

DFS PORTION of FCC 47 CFR PART 15 SUBPART E DFS PORTION of INDUSTRY CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E/SDIO NGFF 2230 Card

MODEL NUMBER: BCM94371Z and BCM94371ZAE

FCC ID: QDS-BRCM1090

REPORT NUMBER: 14U18859-1, REVISION G

ISSUE DATE: JANUARY 21, 2016

Prepared for

BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	09/18/14	Initial Issue	T. Lee
Α	10/23/14	10/23/14 Editing Section 5.1.4.	
В	10/07/15	Added a Model Number to the Report	C. Cheung
С	10/13/15	Updated product description	L. Nguyen
D	10/14/15	Corrected Model Numbers	L. Nguyen
E	10/15/15	Updated "Model Differences" section	L. Nguyen
F	01/19/15	Update IC Version Reference	C. Cheung
G	01/21/16	Update Antenna Gain Information	C. Cheung

DATE: JANUARY 21, 2016 MODELS: BCM94371Z, BCM94371ZAE

TABLE OF CONTENTS

ATT	ESTATION OF TEST RESULTS	4
TES	T METHODOLOGY	5
FAC	CILITIES AND ACCREDITATION	5
CAL	IBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
<i>4.2.</i>	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	5
DYN	NAMIC FREQUENCY SELECTION	6
5.1.	OVERVIEW	_
• • • • • • • • • • • • • • • • • • • •		
	4. DESCRIPTION OF EUT	4
5.2	RESULTS FOR 20 MHz BANDWIDTH	6
	1. TEST CHANNEL1	6
_		
_		
	2. RADAR WAVEFORM AND TRAFFIC	2
	3. OVERLAPPING CHANNEL TESTS24	4
_		
-		
5.4.5	5. NON-OCCUPANCY PERIOD3	5
SET	TUP PHOTOS3	6
	TES FAC CAL 4.1. 4.2. 4.3. DYN 5.1. 5.1. 5.1. 5.1. 5.2. 5.2. 5.2. 5.2.	TEST METHODOLOGY FACILITIES AND ACCREDITATION 4.1. MEASURING INSTRUMENT CALIBRATION 4.2. SAMPLE CALCULATION 4.3. MEASUREMENT UNCERTAINTY DYNAMIC FREQUENCY SELECTION 5.1.1. LIMITS 5.1.2. TEST AND MEASUREMENT SYSTEM 1. 5.1.2. TEST AND MEASUREMENT SYSTEM 1. 5.1.4. DESCRIPTION OF EUT 1. 5.2.1. TEST CHANNEL 1. 5.2.2. RESULTS FOR 20 MHz BANDWIDTH 1. 5.2.2. RADAR WAVEFORM AND TRAFFIC 1. 5.2.3. OVERLAPPING CHANNEL TESTS 1. 5.3.1. TEST CHANNEL 2. 5.3.2. RADAR WAVEFORM AND TRAFFIC 2. 5.3.3. OVERLAPPING CHANNEL TESTS 2. 5.3.4. MOVE AND CLOSING TIME 2. 5.3.5. NON-OCCUPANCY PERIOD 2. 5.4.1. TEST CHANNEL 2. 5.4.2. RADAR WAVEFORM AND TRAFFIC 2. 5.4.1. TEST CHANNEL 2. 5.4.2. RADAR WAVEFORM AND TRAFFIC 2. 5.4.1. TEST CHANNEL 2. 5.4.2. RADAR WAVEFORM AND TRAFFIC 2. 5.4.3. OVERLAPPING CHANNEL TESTS

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BROADCOM CORPORATION

190 MATHILDA PLACE

SUNNYVALE, CA 94086, U.S.A.

EUT DESCRIPTION: Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E/SDIO

NGFF 2230 Card

MODEL: BCM94371Z, BCM94371ZAE

SERIAL NUMBER: 1759512

DATE TESTED: SEPTEMBER 18, 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DFS Portion of CFR 47 Part 15 Subpart E

Pass

INDUSTRY CANADA RSS-247 Issue 1

Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Tested By:

CONAN CHEUNG
PROGRAM MANAGER

UL Verification Services Inc.

ANGELA WANG EMC ENGINEER

UL Verification Services Inc.

