

FCC 47 CFR PART 15 SUBPART E & INDUSTRY CANADA RSS-210 (Class II Permissive Change)

TEST REPORT

For

Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth 4.0 NGFF2230 Mini Card

Model: BCM943162ZP

Trade Name: Broadcom

Issued to

Broadcom Corporation 190 Mathilda Avenue, Sunnyvale, CA 94086

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: February 10, 2015

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

	Issue		Effect	
Rev.	Date	Revisions	Page	Revised By
00	February 10, 2015	Initial Issue	ALL	Kelly Cheng

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	4
2.	EUT DESCRIPTION	5
3.	TEST METHODOLOGY	7
3.1	EUT CONFIGURATION	7
3.2	EUT EXERCISE	7
3.3	GENERAL TEST PROCEDURES	7
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	9
4.	INSTRUMENT CALIBRATION	
4.1	MEASURING INSTRUMENT CALIBRATION	
4.2		
4.3		
5.	FACILITIES AND ACCREDITATIONS	
5.1	FACILITIES	
5.2		
5.3	LABORATORY ACCREDITATIONS AND LISTING	
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	
6.	SETUP OF EQUIPMENT UNDER TEST	
6.1	SETUP CONFIGURATION OF EUT	
6.2	SUPPORT EQUIPMENT	
7.	FCC PART 15 REQUIREMENTS & RSS 210 REQUIREMENTS	
7.1	MAXIMUM OUTPUT POWER	
7.2	BAND EDGES MEASUREMENT	
7.3	RADIATED UNDESIRABLE EMISSION	
APPE	CNDIX I PHOTOGRAPHS OF TEST SETUP	

1. TEST RESULT CERTIFICATION

Applicant:	Broadcom Corporation 190 Mathilda Avenue, Sunnyvale, CA 94086
Equipment Under Test:	Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth 4.0 NGFF2230 Mini Card
Trade Name:	Broadcom
Model:	BCM943162ZP
Date of Test:	January 31~February 1, 2015

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 15 Subpart E & Industry Canada RSS-210 Issue 8 _{December, 2010}	No non-compliance noted				

We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.4: 2009** and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407 and Industry Canada RSS-210 Issue 8.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Villa Lee

Miller Lee Section Manager Compliance Certification Services Inc.

Reviewed by:

Angel Chenf

Angel Cheng Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth 4.0 NGFF2230 Mini Card							
Trade Name	Broadcom							
Model Number	BCM943162ZP							
Model Discrepancy	N/A	N/A						
Received Date	January 12, 2015							
Power Supply	Power form ho	st device.						
		Mode	Frequency Range (MHz)	Number of Channels				
		IEEE 802.11a	5180 ~ 5240	4 Channels				
		IEEE 802.11n HT 20 MHz	5180 ~ 5240	4 Channels				
	UNII Band I	IEEE 802.11n HT 40 MHz	5190 ~ 5230	2 Channels				
		IEEE 802.11ac VHT 80 MHz	5210	1 Channels				
Operating Frequency		IEEE 802.11a	5260 ~ 5320	4 Channels				
Range &	UNII Band II	IEEE 802.11n HT 20 MHz	5260 ~ 5320	4 Channels				
Number of Channels	UNII Balla II	IEEE 802.11n HT 40 MHz	5270 ~ 5310	2 Channels				
		IEEE 802.11ac VHT 80 MHz	5290	2 Channels				
		IEEE 802.11a	5500 ~ 5700	11 Channels				
	UNII Band III	IEEE 802.11n HT 20 MHz	5500 ~ 5580	11 Channels				
		IEEE 802.11n HT 40 MHz	5510 ~ 5670	5 Channels				
		IEEE 802.11ac VHT 80 MHz	5530 ~ 5960	3 Channels				
		Mode	Range	OutputOutputPowerPower(dBm)(w)				
		IEEE 802.11a	5180 ~ 5240	16.7 0.0468				
		IEEE 802.11n HT 20 MHz	5180 ~ 5240	16.60 0.0457				
	UNII Band I	IEEE 802.11n HT 40 MHz	5190 ~ 5230	16.70 0.0468				
		IEEE 802.11ac VHT 80 MHz	5210	15.10 0.0324				
Transmit Power		IEEE 802.11a	5260 ~ 5320	21.0 0.1259				
Transmit I ower	UNII Band II	IEEE 802.11n HT 20 MHz	5260 ~ 5320	21.10 0.1288				
	UNII Band II	IEEE 802.11n HT 40 MHz	5270 ~ 5310	19.10 0.0813				
		IEEE 802.11ac VHT 80 MHz	5290	15.30 0.0339				
		IEEE 802.11a	5500 ~ 5720	21.0 0.1259				
	UNII Band III	IEEE 802.11n HT 20 MHz	5500 ~ 5720	21.10 0.1288				
		IEEE 802.11n HT 40 MHz	5510 ~ 5670	20.60 0.1148				
		IEEE 802.11ac VHT 80 MHz	5530 ~ 5960	18.10 0.0646				
Modulation Technique	OFDM (QPSK	, BPSK, 16-QAM, 64-QAM	[)					
Transmit Data Rate	IEEE 802.11a mode: 54, 48, 36, 24, 18, 12, 9, 6 Mbps IEEE 802.11n HT 20 mode: OFDM (6.5, 7.2, 13, 14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 39, 43.3, 43.33 52, 57.78, 57.8, 58.5, 65.0, 72.2, 78, 86.67, 104, 115.56, 117, 130, 144.44 Mbps) IEEE 802.11n HT 40 mode: OFDM (13.5, 15, 27, 30, 40.5, 45, 54, 60, 81, 90, 108, 120, 121.5, 135, 150, 162, 180, 216, 240, 243, 270, 300 Mbps) IEEE 802.11ac VHT 80 mode: OFDM (29.3, 58.5, 87.8, 117, 175.5, 234, 263.3, 292.5, 351, 390, 468, 526.5, 585, 702, 780 Mbps)							

