

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

802.11a/g/n/ac WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM94360CS2

FCC ID: QDS-BRCM1072 IC: 4324A-BRCM1072

REPORT NUMBER: 13U14796-3

ISSUE DATE: MARCH 18, 2013

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	03/18/13	Initial Issue	F. Ibrahim

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 42

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	СА	LIBRATION AND UNCERTAINTY	5
4.	.1.	MEASURING INSTRUMENT CALIBRATION	5
4.	.2.	SAMPLE CALCULATION	5
4.	.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5	.1.	DESCRIPTION OF EUT	6
5	.2.	MAXIMUM OUTPUT POWER	6
5	З.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	4.	SOFTWARE AND FIRMWARE	6
5	5.	WORST-CASE CONFIGURATION AND MODE	6
5.	.6.	DESCRIPTION OF TEST SETUP	7
6.	TE	ST AND MEASUREMENT EQUIPMENT	9
6. 7.		ST AND MEASUREMENT EQUIPMENT1	
7.			0
7. 7.	AN	TENNA PORT TEST RESULTS1	0 0
7. 7. 7.	AN .1.	TENNA PORT TEST RESULTS1 6 dB BANDWIDTH1	0 0 3
7. 7. 7. 7.	AN 1. .2.	TENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1	0 3 6
7. 7. 7. 7. 7.	AN .1. .2. .3.	TENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1 OUTPUT POWER 1	0 0 3 6 9
7. 7. 7. 7. 7. 7.	AN .1. .2. .3. .4.	TENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER1AVERAGE POWER1	0 0 3 6 9 0
7. 7. 7. 7. 7. 7.	AN .1. .2. .3. .4. .5. .6.	TENNA PORT TEST RESULTS 16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY2	0 3 6 9 0 3
7. 7. 7. 7. 7. 7. 7. 8.	AN .1. .2. .3. .4. .5. .6.	TENNA PORT TEST RESULTS 16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS2	0 3 6 9 0 3 7
7. 7. 7. 7. 7. 7. 7. 8. 8.	AN .1. .2. .3. .4. .5. .6. RA	TENNA PORT TEST RESULTS 16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS2DIATED TEST RESULTS2	0 3 6 9 0 3 7 7
7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8.	AN ¹ 2. 3. 4. 5. 6. RA	TENNA PORT TEST RESULTS 16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS2 DIATED TEST RESULTS 2LIMITS AND PROCEDURE2	0 3 6 9 0 3 7 7 8
7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8.	AN .1. 2. 3. .4. 5. .6. RA .1. 2. .3.	TENNA PORT TEST RESULTS 16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER1AVERAGE POWER1POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS2 DIATED TEST RESULTS 2LIMITS AND PROCEDURE2TRANSMITTER ABOVE 1 GHz, BLUETOOTH LOW ENERGY2	0 3 6 9 0 3 7 7 8 3

Pass

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

CFR 47	' Part 15 Subpart C	Pass			
	STANDARD	TEST RESULTS			
APPLICABLE STANDARDS					
DATE TESTED:	FEBRUARY 21 – MARCH 06, 20	13			
SERIAL NUMBER:	C8Y2521000MFC31EN				
MODEL:	BCM94360CS2				
EUT DESCRIPTION:	802.11a/g/n/ac WLAN + Bluetoo Card	th PCI-E Custom Combination			
COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.				

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

FRANK IBRAHIM WISE PROJECT LEAD UL CCS

Tested By:

ray sheng

ROY ZHENG WISE LAB TECH III UL CCS

Page 4 of 42

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. **MEASURING INSTRUMENT CALIBRATION**

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

UL CCS

Page 5 of 42

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/g/n/ac WLAN + Bluetooth PCI-E Custom Combination Card.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402-2480	Bluetooth Low Energy (BLE)	3.30	2.14

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an Amphenol/ Pulse 802.11a/b/g/n WLAN/BT antenna, with a maximum gain of 4.97 dBi for the BT antenna.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom, Ver. 5.1.0.1400 The test utility software used during testing was Broadcom BlueTool, Ver 1.7.2

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC. The EUT was oriented in a flat orientation, similar to the orientation it would have in real installations; see setup photos for details.

