

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11b/g/n/a/ac 3X3 WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM943602CDP

FCC ID: QDS-BRCM1089 IC: 4324A-BRCM1089

REPORT NUMBER: 15U20173-E4 Revision A

ISSUE DATE: MAY 13, 2015

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	04/14/15	Initial Issue	F. Ibrahim
	05/13/15	Updated output power	H. Mustapha

Page 2 of 93

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY 6	5
3.	FAG	CILITIES AND ACCREDITATION6	5
4.	CA	LIBRATION AND UNCERTAINTY6	5
4	l.1.	MEASURING INSTRUMENT CALIBRATION	6
4	¹ .2.	SAMPLE CALCULATION	6
4	1.3.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	3
5	5.1.	DESCRIPTION OF EUT	3
5	5.2.	MAXIMUM OUTPUT POWER	3
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	3
5	5.4.	SOFTWARE AND FIRMWARE	3
5	5.5.	WORST-CASE CONFIGURATION AND MODE	3
5	5.6.	DESCRIPTION OF TEST SETUP	9
6.	TES	ST AND MEASUREMENT EQUIPMENT11	I
7.	ME	ASUREMENT METHODS12	2
8.	AN'	TENNA PORT TEST RESULTS13	3
8	8.1.	ON TIME AND DUTY CYCLE	3
8	8.2.	BASIC DATA RATE GFSK MODULATION15	-
	8.2.		5
	0 0		5
	8.2. 8.2.	2. HOPPING FREQUENCY SEPARATION	555)
	8.2. 8.2.	 HOPPING FREQUENCY SEPARATION	55)25
	8.2. 8.2. 8.2.	 HOPPING FREQUENCY SEPARATION	55)259
	8.2. 8.2. 8.2. 8.2.	 HOPPING FREQUENCY SEPARATION	
8	8.2. 8.2. 8.2. 8.2. 8.2. 8.2.	 HOPPING FREQUENCY SEPARATION	55)25923
8	8.2. 8.2. 8.2. 8.2. 8.2. 8.2.	2. HOPPING FREQUENCY SEPARATION 20 3. NUMBER OF HOPPING CHANNELS 22 4. AVERAGE TIME OF OCCUPANCY 25 5. PEAK OUTPUT POWER 29 6. AVERAGE OUTPUT POWER 32 7. CONDUCTED SPURIOUS EMISSIONS 33 ENHANCED DATA RATE 8PSK MODULATION 38 1. 20 dB AND 99% BANDWIDTH 38	
8	8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH382.HOPPING FREQUENCY SEPARATION42	
8	8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH362.HOPPING FREQUENCY SEPARATION423.NUMBER OF HOPPING CHANNELS44	
8	8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH382.HOPPING FREQUENCY SEPARATION423.NUMBER OF HOPPING CHANNELS444.AVERAGE TIME OF OCCUPANCY47	
8	8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH382.HOPPING FREQUENCY SEPARATION423.NUMBER OF HOPPING CHANNELS444.AVERAGE TIME OF OCCUPANCY475.PEAK OUTPUT POWER516.AVERAGE OUTPUT POWER54	
	8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH382.HOPPING FREQUENCY SEPARATION423.NUMBER OF HOPPING CHANNELS444.AVERAGE TIME OF OCCUPANCY475.PEAK OUTPUT POWER516.AVERAGE OUTPUT POWER517.CONDUCTED SPURIOUS EMISSIONS55	
	8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH382.HOPPING FREQUENCY SEPARATION423.NUMBER OF HOPPING CHANNELS444.AVERAGE TIME OF OCCUPANCY475.PEAK OUTPUT POWER516.AVERAGE OUTPUT POWER547.CONDUCTED SPURIOUS EMISSIONS55CONDUCTED RX SPURIOUS EMISSIONS60	
	8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH382.HOPPING FREQUENCY SEPARATION423.NUMBER OF HOPPING CHANNELS444.AVERAGE TIME OF OCCUPANCY475.PEAK OUTPUT POWER516.AVERAGE OUTPUT POWER517.CONDUCTED SPURIOUS EMISSIONS55	
8 9.	8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3.	2.HOPPING FREQUENCY SEPARATION203.NUMBER OF HOPPING CHANNELS224.AVERAGE TIME OF OCCUPANCY255.PEAK OUTPUT POWER296.AVERAGE OUTPUT POWER327.CONDUCTED SPURIOUS EMISSIONS33ENHANCED DATA RATE 8PSK MODULATION1.20 dB AND 99% BANDWIDTH382.HOPPING FREQUENCY SEPARATION423.NUMBER OF HOPPING CHANNELS444.AVERAGE TIME OF OCCUPANCY475.PEAK OUTPUT POWER516.AVERAGE OUTPUT POWER547.CONDUCTED SPURIOUS EMISSIONS55CONDUCTED RX SPURIOUS EMISSIONS60	

9.1.	LIMITS	62
9.2.	TRANSMITTER ABOVE 1 GHz1.BASIC DATA RATE GFSK MODULATION2.ENHANCED DATA RATE 8PSK MODULATION	63
9.3.	WORST-CASE 18-26 GHz	83
9.4.	WORST-CASE BELOW 1 GHz	84
10. A	C POWER LINE CONDUCTED EMISSIONS	85
	C POWER LINE CONDUCTED EMISSIONS	
		90
11. S	ETUP PHOTOS	90
11. S 11.1.	ETUP PHOTOS ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP	90 90 91

Page 4 of 93

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A		
EUT DESCRIPTION:	802.11b/g/n/a/ac 3X3 WLAN + Bluetooth PCI-E Custom Combination Card		
MODEL:	BCM943602CDP		
SERIAL NUMBER:	Conducted: FC84495000FR0V45 Radiated: FC84495000FR0V45		
DATE TESTED:	MARCH 24 – MAY 13, 2015		
	APPLICABLE STANDARDS		
STANDARD TEST RESULTS			

CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 4	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

FRANK IBRAHIM PROGRAM MANAGER UL Verification Services Inc.

Tested By:

Sime Lara

Lionel Lara EMC ENGINEER UL Verification Services Inc.

Page 5 of 93

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, ANSI C63.10-2013, ANSI C63.4-2014, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	Chamber F
	Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 93

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 93

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11b/g/n/a/ac 3X3 WLAN + Bluetooth PCI-E Custom Combination Card.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	12.30	16.982
2402 - 2480	Enhanced 8PSK	11.22	13.243

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The EUT utilizes an 802.11a/b/g/n/ac WLAN/BT antenna with a maximum gain of 6.56 dBi for BT.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed in the Laptop equipment during testing was 5.6.0.9020.

The test utility software used during testing was Broadcom Bluetool, Ver. 1.8.4.7.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT can only be setup in desktop orientation; therefore all radiated testing was performed with the EUT in desktop orientation.

Radiated emission below 1GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Chain J3 (WF1) was used for testing BT.

Based on client's input, there is no colocation among different radios.

EUT has AFH mode for BT.

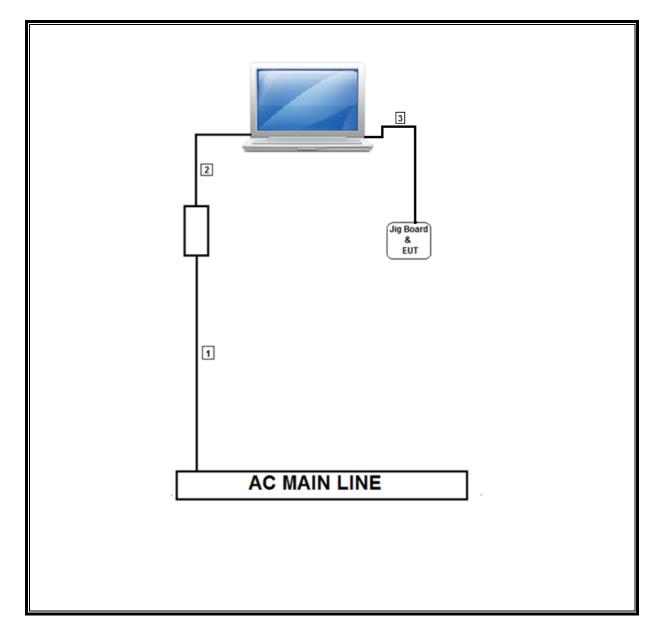
Page 8 of 93

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Laptop	НР	EliteBook 2730p	2CE8487Zmt	N/A		
AC Adapter	HP	PPP014L-SA	W97950ELLVC685	N/A		
Catalyst PCIe. Board	Enterprises Inc.	NA	NA	DoC		

I/O CABLES


	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable Length	Remarks		
No		ports	Туре		(m)			
1	AC	1	US115V	Unshielded	1			
2	DC	1	19Vdc	Unshielded	1.5	Ferrite on Laptop end		
3	USB	1	USB	Unshielded	0.5			

TEST SETUP

The EUT is installed on a jig board and is connected to the laptop with a USB cable. Test software exercised the radio card.

Page 9 of 93

SETUP DIAGRAM FOR TESTS

Page 10 of 93

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	T No.	Cal Date	Cal Due	
Radiated Software	UL	UL EMC	Ver 9.5, July 22, 2014		, 2014	
Line Conducted Software	UL	UL EMC	Ve	Ver 9.5, May 17, 2012		
Bilog Antenna 30-1000MHz	Sunol	JB1	136	09/10/14	09/10/15	
Horn Antenna 1-18GHz	ETS	3117	130	01/15/15	01/15/16	
Horn Antenna 18-26GHz	ARA	SWH-28	125	05/09/14	05/09/15	
Preamp 10kHz-1000MHz	Sonoma	310	300	11/01/14	11/01/15	
Preamp 1-8GHz	Miteq	AMF-4D-01000800-30-29P	782	11/18/14	11/18/15	
Preamp 1-18GHz	Miteq	AFS42-00101800-25-2-42	492	08/09/14	08/09/15	
Preamp 1-26.5GHz	Agilent	8449B	404	04/06/15	04/06/16	
Spectrum Analyzer 3kHz - 44GHz	Agilent	N9030A	908	09/05/14	09/05/15	
Spectrum Analyzer 9kHz - 40GHz	НР	8564E	106	08/06/14	08/06/15	
Coaxial Switchbox	Agilent	SP6T	927	09/15/14	09/15/15	
3GHz HPF	Micro-Tronics	HPM17543	486	04/07/14	04/07/15	
EMI Test Receiver	Rohde & Schwarz	ECSI 7	212	08/14/14	08/14/15	
Spectrum Analzer 3Hz to 44GHz	Agilent	E4440A	123	10/28/14	10/28/15	
Power Meter	Agilent	N1911A	377	06/30/14	06/30/15	
Power Sensor	Agilent	E9323A	399	05/02/14	05/02/15	
LISN for Conducted Emissions	FCC	50/250-25-2	24	01/16/15	01/16/16	

Page 11 of 93

7. MEASUREMENT METHODS

For FCC testing:

AC Power-line conducted emissions: ANSI C63.10-2009, Section 6.2.

Radiated emissions: ANSI C63.10-2009, Sections 6.5 and 6.6.

Conducted TX spurious emissions: ANSI C63.10-2009, Section 5.5, 5.6 & 7.7.10.

Occupied bandwidth (20 dB): ANSI C63.10-2009, Section 6.9.1.

Band-edge measurements for RF conducted emissions: ANSI C63.10-2009, Section 7.7.9

Carrier frequency separation: ANSI C63.10-2009, Section 7.7.2

Number of hopping frequencies: ANSI C63.10-2009, Section 7.7.3.

Average time of occupancy (dwell time): ANSI C63.10-2009, Section 7.7.4.

Peak output power: ANSI C63.10-2009, Section 6.10.1.

On time and duty cycle: KDB 558074, Section 6.0.

For IC testing:

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

Radiated emissions: ANSI C63.10-2013, Sections 6.5 and 6.6.

