

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card

MODEL NUMBER: BCM94352HMB

FCC ID: QDS-BRCM1068 IC: 4324A-BRCM1068

REPORT NUMBER: 12U14473-5

ISSUE DATE: SEPTEMBER 04, 2012

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
	09/04/12	Initial Issue	F. Ibrahim

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 41

TABLE OF CONTENTS

1.	AT	ESTATION OF TEST RESULTS	.4
2.	TES	ST METHODOLOGY	.5
3.	FAC	CILITIES AND ACCREDITATION	.5
4.	CAI	_IBRATION AND UNCERTAINTY	.5
4.	1.	MEASURING INSTRUMENT CALIBRATION	.5
4.	2.	SAMPLE CALCULATION	.5
4.	3.	MEASUREMENT UNCERTAINTY	.5
5.	EQ	JIPMENT UNDER TEST	.6
5.	1.	DESCRIPTION OF EUT	.6
5.	2.	MAXIMUM OUTPUT POWER	.6
5.	3.	DESCRIPTION OF AVAILABLE ANTENNAS	.6
5.	4.	SOFTWARE AND FIRMWARE	.6
5.	5.	WORST-CASE CONFIGURATION AND MODE	.6
5.	6.	DESCRIPTION OF TEST SET	.7
6.	TES	ST AND MEASUREMENT EQUIPMENT	.9
6. 7.	TES	ST AND MEASUREMENT EQUIPMENT1	.9 10
6. 7. 7.	TES AN ⁻ 1.	ST AND MEASUREMENT EQUIPMENT	.9 10 10
6. 7. 7. 7.	TES AN ⁻ 1. 2.	ST AND MEASUREMENT EQUIPMENT	.9 10 10 13
6. 7. 7. 7. 7.	TES AN ⁻ 1. 2. 3.	ST AND MEASUREMENT EQUIPMENT	.9 10 13 16
6. 7. 7. 7. 7. 7.	TES AN ⁻ 1. 2. 3. 4.	ST AND MEASUREMENT EQUIPMENT	.9 10 13 16
6. 7. 7. 7. 7. 7. 7.	TES <i>A</i> N ⁻ <i>1.</i> <i>2.</i> <i>3.</i> <i>4.</i> <i>5.</i>	ST AND MEASUREMENT EQUIPMENT 1 IENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1 OUTPUT POWER 1 POWER SPECTRAL DENSITY 1 CONDUCTED SPURIOUS EMISSIONS 2	.9 10 10 13 16 19 22
6. 7. 7. 7. 7. 7. 8.	TES AN ⁻ 2. 3. 4. 5. RAI	ST AND MEASUREMENT EQUIPMENT	.9 10 13 16 19 22 26
6. 7. 7. 7. 7. 7. 8. 8.	TES AN ^T 1. 2. 3. 4. 5. RAI 1.	ST AND MEASUREMENT EQUIPMENT IENNA PORT TEST RESULTS 6 dB BANDWIDTH 99% BANDWIDTH 1 0UTPUT POWER 1 POWER SPECTRAL DENSITY 1 CONDUCTED SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 LIMITS AND PROCEDURE	.9 10 10 13 16 19 22 26 26
 7. 7. 7. 7. 7. 8. 8. 8. 	TES AN ⁻ 1. 2. 3. 4. 5. RAI 1. 2.	ST AND MEASUREMENT EQUIPMENT IENNA PORT TEST RESULTS 6 dB BANDWIDTH 99% BANDWIDTH 1 0UTPUT POWER 1 POWER SPECTRAL DENSITY 1 CONDUCTED SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 LIMITS AND PROCEDURE 2 TRANSMITTER ABOVE 1 GHz	.9 10 13 16 19 22 26 27
6. 7. 7. 7. 7. 7. 8. 8. 8. 8. 8.	TES AN ^T 1. 2. 3. 4. 5. RAI 1. 2. 3.	ST AND MEASUREMENT EQUIPMENT IENNA PORT TEST RESULTS 6 dB BANDWIDTH 199% BANDWIDTH 199% BANDWIDTH 1 0UTPUT POWER 1 POWER SPECTRAL DENSITY 1 CONDUCTED SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 2 LIMITS AND PROCEDURE 2 WORST-CASE BELOW 1 GHz	.9 10 13 16 19 22 26 27 32
 7. 7. 7. 7. 8. 8. 8. 8. 8. 8. 8. 9. 	TES AN ⁻ 1. 2. 3. 4. 5. RAI 1. 2. 3. 3. AC	ST AND MEASUREMENT EQUIPMENT	.9 10 13 16 19 22 26 27 32 34

