHz BANDWIDTH (80 MHz HIGH COMPONENT)

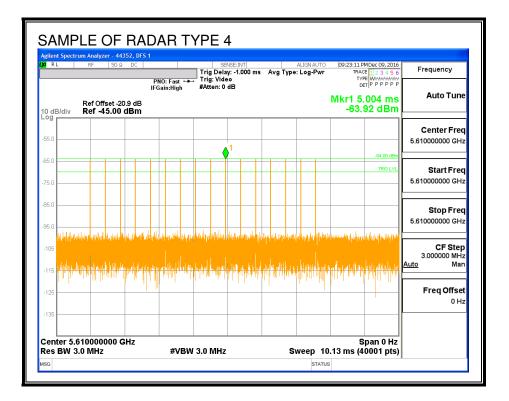
5.9.1. TEST CHANNEL

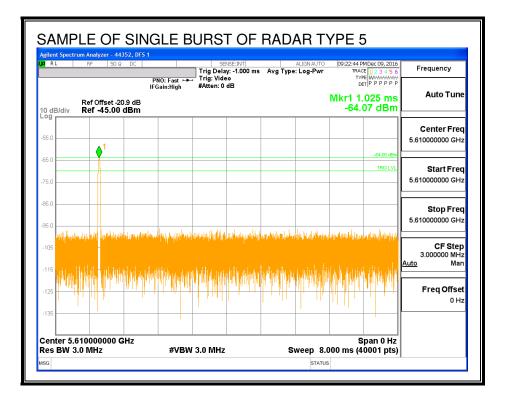

All tests were performed at a channel center frequency of 5610 MHz.

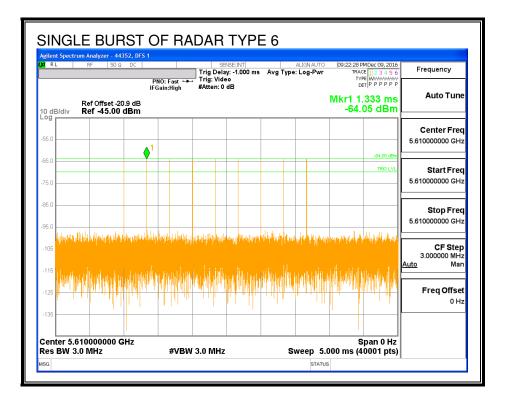
5.9.2. RADAR WAVEFORMS AND TRAFFIC


RADAR WAVEFORMS

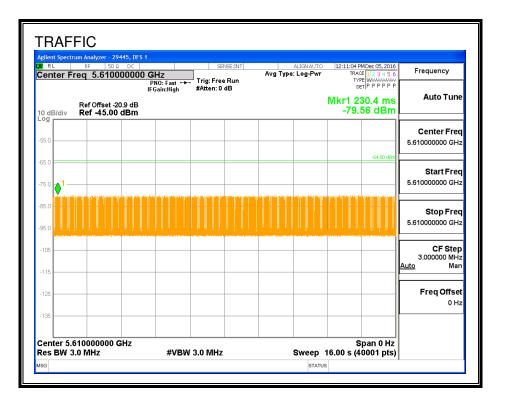

Page 202 of 272


Page 203 of 272

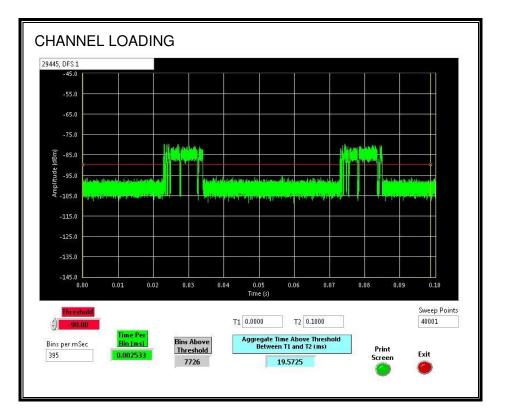

Page 204 of 272


Page 205 of 272

Page 206 of 272



Page 207 of 272


Page 208 of 272

TRAFFIC

Page 209 of 272

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 19.57%

5.9.3. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

Page 210 of 272

5.9.1. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE CAC CYCLE TIME

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

Page 211 of 272

QUANTITATIVE RESULTS

No Radar Triggered

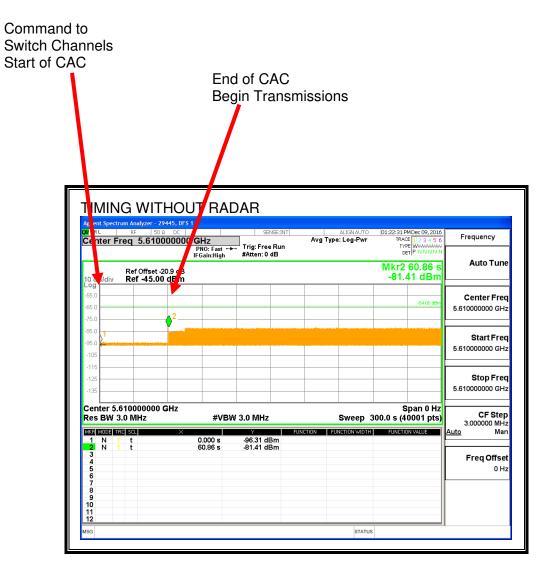
Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	60.9	60.86

Radar Near Beginning of CAC

Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC
(sec)	(sec)	(sec)
0	3.263	3.263

Radar Near End of CAC

Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC
(sec)	(sec)	(sec)
0	57.05	57.05


QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 212 of 272

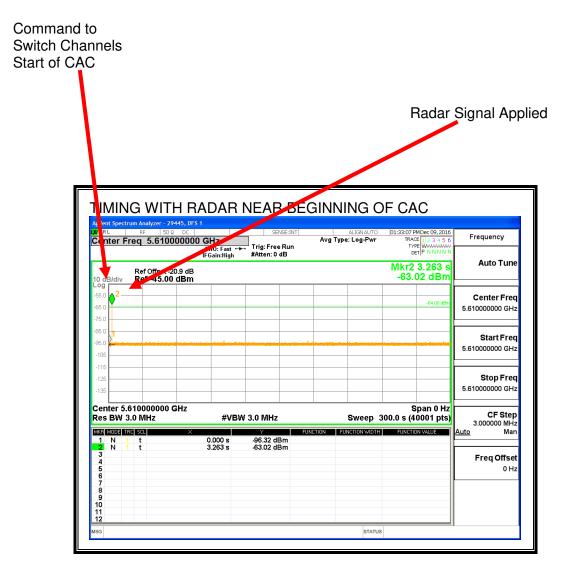
TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the CAC period.