Conducted TX spurious emissions: ANSI C63.10-2013, Sections 5.5, 5.6 & 7.8.8.

Conducted RX spurious emissions: ANSI C63.4-2014, Sections 12.2

Occupied bandwidth (20 dB): ANSI C63.10-2013, Sections 6.9.2.

Occupied bandwidth (99% dB): ANSI C63.10-2013, Sections 6.9.3.

Band-edge measurements for RF conducted emissions: ANSI C63.10-2013, Sections 6.10.

Carrier frequency separation: ANSI C63.10-2013, Sections 7.8.2.

Number of hopping frequencies: ANSI C63.10-2013, Sections 7.8.3.

Average time of occupancy (dwell time): ANSI C63.10-2013, Sections 7.8.4.

Peak output power: ANSI C63.10-2013, Sections 7.8.5.

On time and duty cycle: ANSI C63.10-2013, Section 11.6.

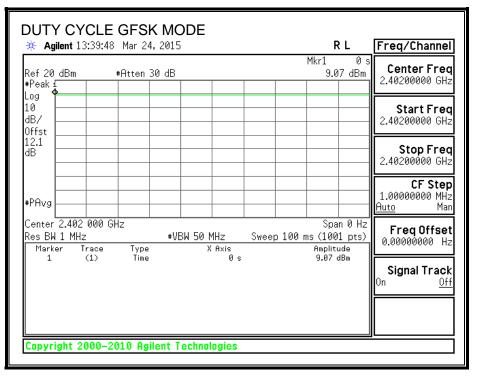
Page 12 of 93

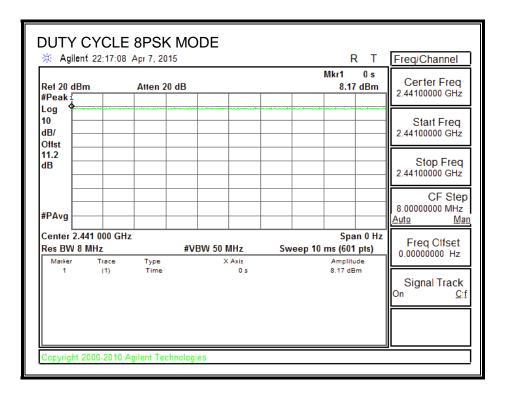
8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.


RESULTS


Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle
	В		x	Cycle	Correction Factor
	(msec)	(msec)	(linear)	(%)	(dB)
2.4 GHz band (Hopping C					
Bluetooth GFSK	100.000	100.000	1.000	100.00%	0.00
Bluetooth 8PSK	100.000	100.000	1.000	100.00%	0.00

Page 13 of 93

DUTY CYCLE PLOTS

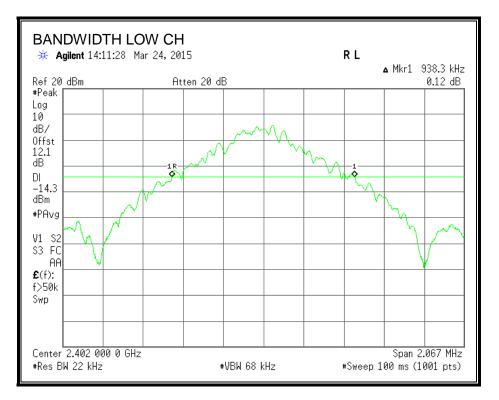
HOPPING OFF

Page 14 of 93

8.2. BASIC DATA RATE GFSK MODULATION

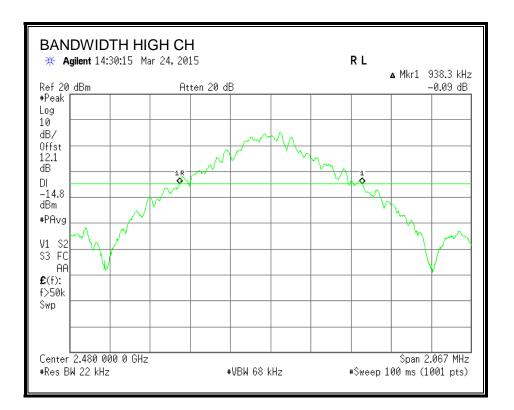
8.2.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

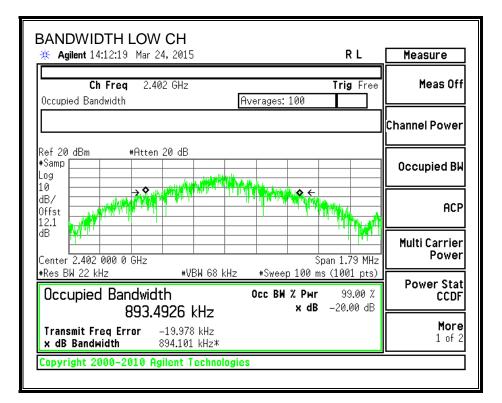

None; for reporting purposes only.

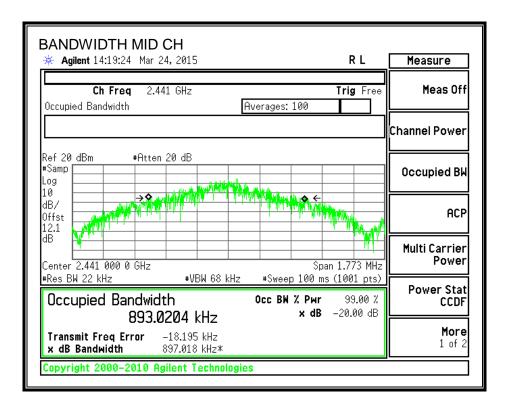
RESULTS

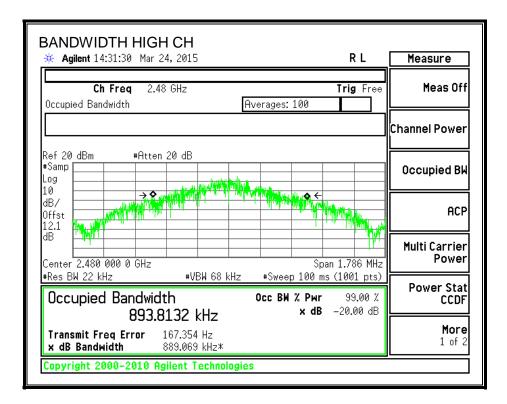
Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	938.3	893.4926
Middle	2441	940.2	893.0204
High	2480	938.3	893.8132


Page 15 of 93

20 dB BANDWIDTH




Page 16 of 93


Page 17 of 93

99% BANDWIDTH

Page 18 of 93

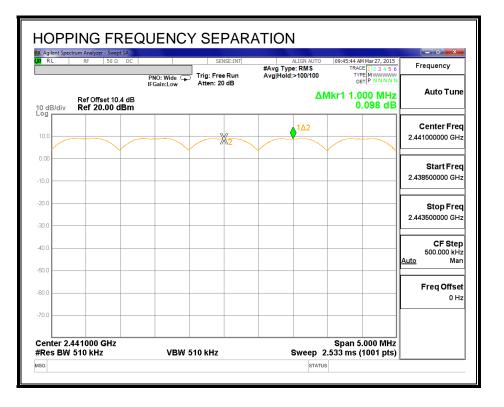
Page 19 of 93

8.2.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Page 20 of 93

RESULTS

HOPPING FREQUENCY SEPARATION

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

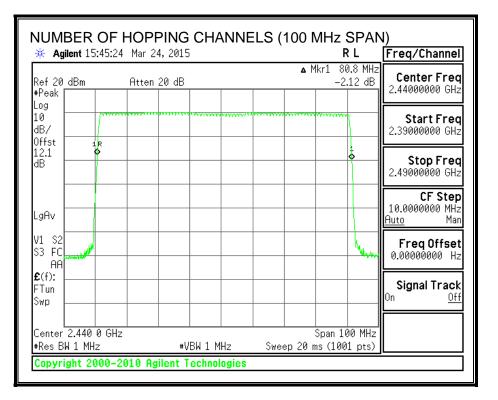
Page 21 of 93

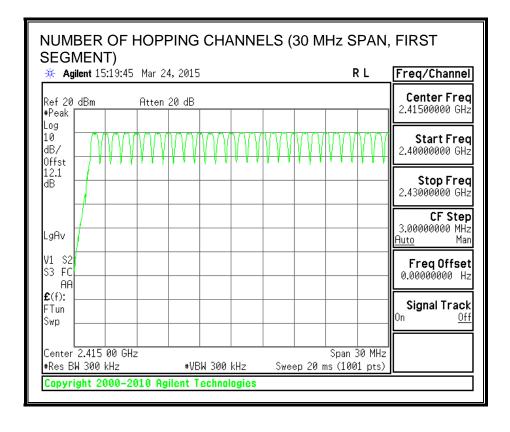
8.2.3. NUMBER OF HOPPING CHANNELS

LIMIT

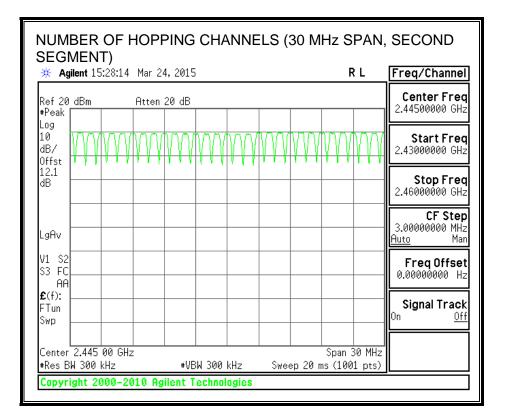
FCC §15.247 (a) (1) (iii)

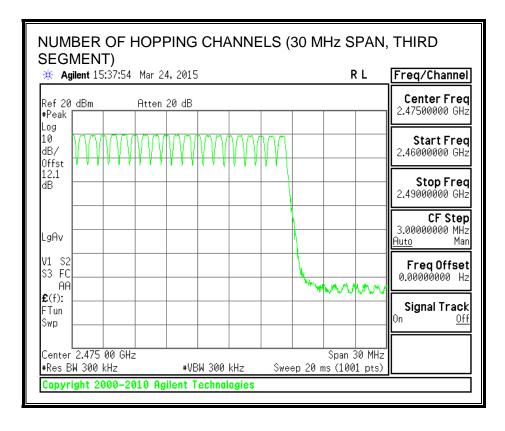
IC RSS-210 A8.1 (d)


Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.


RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels were declared by the client.