Ingela Wang

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, KDB 905462 D02 and D03, ANSI C63.10-2013, RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services, Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-247 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-247 Issue 1

Note: For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

FCC

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

Table 2. Applicability of bit 3 requirements during normal operation						
Requirement	Operational Mode					
	Master	Client	Client			
		(without DFS)	(with DFS)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Monitoring	
Maximum Transmit Power	Value
	(see notes)
E.I.R.P. ≥ 200 milliwatt	-64 dBm
E.I.R.P. < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
E.I.R.P. < 200 milliwatt that do not meet power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB publication 662911 D01.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3)

Note 1: The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

- -For the Short pulse radar Test Signals this instant is the end of the *Burst*.
- -For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.
- -For the Long Pulse radar Test Signal this instant is the end of the 12-second period defining the radar waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10-second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, any one of radar types 0-4 can be used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. The 99% power bandwidth is measured with 100 kHz resolution bandwidth.

Table 5 – Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (usec)	PRI (usec)	Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 usec. With a minimum increment of 1 usec, excluding PRI values selected in Test A	Roundup: {(1/360) x (19 x 10 ⁶ PRI _{usec})}	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		Aggregate (Radar T	ypes 1-4)	80%	120

Note 1: Short Pulse Radar Type 0 shall only be used for the channel availability and detection bandwidth tests. It should be noted that any of the radar test waveforms 0-4 can be used for the channel availability and detection bandwidth tests.

Table 6 - Long Pulse Radar Test Signal

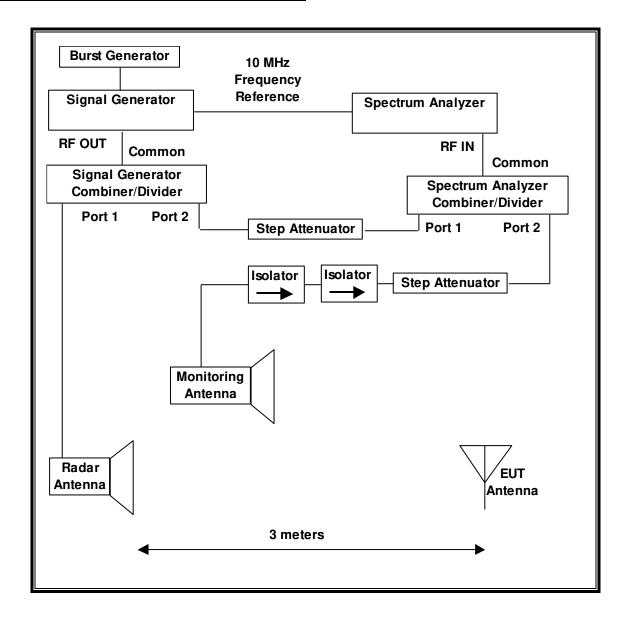

Radar	Pulse	Chirp	PRI	Pulses	Number	Minimum	Minimum
Waveform	Width	Width	(µsec)	per	of	Percentage	Trials
Type	(µsec)	(MHz)		Burst	Bursts	of Successful	
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 7 – Frequency Hopping Radar Test Signal

,	Radar Waveform Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length	Minimum Percentage of Successful	Minimum Trials
						(msec)	Detection	
	6	1	333	9	0.333	300	70%	30

5.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

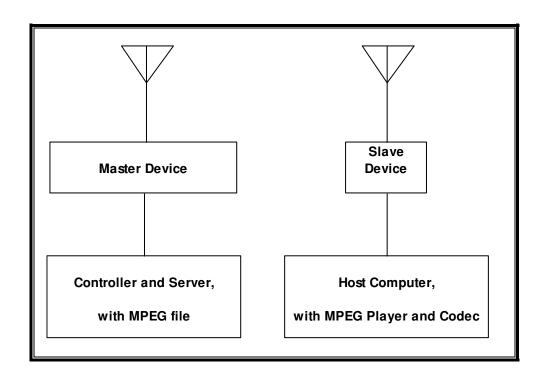
A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset Number	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/05/15		
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	09/03/15		

5.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number FCC								
Wireless Access Point	Cisco	AIR-CAP3703E-A- K9	FTX181570A6	LDK102078				
Power Injector	Cisco	POE 30U-560G	HPI170102N2	DoC				
Notebook PC (Controller/Server)	Dell	PP18L	10657517725	DoC				
AC Adapter (Controller/Server PC)	Dell	LA65SN0-00	CN-ODF263-71615-6AU- 1019	DoC				

5.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 24 dBm EIRP in the 5250-5350 MHz band and 24 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 5.85 dBi in the 5250-5350 MHz band and a gain of 6.21 in the 5470-5725 MHz band.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm), however TPC is implemented.

The EUT utilizes the 802.11ac architecture. Three nominal channel bandwidths are implemented: 20 MHz, 40 MHz and 80 MHz. Therefore, pursuant to FCC KDB Publication 905462 D03, "Client devices with 80 MHz BW mode can be tested with an approved master operating in 40 MHz BW mode". Therefore, 80MHz BW DFS testing in Client-to-Client Communications Mode was not performed and has been excluded from this report.