Page 213 of 272

Log File of CAC Timing Without Radar

wl chanspec 120/160 (0xed72)
wl up
CONSOLE: 036777.517 wl0: wl_open
CONSOLE: 036777.548 wl0: chanspec ed72, 60 second CAC time
CONSOLE: 036777.548 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check
CONSOLE: 036837.698 CAC duration 0
CONSOLE: 036837.698 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM)
CONSOLE: 036837.799 wl0: dfs : state to In-Service Monitoring(ISM) chanspec 120/160 at 60000ms
Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive Channel 100 A Band, RADAR Sensitive Channel 104 A Band, RADAR Sensitive Channel 108 A Band, RADAR Sensitive Channel 112 A Band, RADAR Sensitive Channel 116 A Band, RADAR Sensitive Channel 116 A Band, RADAR Sensitive Channel 120 A Band, RADAR Sensitive Channel 124 A Band, RADAR Sensitive Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 145 A Band Channel 157 A Band Channel 161 A Band Channel 161 A Band


 Page 214 of 272

 UL VERIFICATION SERVICES INC.

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

TIMING WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 215 of 272

TIMING WITH RADAR NEAR BEGINNING OF CAC

wl chanspec 120/160 (0xed72) # wl up CONSOLE: 037441.428 wl0: chanspec ed72, 60 second CAC time CONSOLE: 037441.428 DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check CONSOLE: 037444.128 wl0: DFS: radar info=0x00000, radar info 2=0x181f7 CONSOLE: 037444.128 WLO: DFS: UNCLASSIFIED ############ RADAR DETECTED ON U80 CHANNEL 120/160 ########## min pw=31, subband result=6, AT 2550MS CONSOLE: 037444.128 wl0: channel 120 put out of service chspecd078 CONSOLE: 037444.128 wl0: channel 124 put out of service chspecd07c CONSOLE: 037444.128 wl0: DFS WLC E RADAR DETECTED 0000/181f7 on ch 0xed72 going to ch 0xe09b CONSOLE: 037444.134 DFS State PRE-ISM Channel Availability Check -> IDLE CONSOLE: 037444.134 wl0: dfs : state to IDLE chanspec 149/80 at 2550ms CONSOLE: 037444.134 wl0: Skip CAC - channel 0xe09b is already available. Zero duration. # wl chanspec 149/80 (0xe09b)

Page 216 of 272

	36 A B 40 A B 44 A B 48 A B 52 A B	and and and and and,			tive, Pass				
					tive, Pass				
					tive, Pass				
					tive, Pass				
			-		Sensitive				
					Sensitive				
					Sensitive				
					Sensitive				c
				RADAR	Sensitive	, Passive,	Temporarily	Out	ΟÍ
Service					a			a 1	6
				RADAR	Sensitive	, Passive,	Temporarily	Out	ΟÍ
Service					a			a 1	6
				RADAR	Sensitive	, Passive,	Temporarily	Out	ΟÍ
Service									-
				RADAR	Sensitive	, Passive,	Temporarily	Out	of
Service									
					Sensitive				
					Sensitive				
Channel	-		-		Sensitive				
Channel			-	RADAR	Sensitive	, Passive			
Channel									
Channel									
Channel									
Channel									
Channel	165	A	Band						

Page 217 of 272

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

				Radar	Signal App
	TH RADAR		D OF CAC		
ent Spectrum Analyzer RL RF	50 Ω DC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:44:14 PMDec 09, 2016 TRACE 1 2 3 4 5 6	Frequency
nter Freq 5.61	PNO: Fast IFGain:11 an	Trig: Free Run #Atten: 0 dB	Avg Type. Log-rwi	TYPE WWWWWWW DET P N N N N N	
	t -20.9 dB 00 dBm			Mkr2 57.05 s -63.11 dBm	Auto Tune
i.o	2			-64.00 dBm	Center Freq
5.0					5.610000000 GHz
i.0 1					Start Freq
05					5.610000000 GHz
25					Stop Freq
35					5.610000000 GHz
enter 5.6100000 es BW 3.0 MHz		W 3.0 MHz	Sweep 3	Span 0 Hz 00.0 s (40001 pts)	CF Step
R MODE TRC SCL 1 N 1 t	× 0.000 s	-95.41 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	3.000000 MHz <u>Auto</u> Man
2 N 1 t 3	57.05 s	-63.11 dBm			Freq Offset
4 5 5 7					0 Hz
7 3					
D					
2			STATUS		

No EUT transmissions were observed after the radar signal.

Page 218 of 272

TIMING WITH RADAR NEAR END OF CAC

wl chanspec
120/160 (0xed72)

wl up

CONSOLE: 038099.671 wl0: wl open

CONSOLE: 038099.703 wl0: chanspec ed72, 60 second CAC time

CONSOLE: 038099.703 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check

CONSOLE: 038156.402 wl0: DFS: radar info=0x00000, radar info 2=0x181e7

CONSOLE: 038156.402 wl0: channel 120 put out of service chspecd078

CONSOLE: 038156.402 wl0: channel 124 put out of service chspecd07c

CONSOLE: 038156.402 wl0: DFS WLC_E_RADAR_DETECTED 0000/181e7 on ch 0xed72 going to ch 0xe02a

CONSOLE: 038156.408 wl0: dfs : state to IDLE chanspec 36/80 at 56550ms

wl chanspec
36/80 (0xe02a)

Page 219 of 272

	36 A B 40 A B 44 A B 48 A B 52 A B	and and and and and,			tive, Pa					
					tive, Pa					
					tive, Pa					
					tive, Pa					
					Sensitiv					
					Sensitiv					
					Sensitiv					
					Sensitiv					-
				RADAR	Sensitiv	e,	Passive,	Temporarily	Out	of
Service										-
				RADAR	Sensitiv	e,	Passive,	Temporarily	Out	of
Service										-
				RADAR	Sensitiv	re,	Passive,	Temporarily	Out	of
Service										
				RADAR	Sensitiv	e,	Passive,	Temporarily	Out	of
Service										
					Sensitiv					
					Sensitiv					
Channel	-		-		Sensitiv					
Channel	144	A	Band,	RADAR	Sensitiv	e,	Passive			
Channel										
Channel										
Channel	157	A	Band							
Channel										
Channel	165	A	Band							

Page 220 of 272

5.9.2. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

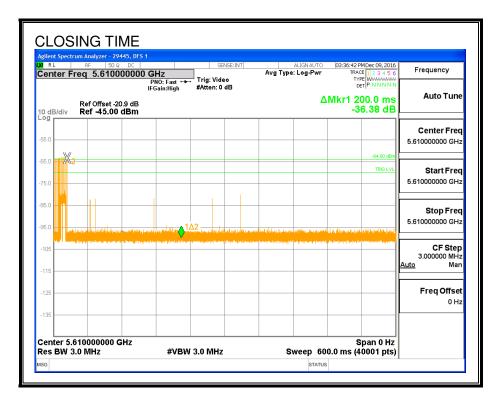
The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.3172	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
1.2	60