Antenna Specification	 High-Tek Electronics Co.,Ltd P/N: 025.9006N.0011 (Main) / -1.13 dBi 025.9006O.0011 (Aux) / -1.64 dBi Wistron NeWeb Corporation P/N: 025.9006N.0001 (Main) / -1.57 dBi 025.9006O.0001 (Aux) / 0.91 dBi 				
Antenna Designation	PIFA Antenna				
Heat Brond	lanovo	Hest Medel Nome	Flex 3-1570		
Host Brand	lenovo	Host Model Name	Flex 3-1535		
Class II Permissive Change	Adding portable platforms Flex 3-1570, Flex 3-1535, These hosts have the sam antenna type as originally approved with lower gains.				

Remark: The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

3. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4: 2009 Radiated testing was performed at an antenna to EUT distance 3 meters.

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC CFR 47 Part 15.207, 15.209 and 15.407, RSS-GEN Issue 2, and RSS-210 Issue 8.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

3.2 EUT EXERCISE

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4: 2003.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Rev. 00

3.5 DESCRIPTION OF TEST MODES

The EUT (model: BCM943162ZP) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

UNII Band I:

IEEE 802.11a for 5180 ~ 5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz for 5180 ~ 5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz Channel for 5190 ~ 5230MHz:

Channel Low (5190MHz) and Channel High (5230MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11ac VHT 80 MHz Channel for 5210MHz:

Channel Low(5210MHz) with 29.3Mbps data rate were chosen for full testing.

UNII Band II:

IEEE 802.11a for 5260 ~ 5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz for 5260 ~ 5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz for 5270 ~ 5310MHz:

Channel Low (5270MHz) and Channel High (5310MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11ac VHT 80 MHz for 5290MHz:

Channel Low (5290MHz) with 29.3Mbps data rate were chosen for full testing.

UNII Band III:

IEEE 802.11a for 5500 ~ 5700MHz:

Channel Low (5500MHz), Channel Mid (5580MHz) and Channel High (5700MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz for 5500 ~ 5700MHz:

Channel Low (5500MHz), Channel Mid (5580MHz) and Channel High (5700MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz for 5510 ~ 5670MHz:

Channel Low (5510MHz), Channel Mid (5590MHz) and Channel High (5670MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11ac VHT 80 MHz for 5530 ~ 5690MHz:

Channel Low (5530MHz), and Channel High (5670MHz) with 29.3Mbps data rate were chosen for full testing.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Wugu 966 Chamber A							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	E4446A	US42510268	09/18/2015			
EMI Test Receiver	R&S	ESCI	100064	05/30/2015			
Bilog Antenna	Sunol Sciences	JB3	A030105	08/19/2015			
Horn Antenna	EMCO	3117	00055165	01/26/2016			
Turn Table	CCS	CC-T-1F	N/A	N.C.R			
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R			
Controller	CCS	CC-C-1F	N/A	N.C.R			
Test S/W	EZ-EMC (CCS-3A1RE)						

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
 Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12.2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

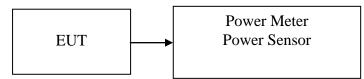
See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Equipment	Model No.	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	Notebook PC	Flex 3-1570	N/A	FCC DOC	Lenovo	N/A	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.7m with a core

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.



7. FCC PART 15 REQUIREMENTS & RSS 210 REQUIREMENTS

7.1 MAXIMUM OUTPUT POWER

LIMIT

None; for reporting purposes only. Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the Average power detection.

TEST RESULTS

No non-compliance noted.

Test Data

Test mode: IEEE 802.11a mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Limit (dBm)
36	5180	16.7	24.00
40	5200	*16.7	24.00
48	5240	16.6	24.00

Test mode: IEEE 802.11n HT 20 MHz Channel mode / 5180 ~ 5240MHz

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Limit (dBm)
36	5180	16.50	24.00
40	5200	*16.60	24.00
48	5240	16.50	24.00

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5230MHz

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Limit (dBm)
38	5190	14.10	24.00
46	5230	*16.70	24.00

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5210MHz

Channel	Frequency	Maximum Conducted Output Power	Limit
	(MHz)	(dBm)	(dBm)
42	5210	*15.10	24.00

Test mode: IEEE 802.11a mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Limit (dBm)
52	5260	20.9	24.00
60	5300	*21.0	24.00
64	5320	18.6	24.00

Test mode: IEEE 802.11n HT 20 MHz Channel mode / 5260 ~ 5320MHz

Channel	Frequency (MHz)Maximum Conducted Output Power (dBm)		Limit (dBm)
52	5260	*21.10	24.00
60	5300	19.80	24.00
64	5320	18.60	24.00