Page 3 of 41

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
DATE TESTED:	August 23 - 29, 2012
SERIAL NUMBER:	265 (P238)
MODEL:	BCM94352HMB
EUT DESCRIPTION:	802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card
COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart C	Pass				
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass				
INDUSTRY CANADA RSS-GEN Issue 3	Pass				

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

FRANK IBRAHIM WISE PROJECT LEADER UL CCS

Tested By:

VIEN TRAN WISE ENGINEER UL CCS

Page 4 of 41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n/ac WLAN + Bluetooth PCI-E Mini Card.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range Mode		Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Bluetooth Low Energy (BLE)	0.12	1.03

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an 802.11a/g/n WLAN + Bluetooth antenna with a maximum gain of 3.9dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom Bluetooth 4.0 + HS USB Device, version 5.6.0.3200.

The test utility software used during testing was Blue Tool, ver. 1.6.0.4.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC. The EUT was oriented in a flat orientation, similar to the orientation it would have in real installations; see setup photos for details.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power.

Page 6 of 41

5.6. DESCRIPTION OF TEST SET

SUPPORT EQUIPMENT

Support Equipment List							
Description	Description Manufacturer Model Serial Number FCC ID						
Laptop	Lenovo	G560	CBU4473193	DoC			
AC/DC Adapter	Lenovo	PA-1650-56LC	11S36001646ZZ400008KCM8	DoC			
Jig Board	Catalyst	MINI2EXP	BRCM 2011-05	N/A			

I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	1	US 115V	Shielded	1.5m	NA
2	DC	1	DC	Un-shielded	1.5m	Ferrite at laptop's end

TEST SETUP

The EUT is attached to a jig board which is installed in the PCMCI slot of a host laptop computer during the tests. Test software exercised the radio card.

Page 7 of 41

SETUP DIAGRAM FOR TESTS

Page 8 of 41

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/15/11	12/15/12	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	09/02/11	09/02/12	
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESCI 7	1000741	07/13/12	07/06/13	
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	08/19/11	08/19/13	
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/11	12/13/12	
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/11	12/13/12	
Antenna, Horn, 18 GHz	EMCO	3115	C00872	09/20/11	09/20/12	
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	11/01/11	11/01/12	
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	C00682	02/07/12	02/07/13	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	11/11/11	11/11/12	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	07/12/12	07/12/13	
LISN, 30 MHz	FCC	50/250-25-2	C00626	12/13/11	12/13/12	
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRC13192	N02683	CNR	CNR	

Page 9 of 41

7. ANTENNA PORT TEST RESULTS

7.1. 6 dB BANDWIDTH

<u>LIMITS</u>

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.6167	0.5
Middle	2440	0.6200	0.5
High	2480	0.6167	0.5

Page 10 of 41

6 dB BANDWIDTH

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 11 of 41

Page 12 of 41

7.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.3019
Middle	2440	1.0364
High	2480	1.0367

Page 13 of 41

99% BANDWIDTH

Page 14 of 41

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 15 of 41

7.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.

