

FCC 47 CFR PART 15 SUBPART E

CLASS II PERMISSIVE CHANGE

FOR

802.11a/g/n/ac WLAN + BLUETOOTH PCI-E CUSTOM COMBINATION CARD

MODEL NUMBER: BCM94360CS

FCC ID: QDS-BRCM1069

REPORT NUMBER: 15U22131 - E1V2

ISSUE DATE: JANUARY 6, 2016

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE CA, 94086, USA

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	12/23/15	Initial Issue	H. Mustapha
V2	01/06/16	Updated Section 5.6	H. Mustapha

Page 2 of 136

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	7
3.	FAG	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	SAMPLE CALCULATION	7
	4.3.	MEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	LIST OF TEST REDUCTION AND MODES COVERING OTHER MODES	10
	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.5.	SOFTWARE AND FIRMWARE	11
	5.6.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	11
	5.7.	WORST-CASE CONFIGURATION AND MODE	12
	5.8.	DESCRIPTION OF TEST SETUP	13
6.	TES	ST AND MEASUREMENT EQUIPMENT	15
7.	МЕ	ASUREMENT METHODS	16
			IU
•			10
8.	AN [.]		17
8.	AN [*] 8.1.	TENNA PORT TEST RESULTS ************************************	17 17
8.	AN 8.1. 8.2. 8.2.	TENNA PORT TEST RESULTS " ON TIME AND DUTY CYCLE " 802.11a SISO MODE IN THE 5.8 GHz BAND " .1. OUTPUT POWER "	17 17 24 24
8.	AN 8.1. 8.2. 8.2. 8.3.	TENNA PORT TEST RESULTS 7 ON TIME AND DUTY CYCLE 7 802.11a SISO MODE IN THE 5.8 GHz BAND 7 .1. OUTPUT POWER .11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND 7	17 17 24 24 24
8.	AN 8.1. 8.2. 8.2. 8.3. 8.3.	TENNA PORT TEST RESULTS 7 ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND 1. OUTPUT POWER 802.11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND 7 1. OUTPUT POWER 1. OUTPUT POWER 1. OUTPUT POWER 1. OUTPUT POWER	17 17 24 24 25 25
8.	AN 8.1. 8.2. 8.2. 8.3. 8.3. 8.4.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND 2 .1. OUTPUT POWER 2 802.11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND 2 .1. OUTPUT POWER 3 .1. OUTPUT POWER 3 .1. OUTPUT POWER 3 .1. OUTPUT POWER	17 17 24 25 25 25 26
8.	AN 8.1. 8.2. 8.3. 8.3. 8.4. 8.4. 8.4.	TENNA PORT TEST RESULTS 7 ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND .1. OUTPUT POWER .1. 6 dB BANDWIDTH .1. 6 dB BANDWIDTH .1. 0UTPUT POWER	17 17 24 24 25 25 25 26 26 32
8.	AN 8. 1. 8.2. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4	TENNA PORT TEST RESULTS 7 ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND .1. OUTPUT POWER 7 .1. 6 dB BANDWIDTH 7 .2. OUTPUT POWER 7 .3. Maximum Power Spectral Density (PSD) 7	17 17 24 24 25 25 25 26 26 32 34
8.	AN 8.1. 8.2. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.5. 8.5.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 1. 6 dB BANDWIDTH 2 2. 0UTPUT POWER 2 3. Maximum Power Spectral Density (PSD) 2 802.11n HT20 TxBF 3TX MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 3	17 17 24 24 25 25 26 26 26 32 34 41
8.	AN 8. 1. 8.2. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.5. 8.5. 8.6	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 1. 6 dB BANDWIDTH 2 2. OUTPUT POWER 3 3. Maximum Power Spectral Density (PSD) 3 802.11n HT20 TxBF 3TX MODE IN THE 5.8 GHz BAND 4 1. OUTPUT POWER 4 802.11n HT20 TxBF 3TX MODE IN THE 5.8 GHz BAND 4 1. OUTPUT POWER 4	17 17 17 24 25 26 26 26 26 26 23 41 41 43
8.	AN 8. 1. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 5. 8. 5. 8. 6. 8. 6.	TENNA PORT TEST RESULTS 7 ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND .1 OUTPUT POWER .1. 6 dB BANDWIDTH. .2. OUTPUT POWER .3. Maximum Power Spectral Density (PSD) .802.11n HT20 TxBF 3TX MODE IN THE 5.8 GHz BAND .1. OUTPUT POWER .1. OUTPUT POWER .1. OUTPUT POWER	17 17 24 24 25 26 32 34 41 43 43
8.	AN 8. 1. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 5. 8. 5. 8. 6. 8. 6. 8. 7.	TENNA PORT TEST RESULTS ************************************	17 17 24 25 26 26 26 26 23 41 43 43 43 45
8.	AN 8.1. 8.2. 8.3. 8.3. 8.4. 8.4. 8.4. 8.5. 8.5. 8.6. 8.6. 8.7. 8.	TENNA PORT TEST RESULTS ^A ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND ^A OUTPUT POWER 1. OUTPUT POWER ^A OUTPUT POWER 802.11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND ^A OUTPUT POWER 1. OUTPUT POWER ^A OUTPUT POWER 2. OUTPUT POWER ^A OUTPUT POWER 3. Maximum Power Spectral Density (PSD) Sa Aaximum Power Spectral Density (PSD) 3. Maximum Power Spectral Density (PSD) Sa Aaximum Power Spectral Density (PSD) 4. OUTPUT POWER A A Sa ADDE IN THE 5.8 GHz BAND 1. OUTPUT POWER A A Sa ADDE IN THE 5.8 GHz BAND 1. OUTPUT POWER A A Sa ADDE IN THE 5.8 GHz BAND 1. OUTPUT POWER A A A	17 17 24 25 26 225 26 234 41 43 45 45 48 45 48 45 48 48 48 48 48 48 48 48 48 48
8.	AN 8. 1. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 4. 8. 5. 8. 5. 8.5	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 802.11a SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 1. 6 dB BANDWIDTH 2 2. OUTPUT POWER 2 3. Maximum Power Spectral Density (PSD) 2 802.11n HT20 TxBF 3TX MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT40 SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT40 SISO MODE IN THE 5.8 GHz BAND 2 1. OUTPUT POWER 2 802.11n HT40 CDD 3Tx MODE IN THE 5.8 GHz BAND 2 1. 6 dB BANDWIDTH 2 2. OUTPUT POWER 2 802.11n HT40 CDD 3Tx MODE IN THE 5.8 GHz BAND 1. 6 dB BANDWIDTH 2 2. OUTPUT POWER 2 3. 000000000000000000000000000000000000	17 17 24 25 26 225 26 233 41 43 45 45 48

8.7.	.3. Maximum Power Spectral Density (PSD)	50
8.8.	802.11n HT40 TxBF 3TX MODE IN THE 5.8 GHz BAND	55
8.8. 8.8.	.1. OUTPUT POWER	55
<i>8.9.</i> 8.9.	802.11ac HT80 SISO MODE IN THE 5.8 GHz BAND	62 62
8.10.	802.11ac HT80 CDD 3Tx MODE IN THE 5.8 GHz BAND	64
8.10 8.10	0.1. 6 dB BANDWIDTH 0.2. OUTPUT POWER	64
8.10	0.3. Maximum Power Spectral Density (PSD)	69
8.11.	802.11ac HT80 CDD TxBF MODE IN THE 5.8 GHz BAND	74
8.1 ⁷ 8.1 ⁷	1.1. OUTPUT POWER 1.2. Maximum Power Spectral Density (PSD)	75
0 0.0		
9. RA		80
9.1.		80
9.2.	TX ABOVE 1 GHz 802.11a MODE SISO IN THE 5.8 GHz BAND	81
9.3.	TX ABOVE 1 GHz 802.11n HT20 MODE 1Tx IN THE 5.8 GHz BAND	83
9.4.	TX ABOVE 1 GHz 802.11n HT20 MODE 3Tx IN THE 5.8 GHz BAND	85
9.5.	TX ABOVE 1 GHz 802.11n HT20 MODE TxBF 3 TX IN THE 5.8 GHz BAND	93
9.6.	TX ABOVE 1 GHz 802.11n HT40 MODE 1Tx IN THE 5.8 GHz BAND	. 101
9.7.	TX ABOVE 1 GHz 802.11n HT40 MODE 3Tx IN THE 5.8 GHz BAND	. 103
9.8.	TX ABOVE 1 GHz 802.11n HT40 MODE TxBF 3TX IN THE 5.8 GHz BAND	. 109
9.9.	TX ABOVE 1 GHz 802.11ac HT80 MODE 1Tx IN THE 5.8 GHz BAND	.115
9.10.	TX ABOVE 1 GHz 802.11ac HT80 MODE 3Tx IN THE 5.8 GHz BAND	.117
9.11.	TX ABOVE 1 GHz 802.11ac HT80 MODE TxBF 3Tx IN THE 5.8 GHz BAND	121
9.12.	WORST-CASE BELOW 1 GHz	. 125
9.13.	WORST-CASE ABOVE 18GHz	. 126
10. AC	POWER LINE CONDUCTED EMISSIONS	.130
11. SE	TUP PHOTOS	.134

Page 4 of 136

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
DATE TESTED:	OCTOBER 27 ~ NOVEMBER 12, 2015 DECEMBER 14, 2012 ~ JANUARY 7, 2013
SERIAL NUMBER:	C8Y40240110FHD0AD
MODEL:	BCM94360CS
EUT DESCRIPTION:	802.11a/g/n/ac WLAN + Bluetooth PCI-E Custom Combination Card
COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart E

Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Page 5 of 136

Approved & Released For UL Verification Services Inc. By:

Tested By:

ray zheng

Huda Mustapha

HUDA MUSTAPHA PROJECT LEAD UL Verification Services Inc. ROY ZHENG EMC ENGINEER UL Verification Services Inc.