Test mode: IEEE 802.11n HT 40 MHz mode / 5270 ~ 5310MHz

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Limit (dBm)
54	5270	*19.10	24.00
62	5310	15.30	24.00

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5290 MHz

Channel	Frequency	Maximum Conducted Output Power	Limit
	(MHz)	(dBm)	(dBm)
58	5290	*15.30	24.00

Test mode: IEEE 802.11a mode / 5500 ~ 5700MHz

Channel	nannel Frequency (MHz) Maximum Conducted Output Power (dBm)		
100	5500	17.1	24.00
116	5580	19.1	24.00
140	5700	16.7	24.00
144	5720	*21.0	24.00

Test mode: IEEE 802.11n HT 20 MHz Channel mode / 5500 ~ 5700MHz

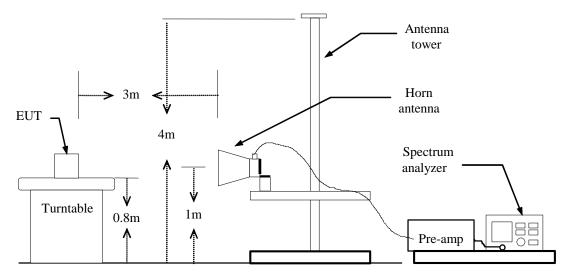
Channel	Frequency (MHz)Maximum Conducted Output Power (dBm)		Limit (dBm)
100	5500	17.10	24.00
116	5580	19.10	24.00
140	5700	16.50	24.00
144	5720	*21.10	24.00

Test mode: IEEE 802.11n HT 40 MHz mode / 5510 ~ 5670MHz

Channel	Frequency (MHz)Maximum Conducted Output Power (dBm)		Limit (dBm)
102	5510	12.80	24.00
110	5550	20.60	24.00
134	5670	19.30	24.00
142	5710	*21.20	24.00

Test mode: IEEE 802.11ac VHT 80 MHz mode / 5530 ~ 5690MHz

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Limit (dBm)
106	5530	13.90	24.00
122	5610	18.10	24.00
138	5690	*20.70	24.00


7.2 BAND EDGES MEASUREMENT

LIMIT

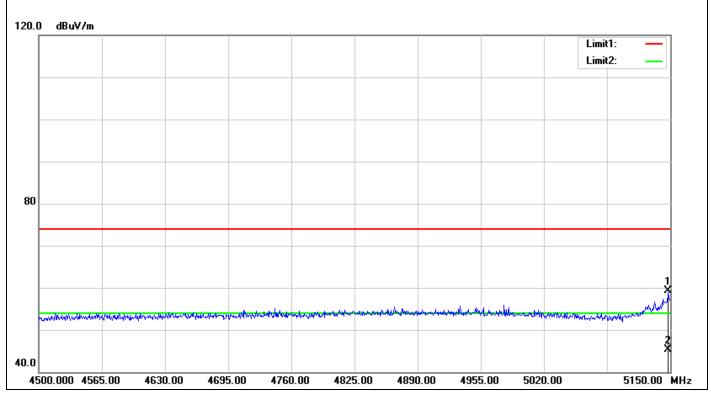
According to §15.407(b) & RSS-210 §A8.5,

- (1) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

Test Configuration

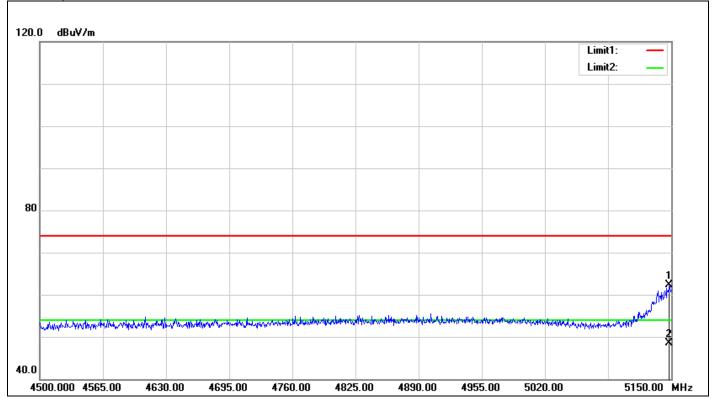
TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz. if duty cycle<98% VBW=1/T. IEEE 802.11b mode: ≥98%, VBW=10Hz IEEE 802.11g mode: ≥98%, VBW=10Hz IEEE 802.11n HT 20 MHz mode: ≥98%, VBW=10Hz IEEE 802.11n HT 40 MHz mode: 96%=VBW 2kHz
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


TEST RESULTS

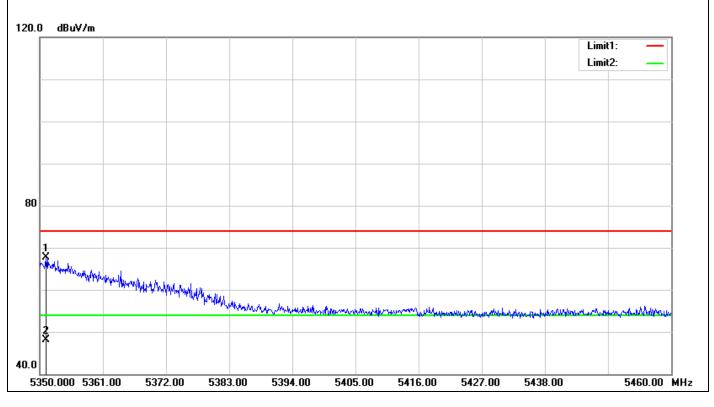
Refer to attach spectrum analyzer data chart.