RESULTS

Channel	Frequency	Peak Power	Limit	Margin
		Reading		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	0.12	30	-29.88
Middle	2440	0.09	30	-29.91
High	2480	-0.28	30	-30.28

Page 16 of 41

OUTPUT POWER

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

	.2.1.1.69.20,2012				, 					
Ref 10 dBm	Atten 10 dB			Mkr1 6	U8.3 μs 8 dBm	Next Peak				
#Peak			1							
10 dB/						Next Pk Right				
Offst										
dB						Next Pk Left				
						Min Search				
_gAv										
/1 S2						Pk-Pk Search				
AA										
tin: Tun						Mkr©C				
Center 2.480 000	enter 2.480 000 GHz Span O Hz									

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 18 of 41

7.4. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-16.03	8	-24.03
Middle	2440	-16.09	8	-24.09
High	2480	-16.47	8	-24.47

Note:

The spectrum analyzer offset = attenuator loss + cable loss + 10 log (3/100 kHz) = -4.2dB.

Page 19 of 41

POWER SPECTRAL DENSITY

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 20 of 41

🔆 Agilent 15:45	:43 Aug 28, 2012			Т	Freq/Channel
Ref 10 dBm #Peak	Atten 30 dB		Mkr1 2.47	79 990 9 GHz -16.47 dBm	Center Freq 2.48000000 GHz
Log 10 dB/					Start Freq 2.47955000 GHz
Offst 4.2 dB DI					Stop Freq 2.48045000 GHz
B.0 dBm #PAvg					CF Step 90.0000000 kHz <u>Auto Ma</u>
V1 S2 S3 FC					Freq Offset 0.00000000 Hz
¤(f): f>50k Swp					Signal Track On <u>Of</u>
Center 2.480 000 #Res BW 100 kHz	0 GHz : #V	/BW 300 kHz	Sweep 1	Span 900 kHz ms (601 pts)	

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 21 of 41

7.5. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.

Page 22 of 41

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 23 of 41

SPURIOUS EMISSIONS, MID CHANNEL

Page 24 of 41

SPURIOUS EMISSIONS, HIGH CHANNEL

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 25 of 41

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 26 of 41

8.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 27 of 41

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

			Mired 0	202 42 CH-	1
of 104 4 dBuV	#Atten () dB		WIKIT Z	.302 13 GHZ	Center Freq
Peak				40.70 ubp v	2.35000000 GHz
g 📃					
					Start Freq
\$/					2.31000000 GHz
39					
3					Stop Freq
					2.39000000 GHZ
.0					CE Ster
νµν — —				1	8.00000000 MHz
AV	Mountain mandore mon	and water	- to mander when the	manthematic	<u>Auto Ma</u>
V2					Eron Offent
3 FC					
):					Signal Track
un					On Of
vh					
				200.00.01	
art 2.310 00 GHz			Stop 2	.390 00 GHZ	