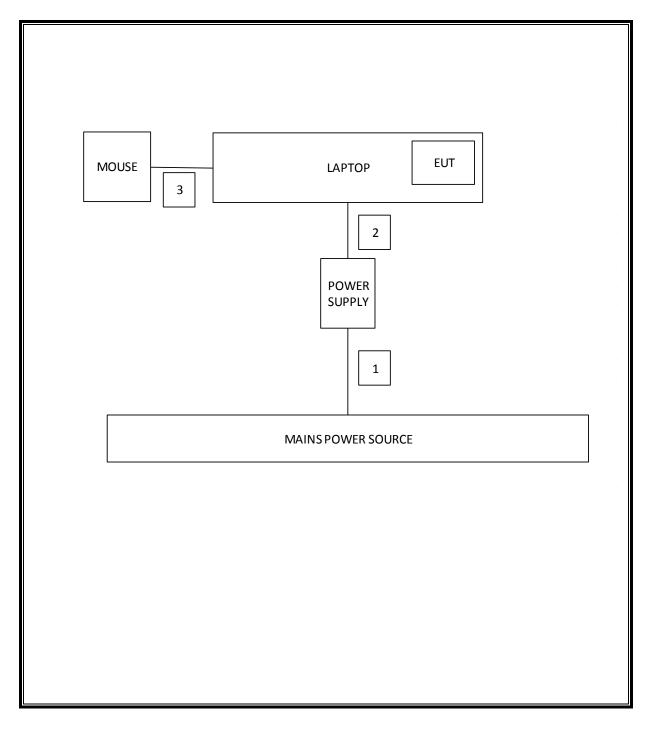
Page 6 of 42

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description	Manufacturer	Model	Serial Number	FCC ID				
Laptop	Dell	GM3B	1FM3U7U0WI0	DoC				
AC Adapter	Dell	LA90PS0	PA-1900-01D3	DoC				
Mouse	Microsoft	NA	X817158-005	DoC				
Laptop PC	Dell	E6400	BDRBKK1	DoC				
AC Adapter	Dell	DA90PE3	WTC0V	DoC				
Adapter Board	Broadcom	BCM94331CSAD	1583414	N/A				

I/O CABLES


	I/O Cable List								
	Port			Cable Type	Cable Length	Remarks			
No		ports	Туре		(m)				
1	AC	1	US 115V	Un-Shielded	1.8	N/A			
2	DC	1	DC	Shielded	1.8	N/A			
3	USB	1	USB	Shielded	1.8	N/A			

TEST SETUP

The EUT is installed in a host laptop computer during the tests. Test software exercised the radio card.

Page 7 of 42

SETUP DIAGRAM FOR TESTS

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 8 of 42

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description	Manufacturer	Model	Asset	Cal Date	Cal Due			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/13/11	12/13/13			
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/11	12/13/13			
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/11	12/13/13			
Antenna, Horn, 18 GHz	EMCO	3115	C00945	11/12/12	11/12/13			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00946	11/12/12	11/12/13			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	10/22/12	10/22/13			
LISN, 30 MHz	FCC	50/250-25-2	N02396	08/08/12	08/08/13			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	02/21/12	03/21/13			
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	C01011	03/23/12	03/23/13			
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRC13192	N02683	CNR	CNR			

Page 9 of 42

7. ANTENNA PORT TEST RESULTS

7.1. 6 dB BANDWIDTH

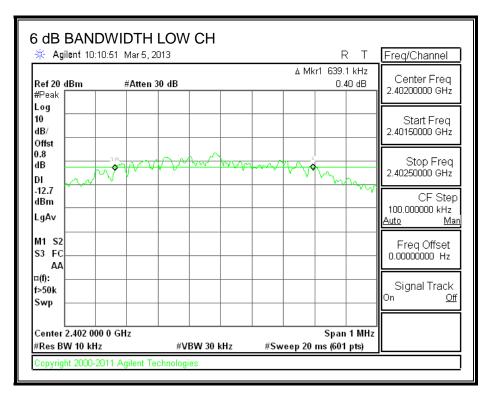
<u>LIMITS</u>

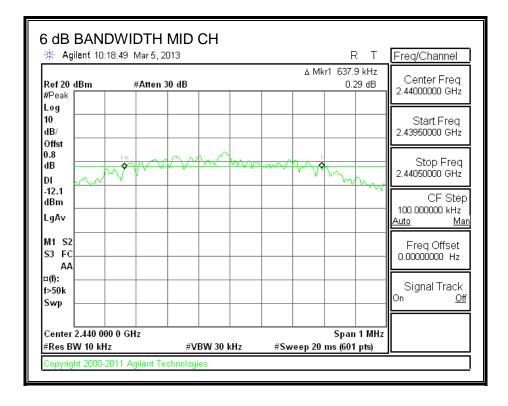
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


KDB 558074 D01 v02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".


RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.6391	0.5
Middle	2440	0.6379	0.5
High	2480	0.6378	0.5

Page 10 of 42

6 dB BANDWIDTH

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 11 of 42

🔆 Agil		DTH Mar 5, 2(F	х т	Freq/Channel
Ref20d #Peak [Bm	 #Atten 3	0 dB				∆ Mk	r1 637.8 -0.1	3 kHz 2 dB	Center Freq 2.48000000 GHz
Log 10 dB/										Start Freq 2.47950000 GHz
Offst 0.8 dB DI	~~~	$\sim \sim$	\sim	~~~	ᢦᢦᢧᢇ	~~~~	$\overline{\nabla}$	52		Stop Freq 2.48050000 GHz
-11.8 dBm LgAv										CF Step 100.000000 kHz <u>Auto Mar</u>
M1 S2 S3 FC AA										Freq Offset 0.00000000 Hz
¤(f): - f>50k Swp -										Signal Track On <u>Off</u>
Center 2 #Res BV		 lz	# V	BW 30 I	(Hz	#Sw	eep 20		1 MHz pts)	