Page 221 of 272


MOVE TIME

	000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	03:28:00 PMDec 09, 2016 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Frequency
	IFGain:High	#Atten: 0 dB	Δ	Mkr1 317.2 ms	Auto Tune
Ref -45.00 dE	Bm			-19.92 dB	
×2 1Δ2				-64.00 dBm	Center Freq 5.61000000 GHz
					Start Freq 5.610000000 GHz
					Stop Freq 5.610000000 GHz
.0 MHz	- #VB\		•	、 · · ·	CF Step 3.000000 MHz Auto Man
t (Δ) t					Freq Offset
	Ref Offset 20.9 Ref -45.00 dB 2 1∆2 1∆2 1∆2 1∆2 1∆2 1∆2 1∆2 1∆2 1∆2 1	req 5.61000000 GHz PN0: Fast → IFGain:High Ref Offset -20.9 dB Ref -45.00 dBm 2 2 2 1Δ2 1Δ2 3 100000000 GHz 0 MHz #VBi Status 2 4 2 2 4 2 3 12 2 3 12 2 3 12 2 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 12 12 12 12 12 12 12 12 12	req 5.61000000 GHz Trig: Free Run #FGain:High Trig: Free Run #Atten: 0 dB Ref Offset -20.9 dB Ref -45.00 dBm #Atten: 0 dB 2 2 2 2 2 1∆2 2 2 50000000 GHz #VBW 3.0 MHz 8 610000000 GHz .0 MHz #VBW 3.0 MHz 61000 317.2 ms (Δ) 19.92 dB	reg 5.61000000 GHz PN0: Fast → IrGain:High Avg Type: Log-Pwr Ref Offset -20.9 dB Ref -45.00 dBm Δ 2 Δ 1Δ2 Δ 1Δ2 Δ 510000000 GHz #VBW 3.0 MHz Sweep ' Function Communication 400 GHz 0 MHz #VBW 3.0 MHz Sweep ' Function	Proce <

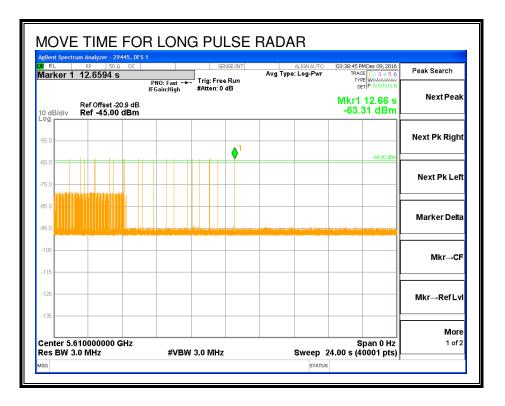
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 222 of 272

CHANNEL CLOSING TIME

Page 223 of 272

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME


Only intermittent transmissions are observed during the aggregate monitoring period.

Page 224 of 272

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 225 of 272

5.9.3. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

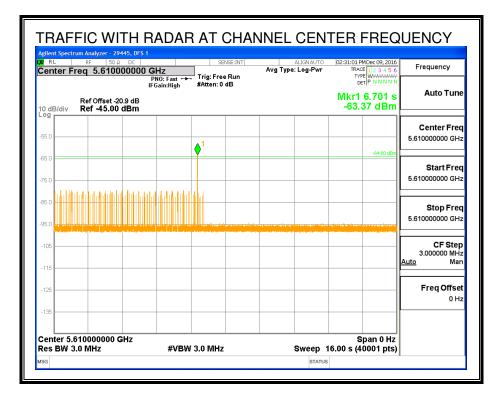
gilent Spectrum Analyze RL RF enter Freq 5.6	50 Ω DC 10000000 GI	IO East ↔ T	ig: Free Run	ALIGNA Avg Type: Log-F	wr T	15 PM Dec 05, 2016 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P P P P P P	Frequency
dB/div Ref -4		ain:High #/	atten: 0 dB		∆Mkr1	1.800 ks -6.29 dB	Auto Tune
5.0						-64.00 dBm	Center Free 5.610000000 GH:
5.0						-64.00 dBm	Start Free 5.610000000 GH:
5.0 X2 5.0 110 1 10 10 10 10	1 de 6 es la sec a statue à	(b. ee. college), or colle			d the state of the state of the	142	Stop Free 5.61000000 GH:
15							CF Step 3.000000 MH <u>Auto</u> Mar
25							Freq Offse 0 H
enter 5.6100000	00 GHz					Span 0 Hz	

Page 226 of 272

5.9.4. 20 MHZ SUB-BAND CHANNEL RADAR DETECTION

THEORY OF OPERATION

The EUT radio is capable of distinguishing radar within any 20 MHz sub-band of a channel. When radar is detected at least one 20 MHz channel is removed from service. The quantity of 20 MHz channels removed from service is determined by the radar frequency within the DFS test channel.


TEST PROCEDURE

A link was established on the DFS test channel then traffic was initiated. Radar was then triggered on the center frequency of the DFS test channel, a sample plot was captured and a log file was generated. Subsequent trials were conducted and radar was triggered upon various center frequencies within the DFS test channel.

a software reboot command was issued to the EUT. A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

Page 227 of 272

SAMPLE PLOT WITH RADAR BURST ON THE DFS TEST CHANNEL CENTER FREQUENCY

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 228 of 272

Log File of Channel Status After Radar Burst Triggered at 5610 MHz

CONSOLE: 041226.241 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON U80 CHANNEL 120/160 ########## min pw=31, subband result=6, AT 344550MS CONSOLE: 041226.241 wl0: channel 120 put out of service chspecd078 CONSOLE: 041226.241 wl0: channel 124 put out of service chspecd07c CONSOLE: 041226.241 wl0: DFS WLC E RADAR DETECTED 0000/181f7 on ch 0xed72 going to ch 0xe09b CONSOLE: 041226.241 Selected new channel 0xe09b Announcement(CSA) chanspec current 120/160 next 149/80 at 344550ms, starting CSA process # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 108 Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 120 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 229 of 272

Log File of Channel Status After Radar Burst Triggered at 5530 MHz

CONSOLE: 041375.960 WLO: DFS: UNCLASSIFIED ########## RADAR DETECTED ON CHANNEL 120/160 ########## min pw=30, subband result=6, AT 122400MS CONSOLE: 041375.960 wl0: channel 104 put out of service chspecd068 CONSOLE: 041375.960 wl0: channel 108 put out of service chspecd06c CONSOLE: 041375.960 wlO: DFS WLC E RADAR DETECTED 181e7/0000 on ch 0xed72 going to ch 0xe09b CONSOLE: 041375.961 wl0: dfs : state to Channel Switching Announcement(CSA) chanspec current 120/160 next 149/80 at 122400ms, starting CSA process #wl chanspec 149/80 (0xe09b) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 108 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 120 Channel 124 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 128 Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 144 Channel 149 A Band Channel 153 A Band A Band Channel 157 Channel 161 A Band Channel 165 A Band

Page 230 of 272

Log File of Channel Status After Radar Burst Triggered at 5510 MHz

CONSOLE: 041431.525 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON CHANNEL 120/160 ########## min pw=25, subband result=12, AT 27600MS CONSOLE: 041431.525 wl0: channel 100 put out of service chspecd064 CONSOLE: 041431.525 wl0: channel 104 put out of service chspecd068 CONSOLE: 041431.525 wl0: DFS WLC E RADAR DETECTED 30197/0000 on ch 0xed72 going to ch 0xe02a CONSOLE: 041431.526 wl0: dfs : state to Channel Switching Announcement(CSA) chanspec current 120/160 next 36/80 at 27600ms, starting CSA process wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive Channel 120 Channel 124 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 128 Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 144 Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 231 of 272

