

### FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

### BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

802.11b/g/n/a/ac 3X3 WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM943602CDP

FCC ID: QDS-BRCM1089 IC: 4324A-BRCM1089

REPORT NUMBER: 15U20173-E5 Revision A

**ISSUE DATE: MAY 13, 2015** 

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

### **Revision History**

| Rev. | lssue<br>Date | Revisions            | Revised By  |
|------|---------------|----------------------|-------------|
|      | 04/14/15      | Initial Issue        | H. Mustapha |
|      | 05/13/15      | Updated output power | H. Mustapha |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 55

# TABLE OF CONTENTS

| 1.                                                                            | AT                                                                                        | TESTATION OF TEST RESULTS                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                                            | TE                                                                                        | ST METHODOLOGY                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.                                                                            | FA                                                                                        | CILITIES AND ACCREDITATION                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.                                                                            | СА                                                                                        | LIBRATION AND UNCERTAINTY                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                             | .1.                                                                                       | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                             | .2.                                                                                       | SAMPLE CALCULATION                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                             | .3.                                                                                       | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.                                                                            | EQ                                                                                        | UIPMENT UNDER TEST                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                             | .1.                                                                                       | DESCRIPTION OF EUT                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                             | .2.                                                                                       | MAXIMUM OUTPUT POWER                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                             | .3.                                                                                       | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                             | .4.                                                                                       | SOFTWARE AND FIRMWARE                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                             | .5.                                                                                       | WORST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                             | .6.                                                                                       | DESCRIPTION OF TEST SETUP1                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.                                                                            | TE                                                                                        | ST AND MEASUREMENT EQUIPMENT1                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                                                           |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.                                                                            | ME                                                                                        | ASUREMENT METHODS1                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                                                           | ASUREMENT METHODS1<br>NA PORT TEST RESULTS1                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AN'                                                                           |                                                                                           |                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>AN</b><br>7                                                                | ΓEN                                                                                       | NA PORT TEST RESULTS1                                                                                                                                                                                                                                                                          | <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>AN</b><br>7<br>7                                                           | <b>TEN</b><br>. 1.                                                                        | NA PORT TEST RESULTS1<br>ON TIME AND DUTY CYCLE1                                                                                                                                                                                                                                               | <b>4</b><br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>AN</b><br>7<br>7<br>7                                                      | TEN<br>.1.<br>.2.                                                                         | NA PORT TEST RESULTS                                                                                                                                                                                                                                                                           | <b>4</b><br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>AN</b><br>7<br>7<br>7<br>7                                                 | TEN<br>. 1.<br>. 2.<br>. 3.                                                               | NA PORT TEST RESULTS                                                                                                                                                                                                                                                                           | <b>4</b><br>5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AN<br>7<br>7<br>7<br>7<br>7                                                   | TEN<br>21.<br>22.<br>23.<br>24.                                                           | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2                                                                                                                                                                                                    | <b>4</b><br>5<br>8<br>1<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AN<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                         | TEN<br>2.1.<br>2.2.<br>2.3.<br>2.4.<br>2.5.                                               | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2AVERAGE OUTPUT POWER2                                                                                                                                                                               | <b>4</b><br>5<br>8<br>1<br>24<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AN<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                    | <b>TEN</b><br>2.1.<br>2.2.<br>2.3.<br>2.4.<br>2.5.<br>2.6.                                | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2AVERAGE OUTPUT POWER2POWER SPECTRAL DENSITY2                                                                                                                                                        | <b>4</b><br>5<br>8<br>1<br>4<br>5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AN'<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                              | <b>TEN</b><br>2.1.<br>2.2.<br>2.3.<br>2.4.<br>2.5.<br>2.6.<br>2.7.<br>2.8.                | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2AVERAGE OUTPUT POWER2POWER SPECTRAL DENSITY2CONDUCTED TX SPURIOUS EMISSIONS2                                                                                                                        | <b>4</b><br>5<br>8<br>1<br>4<br>5<br>8<br>2<br>8<br>2<br>8<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AN<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8.                              | <b>TEN</b><br>2.1.<br>2.2.<br>2.3.<br>2.4.<br>2.5.<br>2.6.<br>2.7.<br>2.8.                | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2AVERAGE OUTPUT POWER2POWER SPECTRAL DENSITY2CONDUCTED TX SPURIOUS EMISSIONS2CONDUCTED RX SPURIOUS EMISSIONS3                                                                                        | <b>4</b><br>5<br>8<br>1<br>4<br>5<br>8<br>2<br>4<br>5<br>8<br>2<br><b>4</b><br>5<br>8<br>2<br><b>4</b><br>5<br>8<br>2<br><b>4</b><br>5<br>8<br>2<br><b>4</b><br>5<br>8<br>2<br><b>4</b><br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>2<br>5<br>8<br>5<br>8 |
| AN<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8.                              | TEN<br>. 1.<br>. 2.<br>. 3.<br>. 4.<br>. 5.<br>. 6.<br>. 7.<br>. 8.<br>RA                 | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2AVERAGE OUTPUT POWER2POWER SPECTRAL DENSITY2CONDUCTED TX SPURIOUS EMISSIONS2CONDUCTED RX SPURIOUS EMISSIONS3DIATED TEST RESULTS3                                                                    | <b>4</b><br>5<br>8<br>1<br>4<br>5<br>8<br>2<br>4<br>5<br>8<br>2<br><b>4</b><br>5<br>8<br>2<br><b>4</b><br>8<br>2<br><b>4</b><br>8<br>2<br><b>4</b><br>8<br>2<br>8<br>2<br><b>4</b><br>8<br>1<br>8<br>12<br>8<br>12<br>8<br>12<br>8<br>12<br>8<br>12<br>8<br>12<br>8<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AN <sup>**</sup><br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8.<br>8           | TEN<br>. 1.<br>. 2.<br>. 3.<br>. 4.<br>. 5.<br>. 6.<br>. 7.<br>. 8.<br>RA<br>. 1.         | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2AVERAGE OUTPUT POWER2POWER SPECTRAL DENSITY2CONDUCTED TX SPURIOUS EMISSIONS2CONDUCTED RX SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3                                               | <b>4</b><br>4<br>5<br>8<br>1<br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br><b>5</b><br>8<br><b>5</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AN <sup>**</sup><br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8.<br>8<br>8<br>8<br>8 | TEN<br>. 1.<br>. 2.<br>. 3.<br>. 4.<br>. 5.<br>. 6.<br>. 7.<br>. 8.<br>RA<br>. 1.<br>. 2. | NA PORT TEST RESULTS1ON TIME AND DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH1PEAK OUTPUT POWER2AVERAGE OUTPUT POWER2POWER SPECTRAL DENSITY2CONDUCTED TX SPURIOUS EMISSIONS3CONDUCTED RX SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND3 | <b>4</b><br>4<br>5<br>8<br>1<br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>8<br>2<br><b>4</b><br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Page 3 of 55

| 9. | SE1  | IUP PHOTOS                                      | 52 |
|----|------|-------------------------------------------------|----|
| :  | 9.1. | ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP     | 52 |
| :  | 9.2. | RADIATED RF MEASUREMENT SETUP (BELOW 1 GHz)     | 53 |
| :  | 9.3. | RADIATED RF MEASUREMENT SETUP (ABOVE 1 GHz)     | 54 |
| 1  | 9.4. | POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP | 55 |

Page 4 of 55

Pass

Pass

# **1. ATTESTATION OF TEST RESULTS**

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

**INDUSTRY CANADA RSS-GEN Issue 4** 

| COMPANY NAME:        |                                                                        |      |  |  |  |  |
|----------------------|------------------------------------------------------------------------|------|--|--|--|--|
| EUT DESCRIPTION:     | 802.11b/g/n/a/ac 3X3 WLAN + Bluetooth PCI-E Custom<br>Combination Card |      |  |  |  |  |
| MODEL: BCM943602CDP  |                                                                        |      |  |  |  |  |
| SERIAL NUMBER:       | CY31A                                                                  |      |  |  |  |  |
| DATE TESTED:         |                                                                        |      |  |  |  |  |
| APPLICABLE STANDARDS |                                                                        |      |  |  |  |  |
| ST                   | TEST RESULTS                                                           |      |  |  |  |  |
| CFR 47 P             | art 15 Subpart C                                                       | Pass |  |  |  |  |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Page 5 of 55

Approved & Released For UL Verification Services Inc. By:

Huda Mustapha

HUDA MUSTAPHA PROJECT LEAD UL Verification Services Inc.