FRANK IBRAHIM PROGRAM MANAGER UL Verification Services Inc.

Page 6 of 136

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033 D02 v01 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	Chamber F
	Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 7 of 136

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 8 of 136

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11 a/g/n/ac WLAN + Bluetooth PCI-E Custom Combination CARD.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Power, Chain 0 (dBm)	Power, Chain 1 (dBm)	Power, Chain 2 (dBm)	Output Power (dBm)	Output Power (mW)
5.8 GHz band, 1TX		(ubiii)	(ubiii)	(ubiii)	(ubiii)	
5745-5825	802.11a HT20 CDD	19.95	N/A	N/A	19.95	98.86
5745-5825	802.11n HT20 CDD	19.50	N/A	N/A	19.50	89.13
5755-5795	802.11n HT40 CDD	19.20	N/A	N/A	19.20	83.18
5775	802.11ac VHT80 CDD	15.10	N/A	N/A	15.10	32.36
5.8 GHz band, 3TX						
5745-5825	802.11n HT20 CDD	19.25	20.07	19.95	24.54	284.62
5745-5825	802.11n HT20 TxBF	18.65	19.50	18.80	23.77	238.27
5755-5795	802.11n HT40 CDD	19.00	19.70	19.54	24.19	262.71
5755-5795	802.11n HT40 TxBF	18.40	19.00	18.30	23.35	216.22
5775	802.11ac VHT80 CDD	12.91	13.20	13.00	17.81	60.39
5775	802.11ac VHT80 TxBF	13.10	13.40	13.10	17.97	62.71

Page 9 of 136

5.3. LIST OF TEST REDUCTION AND MODES COVERING OTHER MODES

List of test reduction (Non Beam-Forming modes)

Antenna Port Testing					
Band	Mode	Covered by			
5 GHz bands	802.11a Legacy 1TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11a CDD 2TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11a CDD 3TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11n HT40 1TX	802.11n HT40 CDD 3TX			
5 GHz bands	802.11n HT40 CDD 2TX	802.11n HT40 CDD 3TX			
5 GHz bands	802.11ac VHT80 1TX	802.11ac VHT80 CDD 3TX			
5 GHz bands	802.11ac VHT80 CDD 2TX	802.11ac VHT80 CDD 3TX			

Radiated Testing					
Band	Mode	Covered by			
5 GHz bands	802.11a Legacy 1TX (Harmonics)	802.11n HT20 CDD 3TX (Harmonics)			
5 GHz bands	802.11a CDD 2TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11a CDD 3TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11n HT20 CDD 2TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11n HT40 1TX (Harmonics)	802.11n HT40 CDD 3TX (Harmonics)			
5 GHz bands	802.11ac VHT80 1TX (Harmonics)	802.11ac VHT80 CDD 3TX (Harmonics)			
5 GHz bands	802.11ac VHT80 CDD 2TX	802.11ac VHT80 CDD 3TX			

List of test reduction (Beam-Forming modes)

Antenna Port Testing					
Band	Mode	Covered by			
5 GHz bands	802.11n HT40 BF 2Tx	802.11n HT40 BF 3Tx			
5 GHz bands	802.11ac VHT80 BF 2Tx	802.11ac VHT80 BF 3Tx			

Radiated Testing					
Band	Mode	Covered by			
5 GHz bands	802.11a BF 2TX	802.11n HT20 BF 3Tx			
5 GHz bands	802.11a BF 3TX	802.11n HT20 BF 3Tx			
5 GHz bands	802.11n HT20 BF 2Tx	802.11n HT20 BF 3Tx			
5 GHz bands	802.11n HT40 BF 2Tx	802.11n HT40 BF 3Tx			
5 GHz bands	802.11ac VHT80 BF 2Tx	802.11ac VHT80 BF 3Tx			

Page 10 of 136

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The following antennas are utilized for this device:

No.	Antenna Manufacturer	Antenna Type	Model	Peak gain @ 2412, 2422, 2432MHz,	Peak gain (5150- 5250MHz) @5200MHz	Peak gain (5250- 5350MHz) @5320MHz	Peak gain (5470- 5725MHz) @5500, 5700MHz	Peak gain (5725- 5850MHz) @5785, 5805MHz	
1	Amphenol/Molex	802.11abgn WLAN Antenna	613-1143 Wi-Fi1	0.12	7.04	7.09	5.03	2.66	Host2 antenna
1	Amphenol/Molex	802.11abgn WLAN/BT Antenna	613-1143 Wi-Fi2	5.3	6.7	7.06	6.66	5.93	Host2 antenna
1	Amphenol/Molex	802.11abgn WLAN Antenna	613-1143 Wi-Fi3 & Bluetooth	4.69	3.79	3.58	3.94	6.04	Host2 antenna
2	Amphenol/Molex	802.11abgn WLAN Antenna	613-1631 Wi-Fi1	2.47	4.18	3.35	3.32	3.56	Host1 antenna
2	Amphenol/Molex	802.11abgn WLAN Antenna	613-1631 Wi-Fi2	2.64	4.22	3.44	2.41	3.68	Host1 antenna
2	Amphenol/Molex	802.11abgn WLAN	613-1631 Wi-Fi3 &	4.82	4.63	3.01	4.63	4.31	Host1 antenna

Antenna mapping:

WiFi 3	WiFi 2	WiFi 1
Chain 1	Chain 0	Chain 2

Antonno

Bluetooth

5.5. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom, rev. 6.30.118.23.

The test utility software used during testing was BCM Internal, rev. 6.30.RC118.23.

5.6. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The purpose of this C2PC is to upgrade the device described under section 5.1 of this report to the new rules per KDB 789033 D02 v01.

For UNII-1, UNII-2 and UNII-2C bands, we have reviewed the original test report (report no. 12U14668-2) and are hereby attesting that all the current technical requirements are still met and all applicable test procedures remain the same. Therefore, the original test report is still applicable and no additional testing is done.

Page 11 of 136

5.7. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC.

Worst-Case data rates, as provided by the client, were as follows:

For 5.8 GHz Band: 802.11a: 6 Mb/s. 802.11n 20MHz: MCS0. 802.11n 40MHz: MCS0. 802.11n 80MHz: MCS0.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power.

For Radiated Band Edge measurements, preliminary testing showed that the worst case was horizontal polarization for all SISO modes. Therefore, all final measurements were performed with vertical polarization only for those modes. For 3Tx modes, preliminary testing showed that vertical polarization was the worst case for 11n HT20. Therefore, only vertical polarization was tested for this mode.

For all modes with single chain, chain 1 was selected per the software provided by the client. A preliminary investigation was performed on the three chains and chain 1 was found to be worst-case.

Page 12 of 136

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description	Manufacturer	Model	Serial Number	FCC ID				
Laptop	Lenovo	G560	CBU4473193	DoC				
AC Adapter	Lenovo	ADP-65KH B	11S36001646ZZ1001FKY6	DoC				
Adapter Board	Catalyst	MINI2EXP	N/A	N/A				
Adapter Board	Broadcom	N/A	N/A	N/A				

I/O CABLES

	I/O Cable List								
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	2	US 115V	Un-Shielded	1.0m	NA			
2	DC	2	DC	Un-Shielded	1.8m	Ferrite at laptop's end			

TEST SETUP

The EUT is attached to a jig board which is installed in the PCMCI slot of a host laptop computer during the tests. Test software exercised the radio card.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 13 of 136

SETUP DIAGRAM FOR TESTS

Page 14 of 136

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description	Manufacturer	Model	T No.	Cal Date	Cal Due			
Radiated Software	UL	UL EMC	V	'er 9.5, June 6,	2015			
Conducted Software	UL	ULEMC	V	'er 9.5, May 17	2012			
Horn Antenna 1-18GHz	ETS	3117	136	01/15/15	01/15/16			
Horn Antenna 18-26GHz	ARA	SWH-28	98	12/17/14	12/17/15			
Horn Antenna 26.5- 40GHz	ARA	MWH-2640/B	90	07/28/15	07/28/16			
Preamp 10kHz-1000MHz	HP	8447D	10	01/16/15	01/16/16			
Preamp 1-8GHz	Miteq	AMF-4D-01000800-30-29P	782	10/22/15	10/22/16			
Preamp 1-26.5GHz	Agilent	8449B	404	04/13/15	04/13/16			
Amplifier, 26-40GHz	Miteq	NSP4000-SP2	88	04/07/15	04/07/16			
Spectrum Analyzer 3kHz - 44GHz	Agilent	N9030A	907	05/15/15	05/15/16			
3GHz HPF	Micro-Tronics	HPM17543	485	01/16/15	01/16/16			
5GHz LPF	Micro-Tronics	LPS17541	482	01/16/15	01/16/16			
6GHz HPF	Micro-Tronics	HPS17542	483	01/16/15	01/16/16			
EMI Test Receiver	Rohde & Schwarz	ECSI 7	1124	09/30/15	09/30/16			
Power Meter	Agilent	N1911A	T1268	06/07/15	06/07/16			
Power Sensor	Agilent	N1921A	1223	06/07/15	02/06/16			
LISN for Conducted Emission	FCC	50/250-25-2	24	01/16/15	01/16/16			

Page 15 of 136

7. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 789033 D02 v01, Section B.

6 dB Emission BW: KDB 789033 D02 v01, Section C.2.

Conducted Output Power: KDB 789033 D02 v01, Section E.3.b (Method PM-G), and KDB 662911 D01 v02r01.

Power Spectral Density: KDB 789033 D02 v01, Section F, and KDB 662911 D01 v02r01.

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v01, Sections G.2, G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v01, Sections G.2, G.3, G.4, and G.5.