Log File of Channel Status After Radar Burst Triggered at 5500 MHz

CONSOLE: 041479.289 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON CHANNEL 120/160 ########## min pw=25, subband result=8, AT 25950MS CONSOLE: 041479.289 wl0: channel 100 put out of service chspecd064 CONSOLE: 041479.290 wl0: DFS WLC E RADAR DETECTED 20197/0000 on ch 0xed72 going to ch 0xe02a CONSOLE: 041479.290 wl0: dfs : state to Channel Switching Announcement(CSA) chanspec current 120/160 next 36/80 at 25950ms, starting CSA process # wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 120 Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 132 Channel 136 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 140 Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 232 of 272

Log File of Channel Status After Radar Burst Triggered at 5520 MHz

CONSOLE: 041504.641 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON CHANNEL 120/160 ########## min pw=25, subband result=4, AT 10500MS CONSOLE: 041504.641 wl0: channel 104 put out of service chspecd068 CONSOLE: 041504.641 no usable channels found in dfs channel forced list; going random now CONSOLE: 041504.642 wl0: dfs : state to Channel Switching Announcement(CSA) chanspec current 120/160 next 36/80 at 10500ms, starting CSA process # wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 120 Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 132 Channel 136 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 140 Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 233 of 272

Log File of Channel Status After Radar Burst Triggered at 5540 MHz

CONSOLE: 041551.352 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON CHANNEL 120/160 ########## min pw=25, subband result=2, AT 29400MS CONSOLE: 041551.352 wl0: channel 108 put out of service chspecd06c CONSOLE: 041551.353 wl0: dfs : state to Channel Switching Announcement(CSA) chanspec current 120/160 next 149/80 at 29400ms, starting CSA process #wl chanspec 149/80 (0xe09b) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Channel 108 Service for 31 minutes Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 132 Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 144 Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 234 of 272

Log File of Channel Status After Radar Burst Triggered at 5560 MHz

CONSOLE: 041590.221 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON CHANNEL 120/160 ########## min pw=24, subband result=1, AT 23100MS CONSOLE: 041590.221 wl0: channel 112 put out of service chspecd070 CONSOLE: 041590.221 no usable channels found in dfs channel forced list; going random now Announcement(CSA) chanspec current 120/160 next 149/80 at 23100ms, starting CSA process # wl chanspec 149/80 (0xe09b) wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 100 Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive, Temporarily Out of Channel 112 Service for 31 minutes Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 124 Channel 128 A Band, RADAR Sensitive, Passive Channel 132 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 136 Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band A Band Channel 161 Channel 165 A Band

Page 235 of 272

wl chanspec

Log File of Channel Status After Radar Burst Triggered at 5580 MHz

CONSOLE: 041641.304 wl0: channel 116 put out of service chspecd074

CONSOLE: 041641.304 no usable channels found in dfs_channel_forced list; going random now

CONSOLE: 041641.304 wl0: DFS WLC_E_RADAR_DETECTED 0000/201a7 on ch 0xed72 going to ch 0xe09b

CONSOLE: 041641.305 wl0: dfs : state to Channel Switching Announcement(CSA) chanspec current 120/160 next 149/80 at 29100ms, starting CSA process

```
149/80 (0xe09b)
# wl chan info
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
               A Band, RADAR Sensitive, Passive
Channel 104
               A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 108
Channel 112
               A Band, RADAR Sensitive, Passive
Channel 116
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 120
              A Band, RADAR Sensitive, Passive
Channel 124
               A Band, RADAR Sensitive, Passive
Channel 128
               A Band, RADAR Sensitive, Passive
Channel 132
               A Band, RADAR Sensitive, Passive
Channel 136
               A Band, RADAR Sensitive, Passive
              A Band, RADAR Sensitive, Passive
Channel 140
               A Band, RADAR Sensitive, Passive
Channel 144
Channel 149
               A Band
Channel 153
               A Band
Channel 157
               A Band
Channel 161
               A Band
               A Band
Channel 165
```

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 236 of 272

Log File of Channel Status After Radar Burst Triggered at 5600 MHz

CONSOLE: 041693.654 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON U80 CHANNEL 120/160 ########## min pw=26, subband result=4, AT 33600MS CONSOLE: 041693.654 wl0: channel 120 put out of service chspecd078 CONSOLE: 041693.654 no usable channels found in dfs channel forced list; going random now Announcement(CSA) chanspec current 120/160 next 149/80 at 33600ms, starting CSA process # wl chanspec 149/80 (0xe09b) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 120 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 144 Channel 149 A Band Channel 153 A Band A Band Channel 157 Channel 161 A Band Channel 165 A Band

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 237 of 272

Log File of Channel Status After Radar Burst Triggered at 5620 MHz

CONSOLE: 041741.588 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON U80 CHANNEL 120/160 ########## min pw=25, subband result=2, AT 22800MS CONSOLE: 041741.588 wl0: channel 124 put out of service chspecd07c Announcement(CSA) chanspec current 120/160 next 36/80 at 22800ms, starting CSA process # wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive, Temporarily Out of Channel 120 Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 136 Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Page 238 of 272

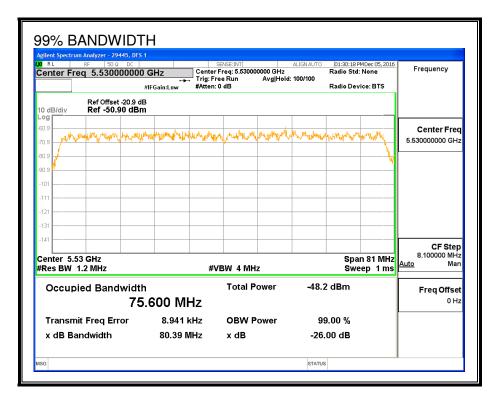
Log File of Channel Status After Radar Burst Triggered at 5640 MHz

CONSOLE: 041782.017 WLO: DFS: UNCLASSIFIED ########### RADAR DETECTED ON U80 CHANNEL 120/160 ########## min pw=23, subband result=1, AT 17400MS CONSOLE: 041782.017 wl0: channel 128 put out of service chspecd080 CONSOLE: 041782.018 wl0: dfs : state to Channel Switching Announcement(CSA) chanspec current 120/160 next 36/80 at 17400ms, starting CSA process # wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 104 Channel 108 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive Channel 112 Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

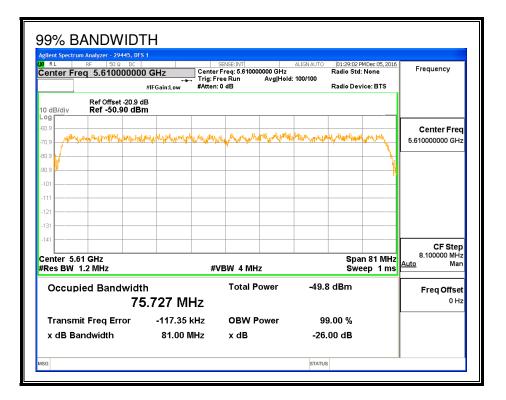
Page 239 of 272

5.9.5. DETECTION BANDWIDTH


REFERENCE PLOT OF 99% POWER BANDWIDTH (80 PLUS 80 MODE)

