

SAR Test Report

Model: BCM94352HMB

IC CERTIFICATION #: 4324A-BRCM1068

FCC ID: QDS-BRCM1068

APPLICANT: Broadcom Corporation

190 Mathilda Ave Sunnyvale, CA 94089

TEST SITE(S): NTS Silicon Valley

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5

FINAL TEST DATES: April 17, 2013

REPORT DATE: May 2, 2013

REISSUE DATE: May 8, 2013

TOTAL NUMBER OF PAGES: 120

PROGRAM MGR / TECHNICAL REVIEWER:

Deniz Demirci

Senior Wireless / EMC Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

NTS Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

File: R91624 Rev 3

Test Report Reissue Date: May 8, 2013

Report Date: May 2, 2013

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	May 2, 2013	First release	
2	May 6, 2013	Reissued to update description	Dave Guidott
3	May 8, 2013	Added scaled-up SAR results for 5 GHz bands	Deniz Demirci

File: R91624 Rev 3 Page 2 of 120

Table of contents

REVISION HISTORY	
1. Introduction	4
SAR definition	5
2. SAR measurement setup	6
Robotic system	6
System hardware	6
System electronics	7
Probe measurement system	7
3. Probe and dipole calibration	12
4. Simulating tissue specifications	13
5. SAR measurement procedure	
6. Definition of reference points	
7. ANSI/IEEE C95.1 – 1992 RF exposure limits	
Uncontrolled environment	
Controlled environment	
8. Measurement uncertainty	
9. System validation	
Tissue Verification	
Test system verification	
10. SAR test data summary (5180 - 5825 MHz Body 802.11a/n)	
11. SAR test data summary (2450 MHz Body 802.11b)	
Procedures used to establish test signal	28
Device test condition	
Simultaneous transmission capabilities	
12. Test equipment list	
13. Conclusion	
14. References	
Appendix A – Tissue and system validation data and plots	
Appendix B – SAR test data plots	
Appendix C – SAR Test Setup Photos	
Picture 1: ACON APP8P-700045 antenna Picture 2: ACON APP8P-700045 antenna, Orientation= Left	
Picture 2: ACON APP8P-700045 antenna, Orientation= Left Picture 3: ACON APP8P-700045 antenna, Orientation = Right	
Picture 4: ACON APP8P-700045 antenna, Orientation = Front	
Picture 5: ACON APP8P-700045 antenna, Orientation = Back	
Picture 6: ACON APP8P-700045 antenna, Orientation = Top	
Picture 7: ACON APP8P-700045 antenna, Orientation = Bottom	
Picture 8: EUT setup	
Appendix D – Probe Calibration Data Sheets	86
Appendix E – Dipole Calibration Data Sheets	
End of test report	120

1. Introduction

This measurement report shows compliance of the Broadcom Corporation Model BCM94352HMB FCC ID: QDS- BRCM1068 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 4324A- BRCM1068 with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The purpose of this report is to show compliance of this wireless module to be used in multiple host platforms with antenna-to-user separation distance of 5 mm or greater per FCC KDB 616217 D04 SAR for laptop and tablets v01 and FCC KDB 447498 D01 General RF Exposure Guidance v05

Per FCC KDB 447498 D01 v05; When the highest reported 1-g SAR is > 0.4 W/kg and ≤ 0.8 W/kg, modules and peripheral transmitters may be approved to operate in multiple host platforms. To qualify for multiple host platforms, the modular transmitter may be approved under one FCC ID, either in the initial filing or through Class II permissive changes. All subsequent Class II permissive changes must be within the scope of the defined host platform configurations and exposure conditions in the initial equipment approval.

Per FCC KDB 616217 D04; The *modular approach* is applied to this module in order to use it in qualified laptop and tablet hosts. When the test separation distances and test setups for the laptop and tablet host platforms are satisfied by the antenna and host configurations and the highest *reported* SAR for a host platform is ≤ 0.8 W/kg, testing in representative hosts is optional for the *modular approach*.

The test results recorded herein are based on a single type test of Broadcom Corporation model BCM94352HMB with ACON APP8P-700045 antenna and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz were employed.

File: R91624 Rev 3 Page 4 of 120

SAR definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) .

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

File: R91624 Rev 3 Page 5 of 120

2. SAR measurement setup

Robotic system

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the body equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System hardware

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

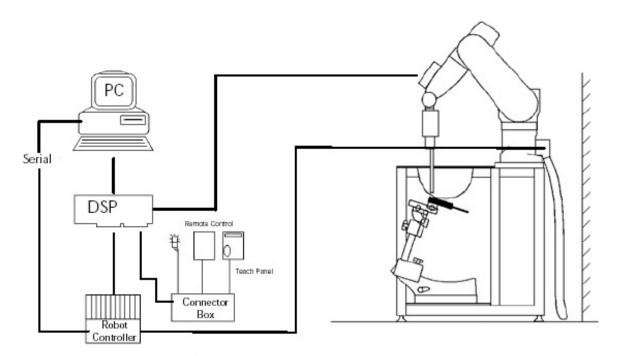


Figure 2.1 SAR measurement system setup

File: R91624 Rev 3 Page 6 of 120

System electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe measurement system

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE system

File: R91624 Rev 3 Page 7 of 120

Probe specifications

Calibration: In air from 10 MHz to 6.0 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200

MHz, 5300 MHz, 5600 MHz, 5800 MHz

Frequency: 10 MHz to 6 GHz

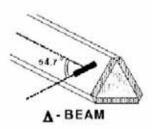
Linearity: $\pm 0.2 dB (30 MHz to 6 GHz)$

Dynamic: 10 mW/kg to 100 W/kg

Range: Linearity: ± 0.2 dB

Dimensions: Overall length: 330 mm

Tip length: 20 mm


Body diameter: 12 mm

Tip diameter: 2.5 mm

Distance from probe tip to sensor center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of wireless device

Figure 2.2 Triangular Probe Configurations

Figure 2.3 Probe Thick-Film Technique

File: R91624 Rev 3 Page 8 of 120

Probe calibration process

Dosimetric assessment procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free space assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

$$SAR = C \frac{\Delta T}{\Delta t}$$

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

where: where:

 Δt = exposure time (30 seconds), σ = simulated tissue conductivity,

C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue)

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

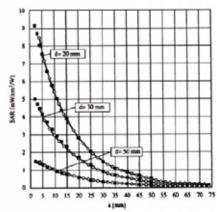


Figure 2.4 E-Field and Temperature Measurements at 900MHz

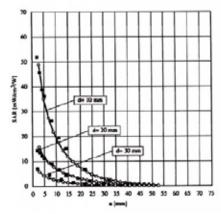


Figure 2.5 E-Field and Temperature Measurements at 1800MHz

File: R91624 Rev 3 Page 9 of 120

Data extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$
 with V_i = compensated signal of channel i (i=x,y,z)
$$U_i = \text{input signal of channel i}$$
 (i=x,y,z)
$$cf = \text{crest factor of exciting field}$$
 (DASY parameter)
$$dcp_i = \text{diode compression point}$$
 (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{\,2} \cdot \frac{\sigma}{\rho \cdot 1000} \hspace{1cm} \text{with} \hspace{1cm} \begin{array}{ll} \text{SAR} & = \text{local specific absorption rate in W/g} \\ E_{tot} & = \text{total field strength in V/m} \\ \sigma & = \text{conductivity in [mho/m] or [Siemens/m]} \\ \rho & = \text{equivalent tissue density in g/cm}^3 \end{array}$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

SAM phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom: SAM Twin Phantom (V4.0)

Shell material: Vivac Composite **Thickness:** $2.0 \pm 0.2 \text{ mm}$

Figure 2.6 SAM twin phantom

Device holder for transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

File: R91624 Rev 3 Page 11 of 120

Report Date: May 2, 2013

3. Probe and dipole calibration

See Appendix D and E.

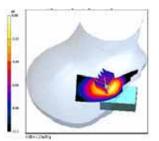
File: R91624 Rev 3 Page 12 of 120

4. Simulating tissue specifications

The head and body simulating mixtures consist of the material based on the table listed below.

The mixture is calibrated to obtain proper permittivity and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations

Table 4.1 Typical composition of ingredients for tissue


	able III I	j preur composi	non or mgreure	nes for eissue	
Ingredients			Body simu	lating tissue	
		2450 MHz	5200 MHz	5500 MHz	5800 MHz
Mixing Percentage					
Water		73.20			
Sugar		0.00			
Salt		0.00	Proprietary	Proprietary	Proprietary
HEC		0.00	mixture	mixture	mixture
Bactericide		0.00			
DGBE		26.70			
Dielectric Constant	Target	52.70	49.0	48.6	48.20
Conductivity (S/m)	Target	1.95	5.30	5.65	6.00

File: R91624 Rev 3 Page 13 of 120

5. SAR measurement procedure

The evaluation was performed using the following procedure:

- 1. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9mm from the Inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm

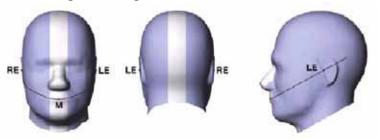
Sample SAR Area Scan

- 3. Based on the area scan data, the area of the maximum absorption was determined by sp line interpolation. Around this point, a volume of 32 mm x32 mm x 30 mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see Sample SAR Area Scan):
- a. The data at the surface was extrapolated, since the center of the dipoles is 2.5 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional sp lines with the "Not a knot" condition (in x, y, and z directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 1, was re-measured. If the value changed by more than 5%, the evaluation is repeated.

Specific anthropomorphic mannequin (SAM) specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 5.1). The perimeter side walls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 5.1 Sam twin phantom


File: R91624 Rev 3 Page 14 of 120

6. Definition of reference points

EAR reference point

Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.5. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference

Pivoting Line (see Figure 6.2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

B RE ERP

M

N

EEC

ERP - ear reference point

Figure 6.1 Front, back and side view of SAM twin phantom

Figure 6.2 Close-up side view of ERPs

Handset reference points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

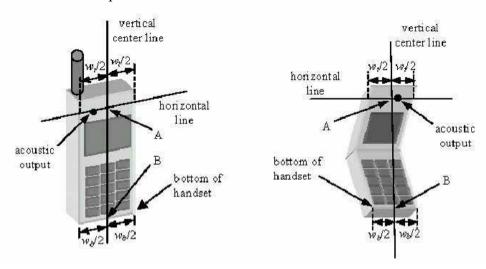


Figure 6.3 Handset vertical center & horizontal line reference points

File: R91624 Rev 3 Page 15 of 120

Figure 6.5 Side view w/

relevant markings

Test configuration positions Positioning for cheek/touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6.4), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6.4 Front, side and top view of cheek/touch position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 6.5)

Positioning for ear / 15 ° tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6.6)

Figure 6.6 Front, side and top view of ear/15° tilt position

File: R91624 Rev 3 Page 16 of 120

Body holster /belt clip configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.7). A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Figure 6.7 Body belt clip & holster configurations

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distances between the back of the device and the flat phantom is used. All test position spacing is documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

File: R91624 Rev 3 Page 17 of 120

7. ANSI/IEEE C95.1 – 1992 RF exposure limits

Uncontrolled environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7.1 Human exposure limits

	Uncontrolled environment general population (W/kg) or (mW/g)	Controlled environment professional population (W/kg) or (mW/g)
Spatial Peal SAR ¹ Head	1.60	8.00
Spatial Peal SAR ² Whole Body	0.08	0.40
Spatial Peal SAR ³ Hands, Feet, Ankles, Wrist	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

File: R91624 Rev 3

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8. Measurement uncertainty

Source of	Tolerance	Probability		$\mathbf{c_i}^1$	c_i^1	Standard	Standard	
Uncertainty	Value	Distribution	Divisor	(1-g)	(10-g)	Uncertainty (1-g) %	Uncertainty (10-g) %	Vi
Measurement System	1				•			
Probe Calibration	5.5	normal	1	1	1	5.5	5.5	∞
Axial Isotropy	4.7	rectangular	√3	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	9.6	rectangular	√3	0.7	0.7	3.9	3.9	8
Boundary Effect	1	rectangular	$\sqrt{3}$	1	1	0.6	0.6	8
Linearity	4.7	rectangular	√3	1	1	2.7	2.7	∞
Detection Limit	1	rectangular	$\sqrt{3}$	1	1	0.6	0.6	8
Readout Electronics	0.3	normal	1	1	1	0.3	0.3	8
Response Time	0.8	rectangular	√3	1	1	0.5	0.5	∞
Integration Time	2.6	rectangular	√3	1	1	1.5	1.5	∞
RF Ambient Condition	3	rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner Mech. Restriction	0.4	rectangular	√3	1	1	0.2	0.2	8
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7	8
Extrapolation and Integration	1	rectangular	√3	1	1	0.6	0.6	8
Test Sample Positioning	2.9	normal	1	1	1	2.9	2.9	145
Device Holder Uncertainty	3.6	normal	1	1	1	3.6	3.6	5
Drift of Output Power	5	rectangular	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and Setup			1	1			T	
Phantom Uncertainty(shape & thickness tolerance)	4	rectangular	√3	1	1	2.3	2.3	8
Liquid Conductivity(target)	5	rectangular	√3	0.64	0.43	1.8	1.2	8
Liquid Conductivity(meas.)	2.5	normal	1	0.64	0.43	1.6	1.1	5
Liquid Permittivity(target)	5	rectangular	√3	0.6	0.49	1.7	1.4	∞
Liquid Permittivity(meas.)	2.5	normal	1	0.6	0.49	1.5	1.2	5
Combined Uncertainty		RSS				10.7	10.5	387
Combined Uncertainty (coverage factor=2)	7	Normal(k=2)				21.4	21.0	

File: R91624 Rev 3

9. System validation

Tissue Verification

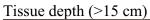

Prior to assessment, the system is verified to the $\pm 5\%$ of the specifications at the test frequency by using the speag DAK (Dielectric Assessment Kit) measurement kit

Table 9.1 Measured tissue parameters

Frequency (MHz)	Tissue type	Tissue temp.	Measured dielectric constant (ε)	Measured conductivity (σ)	Target value	Deviation (%)	Date	
5200	Body	23.0	47.10		49.03	3.9	4/10/13	
3200	Dody	23.0		5.42	5.35	1.3	4/10/13	
5500	Body	23.0	46.58		48.62	4.2	4/10/13	
3300	Dody	23.0		5.77	5.68	1.6	T/ 10/ 13	
5800	Rody	23.0	46.07		48.20	4.4	4/10/13	
3800	Body	23.0		6.23	6.00	3.2	4/10/13	
5200	Body	23.0	47.09		49.03	4.0	4/11/13	
3200		23.0		5.41	5.35	1.0	4/11/13	
5500	Dody	23.0	46.69		48.62	4.0	4/11/13	
3300	Body	23.0		5.80	5.68	2.0	4/11/13	
5800	Body	23.0	46.14		48.20	4.3	4/11/13	
3800		23.0		6.21	6.00	3.4	4/11/13	
5200	Dody	22.5	46.74		49.03	4.7	4/15/13	
3200	Body	22.3		5.28	5.35	1.4	4/13/13	
2452	Dody	23.0	52.58		52.70	0.2	4/16/13	
2432	Body	23.0		1.95	1.95	0.2	4/10/13	
5200	Dodr	1- 22.0	46.92		49.03	4.3	4/17/12	
5200	Body	Body	23.0		5.46	5.35	2.0	4/17/13
5000	Dade	22.0	46.02		48.20	4.5	4/17/12	
5800 Boo	Body	23.0		6.27	6.00	4.4	4/17/13	

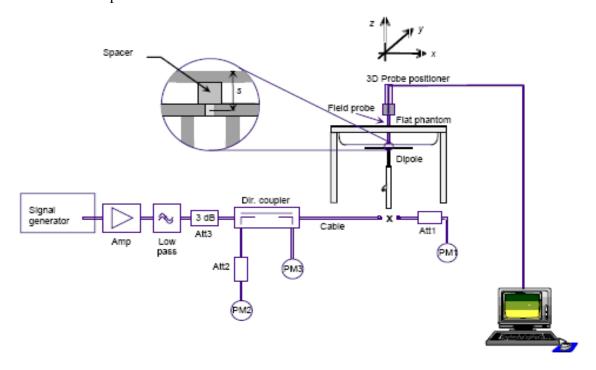
See Appendix A for detailed results.

File: R91624 Rev 3 Page 20 of 120

File: R91624 Rev 3 Page 21 of 120

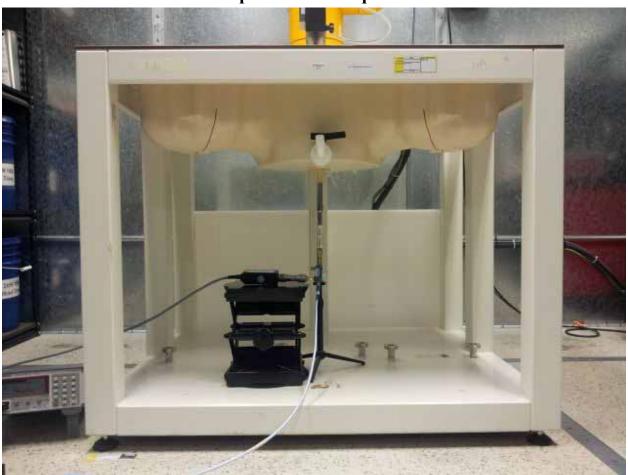
Test system verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit.