Page 22 of 93


NUMBER OF HOPPING CHANNELS

Page 23 of 93

Page 24 of 93

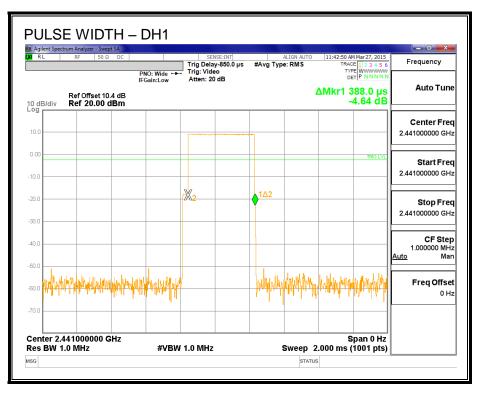
8.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

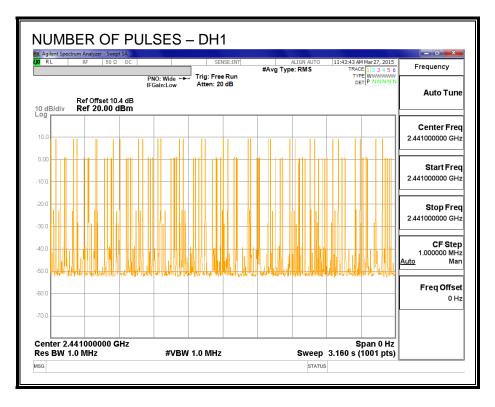
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

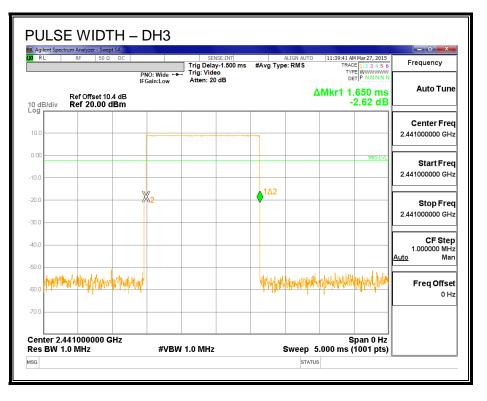

RESULTS

DH Packet	Pulse	Number of	Average Time	Limit	Margin	
	Width	Pulses in	of Occupancy			
	(msec)	3.16	(sec)	(sec)	(sec)	
		seconds				
GFSK Norma	I Mode					
DH1	0.388	32	0.124	0.4	-0.276	
DH3	1.65	18	0.297	0.4	-0.103	
DH5	2.92	10	0.292	0.4	-0.108	
DH Packet	Pulse	Number of	Average Time	Limit	Margin	
	Width	Pulses in	of Occupancy			
	(msec)	0.8	(sec)	(sec)	(sec)	
		seconds				
GFSK AFH Mode						
DH1	0.388	8	0.031	0.4	-0.369	
DH3	1.65	4.50	0.074	0.4	-0.326	
DH5	2.92	2.5	0.073	0.4	-0.327	

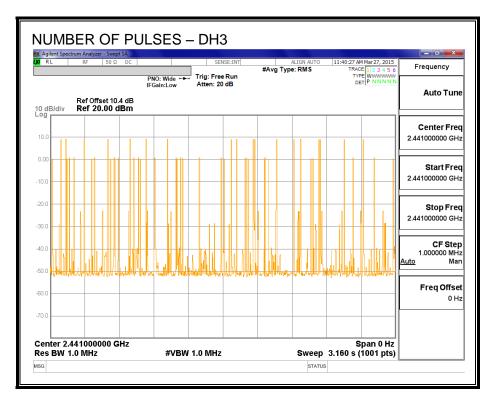

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 93

PULSE WIDTH - DH1

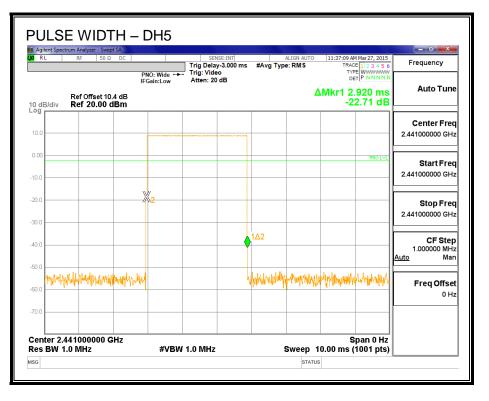


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

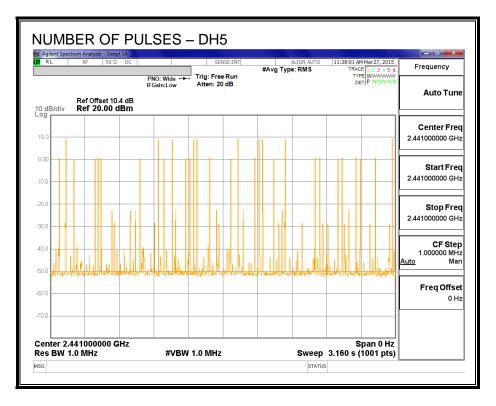


Page 26 of 93

PULSE WIDTH – DH3



NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3



Page 27 of 93

PULSE WIDTH - DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 28 of 93

8.2.5. PEAK OUTPUT POWER

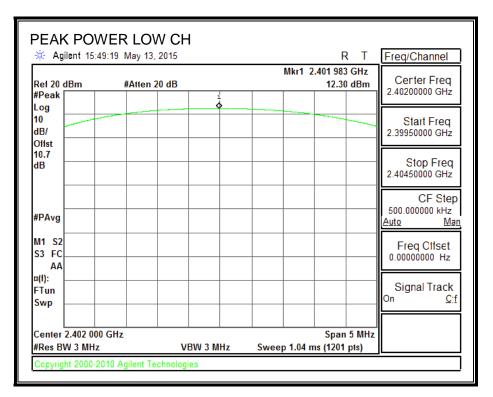
<u>LIMIT</u>

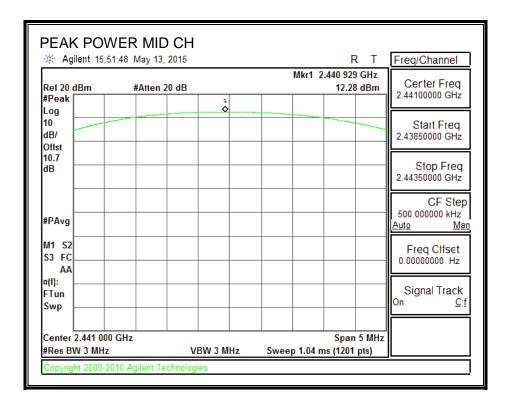
§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-210 Clause A8.4 (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.


RESULTS


For 75 or more hopping channels

Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dBm)	Margin (dB)
Low	2402	12.30	6.56	29.44	-17.14
Middle	2441	12.28	6.56	29.44	-17.16
High	2480	12.14	6.56	29.44	-17.30

Page 29 of 93

OUTPUT POWER

Page 30 of 93

🔆 Agilent 15:	53:13 May 13, 2015			RT	Freq/Channel
Ref 20 dBm #Peak	#Atten 20 dB		Mkr1 2	2.479 850 GHz 12.14 dBm	Certer Freq 2.4800000 GHz
#Peak Log					2.10000000012
10 dB/					Start Freq 2.47750000 GHz
Offst 10.7 dB					Stop Freq 2.48250000 GHz
#PAvg					CF Step 500.000000 kHz <u>Auto Ma</u> i
M1 S2 S3 FC AA					Freq Clfset 0.00000000 Hz
¤(f): FTun Swp					Signal Track ^{On <u>Cif</u>}
Center 2.480 00 #Res BW 3 MHz		/BW 3 MHz	Sweep 1.04 r	Span 5 MHz	

Page 31 of 93

8.2.6. AVERAGE OUTPUT POWER

<u>LIMIT</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	12.24
Middle	2441	12.25
High	2480	12.10

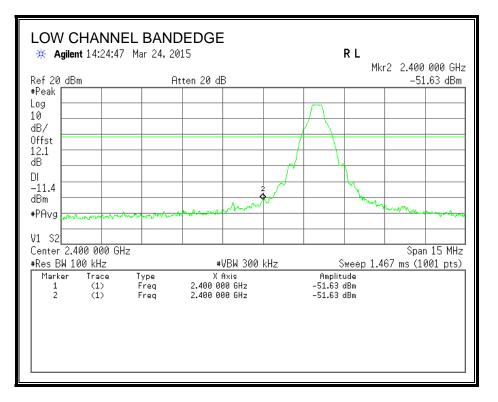
Page 32 of 93

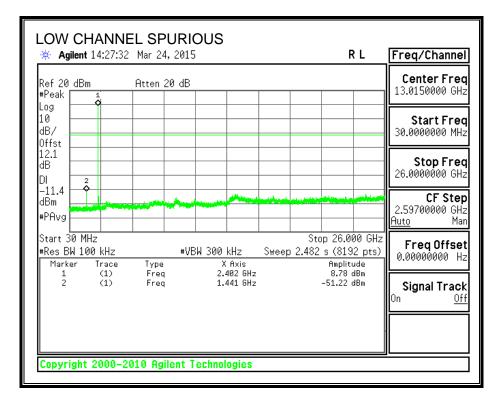
8.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

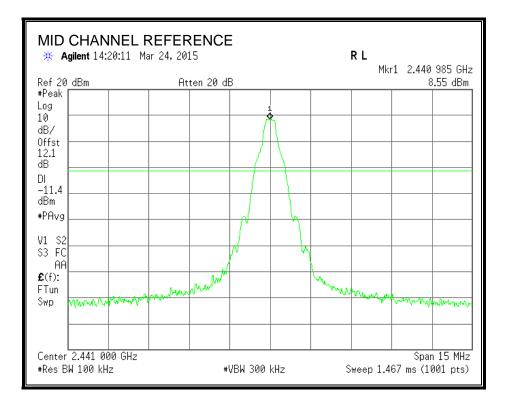
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

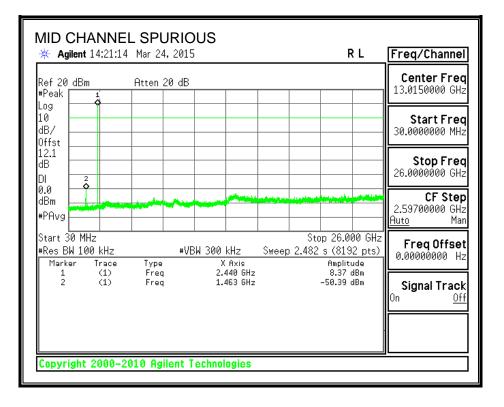

IC RSS-210 A8.5


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

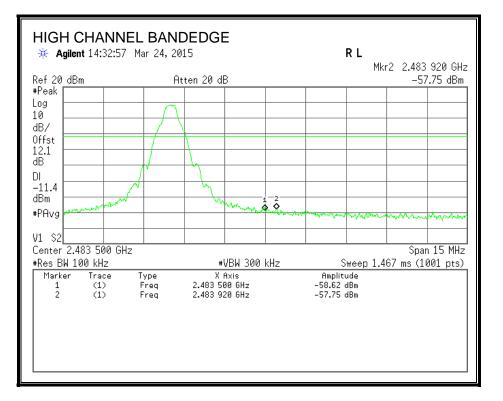
Page 33 of 93

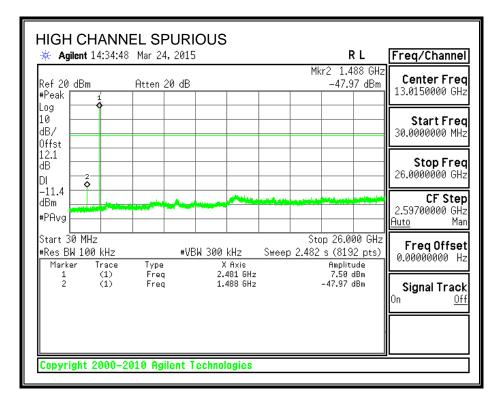
RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL

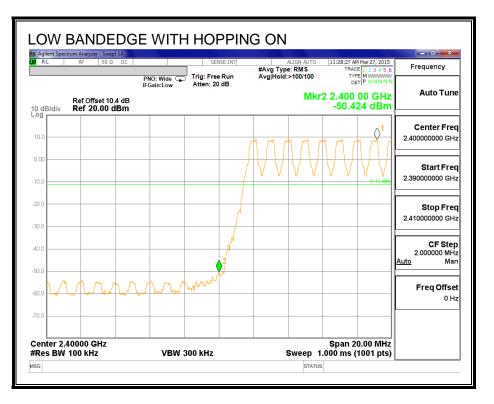


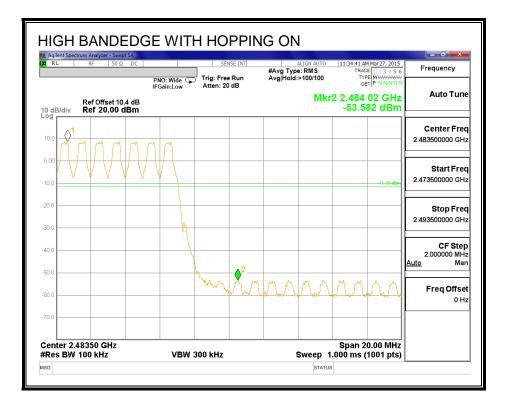
Page 34 of 93


SPURIOUS EMISSIONS, MID CHANNEL



Page 35 of 93


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 36 of 93

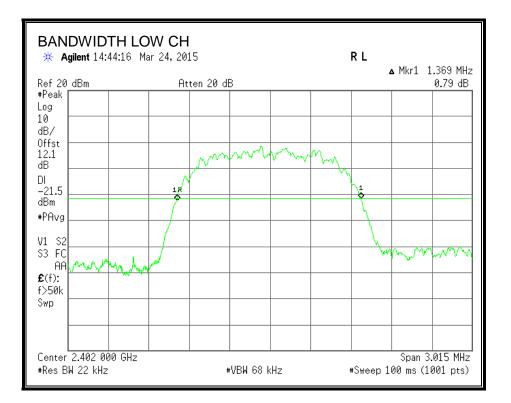
SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 37 of 93