RL Center Fre	rf 50 Ω q 5.57000	00000 GI	Hz Gain:Low			0000 GHz Avg Hold	100/100	01:33:18 Radio Std Radio Dev		Frequency
0 dB/div	Ref Offset - Ref -50.9									
0.9	- Andre	da <mark>yaatiiy</mark> yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy	hal marked	-	philipsychon	than the ma	wahalarah	M		Center Fred 5.570000000 GHz
30.9 30.9 101 <mark>Minuta/8/14.4</mark>	upudru							Werd	huhamlannan	
111										
131										05.04-1
Center 5.57 Res BW 2				#VE	SW 8 MH	z		Spar Sw	n 240 MHz eep 1 ms	CF Step 24.000000 MHz <u>Auto</u> Mar
Occupi	ed Bandv		87 M	Hz	Total P	ower	-45.5	dBm		Freq Offset 0 Hz
Transmit x dB Bar	t Freq Erro	or	39.973 162.2 I		OBW P x dB	ower	99. -26.0	.00 % 0. dB		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888


Page 240 of 272

REFERENCE PLOT OF 99% POWER BANDWIDTH (80 MHz LOW COMPONENT)

Page 241 of 272

REFERENCE PLOT OF 99% POWER BANDWIDTH (80 MHz HIGH COMPONENT)

RESULTS (80 MHz HIGH COMPONENT)

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5572	5648	76	75.727	100.4	100

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 242 of 272

DETECTION BANDWIDTH PROBABILITY

DETECTION E	BANDWIDTH F	ROBABILITY	RESULTS	
	lwidth Test Res		29445	DFS 1
FCC Type 0 Wa	aveform: 1 us P		28 us PRI, 18 Pu	ilses per Burst
Frequency	Number	Number	Detection	Mark
(MHz)	of Trials	Detected	(%)	
5572	10	10	100	FL
5573	10	10	100	
5574	10	10	100	
5575	10	10	100	
5580	10	10	100	
5585	10	10	100	
5590	10	10	100	
5595	10	10	100	
5600	10	10	100	
5605	10	10	100	
5610	10	9	90	
5615	10	10	100	
5620	10	10	100	
5625	10	10	100	
5630	10	10	100	
5635	10	10	100	
5640	10	10	100	
5646	10	10	100	
5647	10	10	100	
5648	10	10	100	FH

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 243 of 272

5.9.6. IN-SERVICE MONITORING

RESULTS

Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band		80% Det	6 of BW		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH		FH5	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	100.00	60	Pass	5572	5648			75.73	DFS 1	44352	Version 3.0
FCC Short Pulse Type 2	30	86.67	60	Pass	5572	5648			75.73	DFS 1	44352	Version 3.0
FCC Short Pulse Type 3	30	70.00	60	Pass	5572	5648			75.73	DFS 1	44352	Version 3.0
FCC Short Pulse Type 4	30	83.33	60	Pass	5572	5648			75.73	DFS 1	44352	Version 3.0
Aggregate		85.00	80	Pass								
FCC Long Pulse Type 5	30	83.33	80	Pass	5572	5648	5580	5640	75.73	DFS 1	44352	Version 3.0
FCC Hopping Type 6	77	100.00	70	Pass	5572	5648				DFS 1	44352	Version 3.0

Page 244 of 272

TYPE 1 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5610	Yes
1002	1	938	57	Α	5610	Yes
1003	1	638	83	Α	5610	Yes
1004	1	758	70	Α	5610	Yes
1005	1	738	72	Α	5610	Yes
1006	1	878	61	Α	5610	Yes
1007	1	818	65	Α	5610	Yes
1008	1	618	86	Α	5610	Yes
1009	1	658	81	Α	5610	Yes
1010	1	898	59	Α	5610	Yes
1011	1	518	102	Α	5610	Yes
1012	1	778	68	Α	5610	Yes
1013	1	718	74	Α	5610	Yes
1014	1	858	62	Α	5610	Yes
1015	1	838	63	Α	5610	Yes
1016	1	1493	36	В	5610	Yes
1017	1	1514	35	В	5610	Yes
1018	1	2017	27	В	5610	Yes
1019	1	2167	25	В	5610	Yes
1020	1	2800	19	В	5610	Yes
1021	1	1885	28	В	5610	Yes
1022	1	2647	20	В	5610	Yes
1023	1	667	80	В	5610	Yes
1024	1	1558	34	В	5610	Yes
1025	1	2255	24	В	5610	Yes
1026	1	2082	26	В	5610	Yes
1027	1	2909	19	В	5610	Yes
1028	1	2864	19	В	5610	Yes
1029	1	2626	21	В	5610	Yes
1030	1	2712	20	В	5610	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 245 of 272

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
2001	3	158	27	5610	Yes
2001	2.2	223	27	5610	Yes
2002	2.2	195	28	5610	Yes
2003	1.5	183	25	5610	Yes
2004	3.7	164	26	5610	Yes
2005	1.4	156	20	5610	No
2000	3.8	179	29	5610	Yes
2008	1.8	218	24	5610	No
2000	4.4	208	29	5610	Yes
2010	2.6	170	24	5610	Yes
2010	1.5	163	23	5610	Yes
2012	4	210	29	5610	Yes
2012	1	170	29	5610	Yes
2014	1.8	183	28	5610	Yes
2015	1.1	228	25	5610	Yes
2016	2.1	203	27	5610	Yes
2017	3.6	171	28	5610	No
2018	2.9	154	28	5610	Yes
2019	4.8	170	29	5610	Yes
2020	4.3	195	26	5610	Yes
2021	4.3	176	27	5610	No
2022	2.1	168	28	5610	Yes
2023	4.4	192	23	5610	Yes
2024	2.4	230	25	5610	Yes
2025	5	220	24	5610	Yes
2026	1.3	182	25	5610	Yes
2027	2.1	176	24	5610	Yes
2028	4.6	223	23	5610	Yes
2029	3.8	183	23	5610	Yes
2030	2.4	196	29	5610	Yes

Page 246 of 272

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Frequency	Successful Detection
	(us)	(us)		(MHz)	(Yes/No)
3001	6.8	281	17	5610	Yes
3002	7.7	335	18	5610	No
3003	9.5	487	17	5610	No
3004	6.6	436	18	5610	Yes
3005	8.5	483	17	5610	Yes
3006	8	445	16	5610	Yes
3007	6.1	254	17	5610	Yes
3008	9.9	479	17	5610	Yes
3009	8.2	434	18	5610	Yes
3010	6.1	421	18	5610	Yes
3011	6.8	389	18	5610	Yes
3012	9.1	271	16	5610	Yes
3013	9.9	251	18	5610	No
3014	8.3	279	18	5610	No
3015	7.5	273	18	5610	Yes
3016	6.1	314	17	5610	Yes
3017	9.6	453	16	5610	No
3018	8.6	256	17	5610	Yes
3019	8.2	290	16	5610	Yes
3020	9.4	357	18	5610	Yes
3021	7.2	404	16	5610	Yes
3022	6.7	365	18	5610	Yes
3023	8.9	425	17	5610	No
3024	8.6	399	16	5610	No
3025	6.9	354	17	5610	No
3026	8.9	341	17	5610	No
3027	9.6	309	17	5610	Yes
3028	7.8	442	18	5610	Yes
3029	8.6	423	17	5610	Yes
3030	7	451	17	5610	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 247 of 272