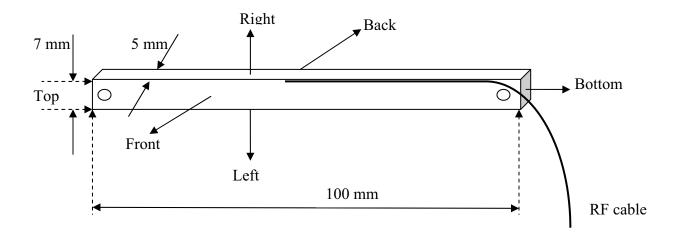

Table 9.2 System dipole validation target & measured

Test Frequency	Targeted SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)	Verification Date
5200 MHz	7.21	7.43	Body	3.0	4/10/2013
5500 MHz	7.95	8.20	Body	3.1	4/10/2013
5800 MHz	7.33	7.97	Body	8.7	4/10/2013
5200 MHz	7.21	6.98	Body	3.2	4/11/2013
5500 MHz	7.95	7.17	Body	9.8	4/11/2013
5800 MHz	7.33	7.62	Body	4.0	4/11/2013
5200 MHz	7.21	6.75	Body	6.4	4/15/2013
2450 MHz	12.8	12.5	Body	2.3	4/16/2013
5200 MHz	7.21	6.86	Body	4.9	4/17/2013
5800 MHz	7.33	6.66	Body	9.1	4/17/2013

See Appendix A for detailed results and plots.


Figure 9.1 Dipole validation test setup

Note: KDB 450824 was applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.


File: R91624 Rev 3 Page 22 of 120

Dipole validation photo

File: R91624 Rev 3 Page 23 of 120

EUT SAR location diagram (Antenna)

File: R91624 Rev 3 Page 24 of 120

10. SAR test data summary (5180 - 5825 MHz Body 802.11a/n)

Gap	_	Free	quency	Data		Meas.	End	SAR
(mm)	Position	MHz	Channel	rate (Mbps)	Antenna	Plot page #	power (dBm)	(W/kg)
5	Left	5180	36	6	Main	49	13.9	0.678
5	Right	5180	36	6	Main	50	13.9	0.255
	Front	5180	36	6	Main	51	13.9	0.303
5	Back	5180	36	6	Main	52	13.9	0.328
5	Тор	5180	36	6	Main	53	13.9	0.018
5	Bottom	5180	36	6	Main	54	13.9	0.042
5	Left	5240	48	6	Main	55	14.0	0.576
5	Left	5260	52	6	Main	56	13.8	0.703
5	Right	5260	52	6	Main	57	13.9	0.202
5	Front	5260	52	6	Main	58	13.9	0.258
5	Back	5260	52	6	Main	59	13.9	0.337
5	Left	5320	64	6	Main	60	13.8	0.459
5	Left	5500	100	6	Main	61	13.9	0.236
5	Left	5580	116	6	Main	62	13.7	0.452
5	Left	5700	140	6	Main	63	14.0	0.213
5	Left	5745	149	6	Main	64	14.0	0.382
5	Left	5825	165	6	Main	65	14.1	0.186
5	Front	5825	165	6	Main	66	14.1	0.206
5	Right	5825	165	6	Main	67	14.1	0.115
5	Back	5825	165	6	Main	68	14.1	0.200

Measured maximum body SAR = 0.703 W/kg (mW/g) averaged over 1 gram

File: R91624 Rev 3 Page 25 of 120

Scaled-up SAR levels to manufacturing tolerances (5180 - 5825 MHz Body 802.11a/n)

Gap (mm)	Frequency (MHz)	Channel	End power (dBm)	Target (dBm)	Delta (dB)	Multiplier	Measured SAR (W/kg)	Scaled-up SAR (W/kg)
5	5180	36	13.9	14.0	0.1	1.023	0.678	0.694
5	5240	48	14.0	14.0	0.0	1.000	0.576	0.576
5	5260	52	13.8	14.0	0.2	1.047	0.703	0.736
5	5320	64	13.8	14.0	0.2	1.047	0.459	0.481
5	5500	100	13.9	14.0	0.1	1.023	0.236	0.241
5	5580	116	13.7	14.0	0.3	1.072	0.452	0.484
5	5700	140	14.0	14.0	0.0	1.000	0.213	0.213
5	5745	149	14.0	14.0	0.0	1.000	0.382	0.382
5	5825	165	14.1	14.0	0.0	1.000	0.206	0.206

Scaled-up maximum body SAR = 0.736 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	ii tests.		
	Power Measured	⊠Conducted	□ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uni-phantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	ılator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	N/A
5.	Tissue Depth is at least 15.0	cm		

Note 1: SAR Tested on the Highest output power channel. When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than ½ dB higher than that measured in the 802.11b. The testing was conducted on all sides of the antenna. All testing was conducted per KDB 447498, 248227, 616217 and OET Bulletin 65. See the photo in Appendix C and diagram on page 14 for a pictorial of the setup and labeling of the test locations.

Note 2: All measurements were performed with 5 mm gap (Antenna to Flat phantom measurement distance)

Note 3: Number of test channels and SAR test reductions determined based on 447498 D01 v05 October 24 2012

Note 4: Main and Aux. chains have identical power outputs, hence SAR evaluation of Main antenna output is sufficient to represent Aux. antenna output compliance.

Note 5: Target level is the highest power level in manufacturers tune up procedure, including tolerances, declared by applicant.

File: R91624 Rev 3 Page 26 of 120

11. SAR test data summary (2450 MHz Body 802.11b)

Gap		Free	quency	Data		Meas.	End	SAR
(mm)	Position	MHz	Channel	rate (Mbps)	Antenna	Plot page #	power (dBm)	(W/kg)
5	Front	2412	1	1	Main	69	18.0	0.707
5	Right	2437	6	1	Main	70	18.0	0.499
5	Left	2437	6	1	Main	71	18.0	0.640
5	Front	2437	6	1	Main	72	18.0	0.709
5	Back	2437	6	1	Main	73	18.0	0.437
5	Top	2437	6	1	Main	74	18.0	0.013
5	Bottom	2437	6	1	Main	75	18.0	0.020
_								
5	Front	2462	11	1	Main	76	18.0	0.704

Maximum body SAR = 0.709 W/kg (mW/g) averaged over 1 gram

6.	Battery is fully charged for a	Ill tests.		
	Power Measured	⊠Conducted	ERP	EIRP
7.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uni-phantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
8.	Test Signal Call Mode	⊠Test Code	Base Station Simu	
9.	Test Configuration	☐With Belt Clip	Without Belt Clip	N/A
10.	Tissue Depth is at least 15.0	cm		

Note 1: SAR Tested on the Highest output power channel. When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than ½ dB higher than that measured in the 802.11b. The testing was conducted on all sides of the antenna. All testing was conducted per KDB 447498, 248227, 616217 and OET Bulletin 65. See the photo in Appendix C and diagram on page 14 for a pictorial of the setup and labeling of the test locations.

Note 2: All measurements were performed with 5 mm gap (Antenna to Flat phantom measurement distance)

Note 3: Number of test channels and SAR test reductions determined based on 447498 D01 v05 October 24 2012

Note 4: Main and Aux. chains have identical power outputs, hence SAR evaluation of Main antenna output is sufficient to represent Aux. antenna output compliance.

Note 5: For 2.4 GHz, measured end power values match the maximum output levels of the production units (including tolerances) declared by the applicant. Scaling measured SAR results are not required.

See Appendix B for SAR Test Data Plots.

See Appendix C for SAR Test Setup Photos.

File: R91624 Rev 3 Page 27 of 120

Report Date: May 2, 2013

Procedures used to establish test signal

The device was placed into simulated transmit mode using the manufacturer's test codes See data pages for actual procedure used in measurement.

Device test condition

The EUT is a 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card with external antennas (ACON APP8P-700045). Module dimensions are approximately 30 mm x 30 mm x 5 mm, antenna dimensions are approximately 100 mm x 7 mm x 5 mm. The antenna RF cable is approximately 600 mm long

The EUT was configured via a notebook to transmit at maximum power with desired channel and modes. The module and notebook were positioned with a distance longer than 30 cm from the transmit antenna. The antenna was positioned with all six sides, with 5 mm gap under the phantom.

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

Simultaneous transmission capabilities

The module has a build in Bluetooth transmitter and it is <u>not</u> able to transmit with WIFI simultaneously.

Per KDB Publication 447498 and 616217, Bluetooth SAR was not required since the maximum conducted power of Bluetooth Tx is 1 mW.

Main and Aux. chains have identical power outputs. In normal operation, antennas will be separated each other, hence SAR evaluation of Main antenna output is considered sufficient to show Aux. antenna output compliance.

File: R91624 Rev 3 Page 28 of 120

12. Test equipment list

Manufacturer	Description	Model	Asset #	Cal Due
SAR				
Speag	SAR Probe	EX3DV4	3833	11-Mar-14
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE 4	2661	05-Mar-14
Speag	Phantom	SM 000 T02 EA	2667	N/A
NTS	Body Equivalent Matter	N/A	N/A	N/A
SAR verification				
Speag	DAK 3.5mm Probe	SM DAK 040	2660	13-Jun-13
Speag	SAR Dipole	D2450V2	2654	07-Feb-14
Speag	SAR Dipole	D5GHzV2	2658	01-Feb-14
Agilent	PSG Vector Signal Generator	E8267C	2200	21-Dec-13
SM Electronics	Directional coupler	MC2045	N/A	N/A
Macom	Attenuator (3 dB)	2082-61	N/A	N/A
Mini Circuits	RF Amplifier	ZVE-8G+	N/A	N/A
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN B844664/018)	NRV-Z53	1555	26-Feb-14
Rohde & Schwarz EUT power	Power Meter	NRVS	1290	18-Dec-13
Agilent	USB Power Sensor	U2001A	2442	17-Dec-13

File: R91624 Rev 3 Page 29 of 120

Test Report

Report Date: May 2, 2013

13. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

File: R91624 Rev 3 Page 30 of 120

14. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, June 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.
- [8] KDB 450824 D02 Dipole Requirements for SAR System Validation and Verification
- [9] KDB 447498 D01 General RF Exposure Guidance v05. Section 5.2.2.2 When the highest reported 1-g SAR is > 0.4 W/kg and ≤ 0.8 W/kg, modules and peripheral transmitters may be approved to operate in multiple host platforms
- [10] KDB 248227 SAR Measurement Procedures for 802.11 a/b/g Transmitters
- [11] KDB 616217 D01 SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens
- [12] KDB 616217 D02 Review and Approval Policies for SAR Evaluation of Laptop Computers with Antennas Built-in on Display Screens
- [13] KDB 616217 D03 SAR Evaluation considerations for Laptop/Notebook/Netbook and Tablet Computers

File: R91624 Rev 3 Page 31 of 120

Appendix A – Tissue and system validation data and plots

File: R91624 Rev 3 Page 32 of 120

Name: Body 23 deg.C, 2013/04/10, 08:48:12 Date: Body 23 deg.C, 2013/04/10, 08:48:12

Temperature(C): 23 Probe: DAK_35

Network Analyzer : HP8753X

Notes: 5 GHz tissue validation April 10 2013

Measured data

TVICUSUICU C		1	1	1	I	
f(MHz)	eps.R	eps.I	sigma(S/m)	loss tangent	refl.R	refl.I
5160	47.14	18.67	5.36	0.40	-0.34	-0.55
5180	47.18	18.70	5.39	0.40	-0.35	-0.55
5200	47.10	18.75	5.42	0.40	-0.35	-0.55
5220	47.06	18.69	5.43	0.40	-0.35	-0.55
5240	47.04	18.69	5.45	0.40	-0.35	-0.55
5260	47.00	18.72	5.48	0.40	-0.35	-0.55
5280	46.93	18.76	5.51	0.40	-0.35	-0.54
5300	46.84	18.83	5.55	0.40	-0.36	-0.54
5320	46.88	18.80	5.56	0.40	-0.36	-0.54
5340	46.90	18.78	5.58	0.40	-0.36	-0.54
5360	46.86	18.73	5.58	0.40	-0.36	-0.54
5380	46.78	18.69	5.59	0.40	-0.36	-0.54
5400	46.73	18.80	5.65	0.40	-0.37	-0.54
5420	46.68	18.89	5.70	0.40	-0.37	-0.53
5440	46.66	18.89	5.72	0.40	-0.37	-0.53
5460	46.65	18.89	5.74	0.40	-0.37	-0.53
5480	46.67	18.81	5.73	0.40	-0.37	-0.53
5500	46.58	18.87	5.77	0.41	-0.37	-0.53
5520	46.49	18.83	5.78	0.41	-0.38	-0.53
5540	46.49	18.96	5.84	0.41	-0.38	-0.53
5560	46.47	19.01	5.88	0.41	-0.38	-0.52
5580	46.50	19.02	5.90	0.41	-0.38	-0.52
5660	46.26	19.12	6.02	0.41	-0.39	-0.52
5680	46.23	19.16	6.05	0.41	-0.39	-0.51
5700	46.29	19.12	6.06	0.41	-0.39	-0.51
5720	46.27	19.09	6.07	0.41	-0.39	-0.51
5740	46.21	19.15	6.12	0.41	-0.39	-0.51
5760	46.17	19.16	6.14	0.42	-0.40	-0.51
5780	46.08	19.22	6.18	0.42	-0.40	-0.51
5800	46.07	19.20	6.19	0.42	-0.40	-0.51
5820	46.08	19.25	6.23	0.42	-0.40	-0.50

File: R91624 Rev 3 Page 33 of 120 Name: Body 23 deg.C, 2013/04/11, 08:26:24 Date: Body 23 deg.C, 2013/04/11, 08:26:24