8.3. ENHANCED DATA RATE 8PSK MODULATION

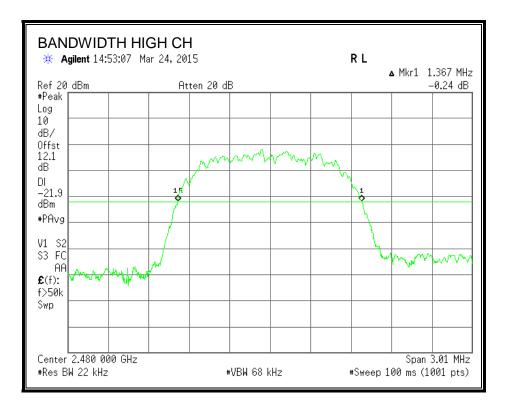
8.3.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

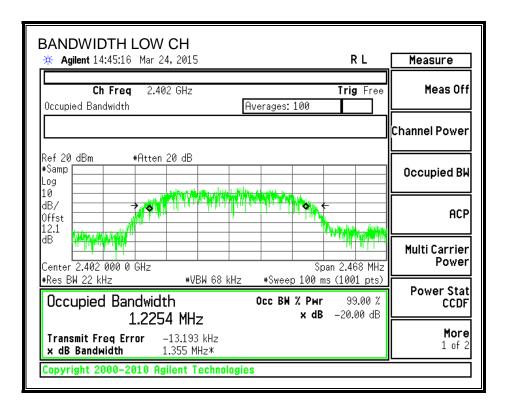

None; for reporting purposes only.

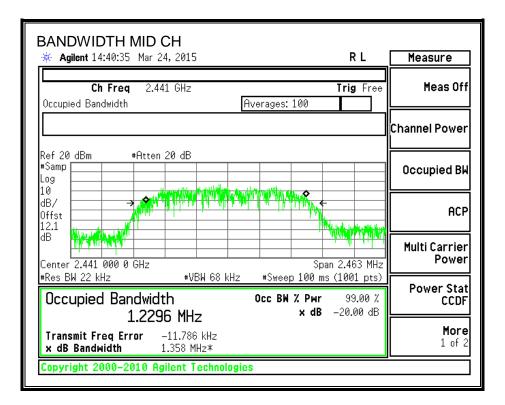
RESULTS

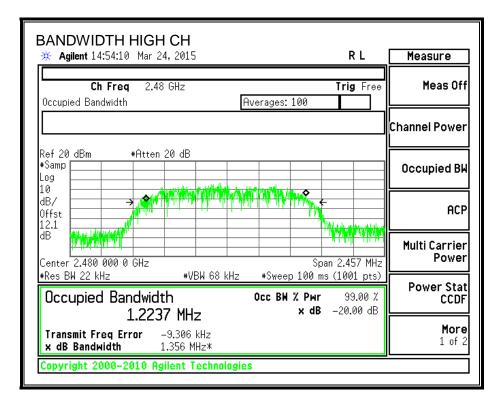
Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1369	1225.4
Middle	2441	1367	1229.6
High	2480	1367	1223.7


Page 38 of 93

20 dB BANDWIDTH




Page 39 of 93



99% BANDWIDTH

Page 40 of 93

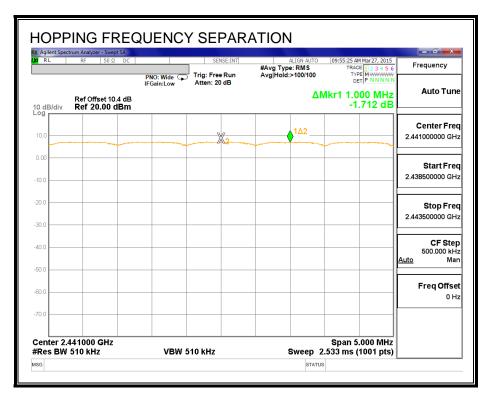
Page 41 of 93

8.3.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Page 42 of 93

RESULTS

HOPPING FREQUENCY SEPARATION

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

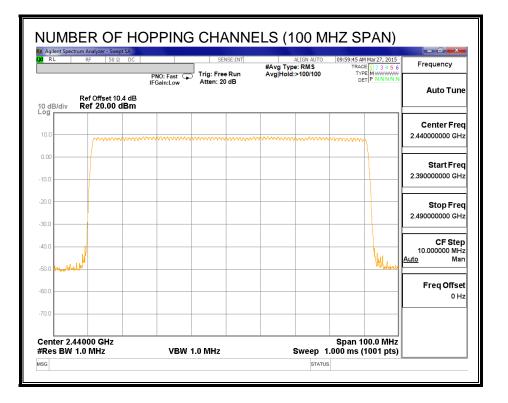
Page 43 of 93

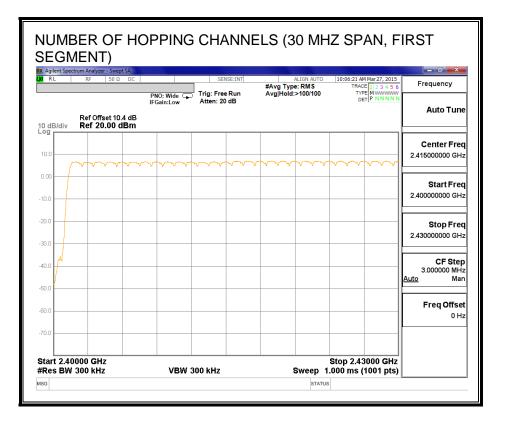
8.3.3. NUMBER OF HOPPING CHANNELS

LIMIT

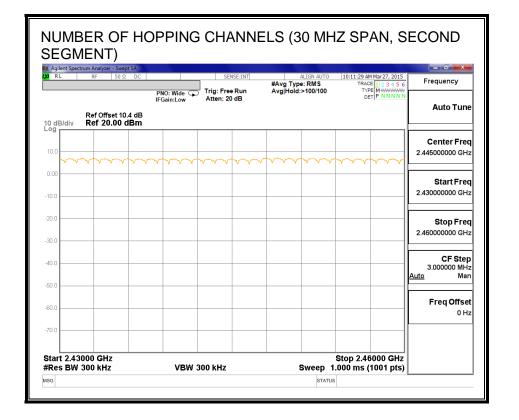
FCC §15.247 (a) (1) (iii)

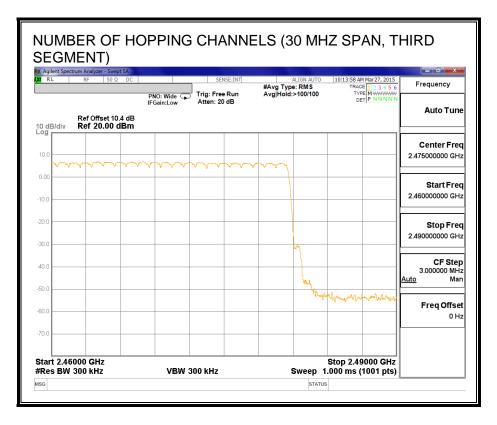
IC RSS-210 A8.1 (d)


Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.


RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 channels were declared by the client.


Page 44 of 93


NUMBER OF HOPPING CHANNELS

Page 45 of 93

Page 46 of 93

8.3.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

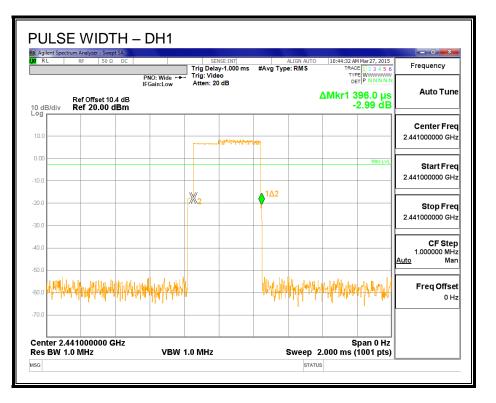
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

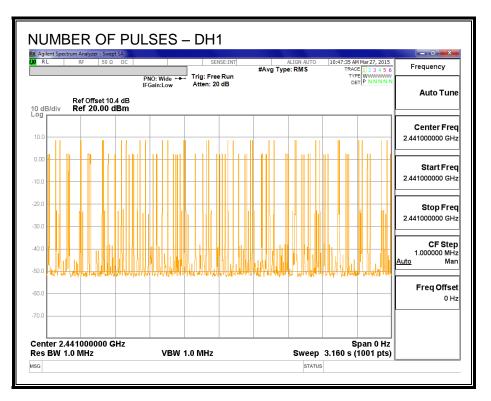
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

RESULTS

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

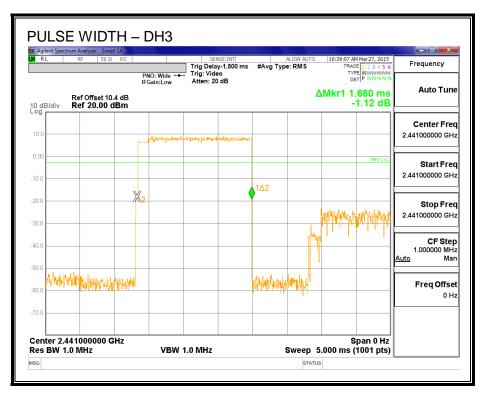

8PSK (EDR) Mode

DH Packet	Pulse	Number of	Average	Limit	Margin
	Width	Pulses in	Time of		U
		3.16	Occupancy		
	(msec)	seconds	(sec)	(sec)	(sec)
DH1	0.396	31	0.123	0.4	-0.277
DH3	1.66	18	0.299	0.4	-0.101
DH5	2.93	10	0.293	0.4	-0.107

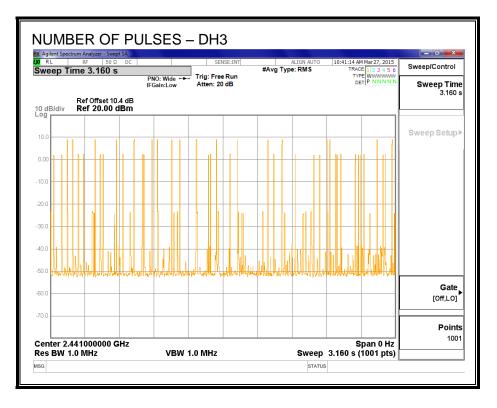

Note: For AFH (8PSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation. Data for Basic Rate on page 25 demonstrates compliance with channel occupancy when AFH is employed.