Band Edges (IEEE 802.11a mode / CH 5180 MHz)

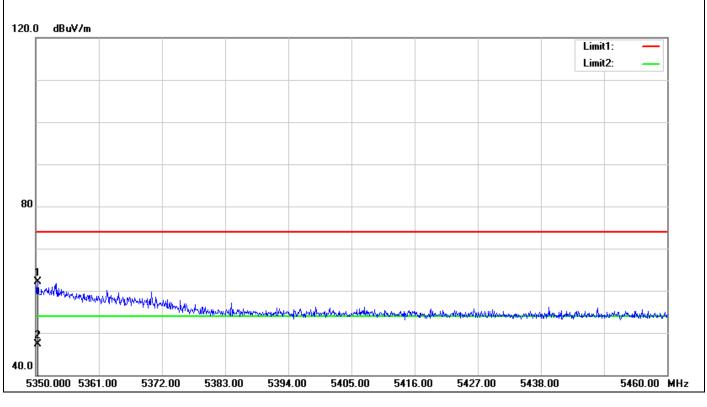

Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5148.050	56.27	3.03	59.30	74.00	-14.70	100	140	peak
2	5148.050	42.24	3.03	45.27	54.00	-8.73	100	140	AVG

Page 21



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5148.050	59.26	3.03	62.29	74.00	-11.71	100	12	peak
2	5148.050	45.48	3.03	48.51	54.00	-5.49	100	12	AVG


Band Edges (IEEE 802.11a mode / CH 5320 MHz)

Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5351.100	62.32	5.32	67.64	74.00	-6.36	100	141	peak
2	5351.100	42.77	5.32	48.09	54.00	-5.91	100	141	AVG

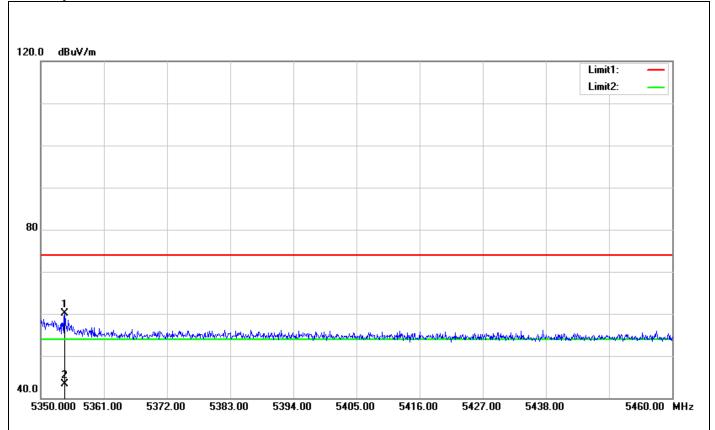
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5350.330	56.70	5.31	62.01	74.00	-11.99	100	27	peak
2	5350.330	41.93	5.31	47.24	54.00	-6.76	100	27	AVG


Band Edges (IEEE 802.11n HT 20 MHz Channel mode / CH 5180 MHz)

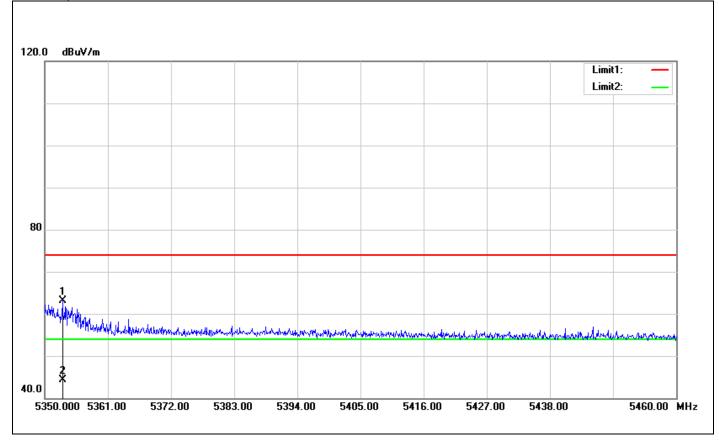
Polarity: Vertical

									_imit1: _imit2:
									.mmz. —
						سيمرور الم			
alow may show	where we are a second and the second	and the second second	- Marina Marina Marian	WWWWWWWWWWWWWWWWW	And the shall not be a stress of the state o	A State of the second sec	of these states and the Add Aut	MANY AND MANY AND AND	when we have been a set of the

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5148.050	54.96	3.03	57.99	74.00	-16.01	100	203	peak
2	5148.050	39.71	3.03	42.74	54.00	-11.26	100	203	AVG



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5150.000	55.17	3.04	58.21	74.00	-15.79	100	38	peak
2	5150.000	40.77	3.04	43.81	54.00	-10.19	100	38	AVG


