SPORTON International Inc.
No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

Maximum Permissible Exposure

Applicant's company	Broadcom Corporation
Applicant Address	190 Mathilda Place Sunnyvale CA 94086 U.S.A.
FCC ID	QDS-BRCM1085
Manufacturer's company	Broadcom Corporation
Manufacturer Address	190 Mathilda Place Sunnyvale CA 94086 U.S.A.

Product Name	Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E NGFF 2230 Card
Brand Name	Broadcom
Model Name	BCM94356Z
Ref. Standard(s)	47 CFR FCC Part 2 Subpart J, section 2.1091
EUT Freq. Range	$2400 \sim 2483.5 \mathrm{MHz} / 5150 \sim 5350 \mathrm{MHz} / 5470 \sim 5725 \mathrm{MHz} / 5725 \sim$
	5850 MHz
Received Date	Jul. 31, 2014
Final Test Date	Nov. 14, 2014
Submission Type	Original Equipment

Sam Chen

SPORTON INTERNATIONAL INC.

Table of Contents

1. TABLE FOR MULTIPLE LIST AND CLASS II CHANGE 1
1.1. Table for Multiple List. 1
2. MAXIMUM PERMISSIBLE EXPOSURE 2
2.1. Applicable Standard 2
2.2. MPE Calculation Method2
2.3. Calculated Result and Limit 3

History of This Assessment Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA473142AA	Rev. 01	Initial issue of report	Nov. 17, 2014

1. TABLE FOR MULTIPLE LIST

1.1. Table for Multiple List

The EUT has two part numbers which are identical to each other in all aspects except for the following table:

Model No.	Part No.	Description
BCM94356Z	BCM94356Z	The base pin between these two models is different.
	BCM94356ZAE	

From the above models, part number: BCM94356Z was selected as representative model for the test and its data was recorded in this report.

2. MAXIMUM PERMISSIBLE EXPOSURE

2. 1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.
(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $\mathrm{N} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{H})(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S $($ minutes $)$
$0.3-3.0$	614	1.63	$(100)^{\star}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{\star}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$			$\mathrm{~F} / 300$	6
$1500-100,000$			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $\mathrm{N} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{H})(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S $($ minutes $)$
$0.3-1.34$	614	1.63	$(100)^{\star}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{\star}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$			$\mathrm{~F} / 1500$	30
$1500-100,000$			1.0	30

Note: $\mathrm{f}=$ frequency in MHz ; *Plane-wave equivalent power density
Note: $\mathrm{f}=$ frequency in MHz ; *Plane-wave equivalent power density

2.2. MPE Calculation Method

$E(\mathrm{~V} / \mathrm{m})=\frac{\sqrt{30 \times P \times G}}{d}$
Power Density: $\quad P d\left(W / \mathrm{m}^{2}\right)=\frac{E^{2}}{377}$
$\mathrm{E}=$ Electric field $(\mathrm{V} / \mathrm{m})$
P = Peak RF output power (W)
$\mathbf{G}=$ EUT Antenna numeric gain (numeric)
d = Separation distance between radiator and human body (m)
The formula can be changed to
$P d=\frac{30 \times P \times G}{377 \times d^{2}}$
From the EUT RF output power, the minimum mobile separation distance, $\mathrm{d}=0.2 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.

2.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure For 5GHz UNII Band:

Antenna Type : WLAN/BT antenna
Conducted Power for IEEE 802.11ac VHT20: 21.73dBm

Distance (m)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Limit of Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Test Result
			(dBm)	(mW)			
0.2	9.22	8.3560	21.7254	148.7798	0.247454	1	Complies
Note: DirectionalGain $=10 \cdot 10 g\left[\frac{\sum_{j=1}^{N}\left\{\sum_{k=1}^{N} g \mu_{N}\right\}^{2}}{N_{\text {ANT }}}\right]=9.22 \mathrm{dBi}$							

For 2.4GHz Band:
<WLAN>

Antenna Type : WLAN/BT antenna

Conducted Power for IEEE 802.11b: 23.55dBm

Distance (m)	Antenna Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Limit of Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Test Result
			(dBm)	(mW)			
0.2	3.33	2.1528	23.5512	226.5287	0.097067	1	Complies

<Bluetooth>
Antenna Type : WLAN/BT antenna
Conducted Power for BR (GFSK) 1Mbps: 11.48 dBm

Distance (m)	Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power		Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Limit of Power Density (S) ($\mathrm{mW} / \mathrm{cm}^{2}$)	Test Result
			(dBm)	(mW)			
0.2	3.33	2.1528	11.4800	14.0605	0.006025	1	Complies

Conclusion:

Both of the WLAN 5GHz Band + Bluetooth and WLAN 2.4GHz Band + Bluetooth can transmit simultaneously, the formula of calculatedthe MPE is:
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1
CPD = Calculation power density
LPD = Limit of power density
Therefore, the worst-case situation are $0.247454 / 1+0.006025 / 1=0.253479$ for WLAN 5GHz Band + Bluetooth and $0.097067 / 1+0.006025 / 1=0.103092$ for WLAN 2.4 GHz Band + Bluetooth, which are less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