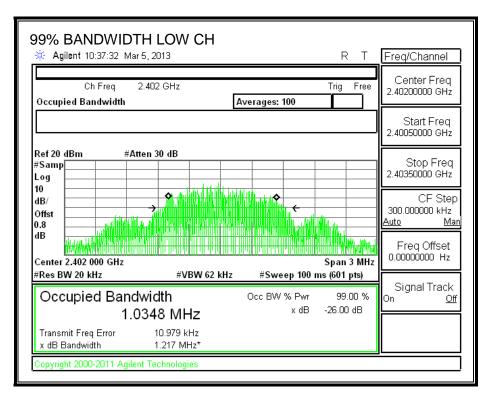
Page 12 of 42

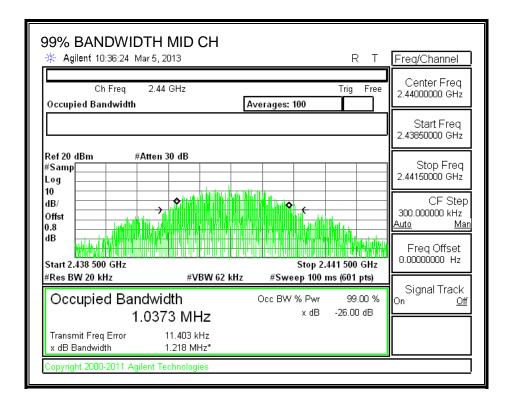
7.2. 99% **BANDWIDTH**

LIMITS

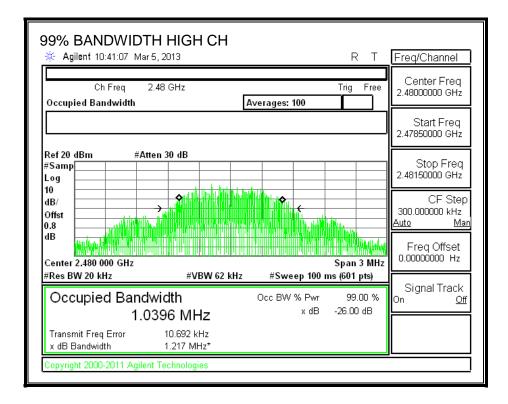
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0348
Middle	2440	1.0373
High	2480	1.0396


Page 13 of 42

99% BANDWIDTH

Page 14 of 42

Page 15 of 42

7.3. OUTPUT POWER

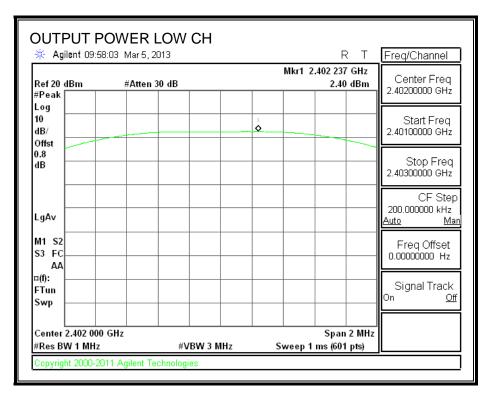
<u>LIMITS</u>

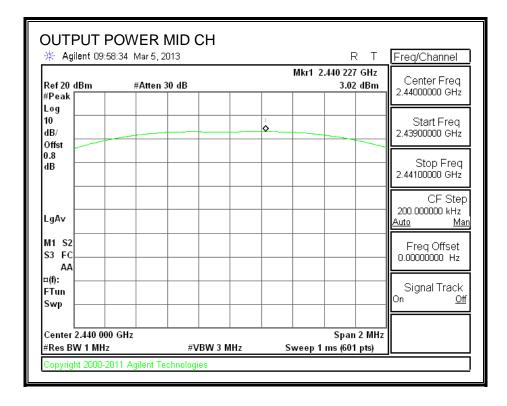
FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE


KDB 558074 D01 v02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".


<u>RESULTS</u>

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	2.40	30	-27.60
Middle	2440	3.02	30	-26.98
High	2480	3.30	30	-26.70

Page 16 of 42

OUTPUT POWER

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 17 of 42

🔆 Agilent 09:5	59:04 Mar 5, 2013			RT	Freq/Channel
Ref 20 dBm #Peak	#Atten 30 dB		Mkr	1 2.480 263 GHz 3.30 dBm	Center Freq 2.48000000 GHz
Log 10 dB/			1 \$		Start Freq 2.47900000 GHz
Offst 0.8 dB					Stop Freq 2.48100000 GHz
LgAv					CF Step 200.000000 kHz <u>Auto Mar</u>
M1 S2 S3 FC AA					Freq Offset 0.00000000 Hz
¤(f): FTun Swp					Signal Track On <u>Off</u>
Center 2.480 00 #Res BW 1 MHz		#VBW 3 MHz	Swee	Span 2 MHz p 1 ms (601 pts)	

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 18 of 42

7.4. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

KDB 558074 D01 v02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

RESULTS

The cable assembly insertion loss of 0.8dB (including 0 dB pad and 0.8 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency (MHz)	AV power (dBm)
Low	2402	2.22
Middle	2440	2.88
High	2480	3.18