Band Edges (IEEE 802.11n HT 20 MHz Channel mode / CH 5320 MHz)

Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5354.180	54.69	5.34	60.03	74.00	-13.97	100	189	peak
2	5354.180	37.93	5.34	43.27	54.00	-10.73	100	189	AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5353.080	57.73	5.34	63.07	74.00	-10.93	100	339	peak
2	5353.080	39.04	5.34	44.38	54.00	-9.62	100	339	AVG

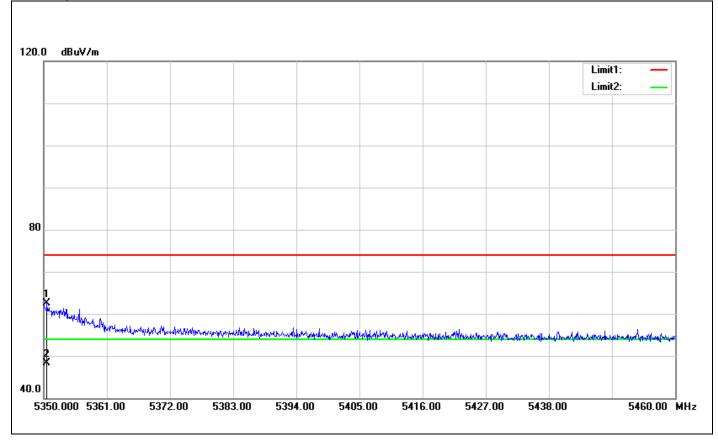
Band Edges (IEEE 802.11n HT 40 MHz mode / CH 5190 MHz)

Polarity: Vertical

					1
within ways with the state of the	now were and the second	alexalestylephenetelisenseen tilleen he	and an and a state of the state	newy weed and have been been all with the second	and the second support the second of
-					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5148.050	52.59	3.03	55.62	74.00	-18.38	100	310	peak
2	5148.050	39.14	3.03	42.17	54.00	-11.83	100	310	AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5148.700	54.74	3.03	57.77	74.00	-16.23	100	228	peak
2	5148.700	40.16	3.03	43.19	54.00	-10.81	100	228	AVG

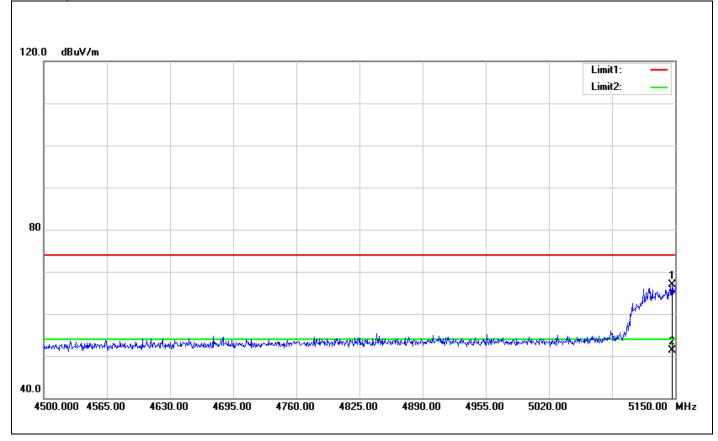

Band Edges (IEEE 802.11n HT 40 MHz mode / CH 5310 MHz)

Polarity: Vertical

								Lim Lim	
I X									
man the second	hanharradination	nashhuan attacha	s-mandededhated	han den gebriefen der	barrenspilorenspilorens	her and the second states of the second states of the second states of the second states of the second states o	mangazati a da nak	begin of a provide state of the	aller after by a sportly and

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5350.440	54.80	5.31	60.11	74.00	-13.89	100	181	peak
2	5350.440	39.84	5.31	45.15	54.00	-8.85	100	181	AVG

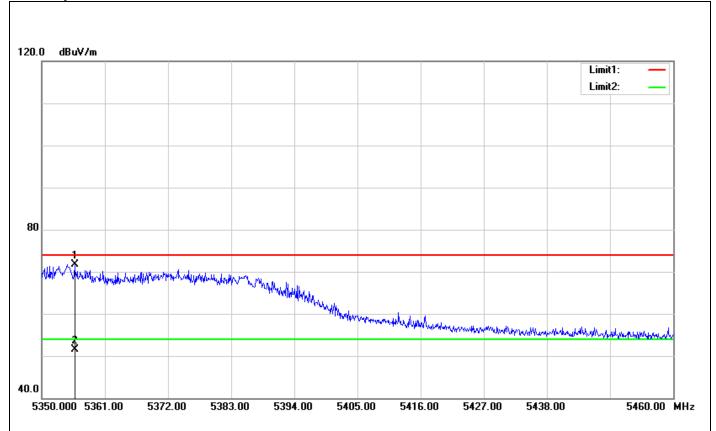
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5350.550	57.16	5.31	62.47	74.00	-11.53	100	41	peak
2	5350.550	43.06	5.31	48.37	54.00	-5.63	100	41	AVG


Band Edges (IEEE 802.11ac VHT 80 MHz mode / CH 5210 MHz)