Page 47 of 93

PULSE WIDTH - DH1

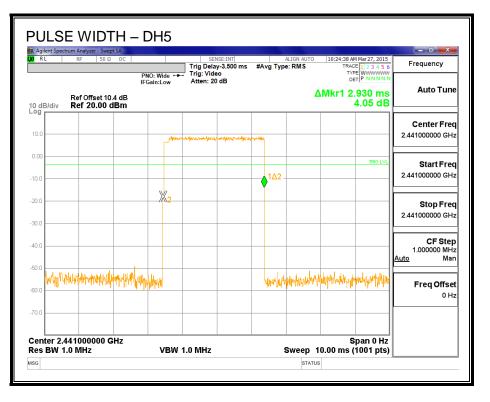


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

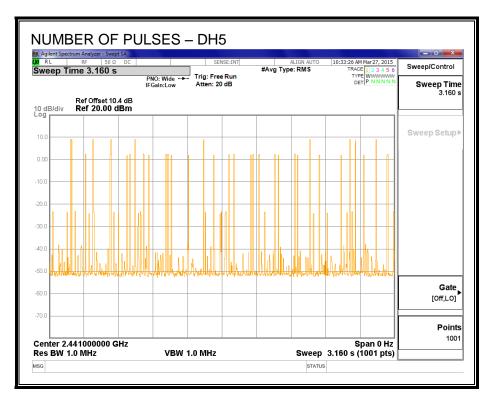


Page 48 of 93

PULSE WIDTH – DH3



NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3



Page 49 of 93

PULSE WIDTH - DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 50 of 93

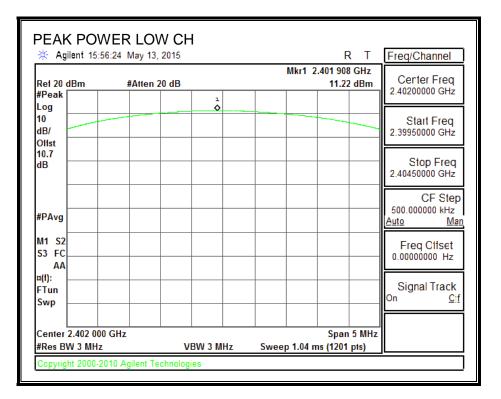
8.3.5. PEAK OUTPUT POWER

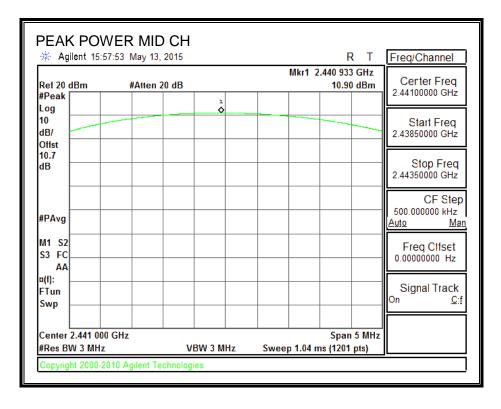
<u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-210 Clause A8.4 (2)


For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.


RESULTS

Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dBm)	Margin (dB)
Low	2402	11.22	6.56	20.409	-9.189
Middle	2441	10.90	6.56	20.409	-9.509
High	2480	10.86	6.56	20.409	-9.549

Page 51 of 93

OUTPUT POWER

Page 52 of 93

🔆 Agilent 15:8	59:18 May 13, 201	5		RT	Freq/Channel
Ref 20 dBm	#Atten 20 dl	В	Mkr1 2	.479 900 GHz 10.86 dBm	Certer Freq 2.48000000 GHz
#Peak Log		1			2.1000000 0112
10 dB/					Start Freq 2.47750000 GHz
Offst 10.7 dB					Stop Freq 2.48250000 GHz
#PAvg					CF Step 500.000000 kHz <u>Auto Mar</u>
V1 S2 S3 FC AA					Freq Olfset 0.00000000 Hz
¤(f): FTun Swp					Signal Track ^{On <u>C</u>if}
Center 2.480 00 #Res BW 3 MHz		VBW 3 MHz	Sweep 1.04 n	Span 5 MHz	

Page 53 of 93

8.3.6. AVERAGE OUTPUT POWER

<u>LIMIT</u>

None; for reporting purposes only.

<u>RESULTS</u>

The cable assembly insertion loss of 10.50 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.80
Middle	2441	8.40
High	2480	8.35

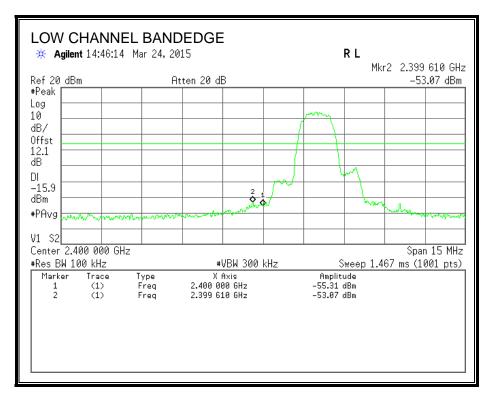
Page 54 of 93

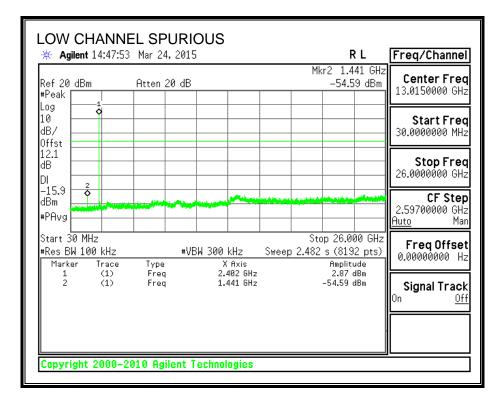
8.3.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

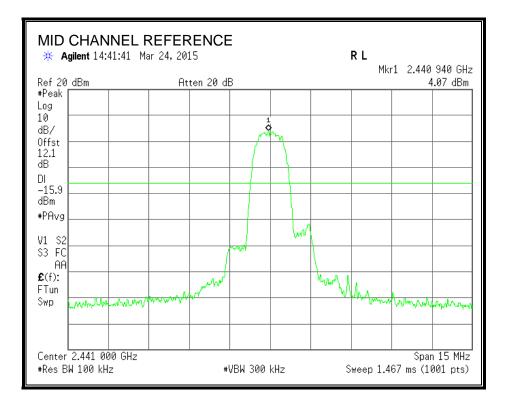
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

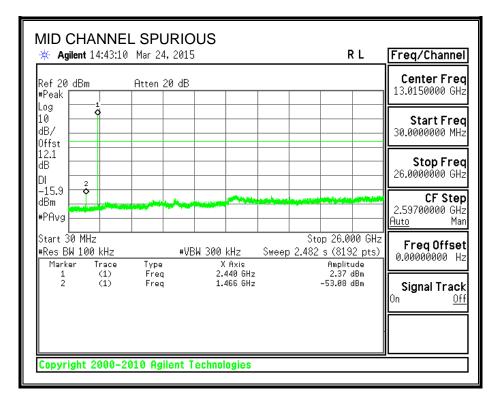

IC RSS-210 A8.5


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

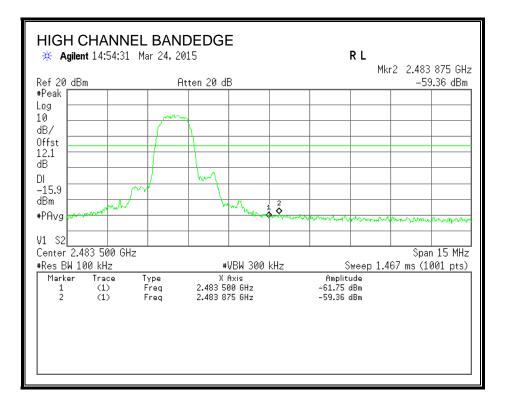
Page 55 of 93

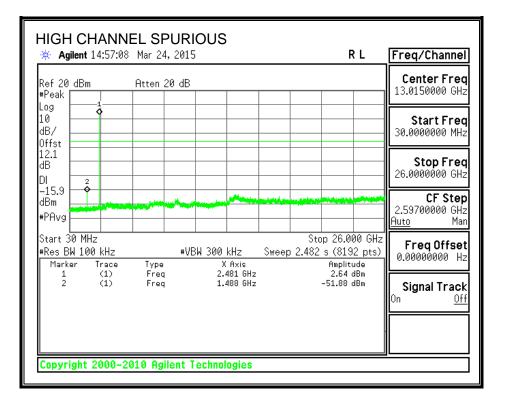
RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL

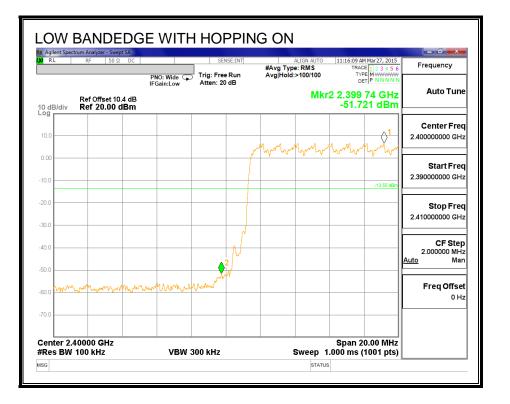


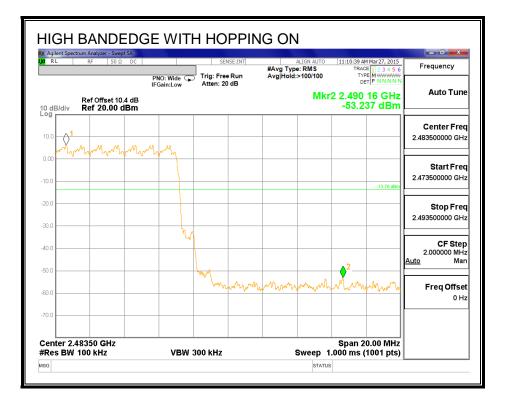
Page 56 of 93


SPURIOUS EMISSIONS, MID CHANNEL



Page 57 of 93


SPURIOUS EMISSIONS, HIGH CHANNEL



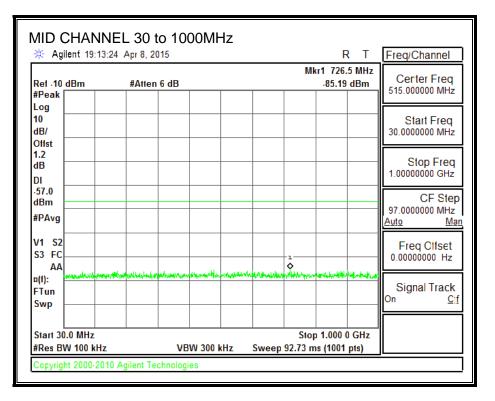
Page 58 of 93

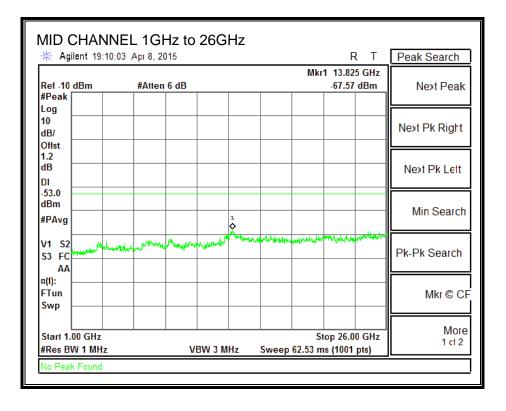
SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 59 of 93

8.4. CONDUCTED RX SPURIOUS EMISSIONS

LIMITS


IC RSS GEN Issue 4, Section 7.1.3


Receiver-spurious emissions at any discrete frequency shall not exceed 2 nW in the band 30-1000 MHz, nor 5 nW above 1000MHz.