Page 16 of 136

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a CDD	2.060	2.160	0.954	95.37%	0.21	0.485
802.11n HT20 CDD	1.915	2.015	0.950	95.04%	0.22	0.522
802.11n HT20 TxBF	23.400	26.610	0.879	87.94%	0.56	0.043
802.11n HT40 CDD	0.9430	1.0410	0.906	90.59%	0.43	1.060
802.11n HT40 TxBF	25.690	28.240	0.910	90.97%	0.41	0.039
802.11ac VHT80 CDD	0.4600	0.5581	0.824	82.42%	0.84	2.174
802.11ac VHT80 TxBF	12.3750	31.2800	0.396	39.56%	4.03	0.081

Page 17 of 136

DUTY CYCLE PLOTS

Page 18 of 136

Page 19 of 136

Page 20 of 136

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 21 of 136

Page 22 of 136

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 23 of 136

8.2. 802.11a SISO MODE IN THE 5.8 GHz BAND

8.2.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This is SISO mode, AG is the highest (worst-case) =6.04 dBi

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
		for Power	
	(MHz)	(dBi)	(dBm)
Low	5745	6.04	29.96
Mid	5785	6.04	29.96
High	5825	6.04	29.96

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	18.50	18.50	29.96	-11.46
Mid	5785	19.80	19.80	29.96	-10.16
High	5825	19.95	19.95	29.96	-10.01

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 24 of 136

8.3. 802.11n HT20 CDD SISO MODE IN THE 5.8 GHz BAND

8.3.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This is SISO mode, AG is the highest (worst-case) =6.04 dBi

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
		for Power	
	(MHz)	(dBi)	(dBm)
Low	5745	6.04	29.96
Mid	5785	6.04	29.96
High	5825	6.04	29.96

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	16.50	16.50	29.96	-13.46
High	5825	19.50	19.50	29.96	-10.46

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 25 of 136

8.4. 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND

8.4.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB BW 6 dB BW		6 dB BW	Minimum
		Chain 0	Chain 1	Chain 2	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	5745	17.595	17.640	17.550	0.5
Mid	5785	17.550	17.595	17.595	0.5
High	5825	17.460	17.595	17.640	0.5

Page 26 of 136

6 dB BANDWIDTH, Chain 0

Page 27 of 136

6 dB BANDWIDTH, Chain 1

Page 28 of 136

Page 29 of 136

6 dB BANDWIDTH, Chain 2

Page 30 of 136

Agilent	21:41:53	Dec 14,1	2012					+	< 1	Fred/Channel
e f 20 dBm 'eak		Atten 2	20 dB				∆ Mkr1	17.640 0.8) MHz 33 dB	Center Freq 5.82500000 GHz
)g	lR •	peluinteres	Innlas	lasalay	mm	ndrado	fulunity	1		Start Freq 5.81150000 GHz
.4 3 <i>MM</i>	www							144A	M MAN	Stop Freq 5.83850000 GHz
5 3m Av										CF Step 2.70000000 MHz <u>Auto M</u> a
S2 FC AA										Freq Offset 0.00000000 Hz
): `un vp										Signal Track ^{On <u>Of</u>}
enter 5.82	5 000 GHz		#\/F	214/ 300	kH7	#5	oon 20 .	Span 2	27 MHz	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 31 of 136

8.4.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	5.13

Page 32 of 136

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power		
		Gain Limit			
	(MHz)	(dBi)	(dBm)		
Low	5745	5.13	30.00		
Mid	5785	5.13	30.00		
High	5825	5.13	30.00		

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power	
		Meas	Meas	Meas	Corr'd	Limit	Margin	
		Power	Power	Power	Power			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5745	16.80	17.30	16.90	21.78	30.00	-8.22	
Mid	5785	19.25	20.07	19.95	24.54	30.00	-5.46	
High	5825	19.00	19.50	19.40	24.08	30.00	-5.92	

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 33 of 136

8.4.3. Maximum Power Spectral Density (PSD)

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

Page 34 of 136

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	9.78	26.22
Mid	5785	9.78	26.22
High	5825	9.78	26.22

Duty Cycle CF (dB) 0.22

Included in Calculations of Corr'd PSD

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	5.82	7.10	6.52	11.50	26.22	-14.71
Mid	5785	6.12	6.78	6.55	11.48	26.22	-14.73
High	5825	4.24	6.54	7.00	11.07	26.22	-15.14

Page 35 of 136

PSD, Chain 0

🔆 Agile	ent 12:12:03	Oct 29,	2015					F	₹ T	Freq/Channel
AFv3.6(10 Ref20dE #Avg	02315),DV, C Bm	anducted #Atten 2	1 B 20 dB				Mkr1	5.743 00 5.819) GHz dBm	Center Freq 5.74500000 GHz
Log 10 dB/		uninder	gungaditeente	-1	, and a second	····	andrag			Start Freq 5.73000000 GHz
11.3 dB	and the second second second							horas and the second se	www.when	Stop Freq 5.7600000 GHz
#PAvg										CF Step 3.00000000 MHz <u>Auto Mar</u>
N1 S2 S3 FS_ AA										Freq Clfset 0.00000000 Hz
a(f): =Tun Swp –										Signal Track ^{On <u>C:f</u>}
Center 5. Res BW	.745 00 GHz 510 kHz		#VE	3W 1.5 I	MHz	S	weep 1	Span 3 ms (601	30 MHz pts)	

Page 36 of 136

Page 37 of 136

Page 38 of 136

Agilent 11:	IN ∠ L 15:28 (_OVV Dct 29, 2	CH 2015					R	ιт	Freq/Channel
AFv3.6(102315) Ref 20 dBm	,DV, Co #	nducted #Atten 2	B 0 dB				Mkr1	5.743 55 6.518	i GHz dBm	Certer Freq
#Avg Log 10 dB/		anterite	anter and a second second	1		- mprayaray	normation			Start Freq 5.73000000 GHz
Offst 11.3 dB	www.ch							- www.	marting	Stop Freq 5.7600000 GHz
#PAvg										CF Step 3.00000000 MHz <u>Auto Man</u>
W1 S2 S3 FS AA										Freq Clfset 0.00000000 Hz
¤(f): FTun Swp										Signal Track ^{On <u>C</u>if}
Center 5.745 00 #Res BW 510 k)0 GHz Hz		#VE	3W 1.5 I	MHz	<u></u>	weep 1	Span 3 ms (601	80 MHz pts)	

Page 39 of 136

PSD, Chain 2	HIGH CH Oct 29, 2015		F	ч т	Freg/Channel
AFv3.6(102315),DV, Co Ref 20 dBm #Avg	anducted B #Atten 20 dB		Mkr1 5.825 7 7.003	0 GHz 3 dBm	Certer Freq 5.82500000 GHz
Log 10 dB/	person and a second second	1			Start Freq 5.81000000 GHz
11.3 dB			human	man	Stop Freq 5.84000000 GHz
#PAvg					CF Step 3.00000000 MHz <u>Auto Man</u>
W1 S2 S3 FS AA					Freq Clfset 0.00000000 Hz
¤(f): FTun Swp					Signal Track ^{On <u>C</u>!f}
Center 5.825 00 GHz #Res BW 510 kHz	#VBW 1	.5 MHz	Span Sweep 1 ms (60'	30 MHz 1 pts)	
Copyright 2000-2011 A	gilent Technologies				

Page 40 of 136

8.5.802.11n HT20 TxBF 3TX MODE IN THE 5.8 GHz BAND

8.5.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

For power, the TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

Page 41 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	9.78	26.22
Mid	5785	9.78	26.22
High	5825	9.78	26.22

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	14.90	15.20	14.80	19.74	26.22	-6.48
Mid	5785	18.65	19.50	18.80	23.77	26.22	-2.45
High	5825	17.10	17.45	17.00	21.96	26.22	-4.26

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 42 of 136

8.6. 802.11n HT40 SISO MODE IN THE 5.8 GHz BAND

8.6.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This is SISO mode, AG is the highest (worst-case) =6.04 dBi

Page 43 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5755	6.04	29.96
High	5795	6.04	29.96

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	15.30	15.30	29.96	-14.66

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 44 of 136

8.7. 802.11n HT40 CDD 3Tx MODE IN THE 5.8 GHz BAND

8.7.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>RESULTS</u>

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 0	Chain 1	Chain 2	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	5755	36.30	36.39	36.39	0.5
High	5795	36.21	36.39	36.48	0.5

Page 45 of 136

6 dB BANDWIDTH, Chain 0

Page 46 of 136

6 dB BANDWIDTH, Chain 1

Page 47 of 136

8.7.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	5.13

Page 48 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5755	5 1 2	30.00
LOW	5755	5.15	30.00

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	15.28	15.67	15.60	20.29	30.00	-9.71
High	5795	19.00	19.70	19.54	24.19	30.00	-5.81

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 49 of 136

8.7.3. Maximum Power Spectral Density (PSD)

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

Page 50 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	PSD	
		Gain	Limit	
	(MHz)	(dBi)	(dBm)	
Low				
LOW	5755	9.78	26.22	

Duty Cycle CF (dB) 0.43

Included in Calculations of Corr'd PSD

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	3.18	4.33	3.67	8.95	26.22	-17.27
High	5795	3.09	4.45	3.69	8.98	26.22	-17.24

Page 51 of 136

Page 52 of 136

Page 53 of 136

k Ag	lient 12:	47:13	Uct 29, 2	2015					H		Freq/Channel
Fv3.6(ef20 Avg	102315) dBm	,DV, Co	nducted #Atten 2	B 20 dB				Mkr1 :	5.751 42 3.669	dBm	Certer Freq 5.75500000 GHz
og 0 B/		proven	-		1 Orange	man	and any and	gerne of grave	war and the		Start Freq 5.73000000 GHz
offst 1.5 B	month								- (Monagene	Stop Freq 5.78000000 GHz
PAvg											CF Step 5.00000000 MHz <u>Auto Ma</u>
/1 S2 3 FS AA											Freq Olfset 0.00000000 Hz
(f): Tun wp											Signal Track ^{On <u>Ci</u>t}
enter Res Bl	5.755 00 N 510 k) GHz		#\/F	3W 1 5 1	MH7		ween 1	Span 5	i0 MHz	