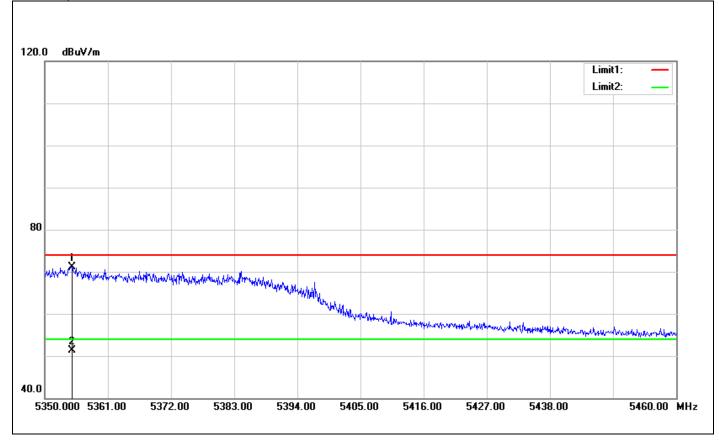
Polarity: Vertical

1
man
hnumen when when the f

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5131.150	61.75	2.91	64.66	74.00	-9.34	100	86	peak
2	5131.150	47.22	2.91	50.13	54.00	-3.87	100	86	AVG



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5146.750	63.87	3.02	66.89	74.00	-7.11	100	23	peak
2	5146.750	48.32	3.02	51.34	54.00	-2.66	100	23	AVG


Band Edges (IEEE 802.11ac VHT 80 MHz mode / CH 5290 MHz)

Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5355.720	66.44	5.36	71.80	74.00	-2.20	100	78	peak
2	5355.720	46.10	5.36	51.46	54.00	-2.54	100	78	AVG

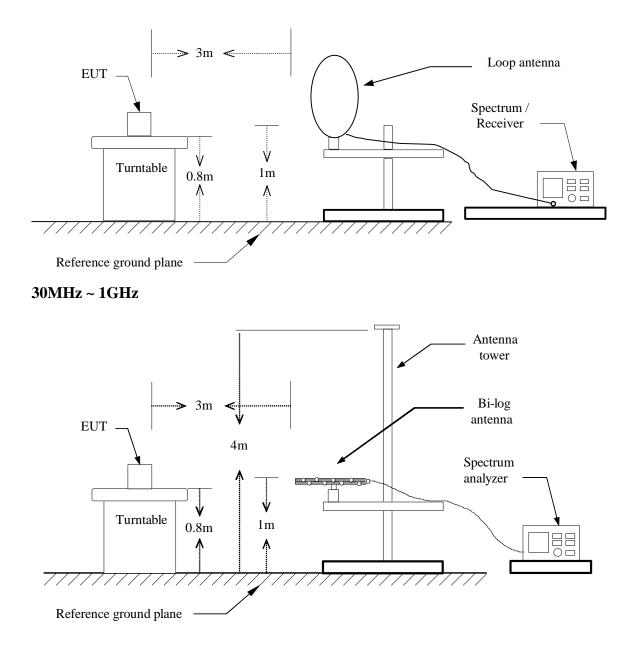
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	5354.730	65.81	5.35	71.16	74.00	-2.84	100	24	peak
2	5354.730	45.93	5.35	51.28	54.00	-2.72	100	24	AVG

7.3 RADIATED UNDESIRABLE EMISSION

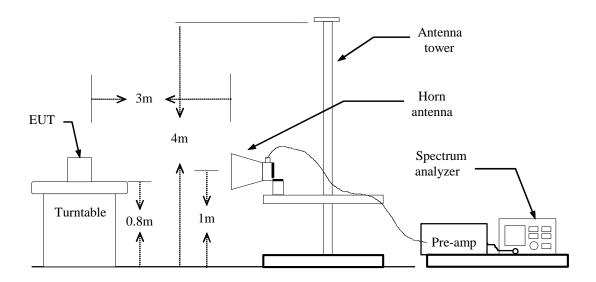
1. According to \$15.209(a) & RSS-210 \$A9.3, except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


Test Configuration

9kHz ~ 30MHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

```
RBW=100kHz / VBW=300kHz / Sweep=AUTO
```

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO (b) AVERAGE: RBW=1MHz, if duty cycle \geq 98%, VBW=10Hz. if duty cycle<98% VBW=1/T. **IEEE 802.11b mode:** \geq 98%, VBW=10Hz **IEEE 802.11g mode:** \geq 98%, VBW=10Hz **IEEE 802.11n HT 20 MHz mode:** \geq 98%, VBW=10Hz **IEEE 802.11n HT 40 MHz mode:** \geq 96%=VBW 2kHz

7. Repeat above procedures until the measurements for all frequencies are complete.

Below 1 GHz

Operation Mode:	Normal Link	Test Date:	January 31, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
30.9700	41.83	-10.58	31.25	40.00	-8.75	peak	V
206.5400	46.75	-18.01	28.74	43.50	-14.76	peak	V
427.7000	49.43	-13.27	36.16	46.00	-9.84	peak	V
534.4000	45.05	-11.26	33.79	46.00	-12.21	peak	V
597.4500	43.04	-10.53	32.51	46.00	-13.49	peak	V
687.6600	38.94	-8.92	30.02	46.00	-15.98	peak	V
32.9100	40.22	-12.00	28.22	40.00	-11.78	peak	Н
229.8200	52.03	-18.81	33.22	46.00	-12.78	peak	Н
305.4800	48.60	-16.28	32.32	46.00	-13.68	peak	Н
436.4300	48.26	-13.03	35.23	46.00	-10.77	peak	Н
833.1600	37.15	-6.98	30.17	46.00	-15.83	peak	Н
1000.0000	37.77	-4.68	33.09	54.00	-20.91	peak	Н

- *1* Measuring frequencies from 30 MHz to the 1GHz.
- 2 Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- *Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.*
- 4 Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5 Margin(dB) = Remark result(dBuV/m) Quasi-peak limit(dBuV/m).