FRANK IBRAHIM PROGRAM MANAGER UL Verification Services Inc. Tested By:

Lionel Lara

Lionel Lara LAB ENGINEER UL Verification Services Inc.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 6 of 55

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-210 Issue 8.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street | 47266 Benicia Street |
|----------------------|----------------------|
| 🖂 Chamber A          | Chamber D            |
| Chamber B            | Chamber E            |
| Chamber C            | Chamber F            |
|                      | Chamber G            |
|                      | Chamber H            |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

# 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 7 of 55

## 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | ± 3.52 dB   |
| Radiated Disturbance, 30 to 1000 MHz  | ± 4.94 dB   |
| Radiated Disturbance, 1 to 6 GHz      | ± 3.86 dB   |
| Radiated Disturbance, 6 to 18 GHz     | ± 4.23 dB   |
| Radiated Disturbance, 18 to 26 GHz    | ± 5.30 dB   |
| Radiated Disturbance, 26 to 40 GHz    | ± 5.23 dB   |

Uncertainty figures are valid to a confidence level of 95%.

Page 8 of 55

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

The EUT is an 802.11b/g/n/a/ac 3X3 WLAN + Bluetooth PCI-E Custom Combination Card.

The radio module is manufactured by Broadcom.

## 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range | Mode | Output Power | Output Power |
|-----------------|------|--------------|--------------|
| (MHz)           |      | (dBm)        | (mW)         |
| 2402 - 2480     | BLE  | 3.03         | 2.01         |

# 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The EUT utilizes an 802.11a/b/g/n/ac WLAN/BT antenna with a maximum gain of 6.56 dBi for BT.

## 5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed in the Laptop equipment during testing was 5.6.0.9020.

The test utility software used during testing was Broadcom Bluetool 1.8.4.7.

## 5.5. WORST-CASE CONFIGURATION AND MODE

The EUT can only be setup in desktop orientation; therefore all radiated testing was performed with the EUT in desktop orientation.

Radiated emission below 1 GHz, 18 to 26 GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Chain J3 (WF1) was used for testing BLE mode.

Based on client's input, there is no colocation among different radios.

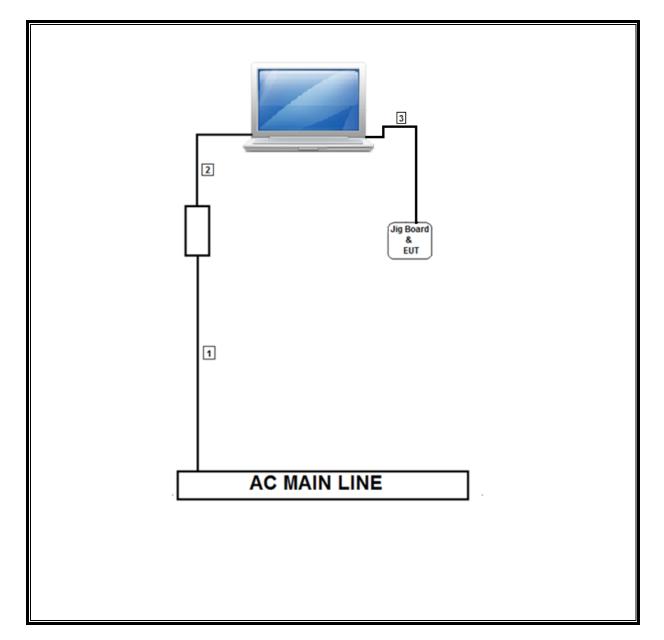
Page 9 of 55

## 5.6. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List                              |          |                 |                |     |  |  |
|-----------------------------------------------------|----------|-----------------|----------------|-----|--|--|
| Description Manufacturer Model Serial Number FCC ID |          |                 |                |     |  |  |
| Laptop                                              | НР       | EliteBook 2730p | 2CE8487Zmt     | N/A |  |  |
| AC Adapter                                          | НР       | PPP014L-SA      | W97950ELLVC685 | N/A |  |  |
| Jig Board                                           | Broadcom | BCM94331CSAD_3  | 1821985        | N/A |  |  |

### I/O CABLES


|             | I/O Cable List |                         |                   |            |                     |         |  |  |
|-------------|----------------|-------------------------|-------------------|------------|---------------------|---------|--|--|
| Cable<br>No | Port           | # of identical<br>ports | Connector<br>Type |            | Cable Length<br>(m) | Remarks |  |  |
| 1           | AC             | 1                       | US115V            | Unshielded | 1                   |         |  |  |
| 2           | DC             | 1                       | 19Vdc             | Unshielded | 1.5                 |         |  |  |
| 3           | USB            | 1                       | USB               | Unshielded | 0.5                 |         |  |  |

#### TEST SETUP

The EUT is installed on a jig board and is connected to the laptop with a USB cable. Test software exercised the radio card.

Page 10 of 55

### SETUP DIAGRAM FOR TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 55

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List            |                 |                        |       |                 |          |  |
|--------------------------------|-----------------|------------------------|-------|-----------------|----------|--|
| Description                    | Manufacturer    | Model                  | T No. | Cal Date        | Cal Due  |  |
| Radiated Software              | UL              | UL EMC                 | V     | er 9.5, July 22 | 2, 2014  |  |
| Line Conducted Software        | UL              | UL EMC                 | Ve    | er 9.5, May 1   | 7, 2012  |  |
| Bilog Antenna 30-1000MHz       | Sunol           | JB1                    | 130   | 09/10/14        | 09/10/15 |  |
| Horn Antenna 1-18GHz           | ETS             | 3117                   | 136   | 03/03/15        | 03/03/16 |  |
| Horn Antenna 18-26GHz          | ARA             | SWH-28                 | 125   | 05/09/14        | 05/09/15 |  |
| Preamp 10kHz-1000MHz           | Sonoma          | 310                    | 300   | 11/01/14        | 11/01/15 |  |
| Preamp 1-8GHz                  | Miteq           | AMF-4D-01000800-30-29P | 782   | 11/18/14        | 11/18/15 |  |
| Preamp 1-18GHz                 | Miteq           | AFS42-00101800-25-2-42 | 492   | 08/09/14        | 08/09/15 |  |
| Preamp 1-26.5GHz               | Agilent         | 8449B                  | 404   | 04/06/15        | 04/06/16 |  |
| Spectrum Analyzer 3kHz - 44GHz | Agilent         | N9030A                 | 908   | 09/05/14        | 09/05/15 |  |
| Spectrum Analyzer 9kHz - 40GHz | HP              | 8564E                  | 106   | 08/06/14        | 08/06/15 |  |
| Coaxial Switchbox              | Agilent         | SP6T                   | 927   | 09/15/14        | 09/15/15 |  |
| 3GHz HPF                       | Micro-Tronics   | HPM17543               | 486   | 11/18/14        | 11/18/15 |  |
| EMI Test Receiver              | Rohde & Schwarz | ECSI 7                 | 212   | 08/14/14        | 08/14/15 |  |
| Spectrum Analzer 3Hz to 44GHz  | Agilent         | E4440A                 | 123   | 10/28/14        | 10/28/15 |  |
| Power Meter                    | Agilent         | N1911A                 | 377   | 06/30/14        | 06/30/15 |  |
| Power Sensor                   | Agilent         | E9323A                 | 399   | 05/02/14        | 05/02/15 |  |
| LISN for Conducted Emissions   | FCC             | 50/250-25-2            | 24    | 01/16/15        | 01/16/16 |  |

Page 12 of 55

# 7. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 558074, Section 6.0.

<u>6 dB Bandwidth</u>: KDB 558074 D01 v03r01, Section 8.1.

99% Bandwidth: ANSI C63.10-2013, Sections 6.9.3.

Peak Output Power: KDB 558074 D01 v03r01, Section 9.1.1.

Power Spectral Density: KDB 558074 D01 v03r01, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r01, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r01, Section 12.1.

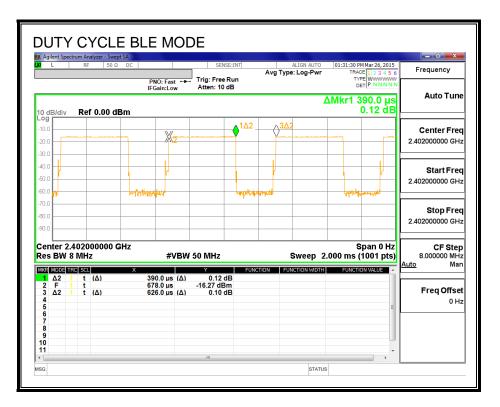
Band-edge: KDB 558074 D01 v03r01, Section 13.3.2.