Temperature(C): 23 Probe: DAK_35

Network Analyzer : HP8753X

Notes: 5GHz Tissue Validation 4-11-2013

Measured data

f(MHz) eps.R eps.I sigma(S/m) loss tangent refl.R refl.I 5160 47.12 18.71 5.37 0.40 -0.34 -0.55 5180 47.14 18.72 5.39 0.40 -0.35 -0.55 5200 47.09 18.70 5.41 0.40 -0.35 -0.55 5220 47.12 18.72 5.44 0.40 -0.35 -0.55 5240 47.10 18.74 5.46 0.40 -0.35 -0.55 5260 47.07 18.73 5.48 0.40 -0.35 -0.55 5280 46.95 18.84 5.53 0.40 -0.35 -0.54 5300 46.95 18.83 5.55 0.40 -0.36 -0.54 5340 46.89 18.85 5.58 0.40 -0.36 -0.54 5340 46.87 18.87 5.65 0.40 -0.36 -0.54 5400 46.72 18.96	Wieasureu C			I			
5180 47.14 18.72 5.39 0.40 -0.35 -0.55 5200 47.09 18.70 5.41 0.40 -0.35 -0.55 5220 47.12 18.72 5.44 0.40 -0.35 -0.55 5240 47.10 18.74 5.46 0.40 -0.35 -0.55 5260 47.07 18.73 5.48 0.40 -0.35 -0.55 5280 46.95 18.84 5.53 0.40 -0.35 -0.54 5300 46.92 18.85 5.58 0.40 -0.36 -0.54 5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5300 46.89 18.82 5.59 0.40 -0.36 -0.54 5380 46.72 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.74 18.95 5.71 <td>f(MHz)</td> <td>eps.R</td> <td>eps.I</td> <td>sigma(S/m)</td> <td>loss tangent</td> <td>refl.R</td> <td>refl.I</td>	f(MHz)	eps.R	eps.I	sigma(S/m)	loss tangent	refl.R	refl.I
5200 47.09 18.70 5.41 0.40 -0.35 -0.55 5220 47.12 18.72 5.44 0.40 -0.35 -0.55 5240 47.10 18.74 5.46 0.40 -0.35 -0.55 5260 47.07 18.73 5.48 0.40 -0.35 -0.55 5280 46.95 18.84 5.53 0.40 -0.35 -0.54 5300 46.95 18.83 5.55 0.40 -0.36 -0.54 5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5340 46.89 18.87 5.63 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5340 46.79 18.96 5.69 0.41 -0.37 -0.53 5440 46.79 18.95 5.71 <td>5160</td> <td>47.12</td> <td>18.71</td> <td>5.37</td> <td>0.40</td> <td>-0.34</td> <td>-0.55</td>	5160	47.12	18.71	5.37	0.40	-0.34	-0.55
5220 47.12 18.72 5.44 0.40 -0.35 -0.55 5240 47.10 18.74 5.46 0.40 -0.35 -0.55 5260 47.07 18.73 5.48 0.40 -0.35 -0.55 5280 46.95 18.84 5.53 0.40 -0.36 -0.54 5300 46.95 18.83 5.55 0.40 -0.36 -0.54 5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5340 46.89 18.82 5.59 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.95 5.75 <td>5180</td> <td>47.14</td> <td>18.72</td> <td>5.39</td> <td>0.40</td> <td>-0.35</td> <td>-0.55</td>	5180	47.14	18.72	5.39	0.40	-0.35	-0.55
5240 47.10 18.74 5.46 0.40 -0.35 -0.55 5260 47.07 18.73 5.48 0.40 -0.35 -0.55 5280 46.95 18.84 5.53 0.40 -0.35 -0.54 5300 46.95 18.83 5.55 0.40 -0.36 -0.54 5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5340 46.89 18.82 5.59 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 <td>5200</td> <td>47.09</td> <td>18.70</td> <td>5.41</td> <td>0.40</td> <td>-0.35</td> <td>-0.55</td>	5200	47.09	18.70	5.41	0.40	-0.35	-0.55
5260 47.07 18.73 5.48 0.40 -0.35 -0.55 5280 46.95 18.84 5.53 0.40 -0.35 -0.54 5300 46.95 18.83 5.55 0.40 -0.36 -0.54 5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5340 46.89 18.82 5.59 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 <td>5220</td> <td>47.12</td> <td>18.72</td> <td>5.44</td> <td>0.40</td> <td>-0.35</td> <td>-0.55</td>	5220	47.12	18.72	5.44	0.40	-0.35	-0.55
5280 46.95 18.84 5.53 0.40 -0.35 -0.54 5300 46.95 18.83 5.55 0.40 -0.36 -0.54 5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5340 46.89 18.82 5.59 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 <td>5240</td> <td>47.10</td> <td>18.74</td> <td>5.46</td> <td>0.40</td> <td>-0.35</td> <td>-0.55</td>	5240	47.10	18.74	5.46	0.40	-0.35	-0.55
5300 46.95 18.83 5.55 0.40 -0.36 -0.54 5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5340 46.89 18.82 5.59 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.41 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 <td>5260</td> <td>47.07</td> <td>18.73</td> <td>5.48</td> <td>0.40</td> <td>-0.35</td> <td>-0.55</td>	5260	47.07	18.73	5.48	0.40	-0.35	-0.55
5320 46.92 18.85 5.58 0.40 -0.36 -0.54 5340 46.89 18.82 5.59 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.95 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.52 5560 46.54 19.05 5.87 <td>5280</td> <td>46.95</td> <td>18.84</td> <td>5.53</td> <td>0.40</td> <td>-0.35</td> <td>-0.54</td>	5280	46.95	18.84	5.53	0.40	-0.35	-0.54
5340 46.89 18.82 5.59 0.40 -0.36 -0.54 5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 <td>5300</td> <td>46.95</td> <td>18.83</td> <td>5.55</td> <td>0.40</td> <td>-0.36</td> <td>-0.54</td>	5300	46.95	18.83	5.55	0.40	-0.36	-0.54
5360 46.87 18.87 5.63 0.40 -0.36 -0.54 5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 <td>5320</td> <td>46.92</td> <td>18.85</td> <td>5.58</td> <td>0.40</td> <td>-0.36</td> <td>-0.54</td>	5320	46.92	18.85	5.58	0.40	-0.36	-0.54
5380 46.72 18.87 5.65 0.40 -0.36 -0.54 5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5580 46.54 19.05 5.89 0.41 -0.38 -0.52 5600 46.42 19.04 5.91 0.41 -0.38 -0.52 5640 46.42 19.07 5.96 <td>5340</td> <td>46.89</td> <td>18.82</td> <td>5.59</td> <td>0.40</td> <td>-0.36</td> <td>-0.54</td>	5340	46.89	18.82	5.59	0.40	-0.36	-0.54
5400 46.79 18.96 5.69 0.41 -0.37 -0.53 5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 <td>5360</td> <td>46.87</td> <td>18.87</td> <td>5.63</td> <td>0.40</td> <td>-0.36</td> <td>-0.54</td>	5360	46.87	18.87	5.63	0.40	-0.36	-0.54
5420 46.74 18.95 5.71 0.41 -0.37 -0.53 5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5640 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.34 19.16 6.03 <td>5380</td> <td>46.72</td> <td>18.87</td> <td>5.65</td> <td>0.40</td> <td>-0.36</td> <td>-0.54</td>	5380	46.72	18.87	5.65	0.40	-0.36	-0.54
5440 46.74 18.97 5.74 0.41 -0.37 -0.53 5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5680 46.34 19.16 6.03 <td>5400</td> <td>46.79</td> <td>18.96</td> <td>5.69</td> <td>0.41</td> <td>-0.37</td> <td>-0.53</td>	5400	46.79	18.96	5.69	0.41	-0.37	-0.53
5460 46.70 18.95 5.75 0.41 -0.37 -0.53 5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5680 46.34 19.16 6.03 0.41 -0.39 -0.51 5700 46.34 19.17 6.06 <td>5420</td> <td>46.74</td> <td>18.95</td> <td>5.71</td> <td>0.41</td> <td>-0.37</td> <td>-0.53</td>	5420	46.74	18.95	5.71	0.41	-0.37	-0.53
5480 46.64 18.87 5.75 0.40 -0.37 -0.53 5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5680 46.34 19.16 6.03 0.41 -0.39 -0.51 5700 46.34 19.17 6.06 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 <td>5440</td> <td>46.74</td> <td>18.97</td> <td>5.74</td> <td>0.41</td> <td>-0.37</td> <td>-0.53</td>	5440	46.74	18.97	5.74	0.41	-0.37	-0.53
5500 46.69 18.94 5.80 0.41 -0.38 -0.53 5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 <td>5460</td> <td>46.70</td> <td>18.95</td> <td>5.75</td> <td>0.41</td> <td>-0.37</td> <td>-0.53</td>	5460	46.70	18.95	5.75	0.41	-0.37	-0.53
5520 46.70 19.00 5.83 0.41 -0.38 -0.53 5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5480	46.64	18.87	5.75	0.40	-0.37	-0.53
5540 46.54 19.05 5.87 0.41 -0.38 -0.52 5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5500	46.69	18.94	5.80	0.41	-0.38	-0.53
5560 46.55 19.03 5.89 0.41 -0.38 -0.52 5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5520	46.70	19.00	5.83	0.41	-0.38	-0.53
5580 46.54 19.04 5.91 0.41 -0.38 -0.52 5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5540	46.54	19.05	5.87	0.41	-0.38	-0.52
5600 46.42 19.06 5.94 0.41 -0.38 -0.52 5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5560	46.55	19.03	5.89	0.41	-0.38	-0.52
5620 46.42 19.07 5.96 0.41 -0.38 -0.52 5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5580	46.54	19.04	5.91	0.41	-0.38	-0.52
5640 46.43 19.02 5.97 0.41 -0.39 -0.52 5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5600	46.42	19.06	5.94	0.41	-0.38	-0.52
5660 46.34 19.16 6.03 0.41 -0.39 -0.52 5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5620	46.42	19.07	5.96	0.41	-0.38	-0.52
5680 46.34 19.17 6.06 0.41 -0.39 -0.51 5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5640	46.43	19.02	5.97	0.41	-0.39	-0.52
5700 46.34 19.14 6.07 0.41 -0.39 -0.51 5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5660	46.34	19.16	6.03	0.41	-0.39	-0.52
5720 46.33 19.17 6.10 0.41 -0.39 -0.51 5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5680	46.34	19.17	6.06	0.41	-0.39	-0.51
5740 46.24 19.15 6.12 0.41 -0.39 -0.51	5700	46.34	19.14	6.07	0.41	-0.39	-0.51
	5720	46.33	19.17	6.10	0.41	-0.39	-0.51
5760 46.17 19.17 6.14 0.42 -0.40 -0.51	5740	46.24	19.15	6.12	0.41	-0.39	-0.51
	5760	46.17	19.17	6.14	0.42	-0.40	-0.51

File: R91624 Rev 3 Page 34 of 120

Report Date: May 2, 2013

Name : Body 22.5 deg.C, 2013/04/15, 16:24:48 Date : Body 22.5 deg.C, 2013/04/15, 16:24:48

Temperature(C): 22.5

Probe: DAK_35

Network Analyzer: HP8753X

Notes: 5 GHz body tissue validation April 15 2013

Measured data

f(MHz)	eps.R	eps.I	sigma(S/m)	loss tangent	refl.R	refl.I
5160	46.80	18.20	5.22	0.39	-0.34	-0.56
5180	46.82	18.20	5.25	0.39	-0.34	-0.56
5200	46.74	18.24	5.28	0.39	-0.34	-0.56
5220	46.69	18.25	5.30	0.39	-0.34	-0.56
5240	46.70	18.28	5.33	0.39	-0.35	-0.55
5260	46.66	18.23	5.33	0.39	-0.35	-0.55
5280	46.63	18.35	5.39	0.39	-0.35	-0.55
5300	46.56	18.34	5.41	0.39	-0.35	-0.55
5320	46.52	18.33	5.42	0.39	-0.35	-0.55
5340	46.53	18.33	5.44	0.39	-0.36	-0.55
5360	46.51	18.36	5.47	0.39	-0.36	-0.54
5380	46.47	18.31	5.48	0.39	-0.36	-0.54
5400	46.40	18.32	5.50	0.39	-0.36	-0.54
5420	46.34	18.41	5.55	0.40	-0.36	-0.54
5440	46.32	18.39	5.57	0.40	-0.36	-0.54
5460	46.36	18.37	5.58	0.40	-0.37	-0.54
5480	46.29	18.39	5.61	0.40	-0.37	-0.54
5500	46.38	18.33	5.61	0.40	-0.37	-0.54

File: R91624 Rev 3 Page 35 of 120

Name: Body 23 deg.C, 2013/04/16, 07:55:10 Date: Body 23 deg.C, 2013/04/16, 07:55:10

Temperature(C): 23

Probe : DAK_35, Network Analyzer : HP8753X Notes : 2.4 GHz Body tissue April 16 2013

Measured data

f(MHz)	eps.R	eps.I	sigma(S/m)	loss tangent	refl.R	refl.I
2402	52.72	14.12	1.89	0.27	0.17	-0.74
2407	52.73	14.14	1.89	0.27	0.17	-0.74
2412	52.71	14.14	1.90	0.27	0.17	-0.74
2417	52.70	14.18	1.91	0.27	0.17	-0.74
2422	52.68	14.24	1.92	0.27	0.17	-0.74
2427	52.70	14.26	1.93	0.27	0.16	-0.74
2432	52.63	14.17	1.92	0.27	0.16	-0.74
2437	52.64	14.22	1.93	0.27	0.16	-0.74
2442	52.62	14.26	1.94	0.27	0.16	-0.74
2447	52.61	14.28	1.94	0.27	0.16	-0.74
2452	52.58	14.29	1.95	0.27	0.16	-0.74
2457	52.59	14.26	1.95	0.27	0.16	-0.74
2462	52.58	14.35	1.97	0.27	0.15	-0.74
2467	52.56	14.32	1.97	0.27	0.15	-0.74
2472	52.55	14.39	1.98	0.27	0.15	-0.74

Target data: Body 23 deg.C

1 41501 4410	: : Boay 25	Target data : Body 23 deg.C							
f(MHz)	eps.R	eps.I	sigma(S/m)	loss tangent	refl.R	refl.I			
2402	52.76	14.13	1.89	0.27	0.17	-0.74			
2407	52.76	14.15	1.89	0.27	0.17	-0.74			
2412	52.75	14.17	1.90	0.27	0.17	-0.74			
2417	52.74	14.18	1.91	0.27	0.17	-0.74			
2422	52.74	14.20	1.91	0.27	0.17	-0.74			
2427	52.73	14.22	1.92	0.27	0.16	-0.74			
2432	52.72	14.24	1.93	0.27	0.16	-0.74			
2437	52.72	14.26	1.93	0.27	0.16	-0.74			
2442	52.71	14.28	1.94	0.27	0.16	-0.74			
2447	52.70	14.30	1.95	0.27	0.16	-0.74			
2452	52.70	14.31	1.95	0.27	0.16	-0.74			
2457	52.69	14.33	1.96	0.27	0.15	-0.74			
2462	52.68	14.35	1.97	0.27	0.15	-0.74			
2467	52.68	14.37	1.97	0.27	0.15	-0.74			
2472	52.67	14.39	1.98	0.27	0.15	-0.74			

File: R91624 Rev 3 Page 36 of 120

Name: Body 23 deg.C, 2013/04/17, 09:27:32 Date: Body 23 deg.C, 2013/04/17, 09:27:32

Temperature(C): 23 Probe: DAK_35

Network Analyzer : HP8753X

Notes: 5 GHz Body Tissue Validation April 17 2013

Measured data

Measured (<u>iaia</u>					1
f(MHz)	eps.R	eps.I	sigma(S/m)	loss tangent	refl.R	refl.I
5160	46.93	18.88	5.42	0.40	-0.34	-0.55
5180	46.92	18.98	5.47	0.40	-0.34	-0.55
5200	46.92	18.88	5.46	0.40	-0.34	-0.55
5220	46.79	18.92	5.49	0.40	-0.35	-0.55
5240	46.81	18.87	5.50	0.40	-0.35	-0.55
5260	46.76	18.97	5.55	0.41	-0.35	-0.54
5280	46.75	19.03	5.59	0.41	-0.35	-0.54
5300	46.64	19.02	5.61	0.41	-0.35	-0.54
5320	46.61	18.96	5.61	0.41	-0.35	-0.54
5340	46.67	18.97	5.63	0.41	-0.36	-0.54
5360	46.64	19.04	5.68	0.41	-0.36	-0.54
5380	46.52	19.11	5.72	0.41	-0.36	-0.53
5400	46.48	19.06	5.73	0.41	-0.36	-0.53
5420	46.50	19.10	5.76	0.41	-0.36	-0.53
5440	46.55	19.11	5.78	0.41	-0.37	-0.53
5460	46.50	19.13	5.81	0.41	-0.37	-0.53
5480	46.39	19.13	5.83	0.41	-0.37	-0.53
5500	46.33	19.06	5.83	0.41	-0.37	-0.53
5520	46.31	19.25	5.91	0.42	-0.37	-0.52
5540	46.35	19.35	5.96	0.42	-0.38	-0.52
5560	46.33	19.24	5.95	0.42	-0.38	-0.52
5580	46.31	19.23	5.97	0.42	-0.38	-0.52
5660	46.15	19.39	6.10	0.42	-0.39	-0.51
5680	46.14	19.36	6.12	0.42	-0.39	-0.51
5700	46.13	19.31	6.12	0.42	-0.39	-0.51
5720	46.06	19.35	6.16	0.42	-0.39	-0.51
5740	45.96	19.35	6.18	0.42	-0.39	-0.51
5760	45.87	19.40	6.22	0.42	-0.39	-0.51
5780	45.92	19.45	6.26	0.42	-0.39	-0.50
5800	46.02	19.42	6.27	0.42	-0.40	-0.50
5820	45.94	19.38	6.27	0.42	-0.40	-0.50