Page 54 of 136

8.8. 802.11n HT40 TxBF 3TX MODE IN THE 5.8 GHz BAND

8.8.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

Page 55 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
		· · - · ·	<i></i> .
	(MHz)	(dBi)	(dBm)
Low	(MHz) 5755	(dBi) 9.78	(dBm) 26.22

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	14.80	15.20	14.65	19.66	26.22	-6.56
High	5795	18.40	19.00	18.30	23.35	26.22	-2.87

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 56 of 136

8.8.2. Maximum Power Spectral Density (PSD)

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

Page 57 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	PSD	
		Gain	Limit	
	(MHz)	(dBi)	(dBm)	
Low	(MHz) 5755	(dBi) 9.78	(dBm) 26.22	

Duty Cycle CF (dB) 0.43

Included in Calculations of Corr'd PSD

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	3.18	4.33	3.67	8.95	26.22	-17.27
High	5795	3.09	4.45	3.69	8.98	26.22	-17.24

Page 58 of 136

Page 59 of 136

Page 60 of 136

R Ag	lient 12:	47:13	Oct 29, 2	2015					R	-	Freq/Channel
APv3.6(Ref 20 (Avg	102315), dBm	DV, Co	#Atten 2	в 0 dB				Mkr1 :	3.669	GHz dBm	Certer Freq 5.75500000 GHz
.og 0 IB/			a and the second	water of the last		man	······ ····	garant digang	warman		Start Freq 5.73000000 GHz
)11st 1.5 IB	manuel	}							-l	ungerge	Stop Freq 5.78000000 GHz
PAvg											CF Step 5.0000000 MHz <u>Auto Ma</u>
V1 S2 3 FS AA											Freq Olfset 0.00000000 Hz
(f): Tun Swp											Signal Track ^{On <u>Cif</u>}
enter Res Bl	5.755 00 W 510 k) GHz Hz		#VF	3W 1 5	MHz	5	ween 1	Span 5 ms (601	0 MHz	

Page 61 of 136

8.9. 802.11ac HT80 SISO MODE IN THE 5.8 GHz BAND

8.9.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This is SISO mode, AG is the highest (worst-case) =6.04 dBi

Page 62 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	Power	
		Gain	Limit	
	(MHz)	(dBi)	(dBm)	
M: d	F77F	0.04	20.00	

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	15.10	15.10	29.96	-14.86

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 63 of 136

8.10. 802.11ac HT80 CDD 3Tx MODE IN THE 5.8 GHz BAND

8.10.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>RESULTS</u>

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 0	Chain 1	Chain 2	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Mid	5775	75.520	75.710	75.520	0.5

Page 64 of 136

6 dB BANDWIDTH, Chain 0

6 dB BANDWIDTH, Chain 1

Page 65 of 136

6 dB BANDWIDTH, Chain 2

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 66 of 136

8.10.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	5.13

Page 67 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	12.91	13.20	13.00	17.81	30.00	-12.19

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 68 of 136

8.10.3. Maximum Power Spectral Density (PSD)

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

Page 69 of 136

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Mid	5775	9.78	26.22

Duty Cycle CF (dB)	0.84	Included in Calculations of Corr'd PSD
--------------------	------	--

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	-1.01	0.10	-0.88	5.05	26.22	-21.17

Page 70 of 136

Ag	ilent 13:	15:28	Oct 29, 2	2015					F 700 00	₹ T	Freq/Channel
APV3.6(Ref 20 #Avg	102315) dBm	,DV, Co	nauctea #Atten 2	в 0 dB				MKM	-1.010	dBm	Certer Freq 5.77500000 GHz
Log 10 dB/ Offet		Obs. 1 should		the second second			1				Start Freq 5.72500000 GHz
II.1 dB											Stop Freq 5.82500000 GHz
#PAvg	source of the									and and a second	CF Step 10.0000000 MHz <u>Auto Man</u>
N1 S2 S3 FS AA											Freq Clfset 0.00000000 Hz
a(f): FTun Swp											Signal Track ^{On <u>C</u>!f}
Center #Res B	5.775 0 W 510 k	0 GHz Hz		#VE	3W 1.5 I	MHz	Sw	eep 1.2	Span 10 ms (601)0 MHz pts)	

Page 71 of 136

Agilent 13:16:20 Oct	29, 2015	RT	Freq/Channel
AFv3.6(102315),DV, Cond Ref 20 dBm #At #Avg	ucted B ten 20 dB	Mkr1 5.762 00 GHz 0.104 dBm	Certer Freq 5.77500000 GHz
Log 10 dB/			Start Freq 5.72500000 GHz
dB			Stop Freq 5.82500000 GHz
#PAvg			CF Step 10.0000000 MHz Auto Man
M1 S2 S3 FS AA			Freq Clfset 0.00000000 Hz
¤(1): FTun Swp			Signal Track ^{On <u>Cif</u>}
Center 5.775 00 GHz #Res BW 510 kHz	#VBW 1.5 MHz	Span 100 MHz Sweep 1.2 ms (601 pts)	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 72 of 136
AEv3.6/	lient 13 102315	3:20:05	Oct 29,	2015 LB				Mkr1	5 786 00		Freq/Channel
Ref 20 o #Avg	dBm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#Atten 2	20 dB					-0.880	dBm	Center Freq 5.77500000 GHz
Log 10 1B/ Difet							1				Start Freq 5.72500000 GHz
11.1 1B											Stop Freq 5.82500000 GHz
#PAvg	mm										CF Step 10.0000000 MHz Auto Mar
00 N1 S2 S3 FS AA											Freq Clifset 0.00000000 Hz
(f): Tun Swp											Signal Track ^{On <u>C</u>:f}
Center	5.775 (N 510	0 GHz		<u></u> #\/F	3W 1 5	MH7	Cua	leen 1 ?	Span 10 ms (601	0 MHz	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 73 of 136

8.11. 802.11ac HT80 CDD TxBF MODE IN THE 5.8 GHz BAND

8.11.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
	()	((

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	13.10	13.40	13.10	17.97	26.22	-8.25

<u>Note:</u> the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 74 of 136

8.11.2. Maximum Power Spectral Density (PSD)

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
2.66	5.93	6.04	9.78

Page 75 of 136

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	PSD	
		Gain	Limit	
	(MHz)	(dBi)	(dBm)	
Mid	5775	9.78	26.22	

Duty Cycle CF (dB)	0.84	Included in Calculations of Corr'd PSD
--------------------	------	--

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	-1.01	0.10	-0.88	5.05	26.22	-21.17

Page 76 of 136

🔆 Ag	ilent 13	:15:28	Oct 29, 2	2015					H		Freq/Channel
Ref 20 Avg	102315) dBm	I,DV, Co i	#Atten 2	B 0 dB				Mkr1	5.786 00 -1.010	dBm	Center Freq 5.77500000 GHz
.og 0 IB/							1				Start Freq 5.72500000 GHz
I.1 IB											Stop Freq 5.82500000 GHz
PAvg	Non March									AND MAN	CF Step 10.0000000 MHz Auto Mar
00 V1 S2 53 FS AA											Freq Clfset 0.00000000 Hz
(f): Tun Swp											Signal Track ^{On <u>C</u>!f}
enter	5.775 0	0 GHz		#\/F	31/1 5 1	MHz	Sw	en 1 2	Span 10 ms /601	0 MHz	

Page 77 of 136

Agilent 13:16:20 Oct	29, 2015	RT	Freq/Channel
AFv3.6(102315),DV, Cond Ref 20 dBm #At #Avg	ucted B ten 20 dB	Mkr1 5.762 00 GHz 0.104 dBm	Certer Freq 5.77500000 GHz
Log 10 dB/			Start Freq 5.72500000 GHz
dB			Stop Freq 5.82500000 GHz
#PAvg			CF Step 10.0000000 MHz Auto Man
M1 S2 S3 FS AA			Freq Clfset 0.00000000 Hz
a(1): FTun Swp			Signal Track ^{On <u>Cif</u>}
Center 5.775 00 GHz #Res BW 510 kHz	#VBW 1.5 MHz	Span 100 MHz Sweep 1.2 ms (601 pts)	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 78 of 136

AEv3.6/	lient 13 102315	3:20:05	Oct 29,	2015 LB				Mkr1	5 786 00		Freq/Channel
Ref 20 o #Avg	dBm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#Atten 2	20 dB					-0.880	dBm	Center Freq 5.77500000 GHz
Log 10 1B/ Difet							1				Start Freq 5.72500000 GHz
11.1 1B											Stop Freq 5.82500000 GHz
#PAvg	mm										CF Step 10.0000000 MHz Auto Mar
00 N1 S2 S3 FS AA											Freq Clifset 0.00000000 Hz
(f): Tun Swp											Signal Track ^{On <u>C</u>:f}
Center	5.775 (N 510	0 GHz		<u></u> #\/F	3W 1 5	MH7	Cua	leen 1 ?	Span 10 ms (601	0 MHz	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 79 of 136

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

Page 80 of 136

9.2. TX ABOVE 1 GHz 802.11a MODE SISO IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)					(dBuV/m)	(dBuV/m)						
2	5.712	23.39	Pk	35	7.4	0	65.79	-	-	74	-8.21	15	363	н
6	5.714	9.84	RMS	35	7.3	.21	52.35	54	-1.65	-	-	15	363	Н
1	5.715	21.68	Pk	35	7.3	0	63.98	-	-	74	-10.02	15	363	Н
5	5.715	9.1	RMS	35	7.3	.21	51.61	54	-2.39	-	-	15	363	Н
4	5.724	35.09	Pk	35	7.4	0	77.49	-	-	78.2	71	15	363	н
3	5.725	34.06	Pk	35	7.4	0	76.46	-	-	78.2	-1.74	15	363	Н