Conducted RX Spurious Emissions: ANSI C63.4-2014, Sections 12.2.

Page 13 of 55

# 8. ANTENNA PORT TEST RESULTS

## 8.1. ON TIME AND DUTY CYCLE


### **LIMITS**

None; for reporting purposes only.

### **RESULTS**

| Mode | ON Time | Period | Duty Cycle | Duty   | Duty Cycle               |
|------|---------|--------|------------|--------|--------------------------|
|      | В       |        | x          | Cycle  | <b>Correction Factor</b> |
|      | (msec)  | (msec) | (linear)   | (%)    | (dB)                     |
| BLE  | 0.390   | 0.626  | 0.623      | 62.30% | 2.06                     |

### **DUTY CYCLE PLOTS**



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 14 of 55

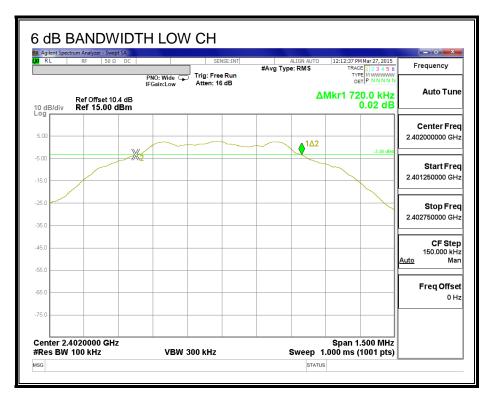
### 8.2. 6 dB BANDWIDTH

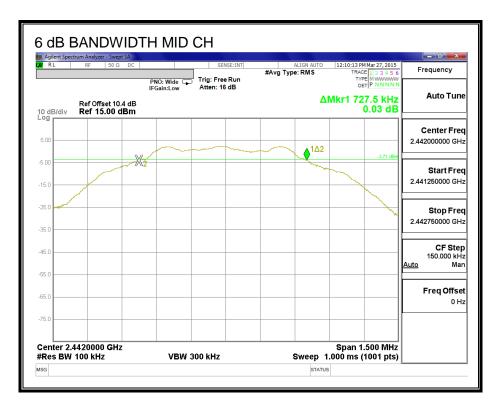
### LIMITS

FCC §15.247 (a) (2)

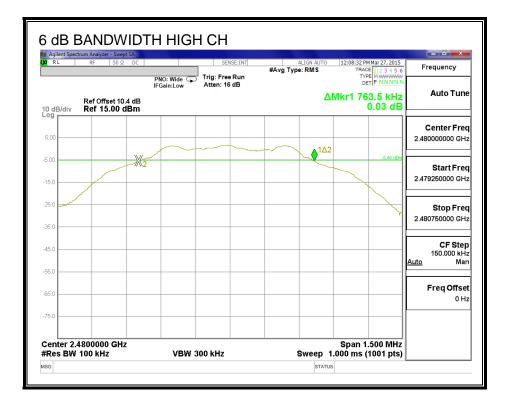
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


### **RESULTS**


| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|--------------------|-------------------------|------------------------|
| Low     | 2402               | 0.7200                  | 0.5                    |
| Middle  | 2442               | 0.7275                  | 0.5                    |
| High    | 2480               | 0.7635                  | 0.5                    |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 15 of 55

#### 6 dB BANDWIDTH





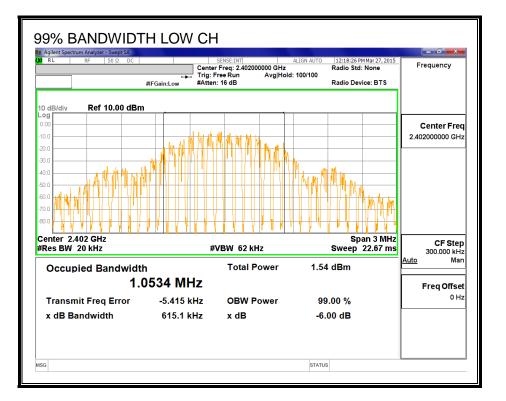
Page 16 of 55

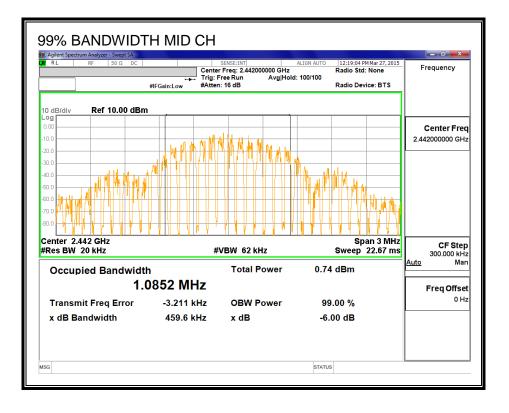


Page 17 of 55

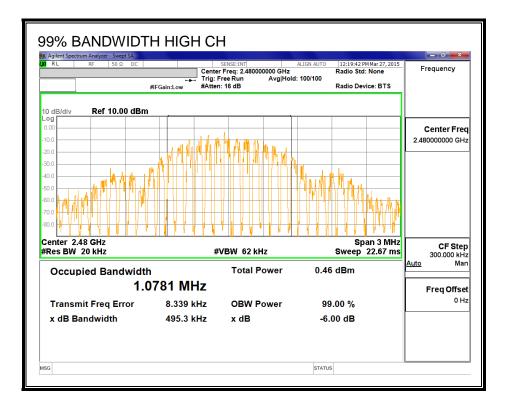
### 8.3. 99% **BANDWIDTH**

### LIMITS


None; for reporting purposes only.


#### **RESULTS**

| Channel | Frequency<br>(MHz) | 99% Bandwidth<br>(MHz) |
|---------|--------------------|------------------------|
| Low     | 2402               | 1.0534                 |
| Middle  | 2442               | 1.0852                 |
| High    | 2480               | 1.0781                 |


Page 18 of 55

#### 99% BANDWIDTH





Page 19 of 55



Page 20 of 55

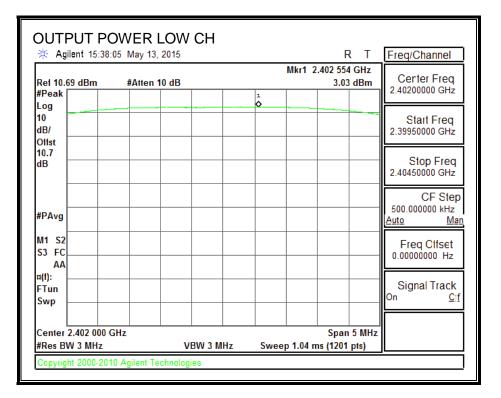
# 8.4. PEAK OUTPUT POWER

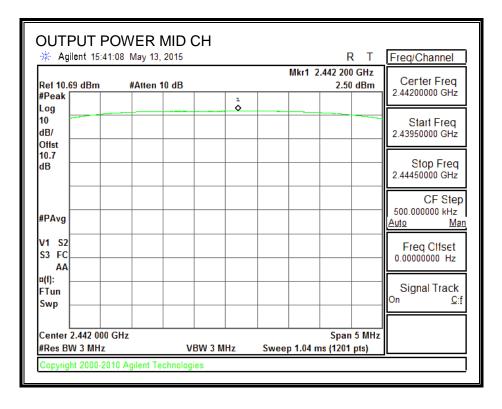
### LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is 6.56 dBi, therefore the limit is 29.44 dBm.