File: R91624 Rev 3 Page 37 of 120

Target data: Body 23 deg.C

f(MHz) cps.R cps.I sigma(S/m) loss tangent refl.R refl.I 5160 49.09 18.50 5.31 0.38 -0.37 -0.55 5180 49.06 18.50 5.33 0.38 -0.37 -0.55 5200 49.01 18.51 5.35 0.38 -0.37 -0.55 5220 49.01 18.51 5.38 0.38 -0.37 -0.55 5240 48.98 18.52 5.40 0.38 -0.38 -0.55 5260 48.95 18.52 5.42 0.38 -0.38 -0.55 5280 48.92 18.53 5.44 0.38 -0.38 -0.55 5300 48.90 18.53 5.46 0.38 -0.38 -0.55 5340 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55	Target data : Body 23 deg.C										
5180 49.06 18.50 5.33 0.38 -0.37 -0.55 5200 49.03 18.51 5.35 0.38 -0.37 -0.55 5220 49.01 18.51 5.38 0.38 -0.37 -0.55 5240 48.98 18.52 5.40 0.38 -0.38 -0.55 5260 48.95 18.52 5.42 0.38 -0.38 -0.55 5280 48.92 18.53 5.44 0.38 -0.38 -0.55 5300 48.90 18.53 5.46 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.57 <td>f(MHz)</td> <td>eps.R</td> <td>eps.I</td> <td>sigma(S/m)</td> <td>loss tangent</td> <td>refl.R</td> <td>refl.I</td>	f(MHz)	eps.R	eps.I	sigma(S/m)	loss tangent	refl.R	refl.I				
5200 49.03 18.51 5.35 0.38 -0.37 -0.55 5220 49.01 18.51 5.38 0.38 -0.37 -0.55 5240 48.98 18.52 5.40 0.38 -0.38 -0.55 5260 48.95 18.52 5.42 0.38 -0.38 -0.55 5280 48.92 18.53 5.44 0.38 -0.38 -0.55 5300 48.90 18.53 5.46 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 <td>5160</td> <td>49.09</td> <td>18.50</td> <td>5.31</td> <td>0.38</td> <td>-0.37</td> <td>-0.55</td>	5160	49.09	18.50	5.31	0.38	-0.37	-0.55				
5220 49.01 18.51 5.38 0.38 -0.37 -0.55 5240 48.98 18.52 5.40 0.38 -0.38 -0.55 5260 48.95 18.52 5.42 0.38 -0.38 -0.55 5280 48.92 18.53 5.44 0.38 -0.38 -0.55 5300 48.90 18.53 5.46 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 <td>5180</td> <td>49.06</td> <td>18.50</td> <td>5.33</td> <td>0.38</td> <td>-0.37</td> <td>-0.55</td>	5180	49.06	18.50	5.33	0.38	-0.37	-0.55				
5240 48.98 18.52 5.40 0.38 -0.38 -0.55 5260 48.95 18.52 5.42 0.38 -0.38 -0.55 5280 48.92 18.53 5.44 0.38 -0.38 -0.55 5300 48.90 18.53 5.46 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 <td>5200</td> <td>49.03</td> <td>18.51</td> <td>5.35</td> <td>0.38</td> <td>-0.37</td> <td>-0.55</td>	5200	49.03	18.51	5.35	0.38	-0.37	-0.55				
5260 48.95 18.52 5.42 0.38 -0.38 -0.55 5280 48.92 18.53 5.44 0.38 -0.38 -0.55 5300 48.90 18.53 5.46 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.67 18.56 5.62 0.38 -0.39 -0.53 5480 48.67 18.56 5.64 0.38 -0.40 -0.53 5500 48.62 18.57 5.66 <td>5220</td> <td>49.01</td> <td>18.51</td> <td>5.38</td> <td>0.38</td> <td>-0.37</td> <td>-0.55</td>	5220	49.01	18.51	5.38	0.38	-0.37	-0.55				
5280 48.92 18.53 5.44 0.38 -0.38 -0.55 5300 48.90 18.53 5.46 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.62 0.38 -0.40 -0.53 5500 48.62 18.57 5.66 0.38 -0.40 -0.53 5520 48.59 18.57 5.68 <td>5240</td> <td>48.98</td> <td>18.52</td> <td>5.40</td> <td>0.38</td> <td>-0.38</td> <td>-0.55</td>	5240	48.98	18.52	5.40	0.38	-0.38	-0.55				
5300 48.90 18.53 5.46 0.38 -0.38 -0.54 5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.54 5440 48.67 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5540 48.59 18.57 5.70 <td>5260</td> <td>48.95</td> <td>18.52</td> <td>5.42</td> <td>0.38</td> <td>-0.38</td> <td>-0.55</td>	5260	48.95	18.52	5.42	0.38	-0.38	-0.55				
5320 48.87 18.54 5.49 0.38 -0.38 -0.54 5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.54 5440 48.67 18.56 5.62 0.38 -0.39 -0.53 5480 48.67 18.56 5.64 0.38 -0.40 -0.53 5500 48.62 18.57 5.66 0.38 -0.40 -0.53 5520 48.59 18.57 5.68 0.38 -0.40 -0.53 5540 48.54 18.58 5.73 <td>5280</td> <td>48.92</td> <td>18.53</td> <td>5.44</td> <td>0.38</td> <td>-0.38</td> <td>-0.55</td>	5280	48.92	18.53	5.44	0.38	-0.38	-0.55				
5340 48.84 18.54 5.51 0.38 -0.39 -0.54 5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.54 18.58 5.75 <td>5300</td> <td>48.90</td> <td>18.53</td> <td>5.46</td> <td>0.38</td> <td>-0.38</td> <td>-0.54</td>	5300	48.90	18.53	5.46	0.38	-0.38	-0.54				
5360 48.81 18.55 5.53 0.38 -0.39 -0.54 5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.40 18.59 5.85 <td>5320</td> <td>48.87</td> <td>18.54</td> <td>5.49</td> <td>0.38</td> <td>-0.38</td> <td>-0.54</td>	5320	48.87	18.54	5.49	0.38	-0.38	-0.54				
5380 48.79 18.55 5.55 0.38 -0.39 -0.54 5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5580 48.54 18.58 5.75 0.38 -0.40 -0.53 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.31 18.59 5.90 <td>5340</td> <td>48.84</td> <td>18.54</td> <td>5.51</td> <td>0.38</td> <td>-0.39</td> <td>-0.54</td>	5340	48.84	18.54	5.51	0.38	-0.39	-0.54				
5400 48.76 18.55 5.57 0.38 -0.39 -0.54 5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 <td>5360</td> <td>48.81</td> <td>18.55</td> <td>5.53</td> <td>0.38</td> <td>-0.39</td> <td>-0.54</td>	5360	48.81	18.55	5.53	0.38	-0.39	-0.54				
5420 48.73 18.56 5.60 0.38 -0.39 -0.54 5440 48.70 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 <td>5380</td> <td>48.79</td> <td>18.55</td> <td>5.55</td> <td>0.38</td> <td>-0.39</td> <td>-0.54</td>	5380	48.79	18.55	5.55	0.38	-0.39	-0.54				
5440 48.70 18.56 5.62 0.38 -0.39 -0.53 5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.41 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 <td>5400</td> <td>48.76</td> <td>18.55</td> <td>5.57</td> <td>0.38</td> <td>-0.39</td> <td>-0.54</td>	5400	48.76	18.55	5.57	0.38	-0.39	-0.54				
5460 48.67 18.56 5.64 0.38 -0.40 -0.53 5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.41 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 <td>5420</td> <td>48.73</td> <td>18.56</td> <td>5.60</td> <td>0.38</td> <td>-0.39</td> <td>-0.54</td>	5420	48.73	18.56	5.60	0.38	-0.39	-0.54				
5480 48.65 18.57 5.66 0.38 -0.40 -0.53 5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 <td>5440</td> <td>48.70</td> <td>18.56</td> <td>5.62</td> <td>0.38</td> <td>-0.39</td> <td>-0.53</td>	5440	48.70	18.56	5.62	0.38	-0.39	-0.53				
5500 48.62 18.57 5.68 0.38 -0.40 -0.53 5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5740 48.28 18.59 5.92 0.38 -0.42 -0.52 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5460	48.67	18.56	5.64	0.38	-0.40	-0.53				
5520 48.59 18.57 5.70 0.38 -0.40 -0.53 5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5480	48.65	18.57	5.66	0.38	-0.40	-0.53				
5540 48.56 18.58 5.73 0.38 -0.40 -0.53 5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5500	48.62	18.57	5.68	0.38	-0.40	-0.53				
5560 48.54 18.58 5.75 0.38 -0.40 -0.53 5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5520	48.59	18.57	5.70	0.38	-0.40	-0.53				
5580 48.51 18.58 5.77 0.38 -0.41 -0.52 5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5540	48.56	18.58	5.73	0.38	-0.40	-0.53				
5660 48.40 18.59 5.85 0.38 -0.41 -0.52 5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5560	48.54	18.58	5.75	0.38	-0.40	-0.53				
5680 48.37 18.59 5.87 0.38 -0.41 -0.52 5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5580	48.51	18.58	5.77	0.38	-0.41	-0.52				
5700 48.34 18.59 5.90 0.38 -0.42 -0.52 5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5660	48.40	18.59	5.85	0.38	-0.41	-0.52				
5720 48.31 18.59 5.92 0.38 -0.42 -0.52 5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5680		18.59	5.87	0.38	-0.41	-0.52				
5740 48.28 18.59 5.94 0.39 -0.42 -0.51 5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51			18.59								
5760 48.26 18.59 5.96 0.39 -0.42 -0.51 5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5720	48.31	18.59	5.92	0.38	-0.42	-0.52				
5780 48.23 18.59 5.98 0.39 -0.42 -0.51	5740	48.28	18.59	5.94	0.39	-0.42	-0.51				
		48.26	18.59		0.39	-0.42	-0.51				
5800 48.20 18.60 6.00 0.39 -0.42 -0.51	5780	48.23	18.59	5.98	0.39	-0.42	-0.51				
	5800	48.20	18.60	6.00	0.39	-0.42	-0.51				

File: R91624 Rev 3 Page 38 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119

Procedure Name: 5200 MHz Body Validation

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.424$ mho/m; $\epsilon_r = 47.099$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/11/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

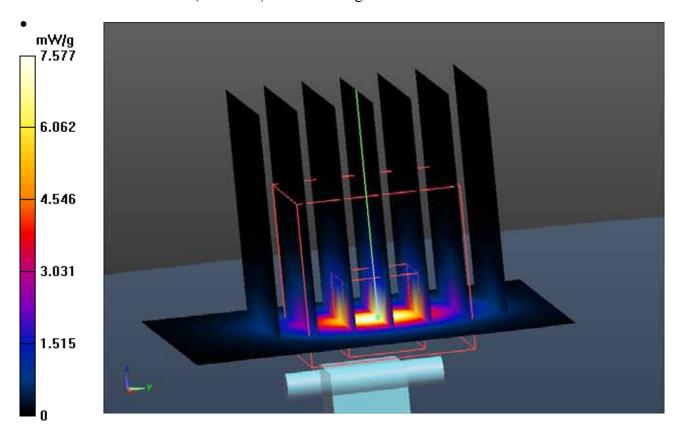
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5200 MHz Body Validation/5200 MHz Body Validation/Area Scan (51x51x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.772 mW/g

5200 MHz Body Validation/5200 MHz Body Validation/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.267 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 36.7920

SAR(1 g) = 7.43 mW/g; SAR(10 g) = 2.05 mW/g

Maximum value of SAR (measured) = 7.577 mW/g

File: R91624 Rev 3 Page 39 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119

Procedure Name: 5500 MHz Body Validation

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.774$ mho/m; $\varepsilon_r = 46.579$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/11/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

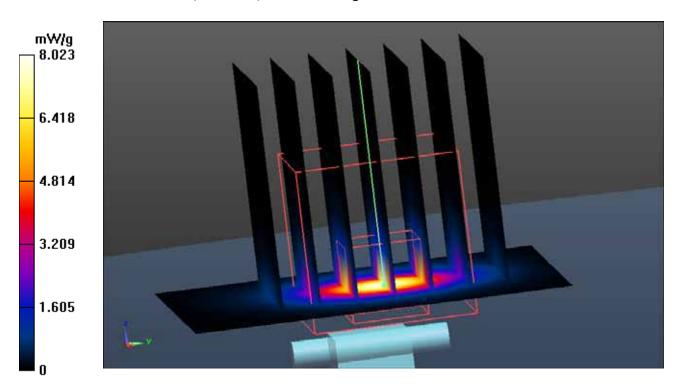
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5500 MHz Body Validation/5500 MHz Body Validation/Area Scan (51x51x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.888 mW/g

5500 MHz Body Validation/5500 MHz Body Validation/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.407 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 45.3710

SAR(1 g) = 8.2 mW/g; SAR(10 g) = 2.22 mW/g

Maximum value of SAR (measured) = 8.023 mW/g

File: R91624 Rev 3 Page 40 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5200 MHz Body Validation

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.411 \text{ mho/m}$; $\varepsilon_r = 47.089$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

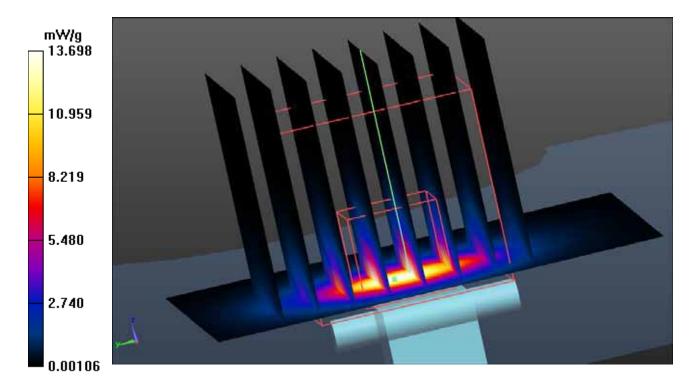
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5200 MHz Body Validation/5200 MHz Body Validation/Area Scan (51x51x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.021 mW/g

5200 MHz Body Validation/5200 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 30.096 V/m; Power Drift = 0.23 dB

Peak SAR (extrapolated) = 30.2610

SAR(1 g) = 6.98 mW/g; SAR(10 g) = 1.97 mW/g

Maximum value of SAR (measured) = 13.698 mW/g

File: R91624 Rev 3 Page 41 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119

Procedure Name: 5500 MHz Body Validation

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.795 \text{ mho/m}$; $\varepsilon_r = 46.686$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

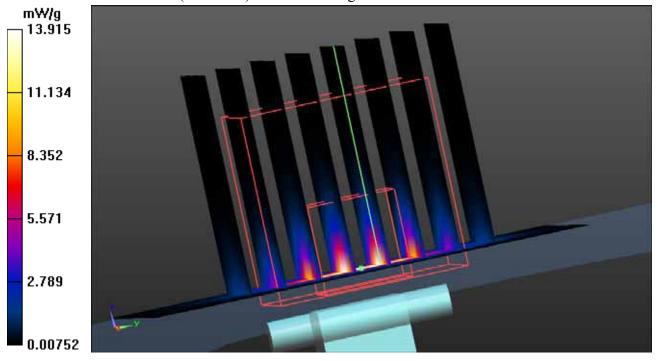
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5500 MHz Body Validation/5500 MHz Body Validation/Area Scan (51x51x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.994 mW/g

5500 MHz Body Validation/5500 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 29.816 V/m; Power Drift = 0.28 dB

Peak SAR (extrapolated) = 31.2760

SAR(1 g) = 7.17 mW/g; SAR(10 g) = 2 mW/g

Maximum value of SAR (measured) = 13.915 mW/g

File: R91624 Rev 3 Page 42 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5800 MHz Body Validation

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 6.212 \text{ mho/m}$; $\varepsilon_r = 46.139$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

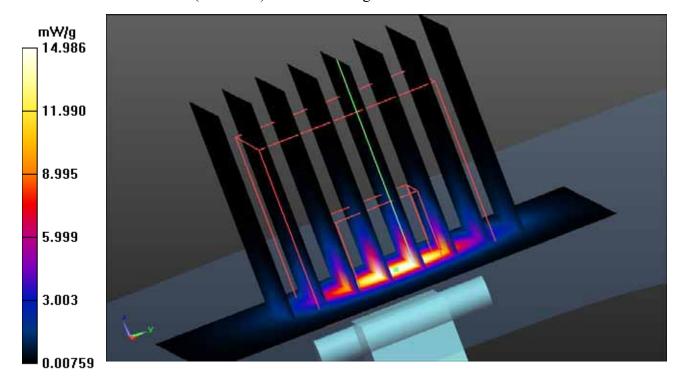
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5800 MHz Body Validation/5800 MHz Body Validation/Area Scan (51x51x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 15.928 mW/g

5800 MHz Body Validation/5800 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 29.750 V/m; Power Drift = 0.22 dB

Peak SAR (extrapolated) = 33.3110

SAR(1 g) = 7.62 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 14.986 mW/g

File: R91624 Rev 3 Page 43 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119

Procedure Name: 5200 MHz Body Validation

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.278$ mho/m; $\epsilon_r = 46.739$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/15/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

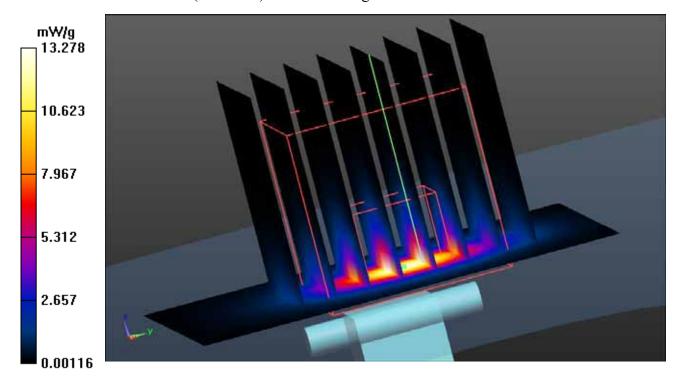
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5200 MHz Body Validation/5200 MHz Body Validation/Area Scan (51x51x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 13.175 mW/g

5200 MHz Body Validation/5200 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 35.618 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 29.7390

SAR(1 g) = 6.75 mW/g; SAR(10 g) = 1.9 mW/g

Maximum value of SAR (measured) = 13.278 mW/g

File: R91624 Rev 3 Page 44 of 120

Reissue Date: May 8, 2013

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:881 Procedure Name: 2450 MHz Body Validation