The software installed in the access point is 12.4(25d)JA1.

UNIFORM CHANNEL SPREADING

This requirement is not applicable to Slave radio devices.

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

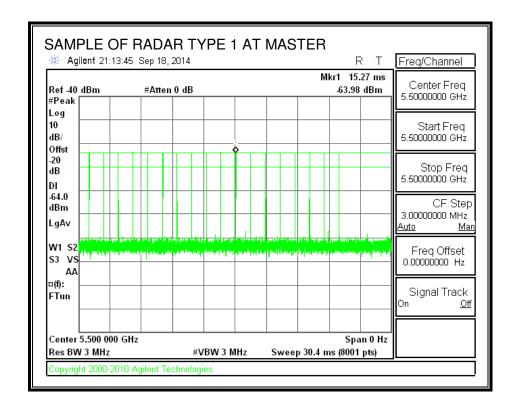
The Master Device is a Cisco Access Point, FCC ID: LDK102061. The minimum antenna gain for the Master Device is 3.5 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

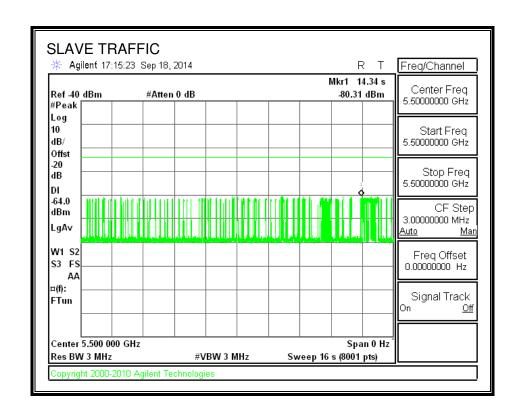
The calibrated radiated DFS Detection Threshold level is set to -64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

MODEL DIFFERENCE

BCM94371ZAE: M.2 A key + E Key connector which support PCIe/USB interface. BCM94371Z: M.2 E Key connector which support SDIO/UART/PCIe/USB interface.


5.2. RESULTS FOR 20 MHz BANDWIDTH

5.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz.

5.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

TRAFFIC

5.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.2.4. MOVE AND CLOSING TIME

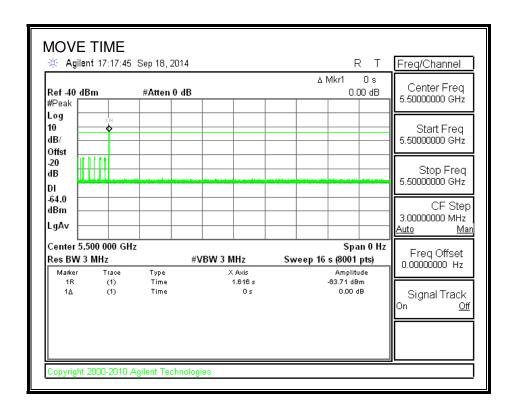
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

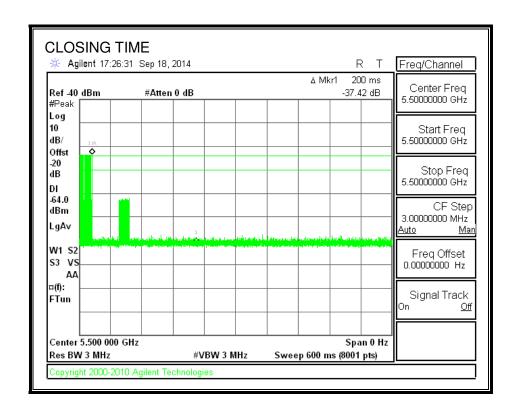
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

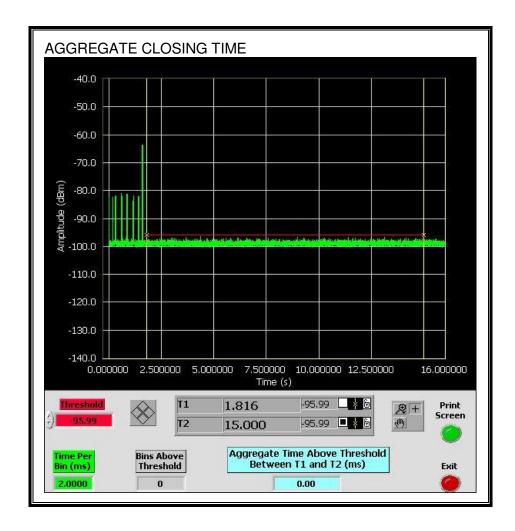

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS


Channel Move Time	Limit
(sec)	(sec)
0.000	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