### **RESULTS**


| Channel | Frequency | Peak Power<br>Reading | Limit | Margin  |
|---------|-----------|-----------------------|-------|---------|
|         | (MHz)     | (dBm)                 | (dBm) | (dB)    |
| Low     | 2402      | 3.03                  | 29.44 | -26.410 |
| Middle  | 2442      | 2.50                  | 29.44 | -26.940 |
| High    | 2480      | 2.45                  | 29.44 | -26.990 |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 21 of 55

#### **OUTPUT POWER**





Page 22 of 55

| 🔆 Agilent 15:4                    | 2:54 May 13, 2015 |           |              | RT                       | Freq/Channel                             |
|-----------------------------------|-------------------|-----------|--------------|--------------------------|------------------------------------------|
| Ref 10.69 dBm                     | #Atten 10 dB      |           | Mkr1 2       | .480 283 GHz<br>2.45 dBm | Certer Freq<br>2.4800000 GHz             |
| #Peak<br>Log                      |                   | 1         |              |                          | 2.4000000 GHz                            |
| 10<br>dB/                         |                   |           |              |                          | Start Freq<br>2.47750000 GHz             |
| Offst<br>10.7<br>dB               |                   |           |              |                          | Stop Freq<br>2.48250000 GHz              |
| #PAvg                             |                   |           |              |                          | CF Step<br>500.000000 kHz<br>Auto Mar    |
| V1 S2<br>S3 FC<br>AA              |                   |           |              |                          | Freq Clfset<br>0.00000000 Hz             |
| ¤(f):<br>FTun<br>Swp              |                   |           |              |                          | Signal Track<br><sup>On <u>Cif</u></sup> |
| Center 2.480 000<br>#Res BW 3 MHz |                   | /BW 3 MHz | Sweep 1.04 m | Span 5 MHz               |                                          |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 23 of 55

# 8.5. AVERAGE OUTPUT POWER

### <u>LIMITS</u>

None; for reporting purposes only.

### **RESULTS**

| Channel | Frequency<br>(MHz) | AV power<br>(dBm) |
|---------|--------------------|-------------------|
| Low     | 2402               | 2.68              |
| Middle  | 2442               | 2.07              |
| High    | 2480               | 2.00              |

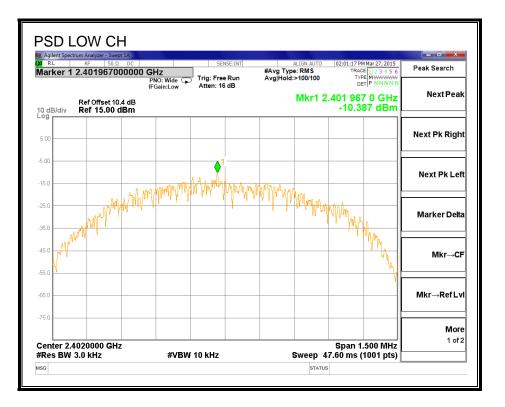
Page 24 of 55

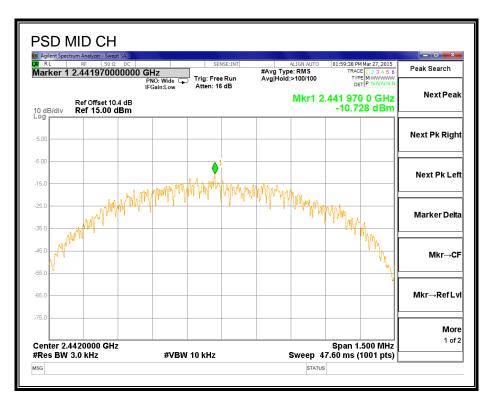
### 8.6. POWER SPECTRAL DENSITY

### LIMITS

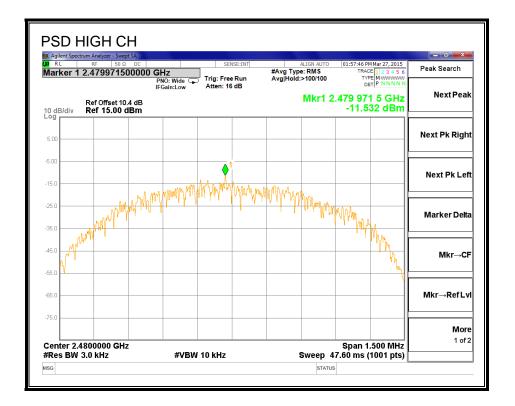
FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


### **RESULTS**

| Channel | Frequency | PSD     | Limit | Margin |
|---------|-----------|---------|-------|--------|
|         | (MHz)     | (dBm)   | (dBm) | (dB)   |
| Low     | 2402      | -10.387 | 8     | -18.39 |
| Middle  | 2442      | -10.728 | 8     | -18.73 |
| High    | 2480      | -11.532 | 8     | -19.53 |


Page 25 of 55

#### POWER SPECTRAL DENSITY





Page 26 of 55

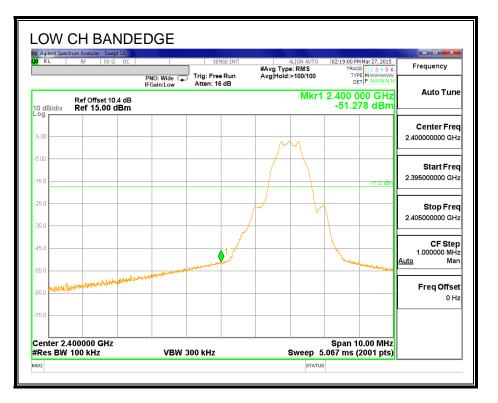


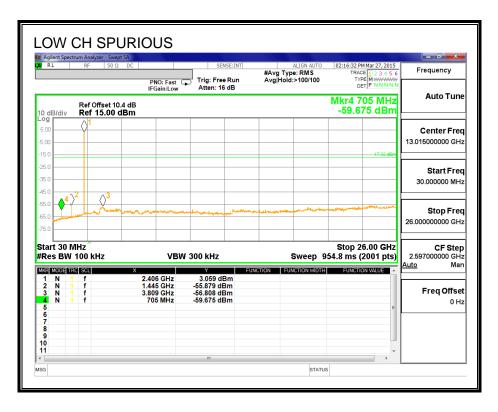
Page 27 of 55

# 8.7. CONDUCTED TX SPURIOUS EMISSIONS

### <u>LIMITS</u>

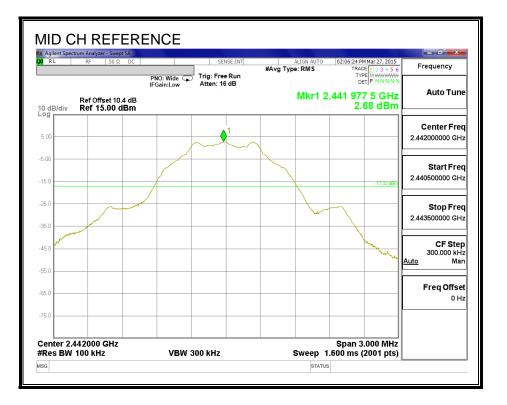
FCC §15.247 (d)