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.947$ mho/m; $\epsilon_r = 52.591$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

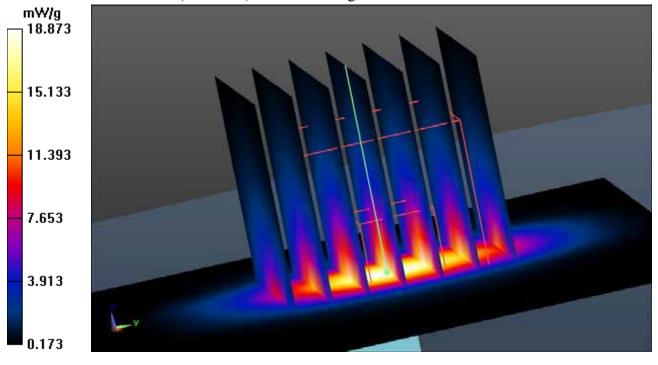
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

2450 MHz Body Validation/2450 MHz Body Validation/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 19.114 mW/g

2450 MHz Body Validation/2450 MHz Body Validation/Zoom Scan (7x7x8)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 79.967 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.4700

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 5.86 mW/g

Maximum value of SAR (measured) = 18.873 mW/g

File: R91624 Rev 3 Page 45 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119

Procedure Name: 5200 MHz Body Validation

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.462$ mho/m; $\epsilon_r = 46.921$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

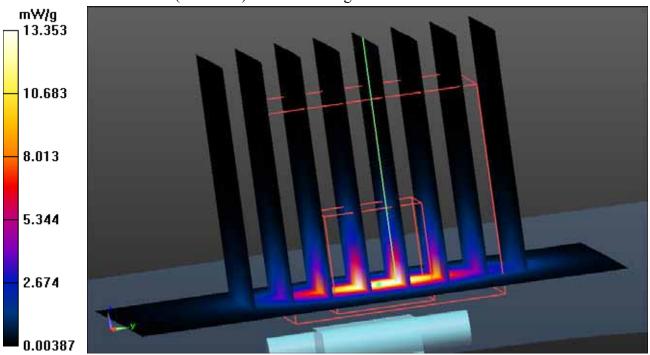
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5200 MHz Body Validation/5200 MHz Body Validation/Area Scan (51x51x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.011 mW/g

5200 MHz Body Validation/5200 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 35.720 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 29.3460

SAR(1 g) = 6.86 mW/g; SAR(10 g) = 1.92 mW/g

Maximum value of SAR (measured) = 13.353 mW/g

File: R91624 Rev 3 Page 46 of 120

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5800 MHz Body Validation

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 6.266 \text{ mho/m}$; $\varepsilon_r = 46.02$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

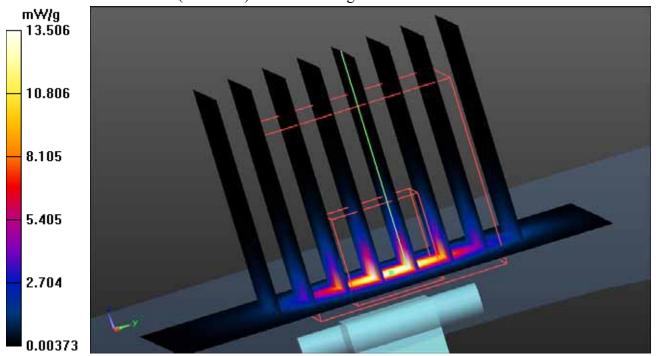
• Phantom: SAM 1; Type: SAM Twin Phantom

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

5800 MHz Body Validation/5800 MHz Body Validation/Area Scan (51x51x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.281 mW/g

5800 MHz Body Validation/5800 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 33.129 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 28.5870

SAR(1 g) = 6.66 mW/g; SAR(10 g) = 1.85 mW/g

Maximum value of SAR (measured) = 13.506 mW/g

File: R91624 Rev 3 Page 47 of 120

Appendix B - SAR test data plots

File: R91624 Rev 3 Page 48 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 5.389$ mho/m; $\epsilon_r = 47.177$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

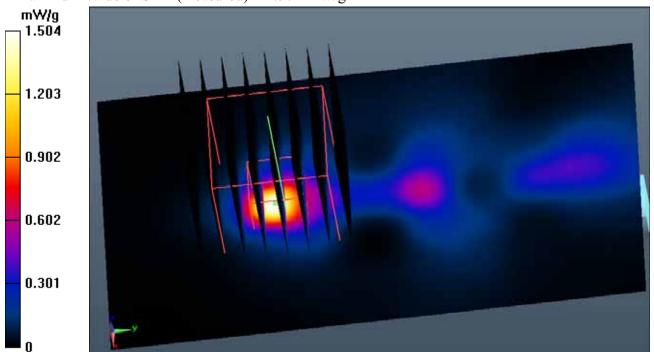
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.580 mW/g


BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.287 V/m; Power Drift = -0.45 dB

Peak SAR (extrapolated) = 3.2240

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.150 mW/g

Maximum value of SAR (measured) = 1.504 mW/g

File: R91624 Rev 3 Page 49 of 120

Serial: 1603092

Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 5.389$ mho/m; $\epsilon_r = 47.177$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.21, 4.21, 4.21); Calibrated: 3/11/2013

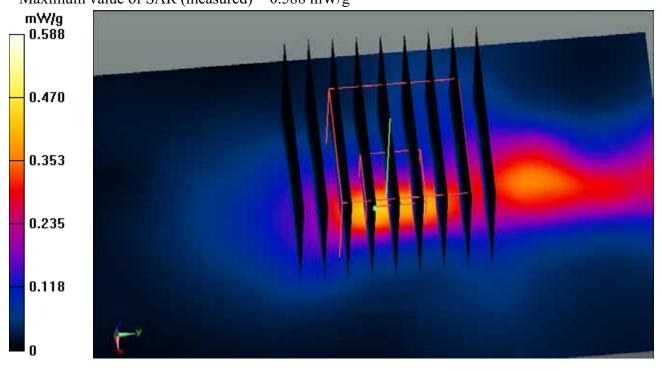
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.440 mW/g


BCM94352HMB/5 mm Left/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 6.938 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.2690

SAR(1 g) = 0.255 mW/g; SAR(10 g) = 0.069 mW/gMaximum value of SAR (measured) = 0.588 mW/g

File: R91624 Rev 3 Page 50 of 120

Serial: 1603092

Procedure Name: 5 mm Front

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 5.389$ mho/m; $\varepsilon_r = 47.177$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.21, 4.21, 4.21); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

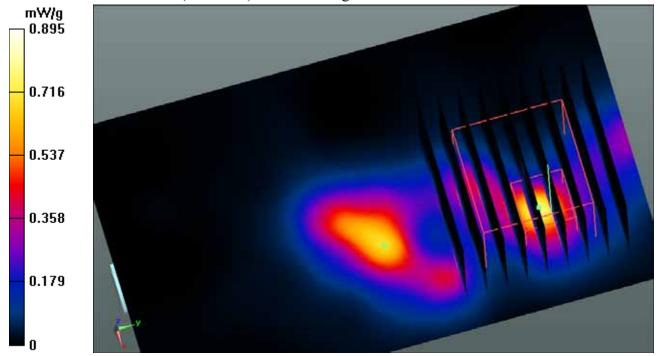
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2012

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.792 mW/g


BCM94352HMB/5 mm Front/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.651 V/m; Power Drift = 1.08 dB

Peak SAR (extrapolated) = 3.6770

SAR(1 g) = 0.303 mW/g; SAR(10 g) = 0.075 mW/g

Maximum value of SAR (measured) = 0.895 mW/g

File: R91624 Rev 3 Page 51 of 120

Serial: 1603092

Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 5.471$ mho/m; $\epsilon_r = 46.923$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

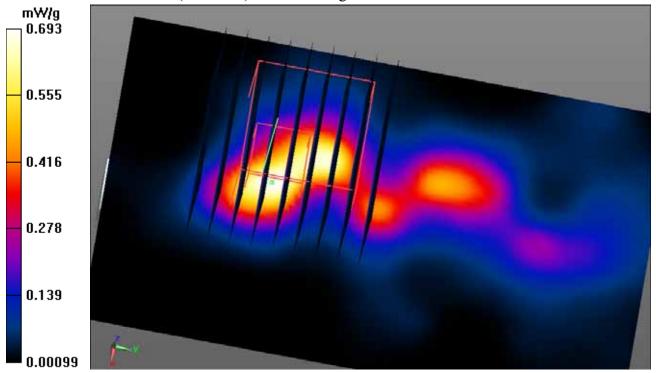
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.721 mW/g

BCM94352HMB/5 mm Back/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 6.172 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.2830

SAR(1 g) = 0.328 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.693 mW/g

File: R91624 Rev 3 Page 52 of 120

Test Report Reissue Date: May 8, 2013

DUT: BCM94352HMB; Type: 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card;

Serial: 1603092

Procedure Name: 5 mm Top

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 5.471$ mho/m; $\varepsilon_r = 46.923$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

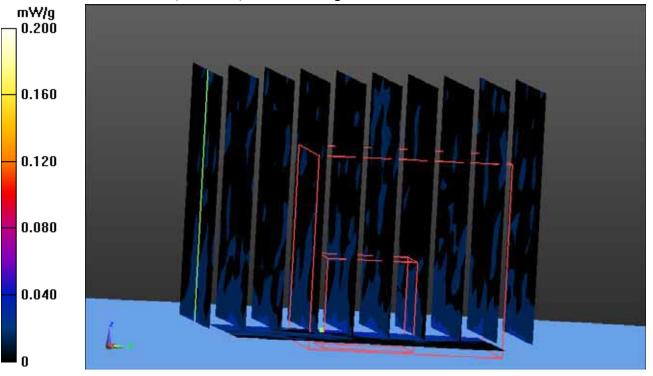
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Top/Area Scan (151x151x1): Measurement grid: dx=2mm, dy=2mm Maximum value of SAR (interpolated) = 0.070 mW/g

BCM94352HMB/5 mm Top/Zoom Scan (9x10x15)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 1.553 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.2020

SAR(1 g) = 0.018 mW/g; SAR(10 g) = 0.00707 mW/g

Maximum value of SAR (measured) = 0.043 mW/g

File: R91624 Rev 3 Page 53 of 120

Serial: 1603092

Procedure Name: 5 mm Bottom

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 5.471$ mho/m; $\epsilon_r = 46.923$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

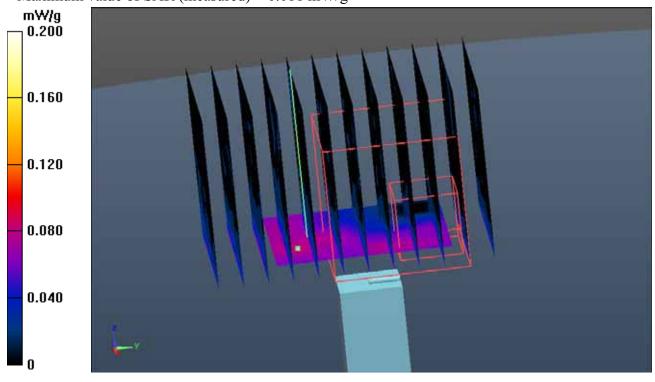
• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)


BCM94352HMB/5 mm Bottom/Area Scan (71x71x1): Measurement grid: dx=4mm, dy=4mm Maximum value of SAR (interpolated) = 0.082 mW/g

BCM94352HMB/5 mm Bottom/Zoom Scan (9x12x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.397 V/m; Power Drift = 0.59 dB

Peak SAR (extrapolated) = 0.3860

SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.016 mW/gMaximum value of SAR (measured) = 0.081 mW/g

File: R91624 Rev 3 Page 54 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; $\sigma = 5.463$ mho/m; $\epsilon_r = 47.101$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

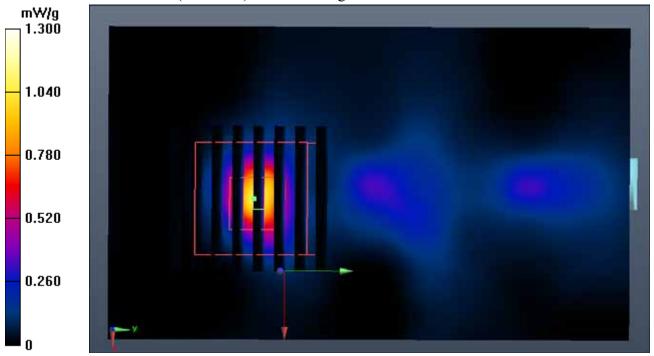
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.080 mW/g

BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 6.076 V/m; Power Drift = -0.44 dB

Peak SAR (extrapolated) = 3.2690

SAR(1 g) = 0.576 mW/g; SAR(10 g) = 0.124 mW/g

Maximum value of SAR (measured) = 1.300 mW/g

File: R91624 Rev 3 Page 55 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz; $\sigma = 5.48$ mho/m; $\varepsilon_r = 47.072$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

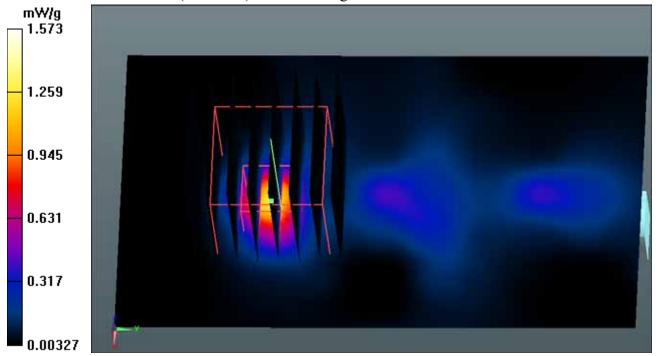
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.263 mW/g


BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.550 V/m; Power Drift = -0.27 dB

Peak SAR (extrapolated) = 4.0360

SAR(1 g) = 0.703 mW/g; SAR(10 g) = 0.151 mW/g

Maximum value of SAR (measured) = 1.573 mW/g

File: R91624 Rev 3 Page 56 of 120

Test Report

Serial: 1603092

Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz; $\sigma = 5.334$ mho/m; $\varepsilon_r = 46.66$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/15/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013

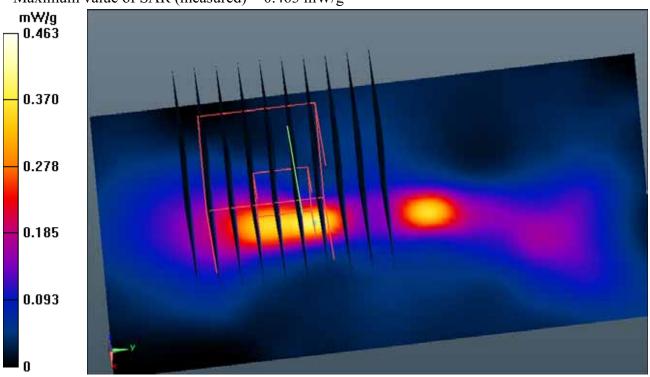
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.398 mW/g


BCM94352HMB/5 mm Left/Zoom Scan (9x10x15)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 3.587 V/m; Power Drift = 0.25 dB

Peak SAR (extrapolated) = 1.2700

SAR(1 g) = 0.202 mW/g; SAR(10 g) = 0.055 mW/gMaximum value of SAR (measured) = 0.463 mW/g

File: R91624 Rev 3 Page 57 of 120

Serial: 1603092

Procedure Name: 5 mm Front

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz; $\sigma = 5.334$ mho/m; $\epsilon_r = 46.66$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/15/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

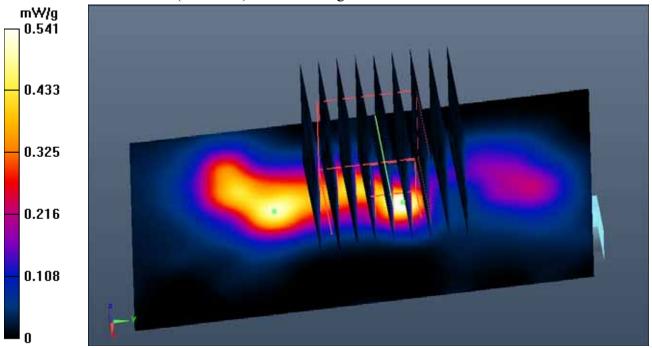
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.601 mW/g


BCM94352HMB/5 mm Front/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.133 V/m; Power Drift = -0.30 dB

Peak SAR (extrapolated) = 1.4550

SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.073 mW/g

Maximum value of SAR (measured) = 0.541 mW/g

File: R91624 Rev 3 Page 58 of 120

Test Report Reissue Date: May 8, 2013

DUT: BCM94352HMB; Type: 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card;

Serial: 1603092

Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz; $\sigma = 5.552$ mho/m; $\varepsilon_r = 46.763$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