Pk - Peak detector

RMS - RMS detection

Page 81 of 136

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	30.55	Pk	35.4	7.5	0	73.45	-	-	78.2	-4.75	173	402	н
4	5.851	31.64	Pk	35.4	7.5	0	74.54	-	-	78.2	-3.66	173	402	н
1	5.86	20.99	Pk	35.4	7.5	0	63.89	-	-	74	-10.11	173	402	н
5	5.86	9.21	RMS	35.4	7.5	.21	52.32	54	-1.68	-	-	173	402	н
6	5.86	9.86	RMS	35.4	7.5	.21	52.97	54	-1.03	-	-	173	402	н
2	5.866	23.84	Pk	35.4	7.5	0	66.74	-	-	74	-7.26	173	402	н

Pk - Peak detector

RMS - RMS detection

Page 82 of 136

9.3. TX ABOVE 1 GHz 802.11n HT20 MODE 1Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.714	22.71	Pk	35	7.3	0	65.01	-	-	74	-8.99	21	367	Н
1	5.715	20.55	Pk	35	7.3	0	62.85	-	-	74	-11.15	21	367	Н
5	5.715	7.89	RMS	35	7.3	.22	50.41	54	-3.59	-	-	21	367	н
6	5.715	8.34	RMS	35	7.3	.22	50.86	54	-3.14	-	-	21	367	н
4	5.724	34.58	Pk	35	7.4	0	76.98	-	-	78.2	-1.22	21	367	н
3	5.725	31.5	Pk	35	7.4	0	73.9	-	-	78.2	-4.3	21	367	н

Pk - Peak detector

RMS - RMS detection

Page 83 of 136

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	32.79	Pk	35.4	7.5	0	75.69	-	-	78.2	-2.51	173	379	н
4	5.85	33.99	Pk	35.4	7.5	0	76.89	-	-	78.2	-1.31	173	379	н
1	5.86	22.18	Pk	35.4	7.5	0	65.08	-	-	74	-8.92	173	379	н
5	5.86	9.28	RMS	35.4	7.5	.22	52.4	54	-1.6	-	-	173	379	н
6	5.86	9.37	RMS	35.4	7.5	.22	52.49	54	-1.51	-	-	173	379	н
2	5.861	26.06	Pk	35.4	7.5	0	68.96	-	-	74	-5.04	173	379	н

Pk - Peak detector

RMS - RMS detection

Page 84 of 136

9.4. TX ABOVE 1 GHz 802.11n HT20 MODE 3Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T345 (dB/m)	Bypass (dB)	Conversion Factor (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.724	-71.75	Pk	35	7.4	11.8	-17.55	-17	55	62	138	V
1	5.725	-75.41	Pk	35	7.4	11.8	-21.21	-17	-4.21	62	138	V

Pk - Peak detector

Page 85 of 136

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	30.43	Pk	35.4	7.5	0	73.33	-	-	78.2	-4.87	164	244	V
4	5.85	34.78	Pk	35.4	7.5	0	77.68	-	-	78.2	52	164	244	V
1	5.86	22.44	Pk	35.4	7.5	0	65.34	-	-	74	-8.66	164	244	V
2	5.86	28.26	Pk	35.4	7.5	0	71.16	-	-	74	-2.84	164	244	V
5	5.86	7.64	RMS	35.4	7.5	.22	50.76	54	-3.24	-	-	164	244	V
6	5.86	7.78	RMS	35.4	7.5	.22	50.9	54	-3.1	-	-	164	244	V

Pk - Peak detector

RMS - RMS detection

Page 86 of 136

HARMONICS AND SPURIOUS EMISSIONS

Page 87 of 136

<u>DATA</u>

Trace Markers

Marker	Frequency (GHz)	Meter	Det	AF T345 (dB/m)	Amp/Cbl/	DC Corr (dB)	Corrected	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit	PK Margin (dB)	UNII Non- Restricted	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(unit)	(dBuV)		(00/11)	(dB)	(00)	(dBuV/m)	(0001711)	(0.0)	(0001)11)	(00)	(dBuV/m)	(00)	(5683)	(c)	
1	* 1.099	54.24	PK-U	27.6	-35.5	0	46.34	-	-	74	-27.66	-	-	294	221	Н
	* 1.099	43.68	ADR	27.6	-35.5	.22	36	54	-18	-	-	-	-	294	221	н
11	* 11.494	46.52	PK-U	38.3	-25.4	0	59.42	-	-	74	-14.58	-	-	161	197	V
	* 11.489	33.16	ADR	38.3	-25.4	.22	46.28	54	-7.72	-	-	-	-	161	197	V
3	* 2.657	48.87	PK-U	32.7	-33.5	0	48.07	-	-	74	-25.93	-	-	355	106	V
	* 2.655	31.66	ADR	32.7	-33.5	.22	31.08	54	-22.92	-	-	-	-	355	106	V
4	* 3.83	44.4	PK-U	33.4	-33	0	44.8	-	-	74	-29.2	-	-	314	141	V
	* 3.83	35.48	ADR	33.4	-33	.22	36.1	54	-17.9	-	-	-	-	314	141	V
12	17.233	41.41	PK-U	41.1	-21.7	0	60.81	-	-	-	-	68.2	-7.39	135	308	V
2	2.124	50.29	PK-U	31.6	-35	0	46.89	-	-	-	-	68.2	-21.31	33	121	V
5	5.504	49.25	PK-U	34.5	-20.7	0	63.05	-	-	-	-	68.2	-5.15	175	257	V
6	5.594	44.52	PK-U	34.7	-20.8	0	58.42	-	-	-	-	68.2	-9.78	356	122	V
7	**5.666	37.39	Pk	34.9	-20.7	0	51.59	-	-	-	-	68.2	-16.61	0-360	101	V
8	***5.826	37.21	Pk	35.3	-20.7	0	51.81	-	-	-	-	-	-	0-360	200	V
9	5.903	43.65	PK-U	35.5	-20.9	0	58.25	-	-	-	-	68.2	-9.95	2	103	V
10	6.224	49.14	PK-U	35.5	-31.5	0	53.14	-	-	-	-	68.2	-15.06	204	269	V

* - indicates frequency in CFR15.205 Restricted Band

** - indicates frequency covered by the radiated band edge

*** - indicates frequency in the authorized band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 88 of 136

Page 89 of 136

<u>DATA</u>

Trace Markers

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	UNII Non-	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Restricted	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)		(dBuV/m)					(dBuV/m)				
8	* 11.573	47.34	PK-U	38.4	-24.5	0	61.24	-	-	74	-12.76	-	-	163	209	V
	* 11.572	35.89	ADR	38.4	-24.6	.22	49.91	54	-4.09	-	-	-	-	163	209	V
1	5.301	46.56	PK-U	34.4	-19.7	0	61.26	-	-	-	-	68.2	-6.94	256	302	V
2	5.536	46.08	PK-U	34.6	-20.7	0	59.98	-	-	-	-	68.2	-8.22	353	117	V
3	5.626	47.19	PK-U	34.8	-20.9	0	61.09	-	-	-	-	68.2	-7.11	189	266	V
4	5.707	49.95	PK-U	35	-21	0	63.95	-	-	-	-	68.2	-4.25	189	267	V
5	5.862	48.46	PK-U	35.4	-20.8	0	63.06	-	-	-	-	68.2	-5.14	181	270	V
6	5.943	44.35	PK-U	35.6	-20.8	0	59.15	-	-	-	-	68.2	-9.05	0	101	V
7	6.268	50.76	PK-U	35.5	-31.6	0	54.66	-	-	-	-	68.2	-13.54	188	292	V
9	17.348	41.35	PK-U	40.8	-21.5	0	60.65	-	-	-	-	68.2	-7.55	133	302	V

* - indicates frequency in CFR15.205 Restricted Band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 90 of 136

Page 91 of 136

DATA

Trace Markers

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	UNII Non-	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Restricted	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)		(dBuV/m)					(dBuV/m)				
8	* 11.651	48.48	PK-U	38.5	-24.8	0	62.18	-	-	74	-11.82	-	-	162	212	V
	* 11.651	35.86	ADR	38.5	-24.8	.22	49.78	54	-4.22	-	-	-	-	162	212	V
1	5.338	46.28	PK-U	34.4	-19.8	0	60.88	-	-		-	68.2	-7.32	246	266	V
2	5.581	49.89	PK-U	34.7	-20.5	0	64.09	-	-	-	-	68.2	-4.11	174	310	V
3	5.664	44.62	PK-U	34.9	-21.2	0	58.32	-	-	-	-	68.2	-9.88	357	101	V
4	***5.747	37.69	Pk	35.1	-21	0	51.79	-	-	-	-	-	-	0-360	199	V
5	**5.912	38.38	Pk	35.5	-20.6	0	53.28	-	-	•	-	68.2	-14.92	0-360	199	V
6	**5.981	36.46	Pk	35.6	-20.7	0	51.36	-	-	-	-	68.2	-16.84	0-360	199	V
7	6.309	51.34	PK-U	35.6	-31.3	0	55.64	-	-	-	-	68.2	-12.56	193	251	V
9	17.463	43.1	PK-U	40.7	-20.9	0	62.9	-	-	-	-	68.2	-5.3	123	276	V