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 28 of 41

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G FORM STREET, FOR

Page 29 of 41

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 30 of 41

HARMONICS AND SPURIOUS EMISSIONS

ligh Fre	quency	Measurer	nent	_	_										
Complia	nce Cer	tification	Service	s, Fre	mont 5r	n Chamb	er								
Test Engi		Vien Tra	m												
Date:		08/27/12													
Project #		12U1447	3												
Comnan	V:	Broadco	m												
Test Tare	et:	FCC 15	247												
Mode On	er:	Tx LE M	ode												
aroue op		14 22 31	ouc												
	f	Measuren	nent Free	quency	Amp	Preamp (Jain			Average	Field Stren	gth Limit			
	Dist	Distance	to Anter	nna	D Corr	Distance	Correc	t to 3 me	eters	Peak Fie	ld Strength	Limit			
	Read	Analyzer	Reading		Avg	Average	Field St	trength @	0,3 m	Margin v	vs. Average	Limit			
	AF	Antenna Factor Peak				Calculate	d Peak	Field Str	ength	Margin v	vs. Peak Lis	mit			
	CL	Cable Lo	38		HPF	High Pas	s Filter								
	Dist	Read	AF	CT	Amn	D Com	Flta	Com	Limit	Mangin	Ant Dol	Det	Ant High	Table Angle	Notor
CH-	(m)	dBuV	dB/m	dB	dB	dB	dR	dBnV/m	dBuV/m	dB	V/H	P/A/OP	cm	Degree	notes
LOW CH	TANNET	(0) 2402	MH-				-				*/11	1		Defree	
4.804	3.0	37.9	33.1	6.8	-34.1	0.0	0.0	43.7	74.0	-30.3	v	P	98.0	170.0	
4.804	3.0	27.0	33.1	6.8	-34.1	0.0	0.0	32.9	54.0	-21.1	v	Ā	98.0	170.0	
4.804	3.0	37.8	33.1	6.8	-34.1	0.0	0.0	43.6	74.0	-30.4	H	P	101.0	321.0	
4.804	3.0	26.3	33.1	6.8	-34.1	0.0	0.0	32.1	54.0	-21.9	H	A	101.0	321.0	
MID CH	ANNEL (19), 2440)	MHz			1					••••••				
4.880	3.0	39.4	33.2	6.8	-34.0	0.0	0.0	45.4	74.0	-28.6	V	P	100.0	165.0	
4.880	3.0	27.1	33.2	6.8	-34.0	0.0	0.0	33.1	54.0	-20.9	V	A	100.0	165.0	
7.320	3.0	35.9	36.3	9.1	-33.1	0.0	0.0	48.1	74.0	-25.9	V	P	135.0	221.0	
7.320	3.0	23.4	36.3	9.1	-33.1	0.0	0.0	35.7	54.0	-18.3	V	A	135.0	221.0	
4.880	3.0	37.3	33.2	6.8	-34.0	0.0	0.0	43.2	74.0	-30.8	H	P	98.0	17.0	
4.880	3.0	26.2	33.2	6.8	-34.0	0.0	0.0	32.1	54.0	-21.9	H	A	98.0	17.0	
7.320	3.0	35.4	36.3	9.1	-33.1	0.0	0.0	47.6	74.0	-26.4	H	P	99.0	19.0	
7.320	3.0	23.4	36.3	9.1	-33.1	0.0	0.0	35.7	54.0	-18.3	H	A	99.0	19.0	
HIGH CI	IANNEL	(39), 248	OMHz									_			
4.960	3.0	37.1	33.2	6.9	-34.0	0.0	0.0	43.2	74.0	-30.8	V	P	98.0	174.0	
4.960	3.0	25.5	33.2	6.9	-34.0	0.0	0.0	31.6	54.0	-22.4	V	A	98.0	174.0	
7.440	3.0	36.0	36.5	9.1	-33.0	0.0	0.0	48.6	74.0	-25.4	V	Р	99.0	174.0	
7.440	3.0	22.9	30.5	9.1	-33.0	0.0	0.0	35.4	54.0	-18.6	V TT	A	99.0	174.0	
4 040	3.0	38.0	33.2	0.9	-34.0	0.0	0.0	44.7	74.0	-29.3	n u	P A	105.0	335.0	
4.960	3.0	20.0	35.4	0.9	-34.0	0.0	0.0	34.1	54.0	-41.3	n u	A D	105.0	335.0	
4.960 4.960 7.440	1 2 0		30.5	. 7.1	-00.0	: 0.0	0.0	40.4	/4.0	: -40.0	п	r	104.0	334.0	
4.960 4.960 7.440 7.440	3.0	22.0	36 5	0 1	33.0	0.0	0.0	25 /	54.0	196	ч	Δ	164.0	3370	

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G FORM NO: CCSUP4701G FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 31 of 41