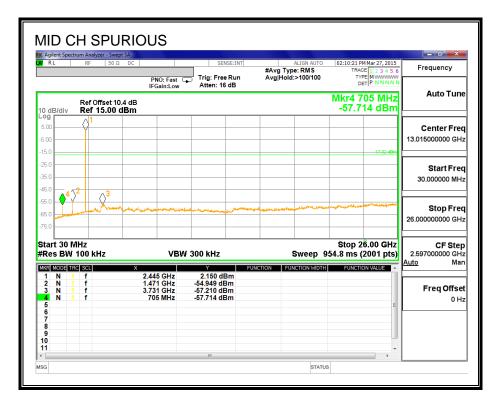

IC RSS-210 A8.5


Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

Page 28 of 55

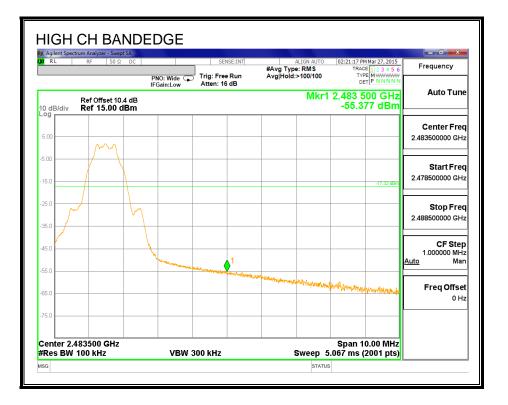
#### **RESULTS**

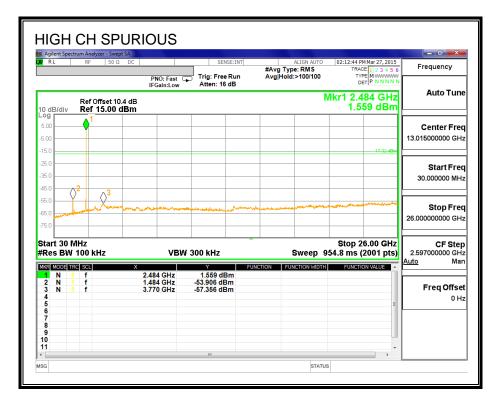

#### SPURIOUS EMISSIONS, LOW CHANNEL






Page 29 of 55


#### SPURIOUS EMISSIONS, MID CHANNEL






Page 30 of 55

#### SPURIOUS EMISSIONS, HIGH CHANNEL



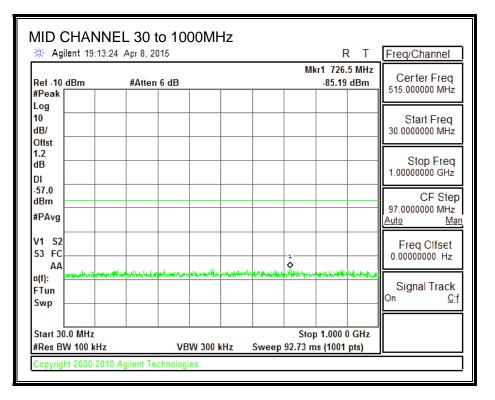


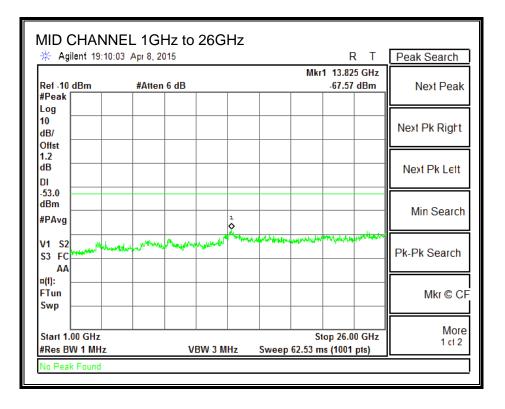
Page 31 of 55

# 8.8. CONDUCTED RX SPURIOUS EMISSIONS

### LIMITS

IC RSS GEN Issue 4, clause 7.1.3


Receiver-spurious emissions at any discrete frequency shall not exceed 2 nW in the band 30-1000 MHz, nor 5 nW above 1000MHz.


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 32 of 55

#### **RESULTS**

#### **RX SPURIOUS EMISSIONS, MID CHANNEL**





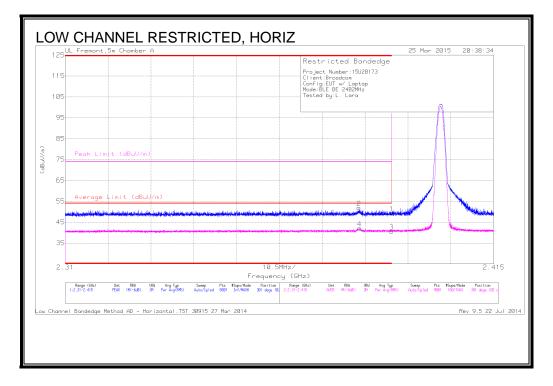
Page 33 of 55

# 9. RADIATED TEST RESULTS

## 9.1. LIMITS AND PROCEDURE

### <u>LIMITS</u>

FCC §15.205 and §15.209


IC RSS-GEN Clause 8.9 (Transmitter)

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |
|--------------------------|---------------------------------------|-----------------------------------------|
| 30 - 88                  | 100                                   | 40                                      |
| 88 - 216                 | 150                                   | 43.5                                    |
| 216 - 960                | 200                                   | 46                                      |
| Above 960                | 500                                   | 54                                      |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

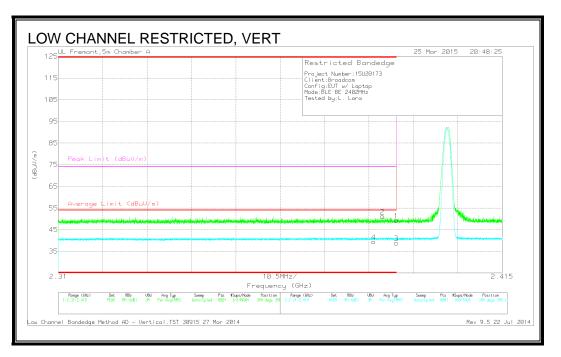
Page 34 of 55

### 9.2. BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND



#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**

### Trace Markers


| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF T136<br>(dB/m) | Amp/Cbl/Fit<br>r/Pad (dB) | DC Corr (dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|-------------------|---------------------------|--------------|----------------------------------|------------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 2      | * 2.382            | 42.3                       | РК  | 31.9              | -22.3                     | 0            | 51.9                             | -                            | -              | 74                     | -22.1             | 301               | 102            | н        |
| 4      | * 2.382            | 30.43                      | RMS | 31.9              | -22.3                     | 2.06         | 42.09                            | 54                           | -11.91         | -                      | -                 | 301               | 102            | Н        |
| 1      | * 2.39             | 39.59                      | PK  | 32                | -22.2                     | 0            | 49.39                            | -                            | -              | 74                     | -24.61            | 301               | 102            | н        |
| 3      | * 2.39             | 28.68                      | RMS | 32                | -22.2                     | 2.06         | 40.54                            | 54                           | -13.46         | -                      | -                 | 301               | 102            | Н        |

\* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS - RMS detection

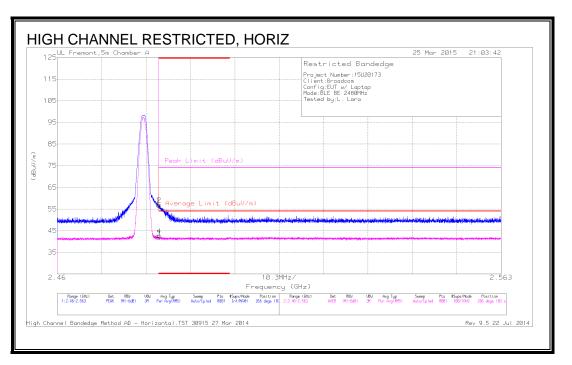
Page 35 of 55

#### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**



#### **Trace Markers**

| Marker | Frequency | Meter             | Det | AF T136 | Amp/Cbl/Flt | DC Corr (dB) | Corrected           | Average           | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|-------------------|-----|---------|-------------|--------------|---------------------|-------------------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading<br>(dBuV) |     | (dB/m)  | r/Pad (dB)  |              | Reading<br>(dBuV/m) | Limit<br>(dBuV/m) | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
| 4      | * 2.385   | 29.77             | RMS | 31.9    | -22.2       | 2.06         | 41.53               | 54                | -12.47 | -          | -         | 348     | 396    | V        |
| 2      | * 2.387   | 41.37             | PK  | 32      | -22.2       | 0            | 51.17               | -                 | -      | 74         | -22.83    | 348     | 396    | V        |
| 1      | * 2.39    | 39.51             | PK  | 32      | -22.2       | 0            | 49.31               | -                 | -      | 74         | -24.69    | 348     | 396    | V        |
| 3      | * 2.39    | 29.12             | RMS | 32      | -22.2       | 2.06         | 40.98               | 54                | -13.02 | -          | -         | 348     | 396    | V        |


\* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS - RMS detection

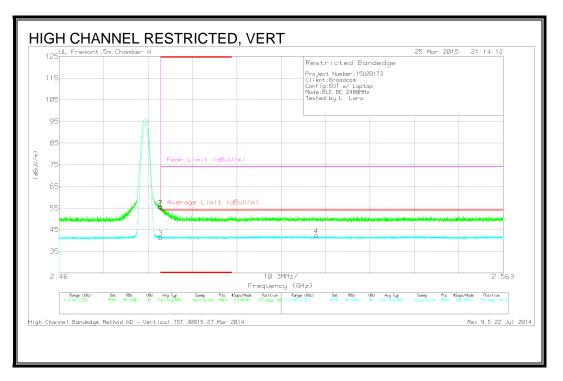
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 36 of 55

### **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**



### **Trace Markers**


| Marker | Frequency | Meter   | Det | AF T136 | Amp/Cbl/Flt | DC Corr (dB) | Corrected | Average  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|---------|-------------|--------------|-----------|----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |     | (dB/m)  | r/Pad (dB)  |              | Reading   | Limit    | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |         |             |              | (dBuV/m)  | (dBuV/m) |        |            |           |         |        |          |
| 1      | * 2.484   | 46.61   | РК  | 32.1    | -21.9       | 0            | 56.81     | -        | -      | 74         | -17.19    | 266     | 103    | Н        |
| 2      | * 2.484   | 46.79   | РК  | 32.1    | -21.9       | 0            | 56.99     | -        | -      | 74         | -17.01    | 266     | 103    | Н        |
| 3      | * 2.484   | 29.53   | RMS | 32.1    | -21.9       | 2.06         | 41.79     | 54       | -12.21 | -          | -         | 266     | 103    | н        |
| 4      | * 2.484   | 30.45   | RMS | 32.1    | -21.9       | 2.06         | 42.71     | 54       | -11.29 | -          | -         | 266     | 103    | Н        |

\* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS - RMS detection

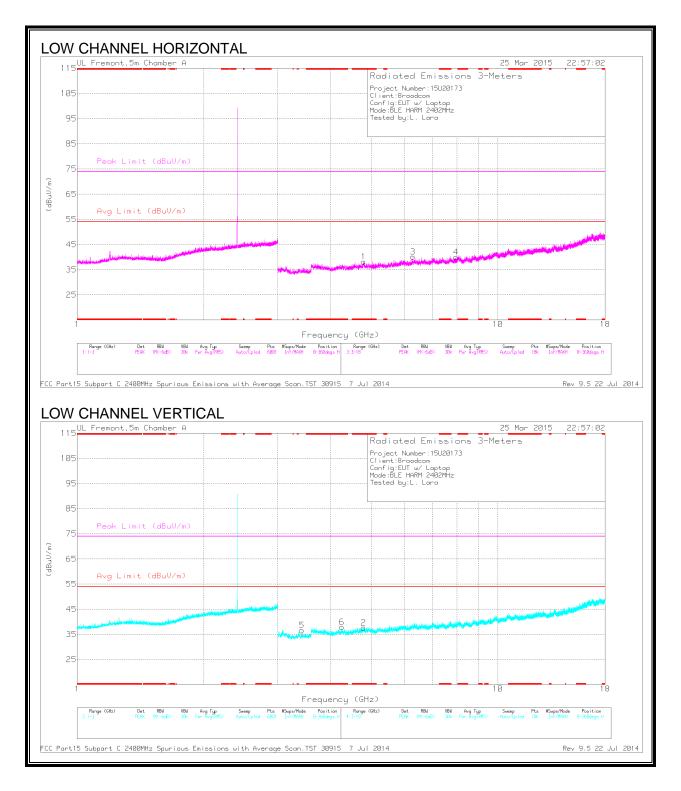
Page 37 of 55

## **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**



### Trace Markers

| Marker | Frequency | Meter   | Det | AF T136 | Amp/Cbl/Flt | DC Corr (dB) | Corrected | Average  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|---------|-------------|--------------|-----------|----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |     | (dB/m)  | r/Pad (dB)  |              | Reading   | Limit    | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |         |             |              | (dBuV/m)  | (dBuV/m) |        |            |           |         |        |          |
| 1      | * 2.484   | 45.5    | PK  | 32.1    | -21.9       | 0            | 55.7      | -        | -      | 74         | -18.3     | 125     | 101    | V        |
| 2      | * 2.484   | 45.16   | PK  | 32.1    | -21.9       | 0            | 55.36     | -        | -      | 74         | -18.64    | 125     | 101    | V        |
| 3      | * 2.484   | 29.11   | RMS | 32.1    | -21.9       | 2.06         | 41.37     | 54       | -12.63 | -          | -         | 125     | 101    | V        |
| 4      | 2.52      | 30.09   | RMS | 32.1    | -21.9       | 2.06         | 42.35     | 54       | -11.65 | -          | -         | 125     | 101    | V        |


\* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 38 of 55

### HARMONICS AND SPURIOUS EMISSIONS

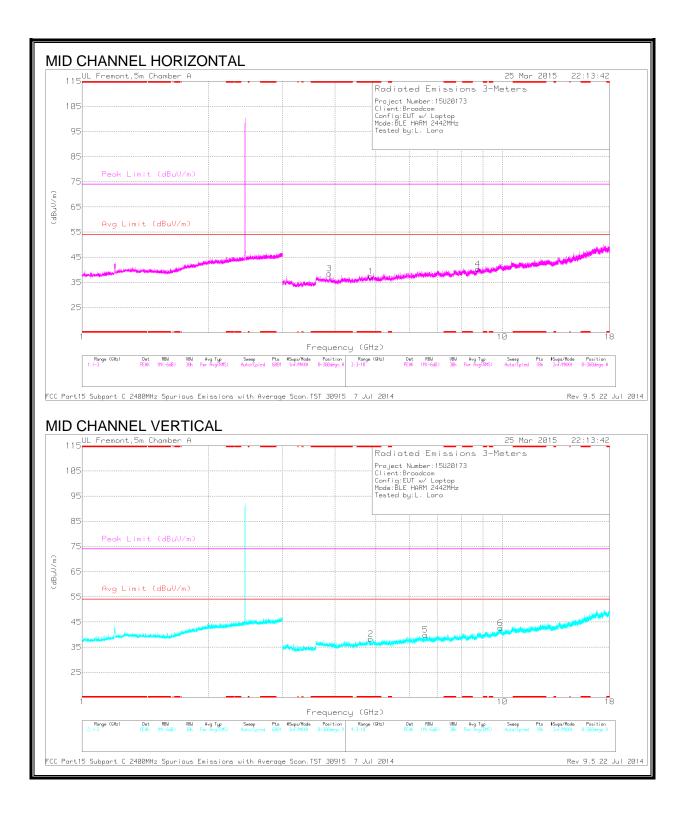


Page 39 of 55

### LOW CHANNEL DATA

### **Radiated Emissions**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T136<br>(dB/m) | Amp/Cbl/Fltr<br>/Pad (dB) | DC Corr (dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|---------------------------|--------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | * 4.802            | 40.28                      | PK2  | 34                | -28.4                     | 0            | 45.88                            | -                     | -              | 74                     | -28.12            | 250               | 212            | Н        |
|        | * 4.802            | 28.97                      | MAv1 | 34                | -28.4                     | 2.06         | 36.63                            | 54                    | -17.37         | -                      | -                 | 250               | 212            | Н        |
| 2      | * 4.803            | 40.16                      | PK2  | 34                | -28.4                     | 0            | 45.76                            | -                     | -              | 74                     | -28.24            | 183               | 318            | V        |
|        | * 4.803            | 28.96                      | MAv1 | 34                | -28.4                     | 2.06         | 36.62                            | 54                    | -17.38         | -                      | -                 | 183               | 318            | V        |
| 6      | * 4.259            | 42.68                      | PK2  | 33.4              | -28.9                     | 0            | 47.18                            | -                     | -              | 74                     | -26.82            | 151               | 193            | V        |
|        | * 4.261            | 28.89                      | MAv1 | 33.4              | -29                       | 2.06         | 35.35                            | 54                    | -18.65         | -                      | -                 | 151               | 193            | V        |
| 5      | 3.422              | 32.92                      | PK   | 33                | -29.3                     | 0            | 36.62                            | -                     | -              | -                      | -                 | 0-360             | 100            | V        |
| 3      | 6.283              | 31.24                      | РК   | 35.5              | -26.6                     | 0            | 40.14                            | -                     | -              | -                      | -                 | 0-360             | 201            | н        |
| 4      | 7.955              | 29.78                      | РК   | 35.7              | -25.5                     | 0            | 39.98                            | -                     | -              | -                      | -                 | 0-360             | 100            | Н        |


\* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Note: Signals in non-restricted bands are covered by -20 dBc antenna port spurious testing.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