Page 19 of 42

7.5. POWER SPECTRAL DENSITY

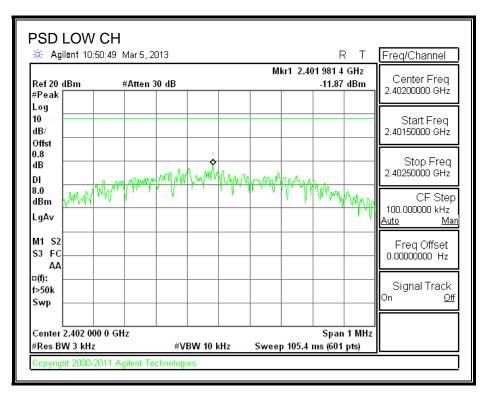
<u>LIMITS</u>

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE


KDB 558074 D01 v02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-11.87	8	-19.87
Middle	2440	-11.23	8	-19.23
High	2480	-10.86	8	-18.86

Page 20 of 42

POWER SPECTRAL DENSITY

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

🔆 Agi		.36.00	waro, zu	113						₹Т	Freq/Channel
Ref20o #Peak [IBm		#Atten 3	0 dB			м	kr1 2.47	9 981 4 -10.86		Center Freq 2.48000000 GHz
Log 10 dB/											Start Freq 2.47950000 GHz
Offst 0.8 dB DI		. 1 .00	aladir	mhdw	Lmml	Uswa	~ MM	an an			Stop Freq 2.48050000 GHz
8.0 dBm LgAv	MMA	, MMun	V 11. 14	• 1 -		- II - 1	¥ -1-11	·γ· -γι	MM)	rMpy	CF Step 100.000000 kHz Auto Mai
M1 S2 S3 FC											Freq Offset 0.00000000 Hz
⊐(f): f>50k Swp											Signal Track On <u>Off</u>
Center 2 #Res BV			z	#1	BW 10 F	(H7	Swee	o 105.4 r		1 MHz	

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 22 of 42

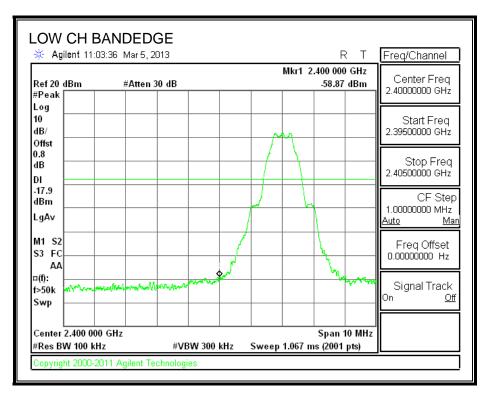
7.6. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

IC RSS-210 A8.5

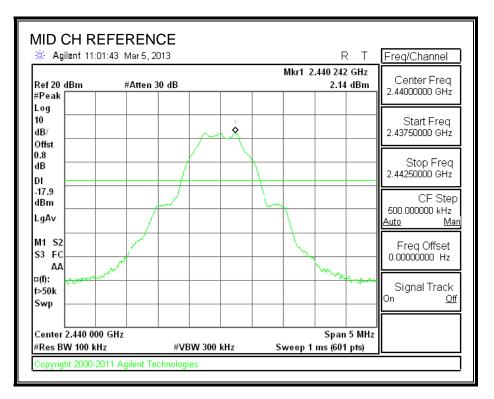
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

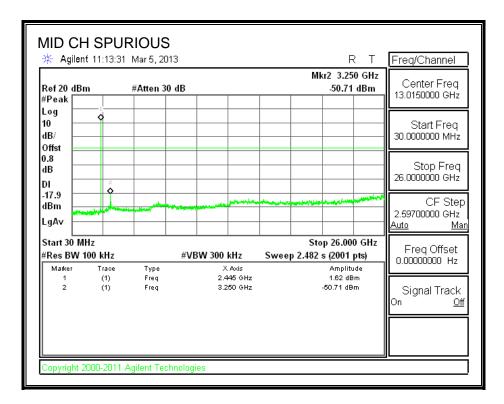

TEST PROCEDURE


KDB 558074 D01 v02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

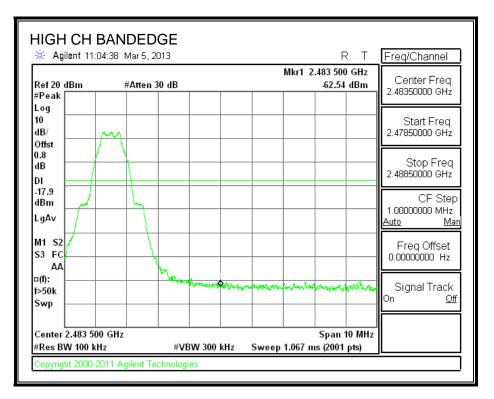
UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