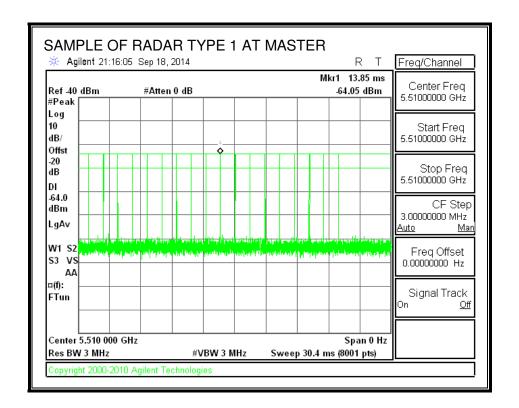
MOVE TIME



CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.


5.3. RESULTS FOR 40 MHz BANDWIDTH

5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.

5.3.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

TRAFFIC

5.3.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.3.4. MOVE AND CLOSING TIME

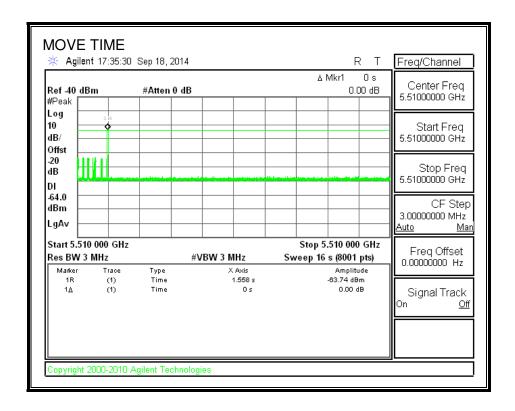
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

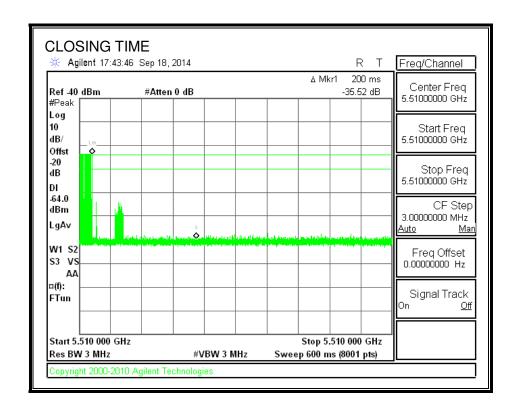
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

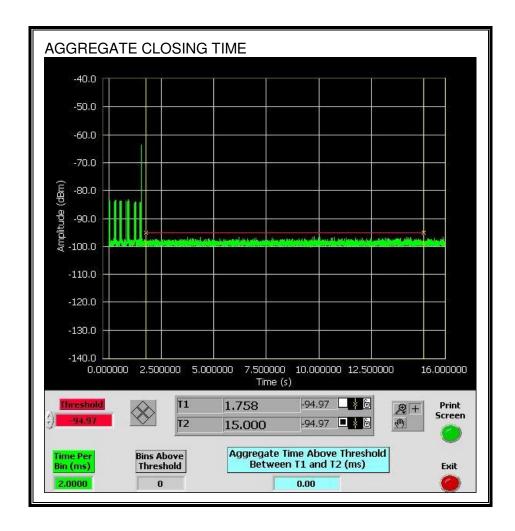

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS


Channel Move Time	Limit
(sec)	(sec)
0.000	10

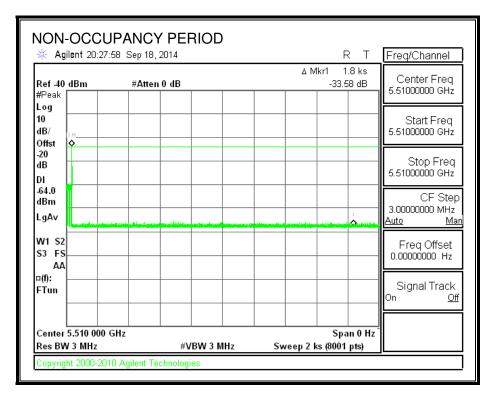
Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

MOVE TIME



CHANNEL CLOSING TIME

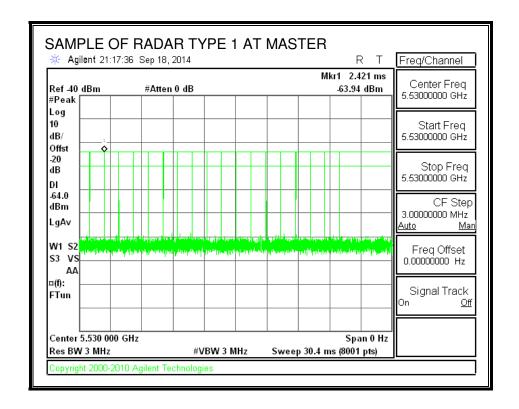
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME


No transmissions are observed during the aggregate monitoring period.