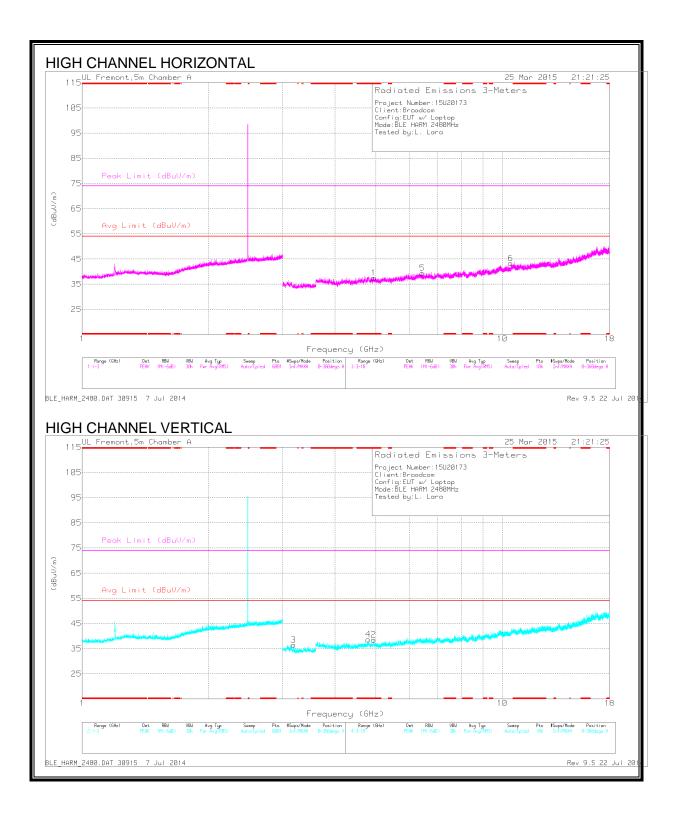
Page 40 of 55



Page 41 of 55

### **MID CHANNEL DATA**

### **Radiated Emissions**


| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T136<br>(dB/m) | Amp/Cbl/Fltr<br>/Pad (dB) | DC Corr (dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|---------------------------|--------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | * 4.884            | 38.3                       | PK2  | 33.9              | -27.7                     | 0            | 44.5                             | -                     | -              | 74                     | -29.5             | 66                | 107            | н        |
|        | * 4.884            | 27.61                      | MAv1 | 33.9              | -27.7                     | 2.06         | 35.87                            | 54                    | -18.13         | -                      | -                 | 66                | 107            | н        |
| 3      | * 3.876            | 40.14                      | PK2  | 33.5              | -29.2                     | 0            | 44.44                            | -                     | -              | 74                     | -29.56            | 190               | 160            | Н        |
|        | * 3.876            | 28.96                      | MAv1 | 33.5              | -29.2                     | 2.06         | 35.32                            | 54                    | -18.68         | -                      | -                 | 190               | 160            | н        |
| 2      | * 4.884            | 39.25                      | PK2  | 33.9              | -27.7                     | 0            | 45.45                            | -                     | -              | 74                     | -28.55            | 327               | 200            | V        |
|        | * 4.884            | 27.48                      | MAv1 | 33.9              | -27.7                     | 2.06         | 35.74                            | 54                    | -18.26         | -                      | -                 | 327               | 200            | V        |
| 5      | 6.559              | 30.75                      | PK   | 35.6              | -26.5                     | 0            | 39.85                            | -                     | -              | -                      | -                 | 0-360             | 201            | V        |
| 4      | 8.741              | 27.59                      | РК   | 36                | -23.3                     | 0            | 40.29                            | -                     | -              | -                      | -                 | 0-360             | 201            | Н        |
| 6      | 9.895              | 27.26                      | РК   | 37                | -21.6                     | 0            | 42.66                            | -                     | -              | -                      | -                 | 0-360             | 201            | V        |

\* - indicates frequency in CFR15.205/IC8.10 Restricted Band

PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Note: Signals in non-restricted bands are covered by -20 dBc antenna port spurious testing.

Page 42 of 55



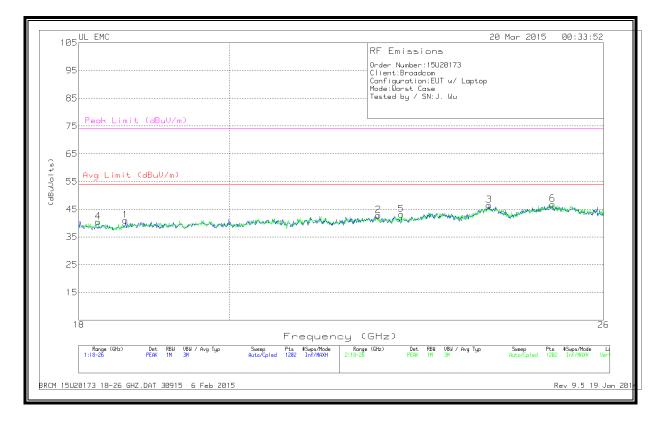
Page 43 of 55

### **HIGH CHANNEL DATA**

### **Radiated Emissions**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T136<br>(dB/m) | Amp/Cbl/Fitr<br>/Pad (dB) | DC Corr (dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|---------------------------|--------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 4      | * 4.798            | 41.25                      | PK2  | 34                | -28.4                     | 0            | 46.85                            | -                     | -              | 74                     | -27.15            | 243               | 298            | V        |
|        | * 4.799            | 29.23                      | MAv1 | 34                | -28.4                     | 2.06         | 36.89                            | 54                    | -17.11         | -                      | -                 | 243               | 298            | V        |
| 2      | * 4.959            | 39.03                      | PK2  | 33.9              | -28                       | 0            | 44.93                            | -                     | -              | 74                     | -29.07            | 2                 | 323            | V        |
|        | * 4.96             | 27.32                      | MAv1 | 33.9              | -28                       | 2.06         | 35.28                            | 54                    | -18.72         | -                      | -                 | 2                 | 323            | V        |
| 1      | * 4.961            | 38.95                      | PK2  | 33.9              | -28                       | 0            | 44.85                            | -                     | -              | 74                     | -29.15            | 58                | 251            | н        |
|        | * 4.96             | 27.49                      | MAv1 | 33.9              | -28                       | 2.06         | 35.45                            | 54                    | -18.55         | -                      | -                 | 58                | 251            | Н        |
| 6      | 10.46              | 27.97                      | PK   | 37.5              | -22.2                     | 0            | 43.27                            | -                     | -              | -                      | -                 | 0-360             | 100            | Н        |
| 3      | 3.186              | 34.14                      | РК   | 32.7              | -30.3                     | 0            | 36.54                            | -                     | -              | -                      | -                 | 0-360             | 201            | V        |
| 5      | 6.448              | 31.87                      | РК   | 35.5              | -28                       | 0            | 39.37                            | -                     | -              | -                      | -                 | 0-360             | 100            | Н        |

\* - indicates frequency in CFR15.205/IC8.10 Restricted Band


PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Note: Signals in non-restricted bands are covered by -20 dBc antenna port spurious testing.

Page 44 of 55

# 9.3. WORST-CASE 18-26 GHz

### SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION)



# **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading | Det | T89 AF<br>(dB/m) | Amp/Cbl<br>(dB) | Dist Corr<br>(dB) | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) |
|--------|--------------------|------------------|-----|------------------|-----------------|-------------------|----------------------|-----------------------|----------------|---------------------------|----------------------|
|        |                    | (dBuV)           |     |                  |                 |                   | (dBuVolts)           |                       |                |                           |                      |
| 1      | 18.6               | 42.4             | РК  | 32.6             | -24.5           | -9.5              | 41                   | 54                    | -13            | 74                        | -33                  |
| 2      | 22.203             | 41.83            | РК  | 33.7             | -23.2           | -9.5              | 42.83                | 54                    | -11.17         | 74                        | -31.17               |
| 3      | 23.995             | 44.5             | РК  | 34.2             | -22.7           | -9.5              | 46.5                 | 54                    | -7.5           | 74                        | -27.5                |
| 4      | 18.246             | 42               | РК  | 32.6             | -24.6           | -9.5              | 40.5                 | 54                    | -13.5          | 74                        | -33.5                |
| 5      | 22.563             | 42.47            | РК  | 33.7             | -23.5           | -9.5              | 43.17                | 54                    | -10.83         | 74                        | -30.83               |
| 6      | 25.087             | 44.73            | РК  | 34.5             | -22.9           | -9.5              | 46.83                | 54                    | -7.17          | 74                        | -27.177              |

PK - Peak detector

# 9.4. WORST-CASE BELOW 1 GHz

### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

### **EMISSIONS DATA**

### **Trace Markers**

| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | AF T130<br>(dB/m) | Amp/Cbl<br>(dB/m) | Corrected<br>Reading<br>(dBuV/m) | QPk Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|-------------------|-------------------|----------------------------------|-----------------------|----------------|-------------------|----------------|----------|
| 1      | 60.005             | 56.3                       | PK  | 7.6               | -30.9             | 33                               | 40                    | -7             | 0-360             | 400            | н        |
| 4      | 60.0475            | 53.68                      | РК  | 7.6               | -30.9             | 30.38                            | 40                    | -9.62          | 0-360             | 101            | V        |
| 5      | 173.31             | 45.58                      | РК  | 11.6              | -30.1             | 27.08                            | 43.52                 | -16.44         | 0-360             | 101            | V        |
| 2      | 174.0325           | 50.41                      | РК  | 11.6              | -30.1             | 31.91                            | 43.52                 | -11.61         | 0-360             | 100            | н        |
| 3      | 353.5              | 45.85                      | РК  | 14.3              | -29.2             | 30.95                            | 46.02                 | -15.07         | 0-360             | 101            | н        |
| 6      | 486                | 38.49                      | PK  | 17.7              | -28.6             | 27.59                            | 46.02                 | -18.43         | 0-360             | 200            | V        |