Above 1 GHz

Operation Mode:	Tx / IEEE 802.11a mode / 5180MHz
Temperature:	27°C
Humidity:	53% RH

Test Date:February 1, 2015Tested by:Owen WuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2029.000	49.16	-4.91	44.25	74.00	-29.75	peak	V
N/A							
2456.000	49.09	-3.40	45.69	74.00	-28.31	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3. Average test would be performed if the peak result were greater than the average limit.*
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5200MHz

Temperature: 27°C

Humidity: 53% RH

Test Date:February 1, 2015Tested by:Owen WuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2295.000	49.43	-4.30	45.13	74.00	-28.87	peak	V
N/A							
2113.000	50.83	-4.91	45.92	74.00	-28.08	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5240MHz

Temperature: 27°C

Humidity: 53% RH

Test Date: February 1, 2015 Tested by: Owen Wu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2428.000	50.98	-3.58	47.40	74.00	-26.60	peak	V
N/A							
1952.000	50.36	-5.13	45.23	74.00	-28.77	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5180 MHz	Tes
Temperature:	27°C	Tes
Humidity:	53% RH	Po

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
3982.000	50.14	1.15	51.29	74.00	-22.71	peak	V
N/A							
4066.000	50.45	1.48	51.93	74.00	-22.07	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5200 MHz	Test
Temperature:	27°C	Test
Humidity:	53% RH	Pol

Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
48.61	-5.02	43.59	74.00	-30.41	peak	V
49.31	-4.72	44.59	74.00	-29.41	peak	Н
	(dBuV) 48.61	(dBuV) (dB/m) 48.61 -5.02	(dBuV) (dB/m) (dBuV/m) 48.61 -5.02 43.59	(dBuV) (dB/m) (dBuV/m) (dBuV/m) 48.61 -5.02 43.59 74.00	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 48.61 -5.02 43.59 74.00 -30.41	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Kemark 48.61 -5.02 43.59 74.00 -30.41 peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Tx / IEEE 802.11n HT 20 MHz Channel mode / Test Date: February 1, 2015 **Operation Mode:** 5240MHz

Temperature: 27°C Tested by: Owen Wu

Humidity: 53% RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1994.000	49.13	-4.91	44.22	74.00	-29.78	peak	V
N/A							
		-					
2225.000	49.56	-4.39	45.17	74.00	-28.83	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

5

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode / 5190 MHz	Test Date:	February 1, 201
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4185.000	49.58	1.93	51.51	74.00	-22.49	peak	V
N/A							
4136.000	50.11	1.74	51.85	74.00	-22.15	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode / 5230MHz	Test Date: February 1, 2015
Temperature:	27°C	Tested by: Owen Wu
Humidity:	53% RH	Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
3940.000	50.44	0.97	51.41	74.00	-22.59	peak	V
N/A							
4136.000	50.13	1.74	51.87	74.00	-22.13	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11ac VHT 80 MHz mode / 5210MHz]
Temperature:	27°C]
Humidity:	53% RH	ł

Test Date: February 1, 2015

Tested by: Owen Wu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
3282.000	51.40	-1.43	49.97	74.00	-24.03	peak	V
N/A							
3282.000	51.61	-1.43	50.18	74.00	-23.82	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5260 MHz

Temperature: 27°C

Humidity: 53% RH

Test Date:February 1, 2015Tested by:Owen WuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2211.000	49.76	-4.41	45.35	74.00	-28.65	peak	V
N/A							
2547.000	49.40	-3.03	46.37	74.00	-27.63	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5300MHz

Temperature: 27°C

Humidity: 53% RH

Test Date:February 1, 2015Tested by:Owen WuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2078.000	48.95	-4.96	43.99	74.00	-30.01	peak	V
N/A							
2519.000	48.89	-3.08	45.81	74.00	-28.19	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5320MHz

Temperature: 27°C

Humidity: 53% RH

Test Date: February 1, 2015 Tested by: Owen Wu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1721.000	49.95	-6.36	43.59	74.00	-30.41	peak	V
N/A							
2715.000	49.82	-2.69	47.13	74.00	-26.87	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5260MHz
Temperature:	27°C
Humidity:	53% RH

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2078.000	49.03	-4.96	44.07	74.00	-29.93	peak	V
N/A							
		-					
2148.000	48.94	-4.72	44.22	74.00	-29.78	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5300MHz	ŗ
Temperature:	27°C	r
Humidity:	53% RH]

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2029.000	49.98	-4.91	45.07	74.00	-28.93	peak	V
N/A							
3310.000	50.81	-1.37	49.44	74.00	-24.56	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Humidity:

Operation Mode: Tx / IEEE 802.11n HT 20 MHz Channel mode / **Test Date:** February 1, 2015 5320MHz