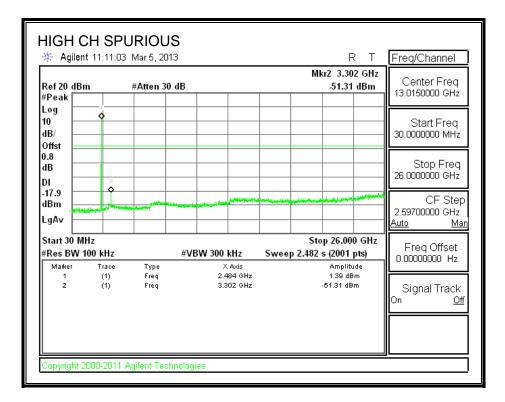
Page 23 of 42


SPURIOUS EMISSIONS, LOW CHANNEL



Page 24 of 42


SPURIOUS EMISSIONS, MID CHANNEL



UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 26 of 42

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

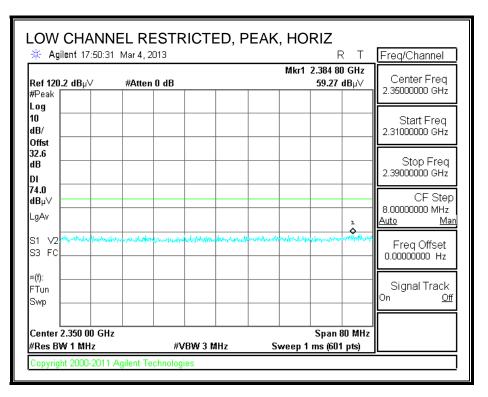
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

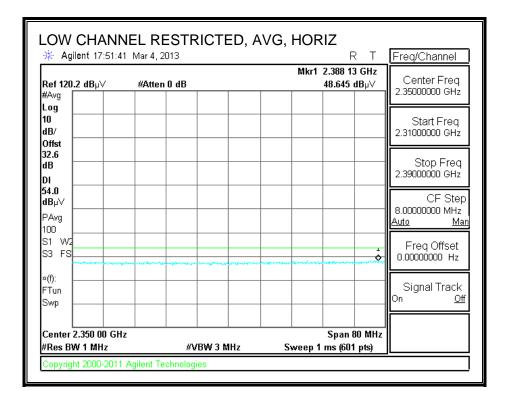
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

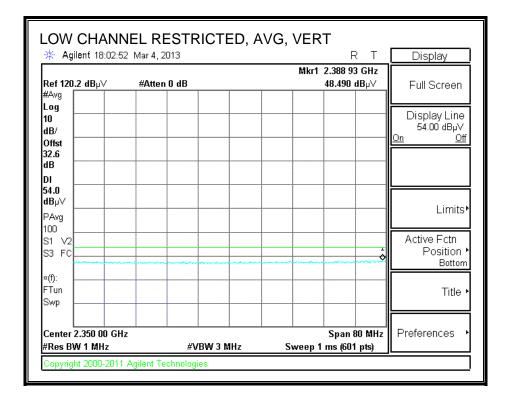

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

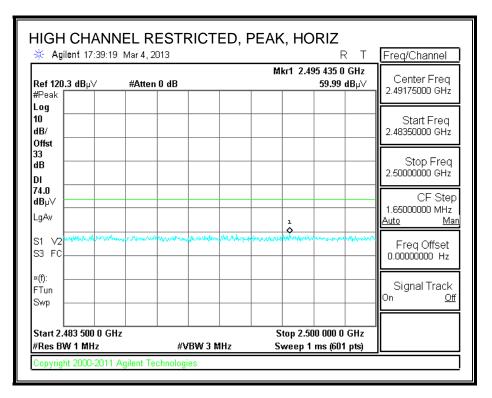
Page 27 of 42

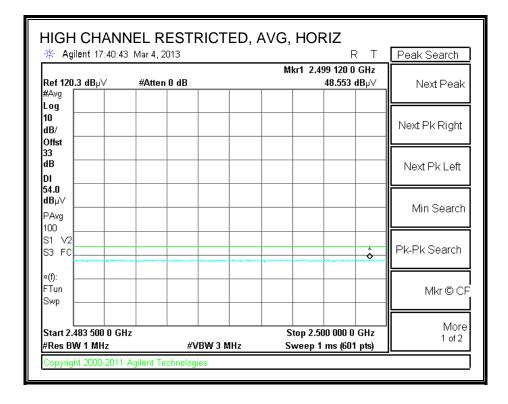
8.2. TRANSMITTER ABOVE 1 GHz, BLUETOOTH LOW ENERGY