#### PK - Peak detector

QP - Quasi-Peak detector

Page 46 of 55

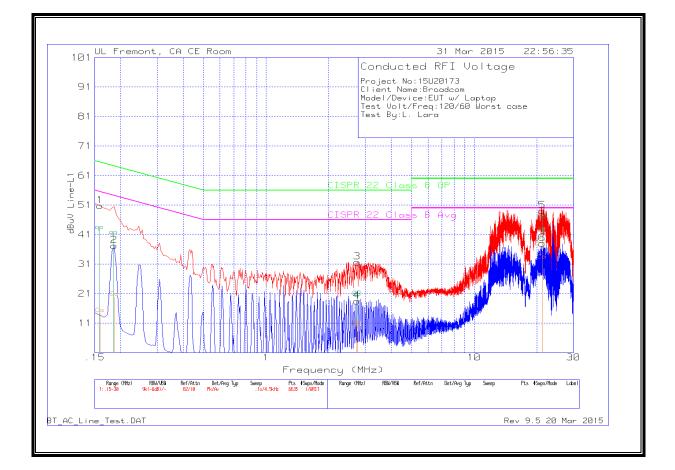
# 9.5. AC POWER LINE CONDUCTED EMISSIONS

## LIMITS

FCC §15.207 (a)

**RSS-Gen Clause 8.8** 

| Frequency of Emission (MHz) | Conducted I | .imit (dBuV) |
|-----------------------------|-------------|--------------|
|                             | Quasi-peak  | Average      |
| 0.15-0.5                    | 66 to 56    | 56 to 46 *   |
| 0.5-5                       | 56          | 46           |
| 5-30                        | 60          | 50           |


Decreases with the logarithm of the frequency.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 47 of 55

### **6 WORST EMISSIONS**

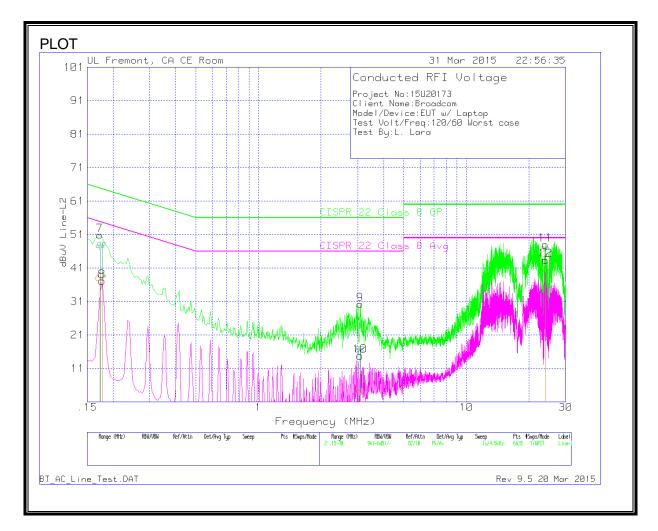
### LINE 1 RESULTS



#### Range 1: Line-L1 .15 - 30MHz

| Frequency | Meter   | Det | T24 IL L1 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22    | Margin |
|-----------|---------|-----|-----------|-----------|-----------|------------|--------|-------------|--------|
| (MHz)     | Reading |     |           | 1&3       | Reading   | Class B QP | (dB)   | Class B Avg | (dB)   |
|           | (dBuV)  |     |           |           | dBuV      |            |        |             |        |
| .15788    | 41.06   | Qp  | 1.3       | 0         | 42.36     | -          | -      | 55.57       | -13.21 |
| .18488    | 39.72   | Qp  | 1         | 0         | 40.72     | -          | -      | 54.26       | -13.54 |
| 2.73863   | 19.51   | Qp  | .2        | .1        | 19.81     | -          | -      | 46          | -26.19 |
| 2.73413   | 20.24   | Qp  | .2        | .1        | 20.54     | -          | -      | 46          | -25.46 |
| 21.2201   | 41.51   | Qp  | .3        | .2        | 42.01     | -          | -      | 50          | -7.99  |
| 21.2089   | 45.61   | Qp  | .3        | .2        | 46.11     | -          | -      | 50          | -3.89  |

**Qp** - Quasi-Peak detector


### REPORT NO: 15U20173-E5A FCC ID: QDS-BRCM1089

| Frequency | Meter   | Det | T24 IL L1 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22    | Margin |
|-----------|---------|-----|-----------|-----------|-----------|------------|--------|-------------|--------|
| (MHz)     | Reading |     |           | 1&3       | Reading   | Class B QP | (dB)   | Class B Avg | (dB)   |
|           | (dBuV)  |     |           |           | dBuV      |            |        |             |        |
| .15788    | 12.93   | Ca  | 1.3       | 0         | 14.23     | -          | -      | 55.57       | -41.34 |
| .18488    | 18.8    | Ca  | 1         | 0         | 19.8      | -          | -      | 54.26       | -34.46 |
| 2.73863   | 9.12    | Ca  | .2        | .1        | 9.42      | -          | -      | 46          | -36.58 |
| 2.73413   | 9.9     | Ca  | .2        | .1        | 10.2      | -          | -      | 46          | -35.8  |
| 21.2201   | 31.89   | Ca  | .3        | .2        | 32.39     | -          | -      | 50          | -17.61 |
| 21.2089   | 37.3    | Ca  | .3        | .2        | 37.8      | -          | -      | 50          | -12.2  |

Ca - CISPR average detection

Page 49 of 55

### LINE 2 RESULTS



Range 2: Line-L2 .15 - 30MHz

| Hunge E. Em | C LL .13 50 |     |           |           |           |            |        |             |        |
|-------------|-------------|-----|-----------|-----------|-----------|------------|--------|-------------|--------|
| Frequency   | Meter       | Det | T24 IL L2 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22    | Margin |
| (MHz)       | Reading     |     |           | 2&3       | Reading   | Class B QP | (dB)   | Class B Avg | (dB)   |
|             | (dBuV)      |     |           |           | dBuV      |            |        |             |        |
| .17363      | 45.32       | Qp  | 1.2       | 0         | 46.52     | -          | -      | 54.78       | -8.26  |
| .17678      | 46.08       | Qp  | 1.2       | 0         | 47.28     | -          | -      | 54.64       | -7.36  |
| 3.08918     | 15.98       | Qp  | .2        | .1        | 16.28     | -          | -      | 46          | -29.72 |
| 3.07928     | 14.99       | Qp  | .2        | .1        | 15.29     | -          | -      | 46          | -30.71 |
| 23.9989     | 45.52       | Qp  | .3        | .2        | 46.02     | -          | -      | 50          | -3.98  |
|             |             |     |           |           |           |            |        |             |        |

**Qp** - Quasi-Peak detector

| Range 2: Lin | e-L2 .15 - 301 | MHz |           |           |           |            |        |             |        |
|--------------|----------------|-----|-----------|-----------|-----------|------------|--------|-------------|--------|
| Frequency    | Meter          | Det | T24 IL L2 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22    | Margin |
| (MHz)        | Reading        |     |           | 2&3       | Reading   | Class B QP | (dB)   | Class B Avg | (dB)   |
|              | (dBuV)         |     |           |           | dBuV      |            |        |             |        |
| .17363       | 35.43          | Ca  | 1.2       | 0         | 36.63     | -          | -      | 54.78       | -18.15 |
| .17678       | 36.41          | Ca  | 1.2       | 0         | 37.61     | -          | -      | 54.64       | -17.03 |
| 3.08918      | 3.32           | Ca  | .2        | .1        | 3.62      | -          | -      | 46          | -42.38 |
| 3.07928      | 2.27           | Ca  | .2        | .1        | 2.57      | -          | -      | 46          | -43.43 |
| 23.9989      | 43.38          | Ca  | .3        | .2        | 43.88     | -          | -      | 50          | -6.12  |

Ca - CISPR average detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 51 of 55