* - indicates frequency in CFR15.205 Restricted Band

** - indicates frequency covered by the radiated band edge

*** - indicates frequency in the authorized band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 92 of 136

9.5. TX ABOVE 1 GHz 802.11n HT20 MODE TxBF 3 TX IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.715	19.77	Pk	35	7.3	0	62.07	-	-	74	-11.93	299	368	V
2	5.715	21.28	Pk	35	7.3	0	63.58	-	-	74	-10.42	299	368	V
5	5.715	6.89	RMS	35	7.3	.56	49.75	54	-4.25	-	-	299	368	V
6	5.715	7.56	RMS	35	7.3	.56	50.42	54	-3.58	-	-	299	368	V
4	5.724	35.68	Pk	35	7.4	0	78.08	-	-	78.2	12	299	368	V
3	5.725	33.33	Pk	35	7.4	0	75.73	-	-	78.2	-2.47	299	368	V

Pk - Peak detector

RMS - RMS detection

Page 93 of 136

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	34.09	Pk	35.4	7.5	0	76.99	-	-	78.2	-1.21	305	301	V
4	5.851	34.79	Pk	35.4	7.5	0	77.69	-	-	78.2	51	305	301	V
1	5.86	19.17	Pk	35.4	7.5	0	62.07	-	-	74	-11.93	305	301	V
2	5.86	26.13	Pk	35.4	7.5	0	69.03	-	-	74	-4.97	305	301	V
5	5.86	8.07	RMS	35.4	7.5	.56	51.53	54	-2.47	-	-	305	301	V
6	5.912	8.79	RMS	35.5	7.5	.56	52.35	54	-1.65	-	-	305	301	V

Pk - Peak detector

RMS - RMS detection

Page 94 of 136

HARMONICS AND SPURIOUS EMISSIONS

Page 95 of 136

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)		(dBuV/m)					(dBuV/m)				
6	* 11.5	42.88	PK-U	38.3	-25.3	0	55.88	-	-	74	-18.12	-	-	291	224	V
	* 11.5	30.91	ADR	38.3	-25.3	.56	44.47	54	-9.53	-	-	-	-	291	224	V
1	5.498	50.38	PK-U	34.5	-20.6	0	64.28	-	-	-	-	68.2	-3.92	321	268	V
2	**5.663	40.2	Pk	34.9	-21	0	54.1	-	-	-	-	68.2	-14.1	0-360	199	V
3	***5.826	39.14	Pk	35.3	-20.8	0	53.64	-	-	-	-	-	-	0-360	199	V
4	5.912	46.78	PK-U	35.5	-20.7	0	61.58	-	-	-	-	68.2	-6.62	311	271	V
5	6.222	51.39	PK-U	35.5	-31.4	0	55.49	-		•	•	68.2	-12.71	326	246	V
7	17.237	43.03	PK-U	41.1	-21.7	0	62.43	-	-	-	-	68.2	-5.77	320	230	V

* - indicates frequency in CFR15.205 Restricted Band

** - indicates frequency covered by the radiated band edge

*** - indicates frequency within the authorized band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 97 of 136

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/ Fitr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
7	* 11.57	45.92	PK-U	38.4	-24.6	0	59.72	-	-	74	-14.28	-	-	312	381	н
	* 11.57	32.95	ADR	38.4	-24.6	.56	47.31	54	-6.69	-	-	-	-	312	381	Н
1	5.546	49.86	PK-U	34.6	-20.8	0	63.66	-	-	-	-	68.2	-4.54	325	265	V
2	5.623	47.3	PK-U	34.8	-20.7	0	61.4	-	-	-	-	68.2	-6.8	319	281	V
3	5.708	51.47	PK-U	35	-21	0	65.47	-	-	-	-	68.2	-2.73	317	260	V
4	5.864	50.83	PK-U	35.4	-20.8	0	65.43	-	-	-	-	68.2	-2.77	315	259	V
5	5.939	47.48	PK-U	35.6	-20.8	0	62.28	-	-	-	-	68.2	-5.92	312	278	V
6	6.267	51.02	PK-U	35.5	-31.6	0	54.92	-	-	-	-	68.2	-13.28	326	244	V
8	17.356	39.09	PK-U	40.8	-21.2	0	58.69	-	-	-	-	68.2	-9.51	320	292	V

* - indicates frequency in CFR15.205 Restricted Band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 98 of 136

Page 99 of 136

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/ Fitr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
7	* 11.647	45.5	PK-U	38.5	-24.8	0	59.2	-	-	74	-14.8	-	-	298	209	V
	* 11.646	32.93	ADR	38.5	-24.7	.56	47.29	54	-6.71	-	-	-	-	298	209	V
1	5.575	51.53	PK-U	34.7	-20.8	0	65.43	-	-	-	-	68.2	-2.77	325	262	V
2	5.663	48.18	PK-U	34.9	-21.1	0	61.98	-	-	-	-	68.2	-6.22	319	258	V
3	***5.743	40.52	Pk	35.1	-21.2	0	54.42	-	-		-	-	-	0-360	200	V
4	**5.907	40.44	Pk	35.5	-20.8	0	55.14	-	-	-	-	68.2	-13.06	0-360	200	V
5	**5.988	35.88	Pk	35.6	-20.9	0	50.58	-	-	-	-	68.2	-17.62	0-360	200	V
6	6.305	51.58	PK-U	35.6	-31.3	0	55.88	-		•	-	68.2	-12.32	8	266	V
8	17.467	41.81	PK-U	40.7	-21	0	61.51	-	-	-	-	68.2	-6.69	312	217	V

* - indicates frequency in CFR15.205 Restricted Band

** - indicates frequency covered by the radiated band edge

*** - indicates frequency within the authorized band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 100 of 136

9.6. TX ABOVE 1 GHz 802.11n HT40 MODE 1Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	()	(dBuV)		(,,			(dBuV/m)	(dBuV/m)	()	(,,	()	(=====)	(,	
2	5.714	27.91	Pk	35	7.3	0	70.21	-	-	74	-3.79	22	367	Н
4	5.714	27.91	Pk	35	7.3	0	70.21	-	-	74	-3.79	22	367	Н
1	5.715	23.03	Pk	35	7.3	0	65.33	-	-	74	-8.67	22	367	Н
5	5.715	10.01	RMS	35	7.3	.43	52.74	54	-1.26	-	-	22	367	Н
6	5.715	10.57	RMS	35	7.3	.43	53.3	54	7	-	-	22	367	Н
3	5.725	27.02	Pk	35	7.4	0	69.42	-	-	78.2	-8.78	22	367	Н

Pk - Peak detector

RMS - RMS detection

Page 101 of 136

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	26.12	Pk	35.4	7.5	0	69.02	-	-	78.2	-9.18	166	400	Н
1	5.86	24.46	Pk	35.4	7.5	0	67.36	-	-	74	-6.64	166	400	Н
5	5.86	9.23	RMS	35.4	7.5	.43	52.56	54	-1.44	-	-	166	400	н
6	5.86	9.64	RMS	35.4	7.5	.43	52.97	54	-1.03	-	-	166	400	Н
2	5.864	25.84	Pk	35.4	7.5	0	68.74	-	-	74	-5.26	166	400	н
4	5.864	25.84	Pk	35.4	7.5	0	68.74	-	-	74	-5.26	166	400	Н

Pk - Peak detector

RMS - RMS detection

Page 102 of 136

9.7. TX ABOVE 1 GHz 802.11n HT40 MODE 3Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.715	24.77	Pk	35	7.3	0	67.07	-	-	74	-6.93	347	113	v
2	5.715	29.17	Pk	35	7.3	0	71.47	-	-	74	-2.53	347	113	V
4	5.715	29.17	Pk	35	7.3	0	71.47	-	-	74	-2.53	347	113	V
5	5.715	10.17	RMS	35	7.3	.43	52.9	54	-1.1	-	-	347	113	V
6	5.715	10.41	RMS	35	7.3	.43	53.14	54	86	-	-	347	113	V
8	5.721	15.41	RMS	35	7.4	.43	58.24	-	-	-	-	347	113	V
3	5.725	29.48	Pk	35	7.4	0	71.88	-	-	78.2	-6.32	347	113	V
7	5.725	14.39	RMS	35	7.4	.43	57.22	-	-	-	-	347	113	V

Pk - Peak detector

RMS - RMS detection

Page 103 of 136

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	23.78	Pk	35.4	7.5	0	66.68	-	-	78.2	-11.52	156	392	Н
7	5.85	11.39	RMS	35.4	7.5	.43	54.72	-	-	-	-	156	392	Н
8	5.853	14.35	RMS	35.4	7.4	.43	57.58	-	-	-	-	156	392	Н
1	5.86	22.58	Pk	35.4	7.5	0	65.48	-	-	74	-8.52	156	392	Н
5	5.86	8.23	RMS	35.4	7.5	.43	51.56	54	-2.44	-	-	156	392	Н
6	5.862	9.84	RMS	35.4	7.5	.43	53.17	54	83	-	-	156	392	Н
2	5.863	28.51	Pk	35.4	7.5	0	71.41	-	-	74	-2.59	156	392	н
4	5.863	28.51	Pk	35.4	7.5	0	71.41	-	-	74	-2.59	156	392	Н

Pk - Peak detector

RMS - RMS detection

Page 104 of 136

HARMONICS AND SPURIOUS EMISSIONS

Page 105 of 136

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/ Fitr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 11.508	40.65	PK-U	38.3	-25.3	0	53.65	-	-	74	-20.35	-	-	158	245	н
	* 11.508	28.04	ADR	38.3	-25.3	.43	41.47	54	-12.53	-	-	-	-	158	245	н
5	* 11.513	44.76	PK-U	38.3	-25.2	0	57.86	-	-	74	-16.14	-	-	163	204	V
	* 11.508	33.02	ADR	38.3	-25.3	.43	46.45	54	-7.55	-	-	-	-	163	204	V
1	6.714	42.35	PK-U	35.9	-31	0	47.25	-	-	-	-	68.2	-20.95	154	225	н
4	6.714	41.83	PK-U	35.9	-31	0	46.73	-	-	-	-	68.2	-21.47	136	101	V
6	17.268	37.4	PK-U	41	-21.6	0	56.8	-	-	-	-	68.2	-11.4	139	317	V
3	17.254	37.27	PK-U	41	-21.5	0	56.77	-	-	-	-	68.2	-11.43	133	202	н