Page 60 of 93

RESULTS

RX SPURIOUS EMISSIONS, MID CHANNEL

Page 61 of 93

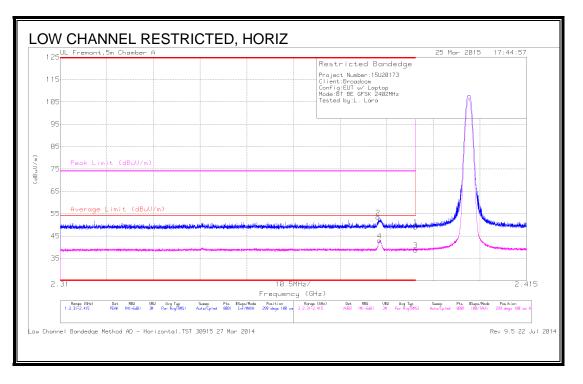
9. RADIATED TEST RESULTS

9.1. LIMITS

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)


Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

Page 62 of 93

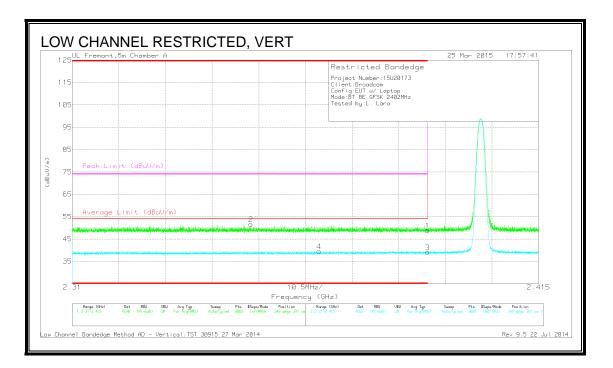
9.2. TRANSMITTER ABOVE 1 GHz

9.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T136 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(0)	(dBuV)		(,,	(dB)	(dBuV/m)	(dBuV/m)	()	(,,	(/	(8-)	()	
1	* 2.39	39.31	РК	32	-22.2	49.11	-	-	74	-24.89	299	100	н
2	* 2.382	43.74	РК	31.9	-22.3	53.34	-	-	74	-20.66	299	100	Н
3	* 2.39	28.92	RMS	32	-22.2	38.72	54	-15.28	-	-	299	100	Н
4	* 2.382	33.41	RMS	31.9	-22.3	43.01	54	-10.99	-	-	299	100	Н


* - indicates frequency in CFR15.205/IC8.10 Restricted Band

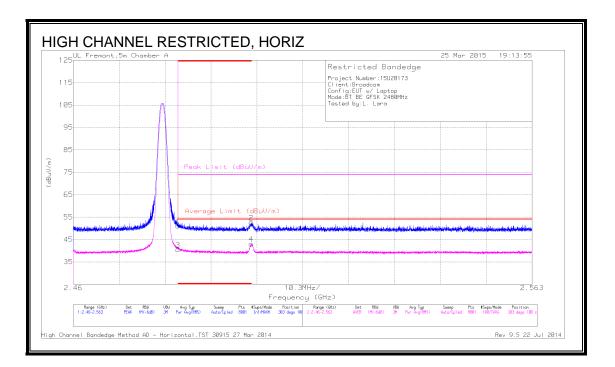
PK - Peak detector RMS – RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 63 of 93

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Trace Markers


Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
2	* 2.35	42.08	PK	31.9	-22.3	51.68	-	-	74	-22.32	349	391	V
4	* 2.366	29.92	RMS	31.9	-22.2	39.62	54	-14.38	-	-	349	391	V
1	* 2.39	39.1	PK	32	-22.2	48.9	-	-	74	-25.1	349	391	V
3	* 2.39	29.28	RMS	32	-22.2	39.08	54	-14.92	-	-	349	391	V

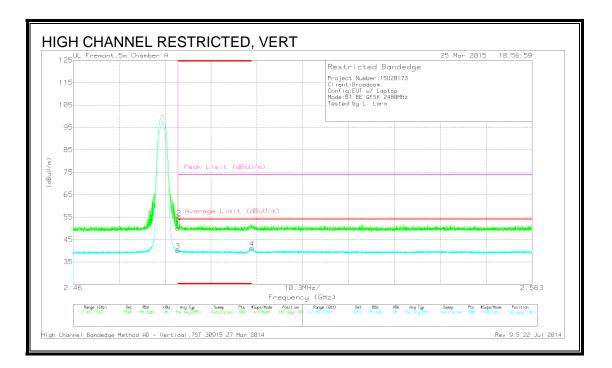
* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS – RMS detection

Page 64 of 93

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Trace Markers


Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	* 2.484	40.84	PK	32.1	-21.9	51.04	-	-	74	-22.96	303	100	н
3	* 2.484	30.3	RMS	32.1	-21.9	40.5	54	-13.5	-	-	303	100	н
2	* 2.5	42.56	РК	32.1	-22	52.66	-	-	74	-21.34	303	100	н
4	* 2.5	32.94	RMS	32.1	-22	43.04	54	-10.96	-	-	303	100	н

* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS – RMS detection

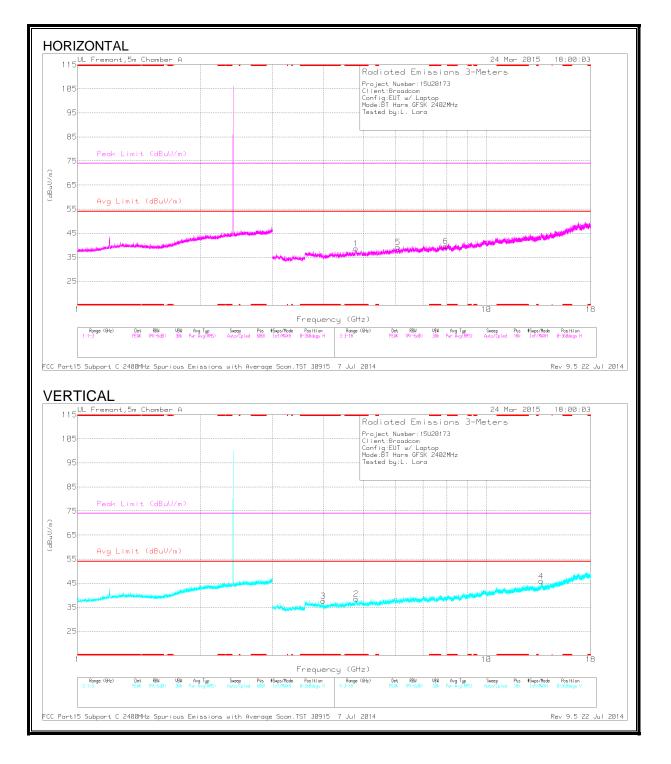
Page 65 of 93

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Trace Markers

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	* 2.484	39.93	PK	32.1	-21.9	50.13	-	-	74	-23.87	142	100	V
2	* 2.484	44.62	PK	32.1	-21.9	54.82	-	-	74	-19.18	142	100	V
3	* 2.484	29.89	RMS	32.1	-21.9	40.09	54	-13.91	-	-	142	100	V
4	2.5	30.99	RMS	32.1	-22	41.09	54	-12.91	-	-	142	100	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band


PK - Peak detector RMS – RMS detection

RMS – RMS detection

Page 66 of 93

HARMONICS AND SPURIOUS EMISSIONS

GFSK, LOW CHANNEL – 2402 MHz

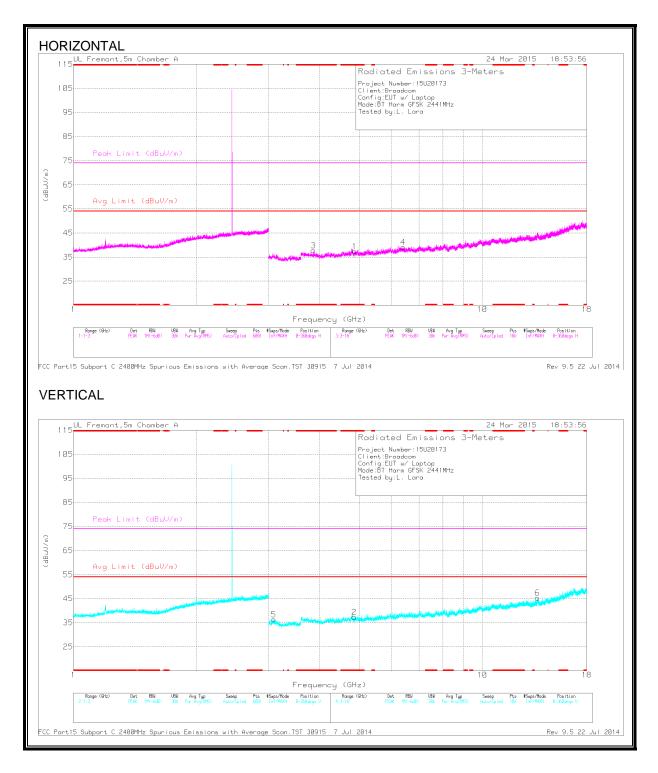
Page 67 of 93

GFSK, LOW CHANNEL - 2402 MHz, DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.797	40.53	PK3	34	-28.4	46.13	-	-	74	-27.87	63	346	Н
	* 4.797	29.16	MAv1	34	-28.4	34.76	54	-19.24	-	-	63	346	Н
2	* 4.802	40.75	PK3	34	-28.4	46.35	-	-	74	-27.65	346	271	V
	* 4.799	29.08	MAv1	34	-28.4	34.68	54	-19.32	-	-	346	271	V
3	* 3.988	42.34	PK3	33.3	-29.6	46.04	-	-	74	-27.96	266	276	V
	* 3.99	28.56	MAv1	33.3	-29.6	32.26	54	-21.74	-	-	266	276	V
5	6.084	31.79	PK	35.4	-28	39.19	-	-	-	-	0-360	201	Н
6	7.954	29.49	РК	35.7	-25.5	39.69	-	-	-	-	0-360	100	Н
4	13.615	28.11	РК	38.9	-21.2	45.81	-	-	-	-	0-360	201	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band


PK - Peak detector

PK3 - FHSS Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 68 of 93

GFSK, MID CHANNEL – 2441 MHz

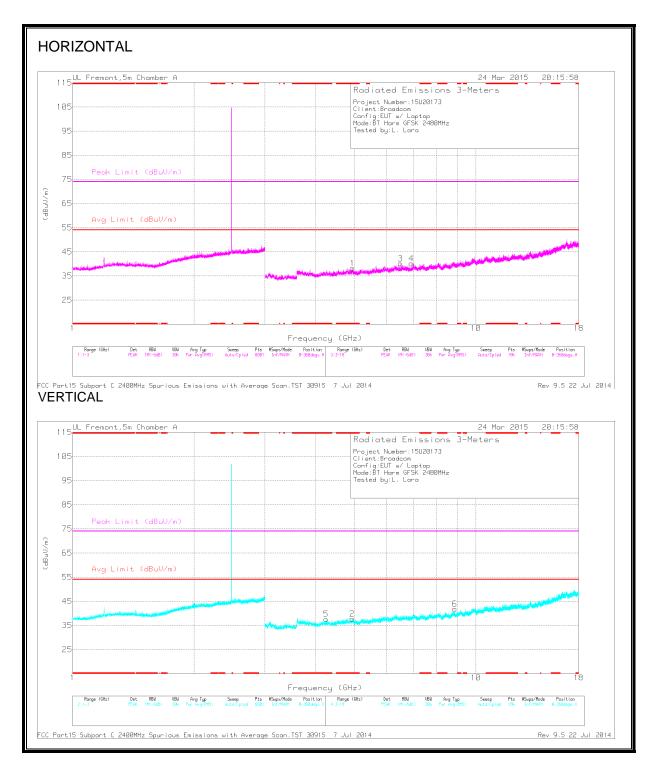
Page 69 of 93
UL VERIFICATION SERVICES INC.
FORM NO: CCSUP4701I
47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888
This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