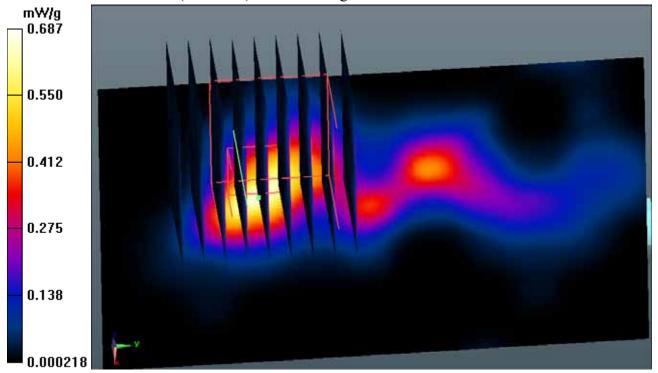
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.665 mW/g


BCM94352HMB/5 mm Back/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.890 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.1280

SAR(1 g) = 0.337 mW/g; SAR(10 g) = 0.105 mW/g

Maximum value of SAR (measured) = 0.687 mW/g

File: R91624 Rev 3 Page 59 of 120

Test Report Reissue Date: May 8, 2013

DUT: BCM94352HMB; Type: 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card;

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5320 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5320 MHz; $\sigma = 5.578$ mho/m; $\epsilon_r = 46.925$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

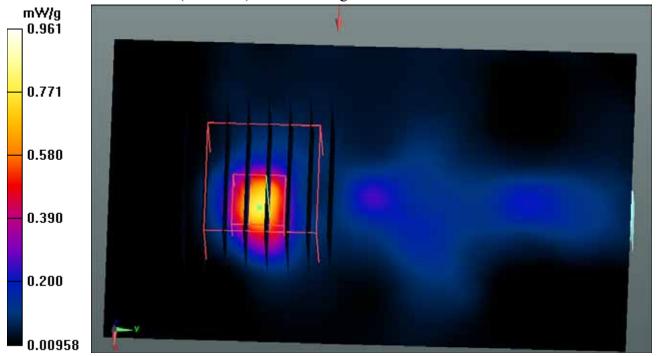
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.806 mW/g


BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.118 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 2.7090

SAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.961 mW/g

File: R91624 Rev 3 Page 60 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; $\sigma = 5.795$ mho/m; $\varepsilon_r = 46.686$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

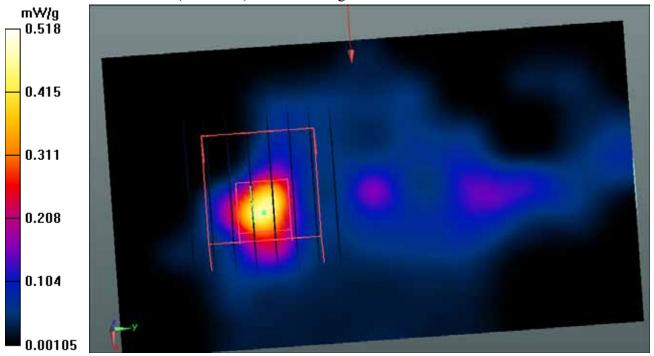
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.479 mW/g


BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.726 V/m; Power Drift = 0.41 dB

Peak SAR (extrapolated) = 1.0520

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.057 mW/g

Maximum value of SAR (measured) = 0.518 mW/g

File: R91624 Rev 3 Page 61 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5580 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5580 MHz; $\sigma = 5.903$ mho/m; $\varepsilon_r = 46.497$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

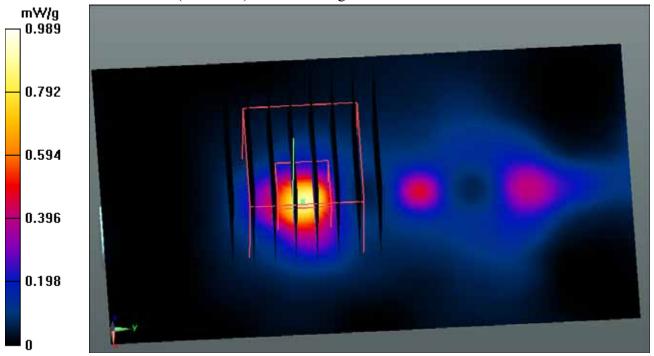
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.916 mW/g


BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.353 V/m; Power Drift = 0.66 dB

Peak SAR (extrapolated) = 2.1800

SAR(1 g) = 0.452 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.989 mW/g

File: R91624 Rev 3 Page 62 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5700 MHz; $\sigma = 6.062$ mho/m; $\epsilon_r = 46.29$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.84, 3.84, 3.84); Calibrated: 3/11/2012

• Sensor-Surface: 2mm (Mechanical Surface Detection)

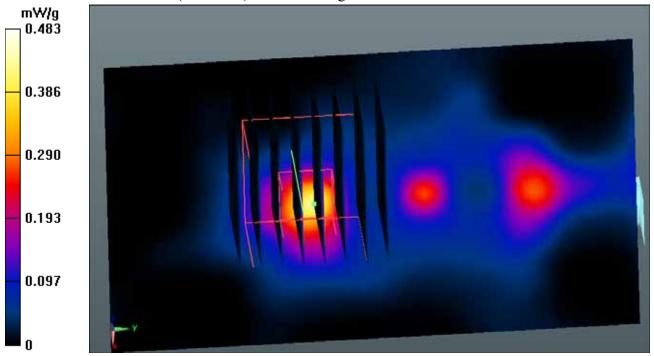
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2012

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.430 mW/g


BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.068 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.0210

SAR(1 g) = 0.213 mW/g; SAR(10 g) = 0.051 mW/g

Maximum value of SAR (measured) = 0.483 mW/g

File: R91624 Rev 3 Page 63 of 120

Test Report Reissue Date: May 8, 2013

DUT: BCM94352HMB; Type: 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card;

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 6.122$ mho/m; $\varepsilon_r = 46.221$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

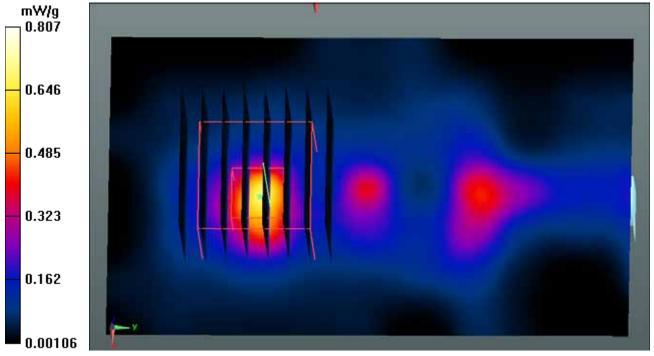
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.692 mW/g

BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.852 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.9440

SAR(1 g) = 0.382 mW/g; SAR(10 g) = 0.097 mW/g

Maximum value of SAR (measured) = 0.807 mW/g

File: R91624 Rev 3 Page 64 of 120

Test Report Reissue Date: May 8, 2013

DUT: BCM94352HMB; Type: 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card;

Serial: 1603092

Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz; $\sigma = 6.24$ mho/m; $\epsilon_r = 46.098$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

Test Date: 4/11/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

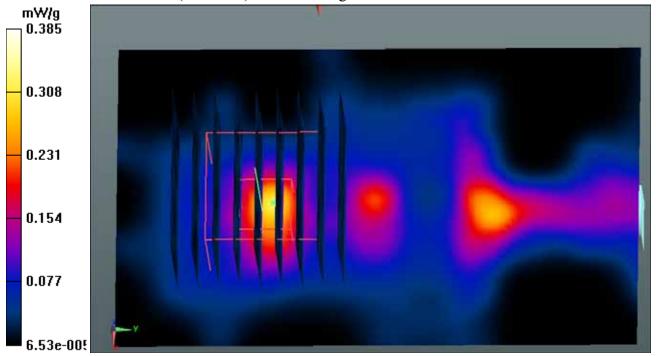
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.316 mW/g

BCM94352HMB/5 mm Left/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 4.536 V/m; Power Drift = -0.57 dB

Peak SAR (extrapolated) = 1.6780

SAR(1 g) = 0.186 mW/g; SAR(10 g) = 0.046 mW/g

Maximum value of SAR (measured) = 0.385 mW/g

File: R91624 Rev 3 Page 65 of 120

Serial: 1603092

Procedure Name: 5 mm Front

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz; σ = 6.24 mho/m; ϵ_r = 46.081; ρ = 1000

 kg/m^3

Phantom section: Flat Section

Test Date: 4/10/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2012

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2012

• Phantom: SAM 1; Type: SAM Twin Phantom

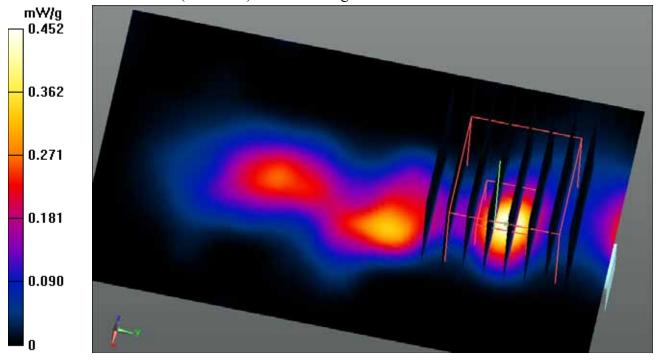
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.467 mW/g

BCM94352HMB/5 mm Front/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 3.056 V/m; Power Drift = 1.07 dB

Peak SAR (extrapolated) = 0.8060

SAR(1 g) = 0.206 mW/g; SAR(10 g) = 0.046 mW/g

Maximum value of SAR (measured) = 0.452 mW/g

File: R91624 Rev 3 Page 66 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz; $\sigma = 6.277$ mho/m; $\epsilon_r = 45.942$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

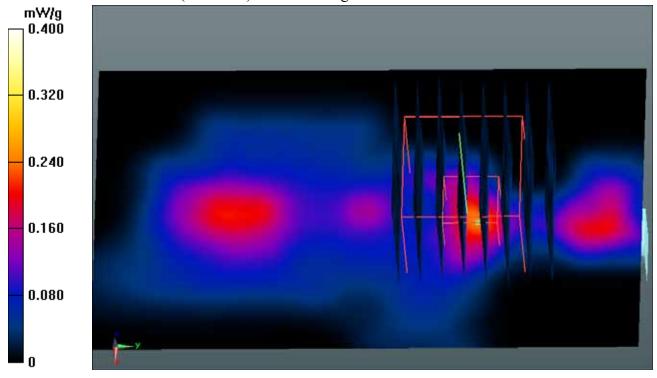
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.243 mW/g

BCM94352HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 3.343 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.5010

SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.032 mW/g

Maximum value of SAR (measured) = 0.236 mW/g

File: R91624 Rev 3 Page 67 of 120

Serial: 1603092

Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz; $\sigma = 6.277$ mho/m; $\varepsilon_r = 45.942$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

Test Date: 4/17/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

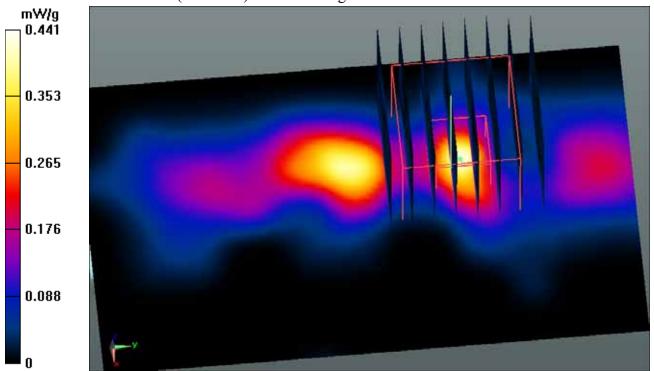
• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.438 mW/g

BCM94352HMB/5 mm Back/Zoom Scan (8x8x15)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 3.963 V/m; Power Drift = -0.45 dB

Peak SAR (extrapolated) = 0.8250

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.050 mW/g

Maximum value of SAR (measured) = 0.441 mW/g

File: R91624 Rev 3 Page 68 of 120

Serial: 1603092

Procedure Name: 5 mm front

Communication System: 802.11b - 1 Mbps; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.898$ mho/m; $\varepsilon_r = 52.713$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

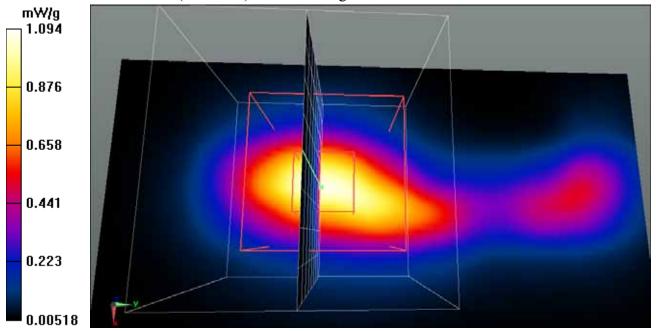
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm front/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.075 mW/g


BCM94352HMB/5 mm front/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 17.911 V/m; Power Drift = 0.27 dB

Peak SAR (extrapolated) = 1.4910

SAR(1 g) = 0.707 mW/g; SAR(10 g) = 0.321 mW/g

Maximum value of SAR (measured) = 1.094 mW/g

File: R91624 Rev 3 Page 69 of 120

Serial: 1603092

Procedure Name: 5 mm Right

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.928$ mho/m; $\epsilon_r = 52.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

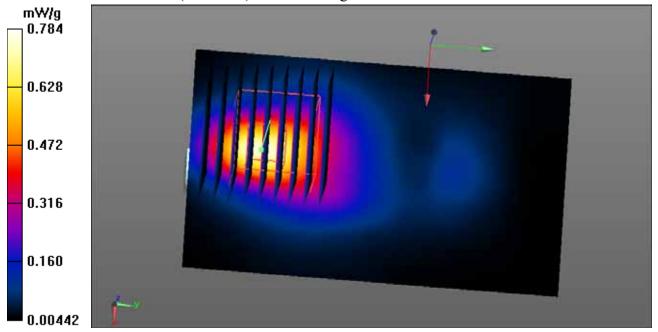
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.762 mW/g

BCM94352HMB/5 mm Right/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=4mm

Reference Value = 7.077 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.0940

SAR(1 g) = 0.499 mW/g; SAR(10 g) = 0.230 mW/g

Maximum value of SAR (measured) = 0.784 mW/g

File: R91624 Rev 3 Page 70 of 120

Serial: 1603092

Procedure Name: 5 mm Left

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.928$ mho/m; $\varepsilon_r = 52.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

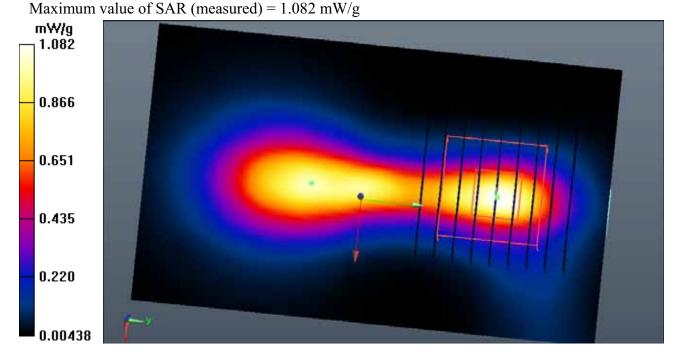
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.122 mW/g


BCM94352HMB/5 mm Left/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=4mm

Reference Value = 18.484 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.4880

SAR(1 g) = 0.640 mW/g; SAR(10 g) = 0.261 mW/g

File: R91624 Rev 3 Page 71 of 120

Serial: 1603092

Procedure Name: 5 mm Front

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.928$ mho/m; $\varepsilon_r = 52.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

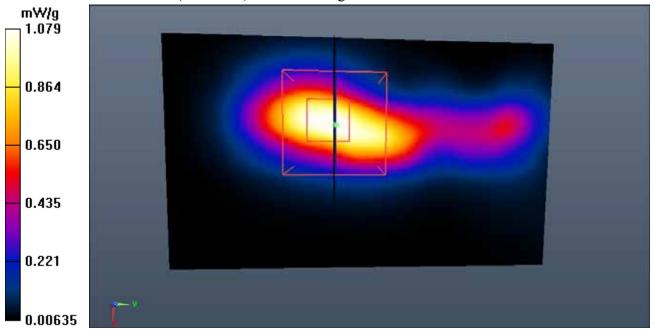
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.120 mW/g

BCM94352HMB/5 mm Front/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=4mm

Reference Value = 16.552 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.4990

SAR(1 g) = 0.709 mW/g; SAR(10 g) = 0.328 mW/g

Maximum value of SAR (measured) = 1.079 mW/g

File: R91624 Rev 3 Page 72 of 120

Serial: 1603092

Procedure Name: 5 mm Back

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.928$ mho/m; $\varepsilon_r = 52.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