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Frequency	Successful Detection
	(us)	(us)		(MHz)	(Yes/No)
4001	11.5	444	16	5610	Yes
4002	13.2	485	16	5610	Yes
4003	16.1	374	16	5610	Yes
4004	14	427	13	5610	Yes
4005	13	462	16	5610	Yes
4006	15.7	277	13	5610	Yes
4007	20	324	16	5610	Yes
4008	18.9	286	12	5610	Yes
4009	14.6	346	13	5610	Yes
4010	13.9	320	16	5610	No
4011	19.2	275	15	5610	Yes
4012	14.7	262	13	5610	Yes
4013	16.2	481	12	5610	Yes
4014	12.1	363	14	5610	Yes
4015	14.1	477	16	5610	Yes
4016	19.6	372	12	5610	Yes
4017	17.7	498	15	5610	Yes
4018	19.4	406	14	5610	No
4019	18	294	12	5610	Yes
4020	11.1	348	16	5610	Yes
4021	19.3	382	12	5610	No
4022	13.9	347	15	5610	No
4023	13.5	394	15	5610	Yes
4024	12.3	355	13	5610	Yes
4025	17.1	415	14	5610	Yes
4026	16.4	390	12	5610	No
4027	17.4	345	16	5610	Yes
4028	17.2	332	15	5610	Yes
4029	18.7	299	14	5610	Yes
4030	14.6	432	13	5610	Yes

Page 248 of 272

TYPE 5 DETECTION PROBABILITY

Trial	Frequency	Successful Detection
	(MHz)	(Yes/No)
1	5610	Yes
2	5610	Yes
3	5610	Yes
4	5610	Yes
5	5610	Yes
6	5610	Yes
7	5610	Yes
8	5610	Yes
9	5610	No
10	5610	Yes
11	5579	No
12	5578	Yes
13	5578	Yes
14	5579	Yes
15	5575	Yes
16	5579	Yes
17	5580	Yes
18	5576	Yes
19	5578	Yes
20	5580	Yes
21	5645	No
22	5645	Yes
23	5642	Yes
24	5640	No
25	5643	Yes
26	5642	Yes
27	5643	Yes
28	5644	Yes
29	5642	No
30	5643	Yes

Note: The Type 5 randomized parameters tested are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

	t for FCC Hopping Rada		1 Puret per Ver	
	e Width, 333 us PRI,		T Burst per Hop)
	just 2005 Hopping Se			C
Trial	Starting Index	Signal Generator	Hops within	Successful
	Within Sequence	Frequency	Detection BW	Detection
		(MHz)		(Yes/No)
1	158	5572	18	Yes
2	633	5573	15	Yes
3	1108	5574	20	Yes
4	1583	5575	15	Yes
5	2058	5576	15	Yes
6	2533	5577	16	Yes
7	3008	5578	15	Yes
8	3483	5579	10	Yes
9	3958	5580	14	Yes
10	4433	5581	12	Yes
11	4908	5582	17	Yes
12	5383	5583	26	Yes
13	5858	5584	14	Yes
14	6333	5585	18	Yes
15	6808	5586	11	Yes
16	7283	5587	20	Yes
17	7758	5588	17	Yes
18	8233	5589	19	Yes
19	8708	5590	16	Yes
20	9183	5591	12	Yes
21	9658	5592	20	Yes
22	10133	5593	23	Yes
23	10608	5594	17	Yes
24	11083	5595	16	Yes
25	11558	5596	16	Yes
26	12033	5597	15	Yes
27	12508	5598	14	Yes
28	12983	5599	16	Yes
29	13458	5600	11	Yes
30	13933	5601	13	Yes
31	14408	5602	11	Yes
32	14883	5603	13	Yes
33	15358	5604	19	Yes
34	15833	5605	15	Yes
35	16308	5606	19	Yes
36	16783	5607	13	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 250 of 272

TYPE 6 DETECTION PROBABILITY (CONTINUED)

37	17258	5608	18	Yes
38	17733	5609	14	Yes
39	18208	5610	16	Yes
40	18683	5611	17	Yes
40	19158	5612	20	Yes
42	19633	5613	19	Yes
42	20108	5614	15	Yes
43	20583	5615	15	Yes
44	21058		18	Yes
		5616	16	Yes
46	21533	5617		
47	22008	5618	17	Yes
48	22483	5619	11	Yes
49	22958	5620	17	Yes
50	23433	5621	22	Yes
51	23908	5622	21	Yes
52	24383	5623	12	Yes
53	24858	5624	15	Yes
54	25333	5625	14	Yes
55	25808	5626	18	Yes
56	26283	5627	16	Yes
57	26758	5628	18	Yes
58	27233	5629	19	Yes
59	27708	5630	18	Yes
60	28183	5631	11	Yes
61	28658	5632	19	Yes
62	29133	5633	17	Yes
63	29608	5634	13	Yes
64	30083	5635	10	Yes
65	30558	5636	17	Yes
66	31033	5637	14	Yes
67	31508	5638	19	Yes
68	31983	5639	14	Yes
69	32458	5640	20	Yes
70	32933	5641	17	Yes
71	33408	5642	16	Yes
72	33883	5643	17	Yes
73	34358	5644	20	Yes
74	34833	5645	19	Yes
75	35308	5646	12	Yes
76	35783	5647	15	Yes
77	36258	5648	14	Yes

Page 251 of 272

5.10. BRIDGE MODE RESULTS

Per KDB 905462, Section 5.1 (footnote 1):

Networks Access Points with Bridge and/or MESH modes of operation are permitted to operate in the DFS bands but must employ a DFS function. The functionality of the Bridge mode as specified in §15.403(a) must be validated in the DFS test report. Devices operating as relays must also employ DFS function. The method used to validate the functionality must be documented and validation data must be documented. Bridge mode can be validated by performing a test statistical performance check (Section 7.8.4) on any one of the radar types. This is an abbreviated test to verify DFS functionality. MESH mode operational methodology must be submitted in the application for certification for evaluation by the FCC.

Page 252 of 272

5.10.1. LOW BAND 20 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail		ction width		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	76.67	60	Pass	5290	5310	17.96	DFS 1	29445	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 253 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5300	No
1002	1	938	57	Α	5300	No
1003	1	638	83	Α	5300	Yes
1004	1	758	70	Α	5300	Yes
1005	1	738	72	Α	5300	Yes
1006	1	878	61	Α	5300	Yes
1007	1	818	65	Α	5300	Yes
1008	1	618	86	Α	5300	Yes
1009	1	658	81	Α	5300	Yes
1010	1	898	59	Α	5300	Yes
1011	1	518	102	Α	5300	Yes
1012	1	778	68	Α	5300	Yes
1013	1	718	74	Α	5300	Yes
1014	1	858	62	Α	5300	Yes
1015	1	838	63	А	5300	Yes
1016	1	1493	36	В	5300	Yes
1017	1	1514	35	В	5300	Yes
1018	1	2017	27	В	5300	No
1019	1	2167	25	В	5300	Yes
1020	1	2800	19	В	5300	Yes
1021	1	1885	28	В	5300	Yes
1022	1	2647	20	В	5300	No
1023	1	667	80	В	5300	Yes
1024	1	1558	34	В	5300	No
1025	1	2255	24	В	5300	Yes
1026	1	2082	26	В	5300	Yes
1027	1	2909	19	В	5300	Yes
1028	1	2864	19	В	5300	Yes
1029	1	2626	21	В	5300	No
1030	1	2712	20	В	5300	No