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



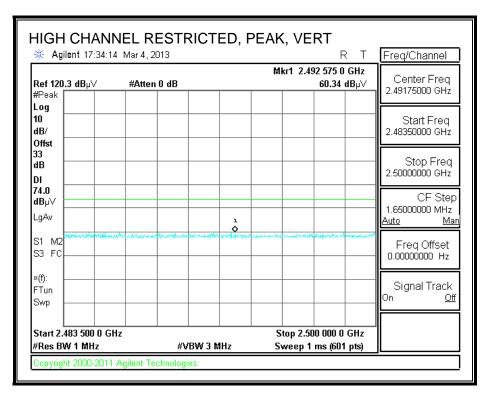
Page 28 of 42

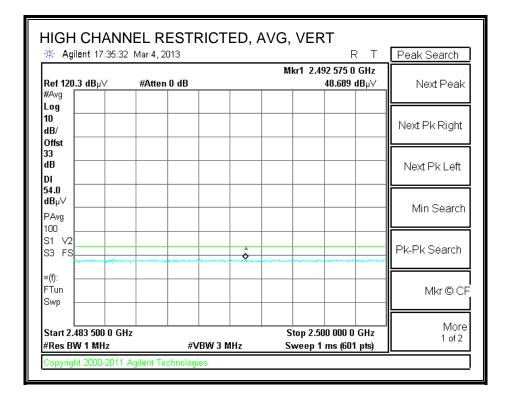

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


-OW CHANNEL RE		EAK, VERT	Freq/Channel
Ref 120.2 dBµ∀ #Atten #Peak) dB	Mkr1 2.389 07 GHz 60.33 dBµ∨	Center Freq 2.3500000 GHz
Log 10 dB/ Offst			Start Freq 2.31000000 GHz
32.6 dB DI			Stop Freq 2.3900000 GHz
74.0 dBµV LgAv			CF Step 8.0000000 MHz <u>Auto Man</u>
S1 V2	milliontropy (connected to the production of the second	an a	Freq Offset 0.00000000 Hz
«(f):			Signal Track On <u>Off</u>
Center 2.350 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 80 MHz Sweep 1 ms (601 pts)	

Page 29 of 42

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





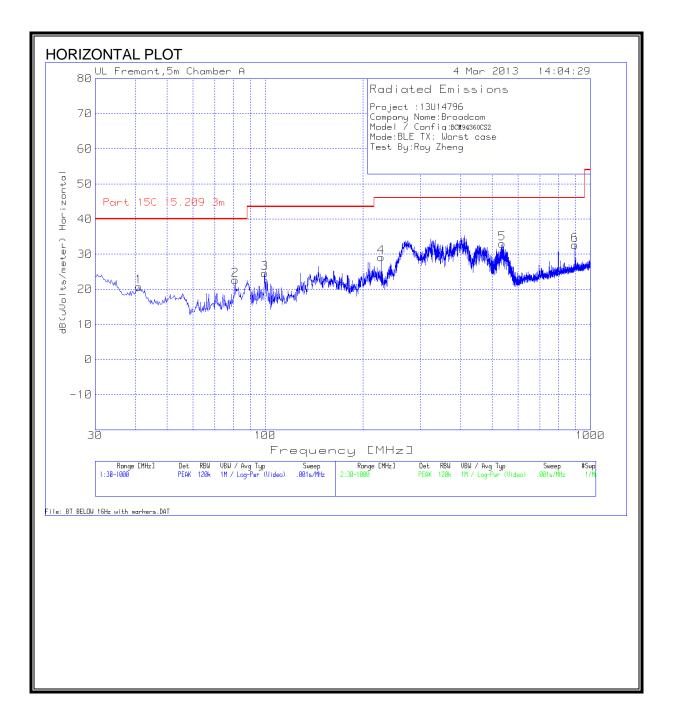
UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 30 of 42

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

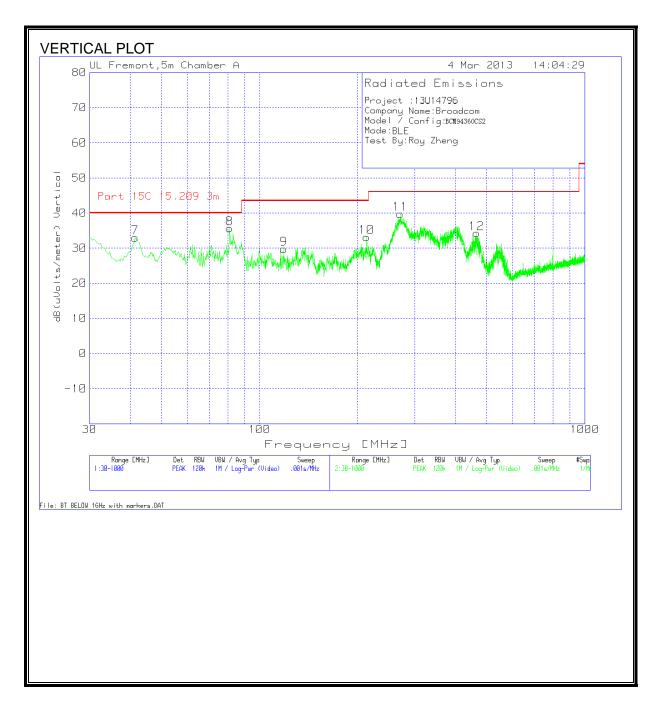
UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 31 of 42