GFSK, MID CHANNEL - 2441 MHz, DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.871	38.38	PK3	33.9	-27.8	44.48	-	-	74	-29.52	89	301	Н
	* 4.87	27.09	MAv1	33.9	-27.8	33.19	54	-20.81	-	-	89	301	Н
3	* 3.861	40.87	PK3	33.4	-29.6	44.67	-	-	74	-29.33	40	144	Н
	* 3.861	29.18	MAv1	33.4	-29.6	32.98	54	-21.02	-	-	40	144	Н
2	* 4.865	38.56	PK3	33.9	-27.9	44.56	-	-	74	-29.44	93	343	V
	* 4.868	27.11	MAv1	33.9	-27.8	33.21	54	-20.79	-	-	93	343	V
5	3.087	32.35	PK	32.9	-28.9	36.35	-	-	-	-	0-360	100	V
4	6.4	30.91	РК	35.5	-27.3	39.11	-	-	-	-	0-360	100	Н
6	13.654	27.48	РК	38.8	-20.9	45.38	-	-	-	-	0-360	100	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band


PK - Peak detector

PK3 - FHSS Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 70 of 93

GFSK, HIGH CHANNEL – 2480 MHz

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 71 of 93

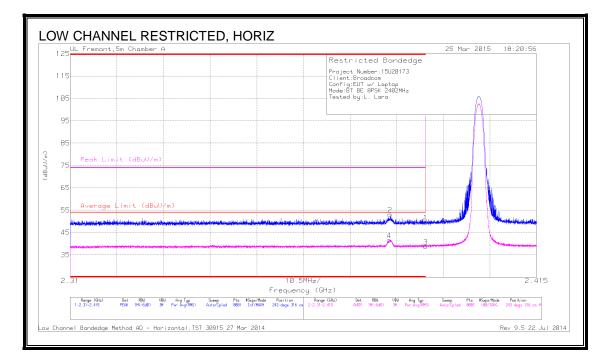
GFSK, HIGH CHANNEL - 2480 MHz, DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.96	38.86	PK3	33.9	-28	44.76	-	-	74	-29.24	34	163	Н
	* 4.96	28.27	MAv1	33.9	-28	34.17	54	-19.83	-	-	34	163	Н
2	* 4.961	38.63	PK3	33.9	-28	44.53	-	-	74	-29.47	4	272	V
	* 4.958	27.21	MAv1	33.9	-28	33.11	54	-20.89	-	-	4	272	V
5	* 4.254	41.37	PK3	33.4	-28.8	45.97	-	-	74	-28.03	189	199	V
	* 4.255	28.66	MAv1	33.4	-28.8	33.26	54	-20.74	-	-	189	199	V
3	6.507	31.93	PK	35.5	-27.3	40.13	-	-	-	-	0-360	201	Н
4	6.926	30.94	РК	35.6	-26.4	40.14	-	-	-	-	0-360	201	Н
6	8.866	29.36	РК	36	-23.5	41.86	-	-	-	-	0-360	100	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector


PK3 - FHSS Method: Maximum Peak

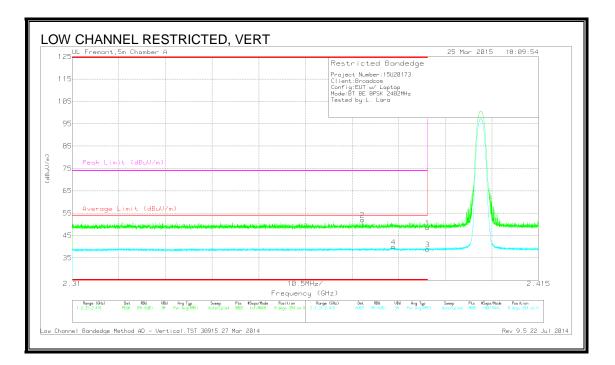
MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 72 of 93

9.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Trace Markers


Marker	Frequency (GHz)	Meter Reading	Det	AF T136 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
2	* 2.382	43.37	PK	31.9	-22.3	52.97	-	-	74	-21.03	243	316	н
4	* 2.382	31.98	RMS	31.9	-22.3	41.58	54	-12.42	-	-	243	316	н
1	* 2.39	39.87	PK	32	-22.2	49.67	-	-	74	-24.33	243	316	Н
3	* 2.39	28.97	RMS	32	-22.2	38.77	54	-15.23	-	-	243	316	н

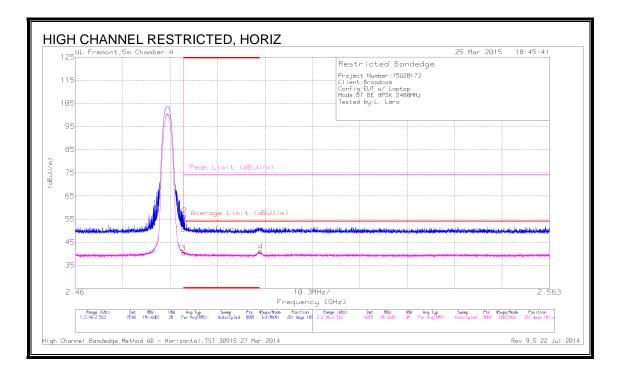
* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS - RMS detection

Page 73 of 93

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.375	42.29	РК	31.9	-22.2	51.99	-	-	74	-22.01	8	394	V
4	* 2.382	30.33	RMS	31.9	-22.3	39.93	54	-14.07	-	-	8	394	V
1	* 2.39	38.7	PK	32	-22.2	48.5	-	-	74	-25.5	8	394	V
3	* 2.39	29.09	RMS	32	-22.2	38.89	54	-15.11	-	-	8	394	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band

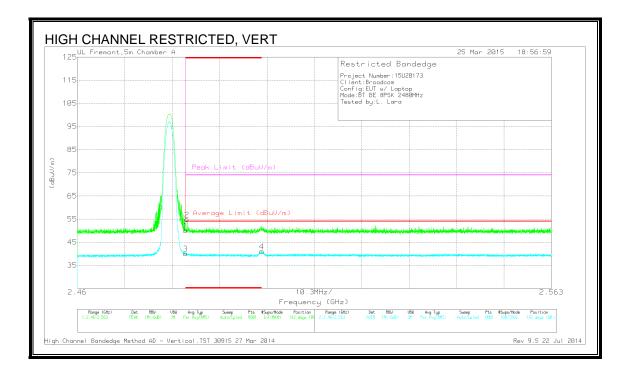
PK - Peak detector RMS - RMS detection

Page 74 of 93

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T136 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	* 2.484	40.37	PK	32.1	-21.9	50.57	-	-	74	-23.43	261	101	н
2	* 2.484	46.42	PK	32.1	-21.9	56.62	-	-	74	-17.38	261	101	н
3	* 2.484	30.21	RMS	32.1	-21.9	40.41	54	-13.59	-	-	261	101	н
4	2.5	30.99	RMS	32.1	-22	41.09	54	-12.91	-	-	261	101	н


* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

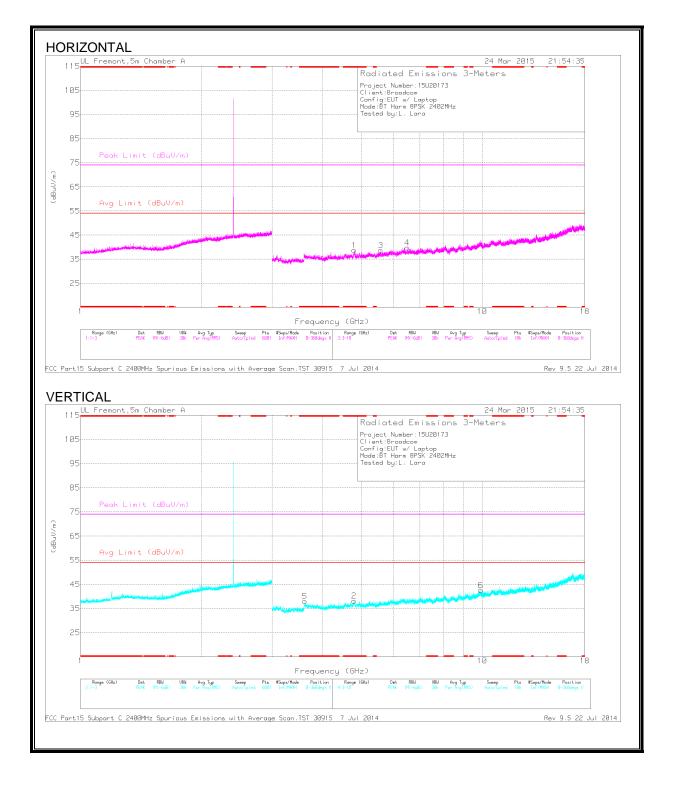
Page 75 of 93

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T136 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)			. ,	,	. ,	
1	* 2.484	39.93	PK	32.1	-21.9	50.13	-	-	74	-23.87	142	100	V
2	* 2.484	44.62	PK	32.1	-21.9	54.82	-	-	74	-19.18	142	100	V
3	* 2.484	29.89	RMS	32.1	-21.9	40.09	54	-13.91	-	-	142	100	V
4	2.5	30.99	RMS	32.1	-22	41.09	54	-12.91	-	-	142	100	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band


PK - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 76 of 93

HARMONICS AND SPURIOUS EMISSIONS

8PSK, LOW CHANNEL – 2402 MHz

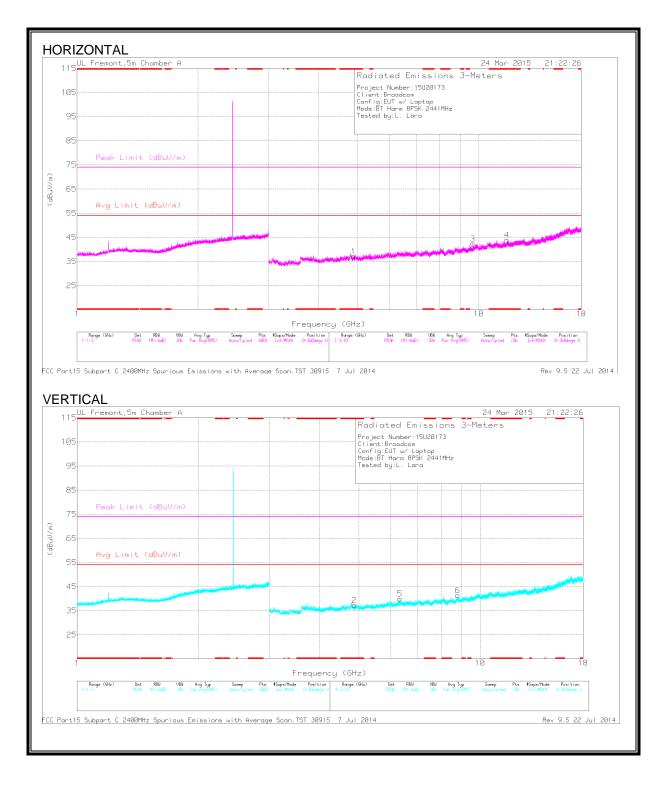
Page 77 of 93

8PSK, LOW CHANNEL - 2402 MHz, DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.803	39.9	PK3	34	-28.4	45.5	-	-	74	-28.5	358	234	Н
	* 4.802	28.92	MAv1	34	-28.4	34.52	54	-19.48	-	-	358	234	н
2	* 4.801	40.39	PK3	34	-28.4	45.99	-	-	74	-28.01	219	119	V
	* 4.8	28.95	MAv1	34	-28.4	34.55	54	-19.45	-	-	219	119	V
5	* 3.618	40.56	PK3	33.1	-29.9	43.76	-	-	74	-30.24	68	322	V
	* 3.616	28.99	MAv1	33.1	-30	32.09	54	-21.91	-	-	68	322	V
3	5.592	32.03	PK	34.5	-27.8	38.73	-	-	-	-	0-360	100	Н
4	6.511	31.6	РК	35.5	-27.3	39.8	-	-	-	-	0-360	201	Н
6	9.912	26.86	PK	37	-21.3	42.56	-	-	-	-	0-360	100	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band