* - indicates frequency in CFR15.205 Restricted Band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 106 of 136

Page 107 of 136

<u>DATA</u>

Trace Markers

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	UNII Non-	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fitr/Pad	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	Restricted	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)		(dBuV/m)					(dBuV/m)				
1	* 4.823	44.75	PK-U	34.3	-32.1	0	46.95	-	-	74	-27.05	-	-	346	102	V
	* 4.829	34.8	ADR	34.3	-32.1	.43	37.43	54	-16.57	-	-	-	-	346	102	V
з	* 11.606	39.83	PK-U	38.4	-24.6	0	53.63	-	-	74	-20.37	-	-	155	361	н
	* 11.591	28.53	ADR	38.4	-24.7	.43	42.66	54	-11.34	-	-	-		155	361	н
5	* 11.593	44.89	PK-U	38.4	-24.6	0	58.69	-	-	74	-15.31	-	-	124	315	V
	* 11.591	33.6	ADR	38.4	-24.7	.43	47.73	54	-6.27	-	-	-	-	124	315	V
2	**5.947	35.64	Pk	35.6	-20.8	0	50.44	-	-	-	-	68.2	-17.76	0-360	101	V
4	17.379	38.75	PK-U	40.8	-20.7	0	58.85	-	-	•	-	68.2	-9.35	176	202	V
6	17.385	37.33	PK-U	40.8	-20.8	0	57.33	-		-	-	68.2	-10.87	128	205	н

* - indicates frequency in CFR15.205/Restricted Band

** - indicates frequency covered by radiated band edge

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 108 of 136
9.8. TX ABOVE 1 GHz 802.11n HT40 MODE TxBF 3TX IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.715	24.84	Pk	35	7.3	0	67.14	-	-	74	-6.86	223	104	V
2	5.715	26.79	Pk	35	7.3	0	69.09	-	-	74	-4.91	223	104	V
5	5.715	10.15	RMS	35	7.3	.41	52.86	54	-1.14	-	-	223	104	V
6	5.715	11.26	RMS	35	7.3	.41	53.97	54	03	-	-	223	104	V
4	5.723	32.31	Pk	35	7.4	0	74.71	-	-	78.2	-3.49	223	104	V
3	5.725	29.97	Pk	35	7.4	0	72.37	-	-	78.2	-5.83	223	104	V

Pk - Peak detector

RMS - RMS detection

Page 109 of 136

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	24.81	Pk	35.4	7.5	0	67.71	-	-	78.2	-10.49	319	345	V
1	5.86	21.6	Pk	35.4	7.5	0	64.5	-	-	74	-9.5	319	345	V
5	5.86	9.31	RMS	35.4	7.5	.41	52.62	54	-1.38	-	-	319	345	V
6	5.861	9.87	RMS	35.4	7.5	.41	53.18	54	82	-	-	319	345	V
2	5.863	26.65	Pk	35.4	7.5	0	69.55	-	-	74	-4.45	319	345	V
4	5.863	26.65	Pk	35.4	7.5	0	69.55	-	-	74	-4.45	319	345	V

Pk - Peak detector

RMS - RMS detection

Page 110 of 136

HARMONICS AND SPURIOUS EMISSIONS

Page 111 of 136

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)		(dBuV/m)					(dBuV/m)				
1	* 4.829	46.26	PK-U	34.3	-32.1	0	48.46	-	-	74	-25.54	-	-	349	321	V
	* 4.829	39.73	ADR	34.3	-32.1	.41	42.34	54	-11.66	-	-	-	-	349	321	V
2	* 11.594	43.27	PK-U	38.4	-24.7	0	56.97	-		74	-17.03	-	-	296	247	Н
	* 11.591	30.29	ADR	38.4	-24.7	.41	44.4	54	-9.6	-	-	-	-	296	247	н
5	* 11.608	40.68	PK-U	38.4	-24.6	0	54.48	-	-	74	-19.52	-	-	290	246	V
	* 11.609	27.91	ADR	38.4	-24.6	.41	42.12	54	-11.88	-	-	-	-	290	246	V
4	6.761	44.07	PK-U	35.9	-30.9	0	49.07	-	-	-	-	68.2	-19.13	34	288	V
3	17.364	38.82	PK-U	40.8	-20.9	0	58.72	-	-	-	-	68.2	-9.48	322	288	Н
6	17.386	36.3	PK-U	40.8	-20.8	0	56.3	-	-	-	-	68.2	-11.9	306	377	V

* - indicates frequency in CFR15.205 Restricted Band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 112 of 136

Page 113 of 136

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)		(dBuV/m)					(dBuV/m)				
1	* 1.097	50.82	PK-U	27.6	-35.6	0	42.82	-	-	74	-31.18	-	-	218	259	н
	* 1.096	38.63	ADR	27.6	-35.6	.41	31.04	54	-22.96	-	-	-	-	218	259	н
2	* 1.497	51.85	PK-U	28.7	-35.5	0	45.05	-		74	-28.95	-	-	216	184	V
	* 1.499	38.19	ADR	28.6	-35.5	.41	31.7	54	-22.3	-	-	-	-	216	184	V
4	* 11.51	39.87	PK-U	38.3	-25.3	0	52.87	-	-	74	-21.13	-	-	2	196	V
	* 11.51	28.01	ADR	38.3	-25.3	.41	41.42	54	-12.58	-	-	-	-	2	196	V
3	2.125	50.68	PK-U	31.6	-35	0	47.28	-	-	-	-	68.2	-20.92	243	137	V
6	5.917	47.29	PK-U	35.5	-20.7	0	62.09	-	-	-	-	68.2	-6.11	309	279	V
5	17.268	37.2	PK-U	41	-21.6	0	56.6	-	-	-	-	68.2	-11.6	291	186	V

* - indicates frequency in CFR15.205 Restricted Band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 114 of 136

9.9. TX ABOVE 1 GHz 802.11ac HT80 MODE 1Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW EDGE)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T345 (dB/m)	Bypass (dB)	Conversio n Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.715	-81.89	Pk	35	7.3	11.8	0	-27.79	-27	79	0	382	н
1	5.725	-85.37	Pk	35	7.4	11.8	0	-31.17	-17	-14.17	0	382	н

Pk - Peak detector

Page 115 of 136

AUTHORIZED BANDEDGE (HIGH EDGE)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T345 (dB/m)	Bypass (dB)	Conversio n Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-85.95	Pk	35.4	7.5	11.8	0	-31.25	-17	-14.25	20	371	Н
2	5.86	-84.08	Pk	35.4	7.5	11.8	0	-29.38	-27	-2.38	20	371	н

Pk - Peak detector

Page 116 of 136

9.10. TX ABOVE 1 GHz 802.11ac HT80 MODE 3Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW EDGE)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T345 (dB/m)	Bypass (dB)	Conversio n Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.714	-81.92	Pk	35	7.3	11.8	0	-27.82	-27	82	282	299	V
1	5.725	-85.68	Pk	35	7.4	11.8	0	-31.48	-17	-14.48	282	299	V

Pk - Peak detector

Page 117 of 136

AUTHORIZED BANDEDGE (HIGH EDGE)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T345 (dB/m)	Bypass (dB)	Conversion Factor (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-86.27	Pk	35.4	7.5	11.8	-31.57	-17	-14.57	185	271	V
2	5.861	-82.96	Pk	35.4	7.5	11.8	-28.26	-27	-1.26	185	271	V

Pk - Peak detector

Page 118 of 136

HARMONICS AND SPURIOUS EMISSIONS

Page 119 of 136

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/ Fitr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.245	52.52	PK-U	28.9	-35.9	0	45.52	-	-	74	-28.48	-	-	325	175	н
	* 1.244	31.72	ADR	28.9	-35.9	.84	25.56	54	-28.44	-	-	-	-	325	175	н
5	* 1.154	45.92	PK-U	28.1	-35.5	0	38.52	-	-	74	-35.48	-	-	0	103	V
	* 1.154	34.46	ADR	28.1	-35.5	.84	27.90	54	-26.10	-	-	-	-	0	103	V
6	* 1.443	46.7	PK-U	29	-35	0	40.7	-	-	74	-33.3	-	-	225	261	V
	* 1.443	35.08	ADR	29	-35	.84	29.92	54	-24.08	-	-	-	-	225	261	V
7	* 1.682	50.83	PK-U	29.6	-34.2	0	46.23	-	-	74	-27.77	-	-	70	246	V
	* 1.682	31.64	ADR	29.6	-34.2	.84	27.88	54	-26.12	-	-	-	-	70	246	V
10	* 3.759	42.41	PK-U	33.4	-32.6	0	43.21	-	-	74	-30.79	-	-	70	200	V
	* 3.759	30.53	ADR	33.4	-32.6	.84	32.17	54	-21.83	-	-	-	-	70	200	V
4	* 11.565	41.83	PK-U	38.4	-24.6	0	55.63	-	-	74	-18.37	-	-	3	379	Н
	* 11.568	28.38	ADR	38.4	-24.6	.84	43.02	54	-10.98	-	-	-	-	3	379	Н
13	* 11.569	41.21	PK-U	38.4	-24.6	0	55.01	-	-	74	-18.99	-	-	353	283	V
	* 11.568	28.33	ADR	38.4	-24.6	.84	42.97	54	-11.03	-	-	-	-	353	283	V
8	2.124	45.69	PK-U	31.6	-35	0	42.29	-	-	-	-	68.2	-25.91	70	201	V
2	2.125	43.47	PK-U	31.6	-35	0	40.07	-	-	-	-	68.2	-28.13	0	103	Н
9	2.654	47.34	PK-U	32.7	-33.5	0	46.54	-	-	-	-	68.2	-21.66	70	102	V
11	4.492	44.25	PK-U	34	-31.7	0	46.55	-	-	-	-	68.2	-21.65	70	102	V
3	6.417	45.95	PK-U	35.7	-29.9	0	51.75	-	-	-	-	68.2	-16.45	3	200	V
12	6.418	40.98	PK-U	35.7	-30	0	46.68	-	-	-	-	68.2	-21.52	70	198	Н

* - indicates frequency in CFR15.205 Restricted Band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

 UL VERIFICATION SERVICES INC.
 FORM NO: CCSUP4701J

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.
 .