HARMONICS AND SPURIOUS EMISSIONS

Instruction Instruction<	
Instruction Instruction<	Limit
3' cable 22807700 12' cable 22807600 20' cable 22807500 Peak Mea Reject Filter Peak Mea 3' cable 22807700 12' cable 22807600 20' cable 22807500 0 0 1 Peak Mea Reject Filter Reject Filter Reweyee Average Mea 6 Dist Read Pk Read Avg. AF CL Amp D Corr Fltr Peak Avg Bu/m Bu/m Avg Mar A	C 15.205
GHz (m) dBuV dBu/ dB/m dB	3W=3MHz e asureme t :
Low Channel 2402	Notes
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(V/H)
id Channel 2441 v	H
880 3.0 32.9 20.7 33.5 6.8 -35.7 0.0 0.0 37.5 25.4 74 54 -36.5 -28.6 320 3.0 39.5 27.3 36.0 8.7 -35.8 0.0 0.0 48.4 36.2 74 54 -25.6 -17.8 880 3.0 33.9 28.5 33.5 6.8 -35.7 0.0 0.0 48.4 36.2 74 54 -25.6 -17.8 880 3.0 33.9 28.5 33.5 6.8 -35.7 0.0 0.0 38.6 33.1 74 54 -35.4 -20.9 320 3.0 39.6 25.3 36.0 8.7 -35.8 0.0 0.0 48.4 34.2 74 54 -35.4 -20.9 320 3.0 39.6 25.3 36.0 8.7 -35.8 0.0 0.0 48.4 34.2 74 54 -35.9 -19.8 </td <td>V</td>	V
320 3.0 39.5 27.3 36.0 8.7 -35.8 0.0 0.0 48.4 36.2 74 54 -25.6 -17.8 880 3.0 33.9 28.5 33.5 6.8 -35.7 0.0 0.0 38.6 33.1 74 54 -25.6 -17.8 320 3.0 39.6 25.3 36.0 8.7 -35.8 0.0 0.0 38.6 33.1 74 54 -35.4 -20.9 320 3.0 39.6 25.3 36.0 8.7 -35.8 0.0 0.0 48.4 34.2 74 54 -35.4 -20.9 320 3.0 39.6 25.3 36.0 8.7 -35.8 0.0 0.0 48.4 34.2 74 54 -25.6 -19.8 360 3.0 33.3 20.7 33.6 6.9 -35.6 0.0 0.0 38.1 25.5 74 54 -35.9 -28.5 </td <td>Н</td>	Н
320 3.0 39.6 25.3 36.0 8.7 -35.8 0.0 0.0 48.4 34.2 74 54 -25.6 -19.8 igh Channel 2480	H
igh Channel 2480 3.0 33.3 20.7 33.6 6.9 -35.6 0.0 0.0 38.1 25.5 74 54 -35.9 -28.5	V V
960 3.0 33.3 20.7 33.6 6.9 -35.6 0.0 0.0 38.1 25.5 74 54 -35.9 -28.5	v
	H
440 3.0 39.3 27.4 36.1 8.8 -35.8 0.0 0.0 48.4 36.4 74 54 -25.6 -17.6 960 3.0 33.4 21.2 33.6 6.9 -35.6 0.0 0.0 38.2 26.0 74 54 -25.6 -17.6	H V
500 5.0 53.4 21.2 35.0 6.9 55.0 0.0 0.0 35.2 20.0 $/4$ 54 -35.5 -26.0 -2	V
f Measurement Frequency Amp Preamp Gain Avg Lim Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Pk Lim Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Avg Mar Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Pk Mar Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter	

Page 32 of 42


8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 33 of 42

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 34 of 42

HORIZO	ONTAL A		RTICAL	DATA						
Project :		13U14796								
Company	Company Name: Broadcom									
Model / C	Model / Config: BCM94360CS2									
Mode:	Mode: BLE									
Test By: Roy Zheng		3								
					T64					
				T185	preamp/					
	Test			Antenna	cable		FCC Part			
Marker	Frequenc	Meter		Factor	loss loop	dB(uVolt	15B Class		Height	
No.	У	Reading	Detector	(dB)	(dB)	s/meter)	B 3m	Margin	[cm]	Polarity
Horizonta	30 - 1000N	ИНz								
1	40.9043	35.37	PK	12.9	-27.5	20.77	40	-19.23	300	Horz
2	80.8868	42.12	PK	7.6	-27.1	22.62	40	-17.38	400	Horz
3	99.7877	41.62	PK	10	-27	24.62	43.5	-18.88	300	Horz
4	227.4894	44.18	PK	11	-26.1	29.08	46	-16.92	100	Horz
5	535.9605	39.17	PK	18.1	-24.2	33.07	46	-12.93	100	Horz
6	896.0455	33.25	PK	22	-22.6	32.65	46	-13.35	100	Horz
Vertical 30	0 - 1000MH	Z								
7	41.389	48.03	PK	12.5	-27.5	33.03	40	-6.97	100	Vert
8	80.8868	55.16	PK	7.6	-27.1	35.66	40	-4.34	100	Vert
9	118.9308	42.73	PK	13.9	-26.9	29.73	43.5	-13.77	100	Vert
10	213.1926	48.9	PK	10.4	-26.2	33.1	43.5	-10.4	100	Vert
11	270.8644	52.53	PK	13.2	-26	39.73	46	-6.27	100	Vert
12	465.4459	41.94	PK	17.2	-24.9	34.24	46	-11.76	100	Vert
			,							
PK - Peak	detector									
QP - Quas	i-Peak det	ector								
Av - Aver	age detect	or]							

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 "
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