PK - Peak detector

PK3 - FHSS Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 78 of 93

8PSK, MID CHANNEL – 2441MHz

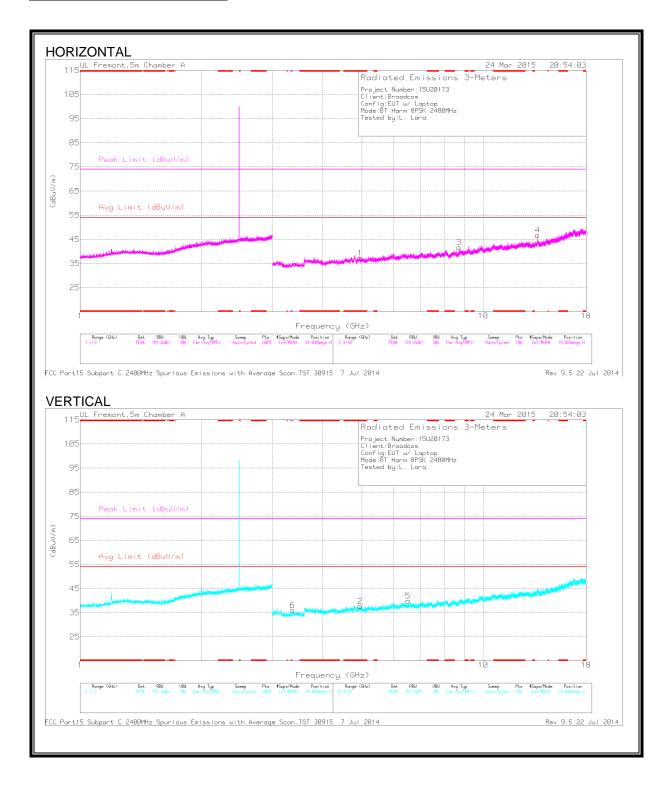
Page 79 of 93
UL VERIFICATION SERVICES INC.
FORM NO: CCSUP4701I
47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888
This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

8PSK, MID CHANNEL - 2441MHz, DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.884	38.77	PK3	33.9	-27.7	44.97	-	-	74	-29.03	304	363	Н
	* 4.882	27.14	MAv1	33.9	-27.7	33.34	54	-20.66	-	-	304	363	н
4	* 11.756	33.3	PK3	38.3	-21.1	50.5	-	-	74	-23.5	105	352	Н
	* 11.756	21.98	MAv1	38.3	-21.1	39.18	54	-14.82	-	-	105	352	Н
2	* 4.881	38.6	PK3	33.9	-27.7	44.8	-	-	74	-29.2	55	330	V
	* 4.882	27.41	MAv1	33.9	-27.7	33.61	54	-20.39	-	-	55	330	V
5	6.319	31.27	РК	35.5	-26.8	39.97	-	-	-	-	0-360	100	V
6	8.795	27.89	РК	36	-22.5	41.39	-	-	-	-	0-360	201	V
3	9.674	29.07	PK	36.8	-23.5	42.37	-	-	-	-	0-360	100	Н

* - indicates frequency in CFR15.205/IC8.10 Restricted Band


PK - Peak detector

PK3 - FHSS Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 80 of 93

8PSK, HIGH CHANNEL – 2480 MHz

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 81 of 93

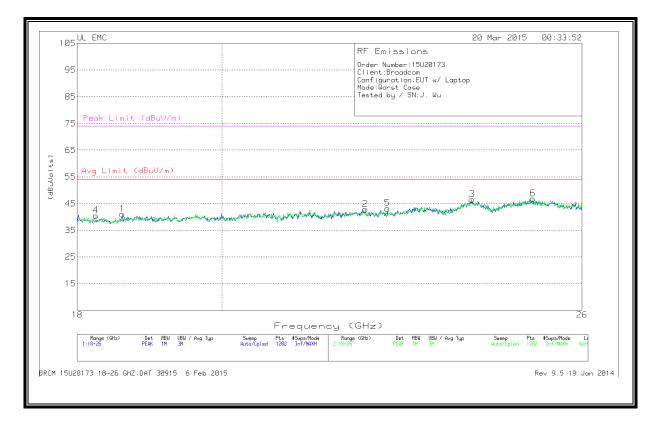
8PSK, HIGH CHANNEL - 2480 MHz, DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.96	38.42	PK3	33.9	-28	44.32	-	-	74	-29.68	85	350	Н
	* 4.96	27.33	MAv1	33.9	-28	33.23	54	-20.77	-	-	85	350	Н
2	* 4.961	38.68	PK3	33.9	-28	44.58	-	-	74	-29.42	32	347	V
	* 4.96	27.37	MAv1	33.9	-28	33.27	54	-20.73	-	-	32	347	V
6	3.367	32.32	PK	32.9	-29.2	36.02	-	-	-	-	0-360	201	V
5	6.512	31.69	РК	35.5	-27.3	39.89	-	-	-	-	0-360	100	V
3	8.707	29.72	РК	35.9	-23.9	41.72	-	-	-	-	0-360	201	Н
4	13.645	29.01	РК	38.8	-21.1	46.71	-	-	-	-	0-360	100	Н

* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector


PK3 - FHSS Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 82 of 93

9.3. WORST-CASE 18-26 GHz

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION)

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	T89 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
		(dBuV)					(dBuVolts)				
1	18.6	42.4	РК	32.6	-24.5	-9.5	41	54	-13	74	-33
2	22.203	41.83	РК	33.7	-23.2	-9.5	42.83	54	-11.17	74	-31.17
3	23.995	44.5	РК	34.2	-22.7	-9.5	46.5	54	-7.5	74	-27.5
4	18.246	42	РК	32.6	-24.6	-9.5	40.5	54	-13.5	74	-33.5
5	22.563	42.47	РК	33.7	-23.5	-9.5	43.17	54	-10.83	74	-30.83
6	25.087	44.73	РК	34.5	-22.9	-9.5	46.83	54	-7.17	74	-27.177

PK - Peak detector

9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

EMISSIONS DATA

Trace Markers

Marker	Frequency (MHz)	Meter Reading	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)					
1	60.005	56.3	РК	7.6	-30.9	33	40	-7	0-360	400	Н
4	60.0475	53.68	РК	7.6	-30.9	30.38	40	-9.62	0-360	101	V
5	173.31	45.58	РК	11.6	-30.1	27.08	43.52	-16.44	0-360	101	V
2	174.0325	50.41	РК	11.6	-30.1	31.91	43.52	-11.61	0-360	100	н
3	353.5	45.85	РК	14.3	-29.2	30.95	46.02	-15.07	0-360	101	Н
6	486	38.49	РК	17.7	-28.6	27.59	46.02	-18.43	0-360	200	V

PK - Peak detector

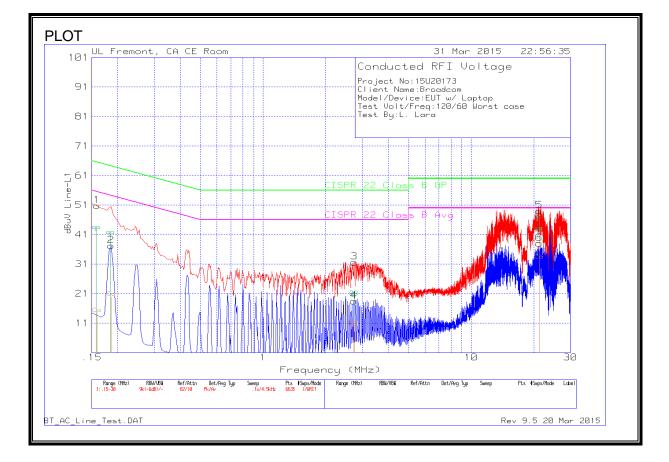
Page 84 of 93

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen Clause 8.8


Frequency of Emission (MHz)	Conducted L	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

Page 85 of 93

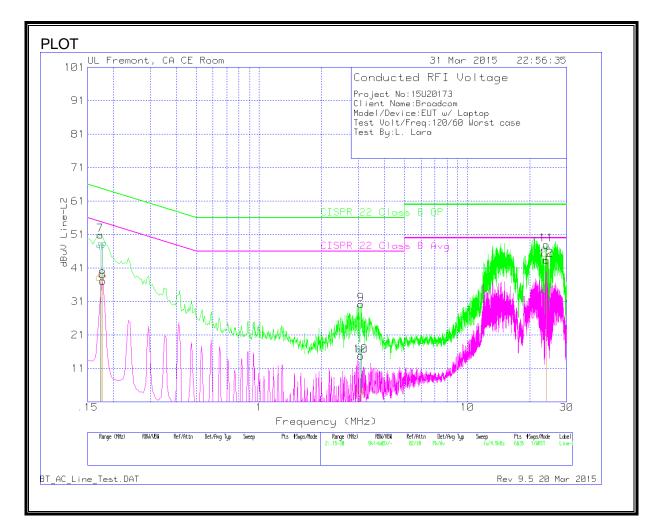
6 WORST EMISSIONS

LINE 1 RESULTS

Range 1: Line-L1 .15 - 30MHz

Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
(MHz)	Reading			1&3	Reading	Class B QP	(dB)	Class B Avg	(dB)
	(dBuV)				dBuV				
.15788	41.06	Qp	1.3	0	42.36	-	-	55.57	-13.21
.18488	39.72	Qp	1	0	40.72	-	-	54.26	-13.54
2.73863	19.51	Qp	.2	.1	19.81	-	-	46	-26.19
2.73413	20.24	Qp	.2	.1	20.54	-	-	46	-25.46
21.2201	41.51	Qp	.3	.2	42.01	-	-	50	-7.99
21.2089	45.61	Qp	.3	.2	46.11	-	-	50	-3.89

Qp - Quasi-Peak detector


Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margir
(MHz)	Reading			1&3	Reading	Class B QP	(dB)	Class B Avg	(dB)
	(dBuV)				dBuV				
.15788	12.93	Ca	1.3	0	14.23	-	-	55.57	-41.34
.18488	18.8	Ca	1	0	19.8	-	-	54.26	-34.46
2.73863	9.12	Ca	.2	.1	9.42	-	-	46	-36.58
2.73413	9.9	Ca	.2	.1	10.2	-	-	46	-35.8
21.2201	31.89	Ca	.3	.2	32.39	-	-	50	-17.61
21.2089	37.3	Ca	.3	.2	37.8	-	-	50	-12.2

Ca - CISPR average detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888

Page 87 of 93

LINE 2 RESULTS

Range 2: Line-L2 .15 - 30MHz

Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin	
(MHz)	Reading			2&3	Reading	Class B QP	(dB)	Class B Avg	(dB)	
	(dBuV)				dBuV					
.17363	45.32	Qp	1.2	0	46.52	-	-	54.78	-8.26	
.17678	46.08	Qp	1.2	0	47.28	-	-	54.64	-7.36	
3.08918	15.98	Qp	.2	.1	16.28	-	-	46	-29.72	
3.07928	14.99	Qp	.2	.1	15.29	-	-	46	-30.71	
23.9989	45.52	Qp	.3	.2	46.02	-	-	50	-3.98	

Qp - Quasi-Peak detector

Range 2: Line-L2 .15 - 30MHz										
Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin	
(MHz)	Reading			2&3	Reading	Class B QP	(dB)	Class B Avg	(dB)	
	(dBuV)				dBuV					
.17363	35.43	Ca	1.2	0	36.63	-	-	54.78	-18.15	
.17678	36.41	Ca	1.2	0	37.61	-	-	54.64	-17.03	
3.08918	3.32	Ca	.2	.1	3.62	-	-	46	-42.38	
3.07928	2.27	Ca	.2	.1	2.57	-	-	46	-43.43	
23.9989	43.38	Ca	.3	.2	43.88	-	-	50	-6.12	

Ca - CISPR average detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 89 of 93