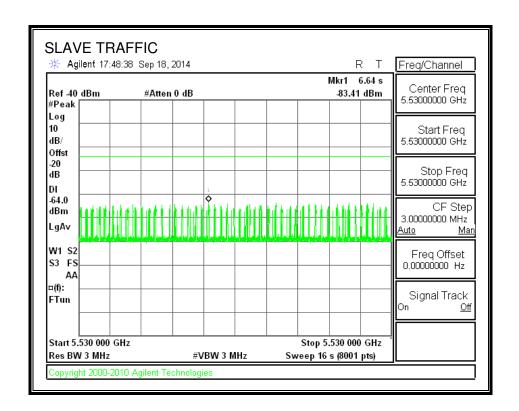
5.3.5. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.


5.4. RESULTS FOR 80 MHz BANDWIDTH

5.4.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5530 MHz.

5.4.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

TRAFFIC

5.4.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.4.4. MOVE AND CLOSING TIME

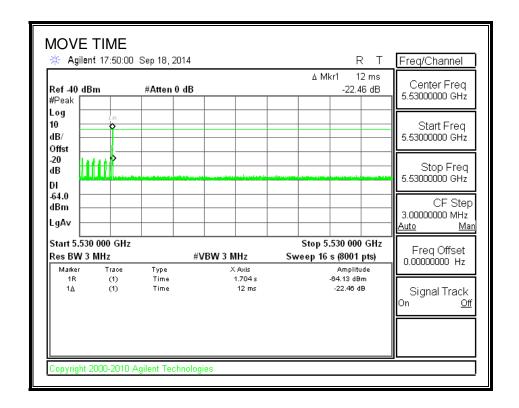
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

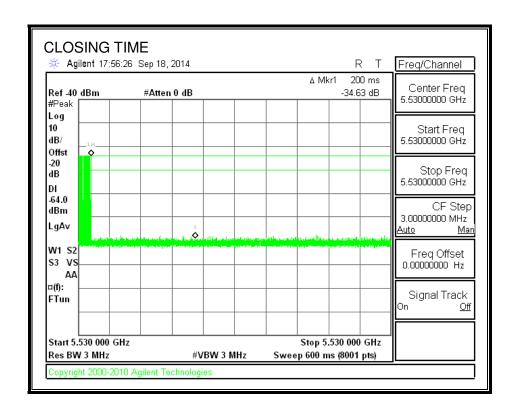
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

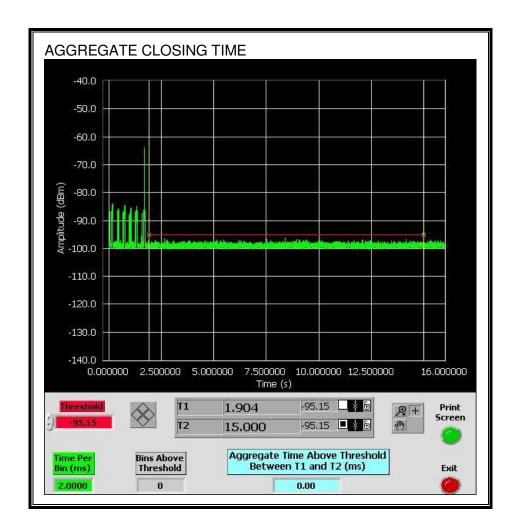

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS


Channel Move Time	Limit
(sec)	(sec)
0.012	10

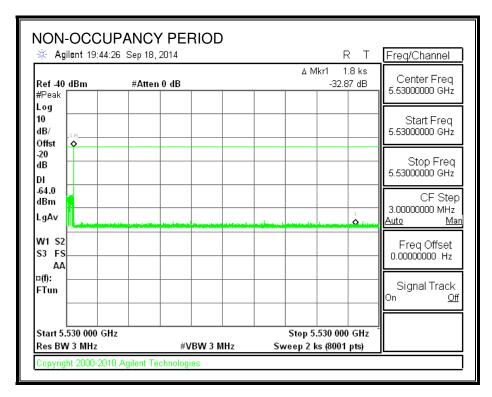
Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

MOVE TIME



CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME


No transmissions are observed during the aggregate monitoring period.

5.4.5. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