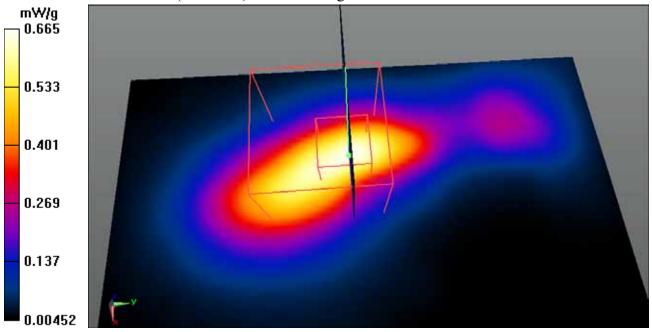
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.664 mW/g

BCM94352HMB/5 mm Back/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=4mm

Reference Value = 9.518 V/m; Power Drift = 0.50 dB

Peak SAR (extrapolated) = 0.8970

SAR(1 g) = 0.437 mW/g; SAR(10 g) = 0.211 mW/g

Maximum value of SAR (measured) = 0.665 mW/g

File: R91624 Rev 3 Page 73 of 120

Serial: 1603092

Procedure Name: 5 mm Top

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.928$ mho/m; $\varepsilon_r = 52.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

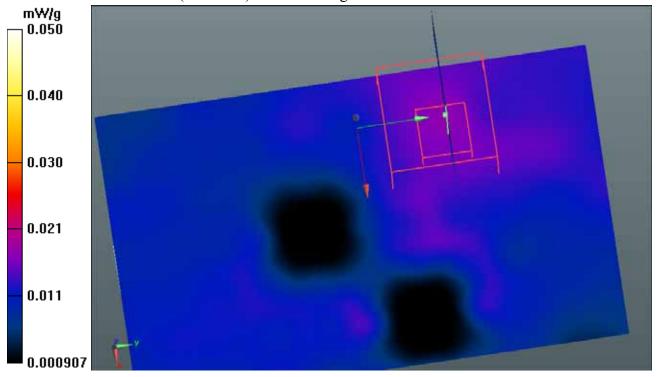
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Top/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.017 mW/g

BCM94352HMB/5 mm Top/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=4mm

Reference Value = 1.512 V/m; Power Drift = 1.17 dB

Peak SAR (extrapolated) = 0.0220

SAR(1 g) = 0.013 mW/g; SAR(10 g) = 0.00743 mW/g

Maximum value of SAR (measured) = 0.018 mW/g

File: R91624 Rev 3 Page 74 of 120

Serial: 1603092

Procedure Name: 5 mm Bottom

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.928$ mho/m; $\epsilon_r = 52.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

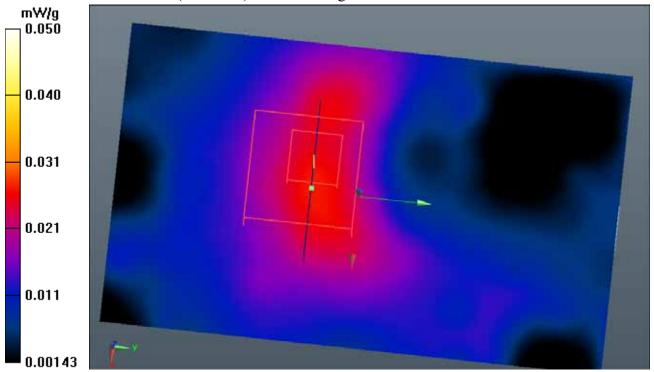
• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm Bottom/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.027 mW/g


BCM94352HMB/5 mm Bottom/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 2.584 V/m; Power Drift = 0.33 dB

Peak SAR (extrapolated) = 0.0450

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.012 mW/g

Maximum value of SAR (measured) = 0.027 mW/g

File: R91624 Rev 3 Page 75 of 120

Serial: 1603092

Procedure Name: 5 mm front

Communication System: 802.11b - 1 Mbps; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.965$ mho/m; $\epsilon_r = 52.584$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: 4/16/2013 DASY5 Configuration:

• Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1321; Calibrated: 3/5/2013

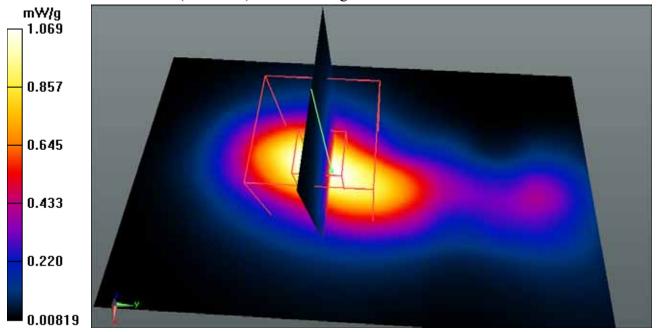
• Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM94352HMB/5 mm front/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.083 mW/g

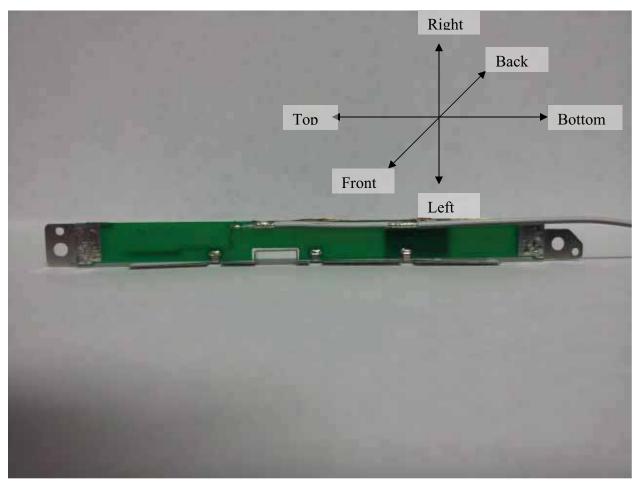
BCM94352HMB/5 mm front/Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=4mm

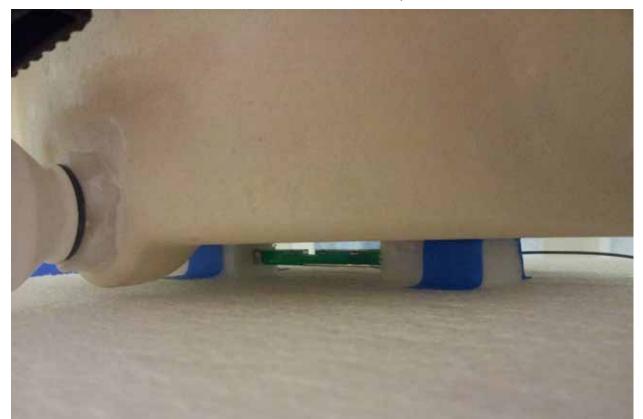
Reference Value = 18.963 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.4640

SAR(1 g) = 0.704 mW/g; SAR(10 g) = 0.347 mW/g

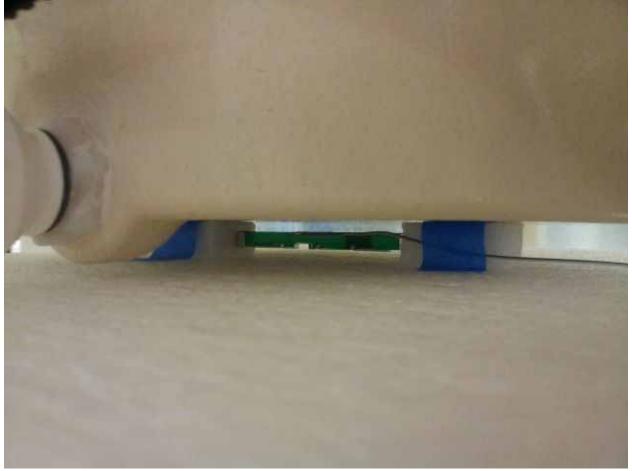

Maximum value of SAR (measured) = 1.069 mW/g

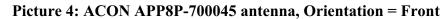
File: R91624 Rev 3 Page 76 of 120

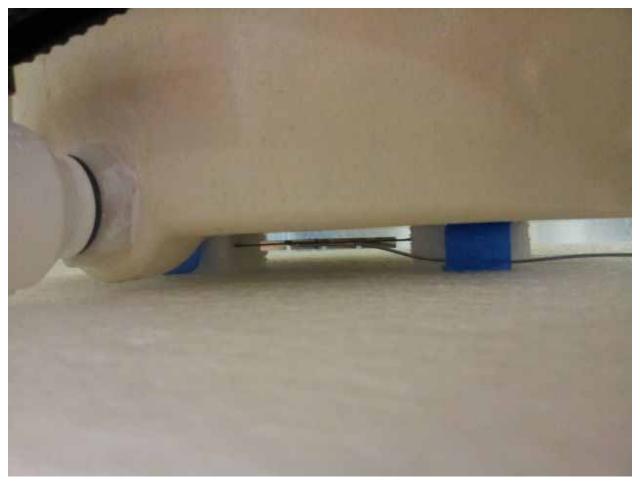

Appendix C – SAR Test Setup Photos

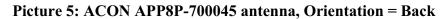
File: R91624 Rev 3 Page 77 of 120

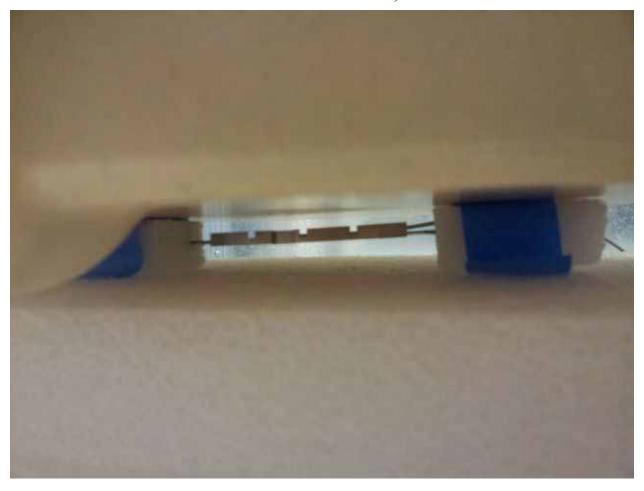
Picture 1: ACON APP8P-700045 antenna

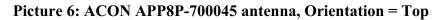

File: R91624 Rev 3 Page 78 of 120

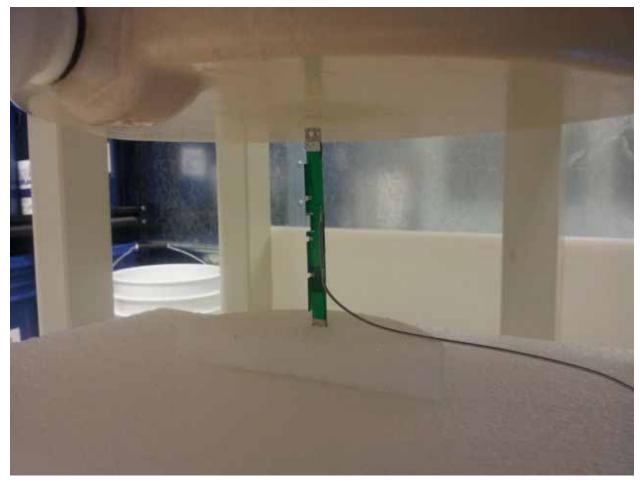

Picture 2: ACON APP8P-700045 antenna, Orientation= Left

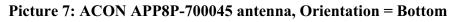

Page 79 of 120 File: R91624 Rev 3



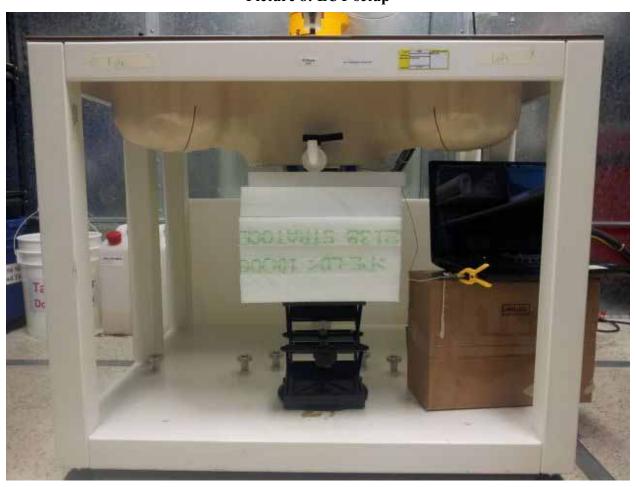

Page 80 of 120 File: R91624 Rev 3




File: R91624 Rev 3 Page 81 of 120




File: R91624 Rev 3 Page 82 of 120


File: R91624 Rev 3 Page 83 of 120

File: R91624 Rev 3 Page 84 of 120

Picture 8: EUT setup

File: R91624 Rev 3 Page 85 of 120

Appendix D – Probe Calibration Data Sheets

File: R91624 Rev 3 Page 86 of 120

2650

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

NTS

Certificate No: EX3-3833 Mar13

Accreditation No.: SCS 108

C

S

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3833

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

March 11, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013 Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Calibrated by:

Claudio Leubler

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: March 12, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3833_Mar13

Page 1 of 11

File: R91624 Rev 3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrassa 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3833_Mar13 Page 2 of 11

File: R91624 Rev 3 Page 88 of 120

Report Date: May 2, 2013

Test Report Reissue Date: May 8, 2013

EX3DV4 - SN:3833 March 11, 2013

Probe EX3DV4

SN:3833

Manufactured: November 7, 2011 Calibrated: March 11, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3833_Mar13

Page 3 of 11

File: R91624 Rev 3 Page 89 of 120

Report Date: May 2, 2013

EX3DV4-SN:3833 March 11, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.47	0.49	0.35	± 10.1 %
DCP (mV) ⁸	101.1	101.3	101.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0 CW	CW	X	X 0.0	0.0	1.0	0.00	154.8	±3.5 %
		Y	0.0	0.0	1.0		154.2	
		Z	0.0	0.0	1.0		133.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3833_Mar13

Page 4 of 11

File: R91624 Rev 3 Page 90 of 120

A The uncertainties of NormX,Y,Z do not affect the E³-field uncertainty inside TSL (see Pages 5 and 6).
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Test Report Reissue Date: May 8, 2013 Report Date: May 2, 2013

EX3DV4- SN:3833

March 11, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.31	9.31	9.31	0.28	1.05	± 12.0 %
835	41.5	0.90	8.91	8.91	8.91	0.37	0.89	± 12.0 %
900	41.5	0.97	8.77	8.77	8.77	0.27	1.00	± 12.0 %
1750	40.1	1.37	7.47	7.47	7.47	0.48	0.72	± 12.0 %
1900	40.0	1.40	7.22	7.22	7.22	0.37	0.82	± 12.0 %
2450	39.2	1.80	6.71	6.71	6.71	0.39	0.76	± 12.0 %
5200	36.0	4.66	4.78	4.78	4.78	0.30	1.80	± 13.1 %
5300	35.9	4.76	4.55	4.55	4.55	0.30	1.80	± 13.1 %
5600	35.5	5.07	4.01	4.01	4.01	0.40	1.80	± 13.1 %
5800	35.3	5.27	3.90	3.90	3.90	0.50	1.80	± 13.1 %

Certificate No: EX3-3833_Mar13

Page 5 of 11

File: R91624 Rev 3 Page 91 of 120

^O Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.