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 254 of 272

5.10.1. LOW BAND 40 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

RESULTS

Signal Type Number Detection Limit Pass/Fail Detection Test Employee In-Service of Trials (%) (%) FL FH OBW Location Number Version FCC Short Pulse Type 1 30 86.67 60 Pass 5290 5330 36.35 DFS 1 29445 Version 3.0	FCC Radar Test Summ	агу									
	Signal Type	Number	Detection	Limit	Pass/Fail				Test	Employee	
FCC Short Pulse Type 1 30 86.67 60 Pass 5290 5330 36.35 DFS 1 29445 Version 3.0		of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
	FCC Short Pulse Type 1	30	86.67	60	Pass	5290	5330	36.35	DFS 1	29445	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 255 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5300	Yes
1002	1	938	57	Α	5300	Yes
1003	1	638	83	А	5300	Yes
1004	1	758	70	А	5300	Yes
1005	1	738	72	Α	5300	Yes
1006	1	878	61	Α	5300	Yes
1007	1	818	65	Α	5300	Yes
1008	1	618	86	Α	5300	Yes
1009	1	658	81	Α	5300	Yes
1010	1	898	59	Α	5300	Yes
1011	1	518	102	Α	5300	Yes
1012	1	778	68	Α	5300	Yes
1013	1	718	74	Α	5300	Yes
1014	1	858	62	А	5300	Yes
1015	1	838	63	Α	5300	Yes
1016	1	1493	36	В	5300	Yes
1017	1	1514	35	В	5300	Yes
1018	1	2017	27	В	5300	Yes
1019	1	2167	25	В	5300	No
1020	1	2800	19	В	5300	Yes
1021	1	1885	28	В	5300	Yes
1022	1	2647	20	В	5300	No
1023	1	667	80	В	5300	Yes
1024	1	1558	34	В	5300	Yes
1025	1	2255	24	В	5300	Yes
1026	1	2082	26	В	5300	Yes
1027	1	2909	19	В	5300	No
1028	1	2864	19	В	5300	Yes
1029	1	2626	21	В	5300	Yes
1030	1	2712	20	В	5300	No

Page 256 of 272

5.10.2. LOW BAND 80 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	iary									
Signal Type	Number	Detection	Limit	Pass/Fail	Dete	ction				In-Service
Signal Type	numper	Detection	Linne	r ass/r aii	Bandwidth			Test	Employee	Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	96.67	60	Pass	5250	5330	76.15	DFS 1	29445	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 257 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5290	No
1002	1	938	57	Α	5290	Yes
1003	1	638	83	Α	5290	Yes
1004	1	758	70	А	5290	Yes
1005	1	738	72	А	5290	Yes
1006	1	878	61	А	5290	Yes
1007	1	818	65	Α	5290	Yes
1008	1	618	86	Α	5290	Yes
1009	1	658	81	Α	5290	Yes
1010	1	898	59	Α	5290	Yes
1011	1	518	102	Α	5290	Yes
1012	1	778	68	А	5290	Yes
1013	1	718	74	А	5290	Yes
1014	1	858	62	Α	5290	Yes
1015	1	838	63	Α	5290	Yes
1016	1	1493	36	В	5290	Yes
1017	1	1514	35	В	5290	Yes
1018	1	2017	27	В	5290	Yes
1019	1	2167	25	В	5290	Yes
1020	1	2800	19	В	5290	Yes
1021	1	1885	28	В	5290	Yes
1022	1	2647	20	В	5290	Yes
1023	1	667	80	В	5290	Yes
1024	1	1558	34	В	5290	Yes
1025	1	2255	24	В	5290	Yes
1026	1	2082	26	В	5290	Yes
1027	1	2909	19	В	5290	Yes
1028	1	2864	19	В	5290	Yes
1029	1	2626	21	В	5290	Yes
1030	1	2712	20	В	5290	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 258 of 272

5.10.3. LOW BAND 160 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING (80 MHz HIGH COMPONENT)

RESULTS

FCC Radar Test Summ	ary									
Signal Type	Number	Detection	Limit	Dace/Eail	Dete	ction				In-Service
Signal Type	numper	Detection	Limit	rass/raii	Band	width		Test	Employee	Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	100.00	60	Pass	5252	5328	75.65	DFS 1	29445	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 259 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5290	Yes
1002	1	938	57	Α	5290	Yes
1003	1	638	83	Α	5290	Yes
1004	1	758	70	А	5290	Yes
1005	1	738	72	А	5290	Yes
1006	1	878	61	А	5290	Yes
1007	1	818	65	Α	5290	Yes
1008	1	618	86	Α	5290	Yes
1009	1	658	81	Α	5290	Yes
1010	1	898	59	А	5290	Yes
1011	1	518	102	Α	5290	Yes
1012	1	778	68	Α	5290	Yes
1013	1	718	74	А	5290	Yes
1014	1	858	62	А	5290	Yes
1015	1	838	63	А	5290	Yes
1016	1	1493	36	В	5290	Yes
1017	1	1514	35	В	5290	Yes
1018	1	2017	27	В	5290	Yes
1019	1	2167	25	В	5290	Yes
1020	1	2800	19	В	5290	Yes
1021	1	1885	28	В	5290	Yes
1022	1	2647	20	В	5290	Yes
1023	1	667	80	В	5290	Yes
1024	1	1558	34	В	5290	Yes
1025	1	2255	24	В	5290	Yes
1026	1	2082	26	В	5290	Yes
1027	1	2909	19	В	5290	Yes
1028	1	2864	19	В	5290	Yes
1029	1	2626	21	В	5290	Yes
1030	1	2712	20	В	5290	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 260 of 272

5.10.4. HIGH BAND 20 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

RESULTS

Signal Type Number Detection Limit Pass/Fail Detection Test Employee In-Service of Trials (%) (%) FL FH OBW Location Number Version FCC Short Pulse Type 1 30 90.00 60 Pass 5490 5510 17.95 DFS 1 29445 Version 3.0	FCC Radar Test Summ	агу									
of Trials (%) (%) FL FH OBW Location Number Version	Signal Type	Number	Detection	Limit	Pass/Fail				Toet	Employee	
FCC Short Pulse Type 1 30 90.00 60 Pass 5490 5510 17.95 DFS 1 29445 Version 3.0		of Trials	(%)	(%)		FL		OBW			
	FCC Short Pulse Type 1	30	90.00	60	Pass	5490	5510	17.95	DFS 1	29445	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 261 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	A	5500	Yes
1002	1	938	57	Α	5500	Yes
1003	1	638	83	Α	5500	Yes
1004	1	758	70	Α	5500	Yes
1005	1	738	72	Α	5500	Yes
1006	1	878	61	Α	5500	Yes
1007	1	818	65	А	5500	Yes
1008	1	618	86	Α	5500	Yes
1009	1	658	81	А	5500	Yes
1010	1	898	59	А	5500	Yes
1011	1	518	102	А	5500	Yes
1012	1	778	68	А	5500	Yes
1013	1	718	74	Α	5500	Yes
1014	1	858	62	А	5500	No
1015	1	838	63	А	5500	Yes
1016	1	1493	36	В	5500	No
1017	1	1514	35	В	5500	Yes
1018	1	2017	27	В	5500	Yes
1019	1	2167	25	В	5500	Yes
1020	1	2800	19	В	5500	No
1021	1	1885	28	В	5500	Yes
1022	1	2647	20	В	5500	Yes
1023	1	667	80	В	5500	Yes
1024	1	1558	34	В	5500	Yes
1025	1	2255	24	В	5500	Yes
1026	1	2082	26	В	5500	Yes
1027	1	2909	19	В	5500	Yes
1028	1	2864	19	В	5500	Yes
1029	1	2626	21	В	5500	Yes
1030	1	2712	20	В	5500	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 262 of 272