Temperature: 27°C

53% RH

Tested by: Owen Wu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4311.000	49.06	2.41	51.47	74.00	-22.53	peak	V
N/A							
4255.000	49.71	2.19	51.90	74.00	-22.10	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

5

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode / 5270 MHz	Test Date:	February 1, 201
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
3128.000	51.84	-1.80	50.04	74.00	-23.96	peak	V
N/A							
4094.000	49.59	1.59	51.18	74.00	-22.82	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode 5310MHz	Test Date: February 1, 2015
Temperature:	27°C	Tested by: Owen Wu
Humidity:	53% RH	Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
3569.000	51.08	-0.61	50.47	74.00	-23.53	peak	V
N/A							
1945.000	50.90	-5.17	45.73	74.00	-28.27	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11ac VHT 80 MHz mode / 5290 MHz
Temperature:	27°C
Humidity:	53% RH

Test Date: February 1, 2015

Tested by: Owen Wu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4003.000	49.33	1.24	50.57	74.00	-23.43	peak	V
N/A							
3359.000	51.03	-1.25	49.78	74.00	-24.22	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- *3.* Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11a mode / 5500MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2575.000	50.24	-2.97	47.27	74.00	-26.73	peak	V
N/A							
2568.000	49.80	-2.98	46.82	74.00	-27.18	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5580MHz

Temperature: 27°C

Humidity: 53% RH

Test Date:February 1, 2015Tested by:Owen WuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2421.000	51.13	-3.63	47.50	74.00	-26.50	peak	V
N/A							
2449.000	49.10	-3.43	45.67	74.00	-28.33	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5700MHz

Temperature: 27°C

Humidity: 53% RH

Test Date:February 1, 2015Tested by:Owen WuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2337.000	50.07	-4.23	45.84	74.00	-28.16	peak	V
N/A							
1854.000	49.16	-5.65	43.51	74.00	-30.49	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode: Tx / IEEE 802.11a mode / 5720MHz

Temperature: 27°C

Humidity: 53% RH

Test Date:February 1, 2015Tested by:Owen WuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2400.000	50.90	-3.69	47.21	74.00	-26.79	peak	V
N/A							
2505.000	49.48	-3.11	46.37	74.00	-27.63	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5500MHz
Temperature:	27°C
Humidity:	53% RH

Frequency Reading Correction Result Limit Margin Ant.Pol. Remark (dBuV/m) (MHz) (dBuV) (dB/m)(dBuV/m) (**dB**) (H/V) V 2449.000 50.45 -3.43 47.02 74.00 -26.98 peak N/A 2309.000 49.19 -4.28 44.91 74.00 -29.09 peak Η N/A

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5580MHz
Temperature:	27°C
Humidity:	53% RH

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2323.000	50.52	-4.24	46.28	74.00	-27.72	peak	V
N/A							
2533.000	49.73	-3.05	46.68	74.00	-27.32	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5600MHz
Temperature:	27°C
Humidity:	53% RH

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2421.000	50.24	-3.63	46.61	74.00	-27.39	peak	V
N/A							
2519.000	49.31	-3.08	46.23	74.00	-27.77	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5700MHz
Temperature:	27°C
Humidity:	53% RH

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2561.000	49.45	-3.00	46.45	74.00	-27.55	peak	V
N/A							
1595.000	49.44	-7.03	42.41	74.00	-31.59	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 20 MHz Channel mode / 5720MHz]
Temperature:	27°C]
Humidity:	53% RH	I

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2603.000	49.30	-2.91	46.39	74.00	-27.61	peak	V
N/A							
2302.000	50.41	-4.29	46.12	74.00	-27.88	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode / 5510 MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4276.000	50.14	2.27	52.41	74.00	-21.59	peak	V
N/A							
4248.000	49.64	2.17	51.81	74.00	-22.19	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode / 5550MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4122.000	49.42	1.69	51.11	74.00	-22.89	peak	V
N/A							
4122.000	50.40	1.69	52.09	74.00	-21.91	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode / 5670MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
3233.000	52.64	-1.55	51.09	74.00	-22.91	peak	V
N/A							
2365.000	49.77	-4.01	45.76	74.00	-28.24	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11n HT 40 MHz mode / 5710MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2554.000	50.04	-3.14	46.90	74.00	-27.10	peak	V
N/A							
2540.000	50.38	-3.17	47.21	74.00	-26.79	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11ac VHT 80 MHz mode / 5530MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4073.000	49.67	1.51	51.18	74.00	-22.82	peak	V
N/A							
4612.000	49.12	3.58	52.70	74.00	-21.30	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11ac VHT 80 MHz mode / 5610MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2743.000	49.35	-2.63	46.72	74.00	-27.28	peak	V
N/A							
1945.000	53.02	-5.17	47.85	74.00	-26.15	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Operation Mode:	Tx / IEEE 802.11ac VHT 80 MHz mode / 5690MHz	Test Date:	February 1, 2015
Temperature:	27°C	Tested by:	Owen Wu
Humidity:	53% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2533.000	51.50	-3.18	48.32	74.00	-25.68	peak	V
N/A							
2561.000	50.06	-3.12	46.94	74.00	-27.06	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).