Report Date: May 2, 2013

EX3DV4-SN:3833

March 11, 2013

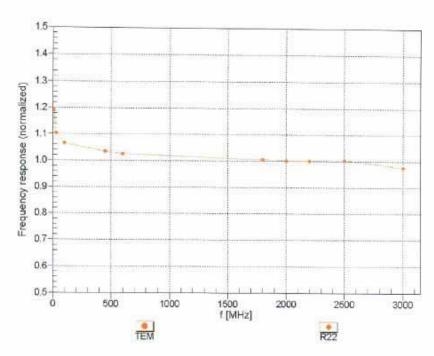
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.00	9.00	9.00	0.37	0.90	± 12.0 %
835	55.2	0.97	8.93	8.93	8.93	0.35	1.00	± 12.0 %
900	55.0	1.05	8.75	8.75	8.75	0.80	0.60	± 12.0 %
1750	53.4	1.49	7.21	7.21	7.21	0.75	0.63	± 12.0 %
1900	53.3	1.52	6.97	6.97	6.97	0.31	0.99	± 12.0 %
2450	52.7	1.95	6.69	6.69	6.69	0.80	0.57	± 12.0 %
5200	49.0	5,30	4.25	4.25	4.25	0.30	1.90	± 13.1 %
5300	48.9	5.42	4.06	4.06	4.06	0.30	1.90	± 13.1 %
5600	48.5	5.77	3.57	3.57	3.57	0.40	1.90	± 13.1 %
5800	48.2	6.00	3.64	3.64	3.64	0.50	1.90	± 13.1 %

Certificate No: EX3-3833_Mar13

Page 6 of 11


File: R91624 Rev 3 Page 92 of 120

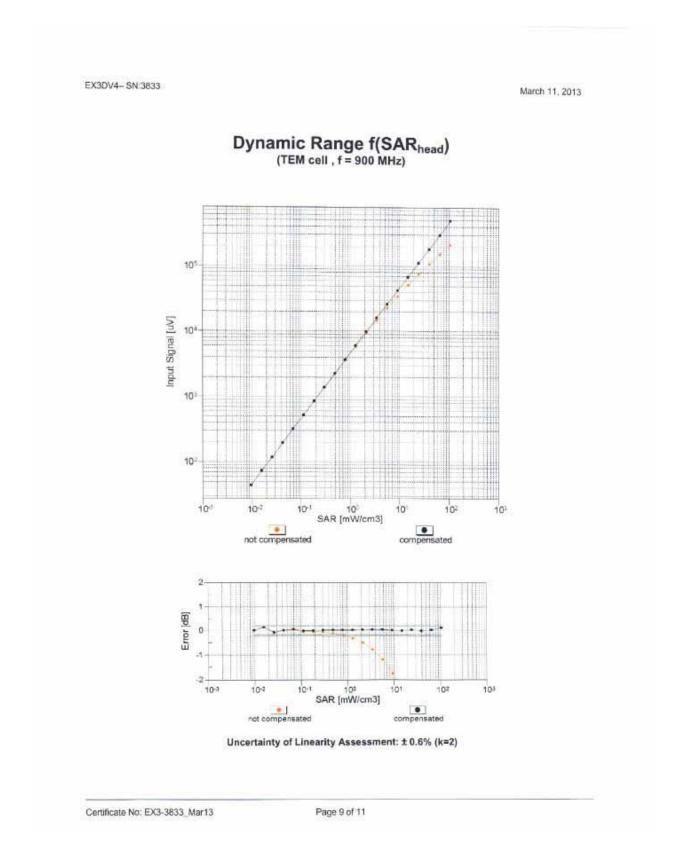
Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the Corn/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to \pm 5%. The uncertainty is the RSS of the Corn/F uncertainty for indicated target tissue parameters.

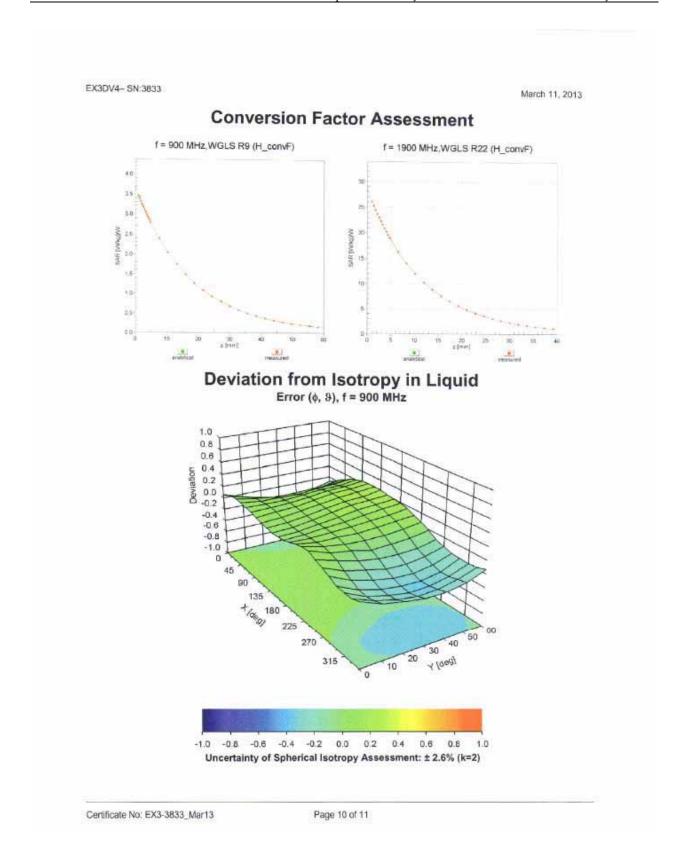
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3833_Mar13


Page 7 of 11

File: R91624 Rev 3 Page 93 of 120


Certificate No: EX3-3833_Mar13

File: R91624 Rev 3 Page 94 of 120

Page 8 of 11

File: R91624 Rev 3 Page 95 of 120

File: R91624 Rev 3 Page 96 of 120

Report Date: May 2, 2013

EX3DV4- SN:3833

March 11, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	11.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3833_Mar13

Page 11 of 11

File: R91624 Rev 3 Page 97 of 120

Appendix E – Dipole Calibration Data Sheets

File: R91624 Rev 3 Page 98 of 120

#2654

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client N

Certificate No: D2450V2-881_Feb12

Accreditation No.: SCS 108

CALIBRATION (CERTIFICATI		
Object	D2450V2 - SN: 8	381	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits ab	ove 700 MHz
Calibration date:	February 07, 201	12	
		ional standards, which realize the physical u probability are given on the following pages a	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)	°C and humidity < 70%.
Calibration Equipment used (M&)	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
	US37292783		
Power sensor HP 8481A	0537292783	05-Oct-11 (No. 217-01451)	Oct-12
	SN: 5086 (20g)	05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368)	Oct-12 Apr-12
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5086 (20g) SN: 5047.2 / 06327	[18] : [18] [18] [18] [18] [18] [18] [18] [18]	Apr-12 Apr-12
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12 Apr-12 Dec-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	SN: 5086 (20g) SN: 5047.2 / 06327	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371)	Apr-12 Apr-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11)	Apr-12 Apr-12 Dec-12
Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11)	Apr-12 Apr-12 Dec-12 Jul-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A DF generator D&E EMT-06	SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A DF generator D&E EMT-06	SN: 5096 (20g) SN: 5047.2 / 06927 SN: 3205 SN: 601	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390565 S4206	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-10 In house check: Oct-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A DF generator D&E EMT-06 Network Analyzer HP 8753E	SN: 5096 (20g) SN: 5047.2 / 06927 SN: 3205 SN: 601 ID # MY41092317 100005 US37390565 S4206 Name	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-10 In house check: Oct-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A DF generator D&E EMT-06 Network Analyzer HP 8753E	SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390565 S4206	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A IF generator II&E EMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390565 S4206 Name Israe El-Naouq	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-10 In house check: Oct-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&E EMT-06 Network Analyzer HP 8753E	SN: 5096 (20g) SN: 5047.2 / 06927 SN: 3205 SN: 601 ID # MY41092317 100005 US37390565 S4206 Name	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-10 In house check: Oct-12
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A DF generator D&E EMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390565 S4206 Name Israe El-Naouq	29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician	Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-10 In house check: Oct-12

Certificate No: D2450V2-881_Feb12

Page 1 of 8

File: R91624 Rev 3 Page 99 of 120

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étaionnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-881_Feb12 Page 2 of 8

File: R91624 Rev 3 Page 100 of 120

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.23 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.93 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-881_Feb12

Page 3 of 8

File: R91624 Rev 3 Page 101 of 120

Report Date: May 2, 2013

Test Report Reissue Date: May 8, 2013

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω + 3.1 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω + 4.6 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 18, 2010

Page 4 of 8

File: R91624 Rev 3 Page 102 of 120

DASY5 Validation Report for Head TSL

Date: 07.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN; 881

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

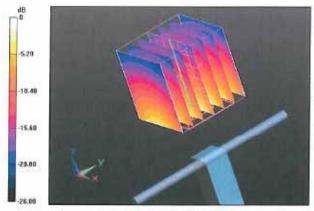
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

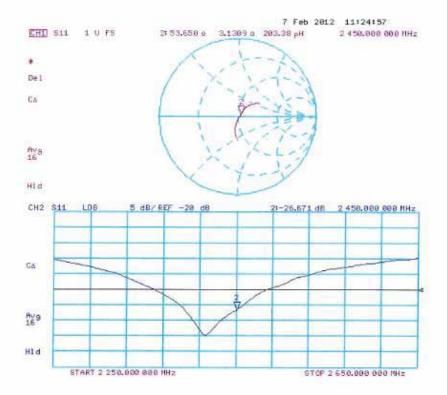

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.0 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 28.2110

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.23 mW/gMaximum value of SAR (measured) = 17.226 mW/g


0 dB = 17.230 mW/g = 24.73 dB mW/g

Certificate No: D2450V2-881_Feb12

Page 5 of 8

File: R91624 Rev 3 Page 103 of 120

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-881_Feb12

Page 6 of 8

File: R91624 Rev 3 Page 104 of 120

DASY5 Validation Report for Body TSL

Date: 07.02.2012

Test Report

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN; 881

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011

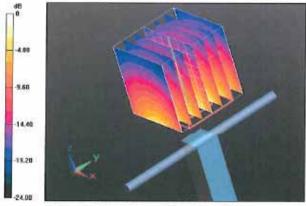
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

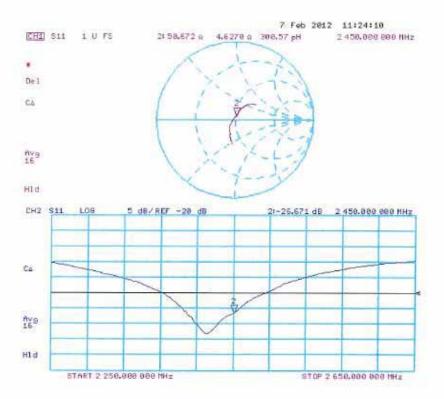

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.726 V/m; Power Drift = 0.00039 dB

Peak SAR (extrapolated) = 26,1450

SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.93 mW/g

Maximum value of SAR (measured) = 16.781 mW/g


0 dB = 16.780 mW/g = 24.50 dB mW/g

Certificate No: D2450V2-881_Feb12

Page 7 of 8

File: R91624 Rev 3 Page 105 of 120

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-881_Feb12

Page 8 of 8

File: R91624 Rev 3 Page 106 of 120

2658

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client N

Certificate No: D5GHzV2-1119_Feb12

Accreditation No.: SCS 108

Object	D5GHzV2 - SN:	1119	
Calibration procedure(s)	QA CAL-22.v1 Calibration proce	edure for dipole validation kits be	tween 3-6 GHz
Calibration date:	February 01, 201	2	
		ional standards, which realize the physical un robability are given on the following pages ar	
All calibrations have been conduc Calibration Equipment used (M&		ry facility: environment temperature (22 \pm 3)%	C and humidity < 70%.
Calibration Equipment used (M&			
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration Oct-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A	TE critical for calibration)		Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451)	Scheduled Calibration Oct-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451)	Scheduled Calibration Oct-12 Oct-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368)	Scheduled Calibration Oct-12 Oct-12 Apr-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12
	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3603 SN: 601	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power sensor HP 8481A RE generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06927 SN: 3603 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100006	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04 Aug 99 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Tower sensor HP 8481A RE generator R&S SMT-06 Retwork Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01368) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04 Aug 09 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RE generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01368) 30-Dec-11 (No. EX3-3503_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04 Aug 00 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-12 Apr-12 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12

Certificate No: D5GHzV2-1119_Feb12

Page 1 of 13

File: R91624 Rev 3 Page 107 of 120

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1119_Feb12 Page 2 of 13

File: R91624 Rev 3 Page 108 of 120

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz	
riequency	5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW /g ± 16.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.46 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	84.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.0 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1119_Feb12

Page 3 of 13

File: R91624 Rev 3 Page 109 of 120

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.22 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.93 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.6 mW / g ± 16.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.2 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.21 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	72.2 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.02 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.3 mW / g ± 17.6 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.95 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	79.7 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.1 mW / g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1119_Feb12

File: R91624 Rev 3 Page 111 of 120

Page 5 of 13

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.28 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.33 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.4 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.03 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.3 mW / g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1119_Feb12

File: R91624 Rev 3 Page 112 of 120

Page 6 of 13

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.2 Ω - 7.5 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	54.8 Ω - 3.3 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.0 Ω - 2.8 jΩ
Return Loss	- 23.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	52.3 Ω - 4.4 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	55.9 Ω - 0.7 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	58.2 Ω - 0.5 jΩ
Return Loss	- 22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.207 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

Certificate No: D5GHzV2-1119_Feb12

Page 7 of 13

File: R91624 Rev 3 Page 113 of 120

Test Report Reissue Date: May 8, 2013

DASY5 Validation Report for Head TSL

Date: 01.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ mho/m; $\epsilon_r = 36.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.9$ mho/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.22$ mho/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.696 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 30.1420

SAR(1 g) = 8.05 mW/g; SAR(10 g) = 2.3 mW/g

Maximum value of SAR (measured) = 18.341 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.190 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.7070

SAR(1 g) = 8.46 mW/g; SAR(10 g) = 2.4 mW/g

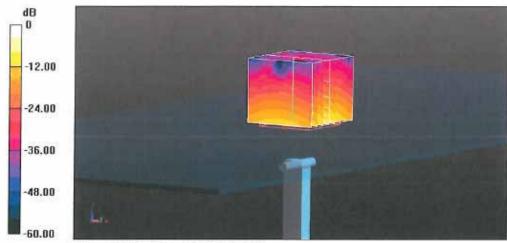
Maximum value of SAR (measured) = 19.665 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.520 V/m; Power Drift = 0.06 dB

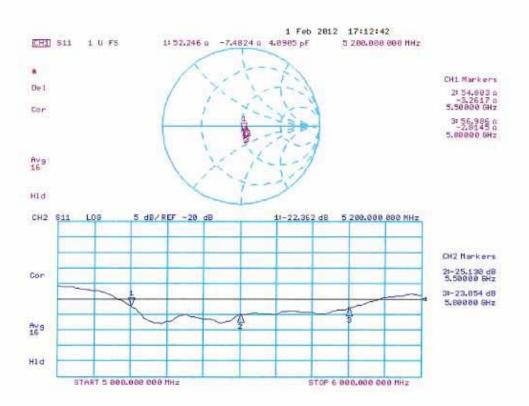
Peak SAR (extrapolated) = 33.0670


SAR(1 g) = 7.93 mW/g; SAR(10 g) = 2.26 mW/g

Maximum value of SAR (measured) = 18.794 mW/g

Certificate No: D5GHzV2-1119_Feb12

Page 8 of 13


File: R91624 Rev 3 Page 114 of 120

0 dB = 18.790 mW/g = 25.48 dB mW/g

File: R91624 Rev 3 Page 115 of 120

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1119_Feb12

Page 10 of 13

File: R91624 Rev 3 Page 116 of 120

Test Report Reissue Date: May 8, 2013

DASY5 Validation Report for Body TSL

Date: 31.01.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.46$ mho/m; $\epsilon_r = 49.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.86$ mho/m; $\epsilon_r = 48.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.28$ mho/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.414 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 28.2590

SAR(1 g) = 7.21 mW/g; SAR(10 g) = 2.02 mW/gMaximum value of SAR (measured) = 16.585 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.115 V/m; Power Drift = -0.0036 dB

Peak SAR (extrapolated) = 34.0110

SAR(1 g) = 7.95 mW/g; SAR(10 g) = 2.21 mW/g

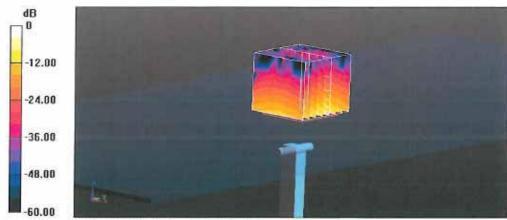
Maximum value of SAR (measured) = 18.670 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.109 V/m; Power Drift = -0.0044 dB

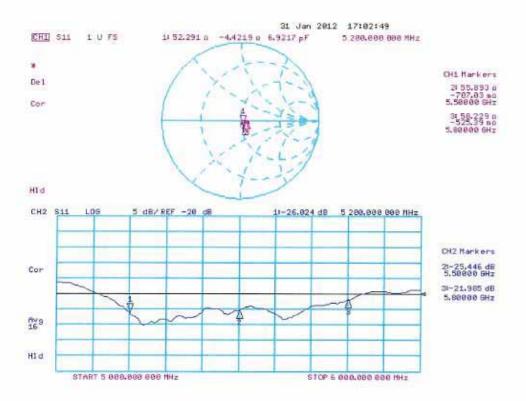
Peak SAR (extrapolated) = 33.9510


SAR(1 g) = 7.33 mW/g; SAR(10 g) = 2.03 mW/g

Maximum value of SAR (measured) = 17.843 mW/g

Certificate No: D5GHzV2-1119_Feb12

Page 11 of 13


File: R91624 Rev 3 Page 117 of 120

0 dB = 17.840 mW/g = 25.03 dB mW/g

File: R91624 Rev 3 Page 118 of 120

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1119_Feb12

Page 13 of 13

File: R91624 Rev 3 Page 119 of 120

Test Report Reissue Date: May 8, 2013

End of test report

File: R91624 Rev 3 Page 120 of 120