5.10.5. HIGH BAND 40 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

RESULTS

Signal Type Number Detection Limit Pass/Fail Detection Image: Constraint of the const	FCC Radar Test Summ	ary									
	Signal Type	Number	Detection	Limit	Pass/Fail				Test	Employee	
FCC Short Pulse Type 1 30 90.00 60 Pass 5490 5530 36.17 DFS 1 29445 Version 3.0		of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
	FCC Short Pulse Type 1	30	90.00	60	Pass	5490	5530	36.17	DFS 1	29445	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 263 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	A	5510	No
1002	1	938	57	Α	5510	Yes
1003	1	638	83	Α	5510	Yes
1004	1	758	70	Α	5510	Yes
1005	1	738	72	Α	5510	No
1006	1	878	61	Α	5510	Yes
1007	1	818	65	Α	5510	Yes
1008	1	618	86	Α	5510	Yes
1009	1	658	81	Α	5510	Yes
1010	1	898	59	Α	5510	Yes
1011	1	518	102	Α	5510	Yes
1012	1	778	68	Α	5510	Yes
1013	1	718	74	Α	5510	Yes
1014	1	858	62	Α	5510	Yes
1015	1	838	63	Α	5510	Yes
1016	1	1493	36	В	5510	Yes
1017	1	1514	35	В	5510	Yes
1018	1	2017	27	В	5510	Yes
1019	1	2167	25	В	5510	Yes
1020	1	2800	19	В	5510	Yes
1021	1	1885	28	В	5510	Yes
1022	1	2647	20	В	5510	Yes
1023	1	667	80	В	5510	Yes
1024	1	1558	34	В	5510	Yes
1025	1	2255	24	В	5510	Yes
1026	1	2082	26	В	5510	No
1027	1	2909	19	В	5510	Yes
1028	1	2864	19	В	5510	Yes
1029	1	2626	21	В	5510	Yes
1030	1	2712	20	В	5510	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 264 of 272

5.10.6. HIGH BAND 80 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

RESULTS

Signal Type Number Detection Limit Pass/Fail Detection Test Employee In-Service of Trials (%) (%) (%) FL FH OBW Location Number Version FCC Short Pulse Type 1 30 93.33 60 Pass 5490 5569 75.98 DFS 1 29445 Version 3.0	[FCC Radar Test Summ	ary									
	I	Signal Type	Number	Detection	Limit	Pass/Fail				Test	Employee	
FCC Short Pulse Type 1 30 93.33 60 Pass 5490 5569 75.98 DFS 1 29445 Version 3.0			of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
	- [FCC Short Pulse Type 1	30	93.33	60	Pass	5490	5569	75.98	DFS 1	29445	Version 3.0

Page 265 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Vaveform Pulse Width PRI		Pulses	Test	Frequency	Successful Detection		
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)		
1001	1	3066	18	Α	5530	Yes		
1002	1	938	57	Α	5530	Yes		
1003	1	638	83	Α	5530	Yes		
1004	1	758	70	Α	5530	Yes		
1005	1	738	72	Α	5530	Yes		
1006	1	878	61	Α	5530	Yes		
1007	1	818	65	Α	5530	Yes		
1008	1	618	86	Α	5530	Yes		
1009	1	658	81	Α	5530	Yes		
1010	1	898	59	Α	5530	Yes		
1011	1	518	102	Α	5530	Yes		
1012	1	778	68	Α	5530	Yes		
1013	1	718	74	Α	5530	Yes		
1014	1	858	62	Α	5530	Yes		
1015	1	838	63	Α	5530	Yes		
1016	1	1493	36	В	5530	Yes		
1017	1	1514	35	В	5530	No		
1018	1	2017	27	В	5530	Yes		
1019	1	2167	25	В	5530	Yes		
1020	1	2800	19	В	5530	Yes		
1021	1	1885	28	В	5530	Yes		
1022	1	2647	20	В	5530	Yes		
1023	1	667	80	В	5530	Yes		
1024	1	1558	34	В	5530	Yes		
1025	1	2255	24	В	5530	Yes		
1026	1	2082	26	В	5530	Yes		
1027	1	2909	19	В	5530	Yes		
1028	1	2864	19	В	5530	No		
1029	1	2626	21	В	5530	Yes		
1030	1	2712	20	В	5530	Yes		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 266 of 272

5.10.7. HIGH BAND 160 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING (80 MHz HIGH COMPONENT)

RESULTS

FCC Radar Test Summ	iary									
Signal Type	Number	Detection	Limit	Deco/Eail	Dete	ction				In-Service
Signar Type	number	Detection		r ass/r aii	Band	width		Test	Employee	Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	83.33	60	Pass	5572	5648	75.73	DFS 1	29445	Version 3.0

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 267 of 272

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection		
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)		
1001	1	3066	18	A	5610	Yes		
1002	1	938	57	А	5610	Yes		
1003	1	638	83	Α	5610	Yes		
1004	1	758	70	А	5610	Yes		
1005	1	738	72	А	5610	Yes		
1006	1	878	61	А	5610	Yes		
1007	1	818	65	Α	5610	Yes		
1008	1	618	86	Α	5610	Yes		
1009	1	658	81	Α	5610	Yes		
1010	1	898	59	Α	5610	Yes		
1011	1	518	102	Α	5610	Yes		
1012	1	778	68	Α	5610	Yes		
1013	1	718	74	Α	5610	Yes		
1014	1	858	62	А	5610	Yes		
1015	1	838	63	А	5610	Yes		
1016	1	1493	36	В	5610	Yes		
1017	1	1514	35	В	5610	Yes		
1018	1	2017	27	В	5610	Yes		
1019	1	2167	25	В	5610	Yes		
1020	1	2800	19	В	5610	Yes		
1021	1	1885	28	В	5610	Yes		
1022	1	2647	20	В	5610	No		
1023	1	667	80	В	5610	Yes		
1024	1	1558	34	В	5610	Yes		
1025	1	2255	24	В	5610	Yes		
1026	1	2082	26	В	5610	Yes		
1027	1	2909	19	В	5610	No		
1028	1	2864	19	В	5610	No		
1029	1	2626	21	В	5610	No		
1030	1	2712	20	В	5610	No		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 268 of 272