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

Trace Markers

Horiz	ontal 30 -	1000MHz								
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	25MHz-1GHz Chambr 3m Amplified (dB)	Antenna T185 (dB)	Corrected Reading dBuV/m	CFR 47 Part 15 Class B 3m	Margin to Limit (dB)	Height (cm)	Polarity
1	70.3197	49.11	PK	-27.1	8.2	30.21	40	-9.79	301	Horz
2	85.8273	52.79	PK	-27	7.3	33.09	40	-6.91	400	Horz
3	105.018	55	PK	-26.8	11.3	39.5	43.5	-4	201	Horz
4	143.9808	48.23	PK	-26.4	12.7	34.53	43.5	-8.97	201	Horz
5	295.7614	53.93	PK	-25.2	13.3	42.03	46	-3.97	99	Horz
6	369.0348	52	PK	-25.5	15	41.5	46	-4.5	99	Horz
Vertio	cal 30 - 10	00MHz								
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	25MHz-1GHz Chambr 3m Amplified (dB)	Antenna T185 (dB)	Corrected Reading dBuV/m	CFR 47 Part 15 Class B 3m	Margin to Limit (dB)	Height (cm)	Polarity
7	30.7754	36.8	PK	-27.5	20.7	30	40	-10	100	Vert
8	84.6643	51.74	PK	-27	7.4	32.14	40	-7.86	100	Vert
9	107.9257	54.6	PK	-26.7	12.1	40	43.5	-3.5	100	Vert
10	369.0348	49.32	PK	-25.5	15	38.82	46	-7.18	301	Vert
11	443.0835	49.53	PK	-25.8	16.7	40.43	46	-5.57	100	Vert
12	804.0228	43.59	PK	-24.6	21.3	40.29	46	-5.71	100	Vert

PK - Peak detector

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 33 of 41

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 34 of 41

RESULTS

<u>6 WORST EMISSIONS</u>

Project No:1	2U14473								
Client Name	Broadcon	n							
Model/Devi	ce:BCM94	352HMB							
Test Volt/Fr	eq:120VAC	C/60Hz							
Test By:Vier	Tran								
Frequency MHz	Reading dB(µV)	Detector	T24 LISN dB	Cables dB	Corrected dB(µV)	Class B QP Limit dB(µV)	QP Margin dB	Class B Av Limit dB(µV)	Av Margin dB
Line-L1 .15 -	30MHz								
0.159	57.22	PK	0.1	0	57.32	65.5	-8.18	-	-
0.159	14.27	Av	0.1	0	14.37	-	-	55.5	-41.13
4.2	37.26	PK	0.1	0.1	37.46	56	-18.54	-	-
4.2	16.08	Av	0.1	0.1	16.28	-	-	46	-29.72
28.1715	41.56	PK	0.5	0.3	42.36	60	-17.64	-	-
28.1715	24.89	Av	0.5	0.3	25.69	-	-	50	-24.31
Frequency MHz	Reading dB(µV)	Detector	T24 LISN dB	Cables dB	Corrected dB(µV)	Class B QP Limit dB(µV)	QP Margin dB	Class B Av Limit dB(µV)	Av Margin dB
Line-L2 .15 -	30MHz								
0.168	51.61	PK	0.1	0	51.71	65.1	-13.39	-	-
0.168	16.77	Av	0.1	0	16.87	-	-	55.1	-38.23
3.417	36.62	PK	0.1	0.1	36.82	56	-19.18	-	-
3.417	16.16	Av	0.1	0.1	16.36	-	-	46	-29.64
25.9395	42.72	PK	0.5	0.3	43.52	60	-16.48	-	-
25.9395	21.99	Av	0.5	0.3	22.79	-	-	50	-27.21
PK - Peak de	tector								
QP - Quasi-P	eak detec	tor							
LnAv - Linea	r Average	detector							
LgAv - Log Av	verage det	tector							
Av - Averag	e detector								
CAV - CISPR	Average o	letector							
RMS - RMS d	etection								
CRMS - CISP	R RMS det	ection							
Text File: BT	FINAL.TX	т							
File: BT FIN	AL.DAT								

Page 35 of 41

LINE 1 RESULTS

Page 36 of 41

LINE 2 RESULTS

Page 37 of 41