Page 120 of 136

9.11. TX ABOVE 1 GHz 802.11ac HT80 MODE TxBF 3Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW EDGE)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T345 (dB/m)	Bypass (dB)	Conversion Factor (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.712	-81.31	Pk	35	7.4	11.8	-27.11	-27	11	309	382	V
1	5.725	-84.2	Pk	35	7.4	11.8	-30	-17	-13	309	382	V

Pk - Peak detector

Page 121 of 136

AUTHORIZED BANDEDGE (HIGH EDGE)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	AF T345 (dB/m)	Bypass (dB)	Conversio n Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-86.28	Pk	35.4	7.5	11.8	0	-31.58	-17	-14.58	323	305	V
2	5.861	-83.04	Pk	35.4	7.5	11.8	0	-28.34	-27	-1.34	323	305	V

Pk - Peak detector

Page 122 of 136

HARMONICS AND SPURIOUS EMISSIONS

Page 123 of 136

DATA

Trace Markers

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	UNII Non-	PK Margin	Azimuth	Height	Polarity
	(GHZ)	(dBuV)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBUV/m)	(dB)	(asuv/m)	(08)	(dBuV/m)	(dB)	(Degs)	(cm)	
1	* 1.105	44.53	PK-U	27.7	-35.5	0	36.73	-	-	74	-37.27	-	-	150	255	V
	* 1.103	32.78	ADR	27.6	-35.5	4.03	28.91	54	-25.09	-	-	-	-	150	255	V
2	* 1.493	50.3	PK-U	28.7	-35.5	0	43.5	-	-	74	-30.5	-	-	0	184	V
	* 1.493	37.39	ADR	28.7	-35.5	4.03	34.62	54	-19.38	-	-	-	-	0	184	V
6	* 11.573	39.83	PK-U	38.4	-24.5	0	53.73	-	-	74	-20.27	-	-	296	201	V
	* 11.572	25.52	ADR	38.4	-24.6	4.03	43.35	54	-10.65	-	-	-	-	296	201	V
3	2.132	49.34	PK-U	31.6	-34.9	0	46.04	-	-	-	-	68.2	-22.16	249	107	V
4	6.209	41.76	PK-U	35.5	-31.2	0	46.06	-	-	-	-	68.2	-22.14	249	199	V
5	6.417	42.64	PK-U	35.7	-29.9	0	48.44	-	-	-	-	68.2	-19.76	249	199	V

* - indicates frequency in CFR15.205 Restricted Band

PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 124 of 136

9.12. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T477 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	158.69	40.64	Pk	16.3	-30.2	26.74	43.52	-16.78	0-360	101	V
5	221.2	42.13	Pk	14.6	-29.8	26.93	46.02	-19.09	0-360	101	V
1	372.3	49.67	Pk	18.9	-29.1	39.47	46.02	-6.55	0-360	101	Н
6	499.6816	46.71	Qp	21.7	-28.7	39.71	46.02	-6.31	335	182	V
2	*499.6	54.16	Pk	21.7	-28.7	47.16	-	-	0-360	199	Н
3	898.8434	37.45	Qp	26.1	-27.4	36.15	46.02	-9.87	55	105	Н

Pk - Peak detector

Qp - Quasi-Peak detector

* - frequency determined to be coming from the support equipment

Page 125 of 136

9.13. WORST-CASE ABOVE 18GHz

SPURIOUS EMISSIONS 18 – 26GHz

	24 Nov 2015 10:07:14
	RF Emissions
	Order Number:15U22131 Client:Broadcom Configuration:EUT with Laptop Made:18-26GHz worst case Tested to ENU icon Neuron
	Tested by 7 SN:Lieu Nguyen
Peak Limit (dBuV/m)	
Avg Limit (dBuU/m)	
	34
1	2
miles and he was a shipping and a sh	
E	26
Revine (Eth) RBU/JBU Ref/Otto Det/OverTun Susen Ptic #Sunc/Made Label	guency (GHz) Revine (GHz) RBU/IBU Ref/2010 Det/Ave Tun Susan Pts #Susc/Mede Lebel
1:18-25 1H(-348)/3H 97/8 PERK/ - 168hsee(Auto) 1282 MAXH Horizo	ntal
5 14 Aug 2014	Rev 9.5 16 M

Page 126 of 136

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T89 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	18.693	41.2	Pk	32.5	-24.2	-9.5	40	54	-14	74	-34
2	21.704	40.97	Pk	33.3	-24.6	-9.5	40.16	54	-13.83	74	-33.83
3	24.801	43.7	Pk	33.9	-24.6	-9.5	43.5	54	-10.5	74	-30.5
4	24.928	44.03	Pk	34.1	-24.3	-9.5	44.33	54	-9.66	74	-29.66
5	18.739	41.17	Pk	32.6	-24.6	-9.5	39.66	54	-14.33	74	-34.33
6	23.149	42.67	Pk	33.5	-25	-9.5	41.66	54	-12.33	74	-32.33
7	25,134	44.57	Pk	33.8	-24.7	-9.5	44.16	54	-9.83	74	-29.83

Pk - Peak detector

Page 127 of 136

SPURIOUS EMISSIONS 26 – 40GHz

35 UL	_MC 24 Nov 2815 12:45	1:08
95	RF Emissions Order Number:15U22131 ClientBroadcom Configuration:EUT with Laptop Mode:26-408/th: worst cose Tested by / SN:Lieu Ngugen	
75 <mark></mark>	ak Limit (dBuV/m)	
55		
55 A	g Limit (dBuV/m)	
45		www
35	anale year a harman dae eera yeeratu aanta ayaa ahaa ka ahaa ahaa ka harman ahaa ahaa ahaa ahaa ahaa ahaa ahaa Ahaa ahaa a	
25		
5		
26		40
	Frequency (GHz)	
1:2	snge (GHz) RBV/RBU Ref/Attn Det/Avg Typ Sweep Pts 55pes/Node Label -46 INI-3481/38 S7/8 PERK/-9 2820aees(Avta) 1883 MiXH Horizontal	
26-4		5 16 Mc

Page 128 of 136

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T90 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	27.841	45.63	Pk	35.8	-31.6	-9.5	40.33	54	-13.66	74	-33.66
2	31.547	47.2	Pk	36.3	-33	-9.5	41	54	-13	74	-33
3	39.262	49.1	Pk	38.6	-32.2	-9.5	46	54	-8	74	-28
4	28.028	45.33	Pk	35.8	-31.8	-9.5	39.83	54	-14.16	74	-34.16
5	32.751	48.03	Pk	36.6	-32.8	-9.5	42.33	54	-11.66	74	-31.66
6	35.362	49.1	Pk	37.8	-33.4	-9.5	44	54	-10	74	-30
7	37.576	50.23	Pk	37.2	-33.1	-9.5	44.83	54	-9.16	74	-29.16

Pk - Peak detector

Page 129 of 136

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 °	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 130 of 136

RESULTS

<u>6 WORST EMISSIONS</u>

Company Namo		Broadcom									
Project:	12111/660										
Flojeci. Medel/Device:		BCM94360CS									
		BUINI34300US									
Date:		12/21/2012 TX WLAN Worst case									
Test voltage/Fre	quency:	120VAC 60H	Z								
lested by:		Steve Aguila	ſ								
ling 1 1 15 2014	1-										
LINE-LT. 15 - 30IVIF	Meter								Δv		
Test Frequency	Reading	Detector	LISN	Cables	Corrected	Class B QP	QP	Class B Av	Margin		
[MHz]	[dBuV]	Туре	[dB]	[dB]	[dB(uV)]	Limit	Margin	Limit [dB(uV)]	[dB]		
0.1545	55.11	РК	0.1	0	55.21	65.8	-10.59	-	-		
0.1545	39.99	Av	0.1	0	40.09	-	-	55.8	-15.71		
0.1815	53.37	PK	0.1	0	53.47	64.4	-10.93	-	-		
0.1815	22.05	Av	0.1	0	22.15	-	-	54.4	-32.25		
0.2085	48.17	РК	0.1	0	48.27	63.3	-15.03	-	-		
0.2085	31.45	Av	0.1	0	31.55	-	-	53.3	-21.75		
Line-L2 .15 - 30MH	Ηz										
	Meter								Av		
Test Frequency	Reading	Detector	LISN	Cables	Corrected	Class B QP	QP	Class B Av	Margin		
[MHz]	[dBuV]	Туре	[dB]	[dB]	[dB(uV)]	Limit	Margin	Limit [dB(uV)]	[dB]		
0.1545	52.78	РК	0.1	0	52.88	65.8	-12.92	-	-		
0.1545	34.68	Av	0.1	0	34.78	-	-	55.8	-21.02		
0.168	50.95	РК	0.1	0	51.05	65.1	-14.05	-	-		
0.168	22.76	Av	0.1	0	22.86	-	-	55.1	-32.24		
0.204	47.04	РК	0.1	0	47.14	63.4	-16.26	-	-		
0.204	30.88	Av	0.1	0	30.98	-	-	53.4	-22.42		
PK - Peak detecto	or										
QP - Quasi-Peak	detector										
Av - Average dete	ctor										

Page 131 of 136

LINE 1 RESULTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 132 of 136

LINE 2 RESULTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 133 of 136