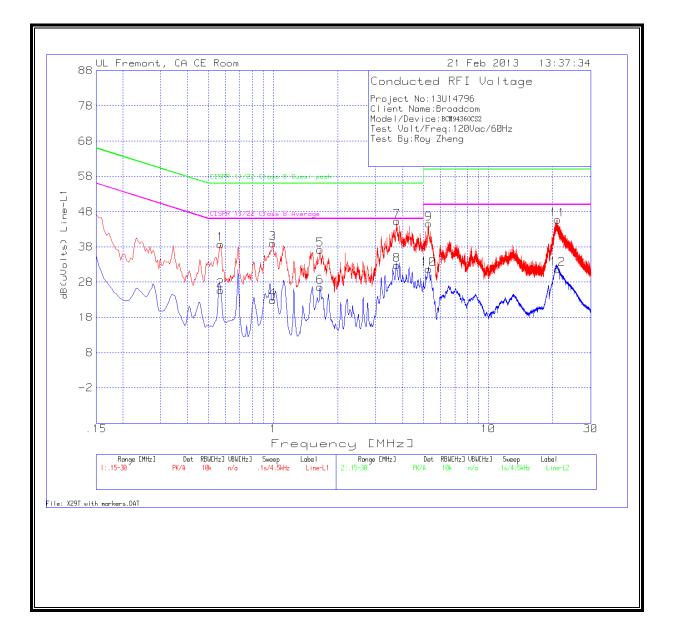
TEST PROCEDURE

ANSI C63.4

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

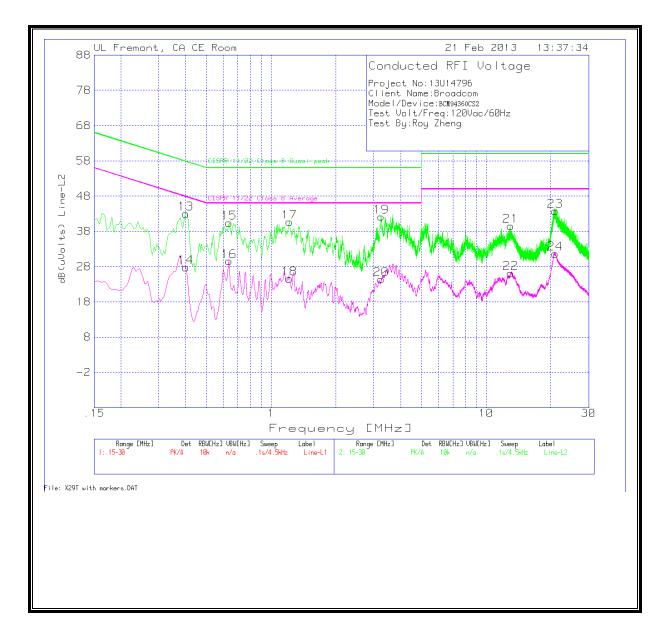
Page 36 of 42

RESULTS


6 WORST EMISSIONS

Project No:		13U14796							
Client Nam		Broadcom		1					
Model/Dev	/ice:	BCM94360	CS2	1					
Test Volt/F		120Vac/60		1					
Test By:		Roy Zheng							
		, , ,	,	1					
						CISPR			
						11/22		CISPR	
			T24 IL	LC Cables		Class B		11/22	
Test	Meter		L1.TXT	1&3.TXT		Quasi-		Class B	
Frequency	Reading	Detector	(dB)	(dB)	dB(uVolts)	peak	Margin	Average	Margin
Line-L1.15			. ,		. ,				
0.5685	38.63	PK	0.1	0	38.73	56	-17.27	-	-
0.5685	25.56	Av	0.1	0	25.66	-	-	46	-20.34
0.996	38.93	РК	0.1	0	39.03	56	-16.97	-	-
0.996	22.83	Av	0.1	0	22.93	-	-	46	-23.07
1.65525	37.04	РК	0.1	0.1	37.24	56	-18.76	-	-
1.65525	26.48	Av	0.1	0.1	26.68	-	-	46	-19.32
3.7545	45.13	PK	0.1	0.1	45.33	56	-10.67	-	-
3.7545	32.58	Av	0.1	0.1	32.78	-	-	46	-13.22
5.298	44.41	PK	0.1	0.1	44.61	60	-15.39	-	-
5.298	31.5	Av	0.1	0.1	31.7	-	-	50	-18.3
21.0615	45.15	PK	0.3	0.2	45.65	60	-14.35	-	-
21.0615	31.2	Av	0.3	0.2	31.7	-	-	50	-18.3
Line-L2.15	- 30MHz								
0.402	42.88	PK	0.1	0	42.98	57.8	-14.82	-	-
0.402	27.73	Av	0.1	0	27.83	-	-	47.8	-19.97
0.636	40.36	PK	0.1	0	40.46	56	-15.54	-	-
0.636	29.43	Av	0.1	0	29.53	-	-	46	-16.47
1.2165	40.42	PK	0.1	0.1	40.62	56	-15.38	-	-
1.2165	24.39	Av	0.1	0.1	24.59	-	-	46	-21.41
3.255	41.96	PK	0.1	0.1	42.16	56	-13.84	-	-
3.255	24.18	Av	0.1	0.1	24.38	-	-	46	-21.62
13.0065	39.14	PK	0.2	0.2	39.54	60	-20.46	-	-
13.0065	25.72	Av	0.2	0.2	26.12	-	-	50	-23.88
20.9445	43.22	PK	0.3	0.2	43.72	60	-16.28	-	-
20.9445	31.12	Av	0.3	0.2	31.62	-	-	50	-18.38
PK - Peak d	etector								
QP - Quasi-	Peak dete	ctor							
Av - Avera	ge detecto	or							

UL CCS


Page 37 of 42

LINE 1 RESULTS

Page 38 of 42

LINE 2 RESULTS

Page 39 of 42