

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM94331PCIEBT3B

FCC ID: QDS-BRCM1066 IC: 4324A-BRCM1066

REPORT NUMBER: 12U14373-5

ISSUE DATE: JUNE 27, 2012

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	06/27/12	Initial Issue	F. Ibrahim

TABLE OF CONTENTS

1.	AT	restation of test results	4
2.	TES	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
4	.1.	MEASURING INSTRUMENT CALIBRATION	5
4	.2.	SAMPLE CALCULATION	5
4	.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5	.1.	DESCRIPTION OF EUT	6
5	.2.	MAXIMUM OUTPUT POWER	6
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	.4.	SOFTWARE AND FIRMWARE	6
5	.5.	WORST-CASE CONFIGURATION AND MODE	
5	.6.	DESCRIPTION OF TEST SETUP	7
6.	TES	ST AND MEASUREMENT EQUIPMENT	9
6. 7.		ST AND MEASUREMENT EQUIPMENT	
7.			0
7 .	AN	TENNA PORT TEST RESULTS10	D 0
7 . 7 7	AN . 1.	TENNA PORT TEST RESULTS 10 6 dB BANDWIDTH 10	0 3
7 . 7 7 7 7	AN .1. .2.	TENNA PORT TEST RESULTS 10 6 dB BANDWIDTH 10 99% BANDWIDTH 11	D 0 3 6
7 . 7 7 7 7 7	AN .1. .2. .3.	TENNA PORT TEST RESULTS 10 6 dB BANDWIDTH 10 99% BANDWIDTH 11 OUTPUT POWER 10	D 0 3 6 9
7 . 7 7 7 7 7 7	AN 7.1. 7.2. 7.3. 7.4.	TENNA PORT TEST RESULTS 10 6 dB BANDWIDTH 10 99% BANDWIDTH 11 OUTPUT POWER 10 AVERAGE POWER 11	D 0 3 6 9 0
7 . 7 7 7 7 7 7	AN .1. .2. .3. .4. .5. .6.	TENNA PORT TEST RESULTS106 dB BANDWIDTH1099% BANDWIDTH13OUTPUT POWER14AVERAGE POWER15POWER SPECTRAL DENSITY20	0 3 6 9 0 3
7. 7 7 7 7 7 7 8.	AN .1. .2. .3. .4. .5. .6.	TENNA PORT TEST RESULTS 106 dB BANDWIDTH1199% BANDWIDTH13OUTPUT POWER14AVERAGE POWER14POWER SPECTRAL DENSITY24CONDUCTED SPURIOUS EMISSIONS23	0 3 6 9 0 3 7
7. 7 7 7 7 7 7 7 8. 8	AN ⁷ 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. RA	TENNA PORT TEST RESULTS106 dB BANDWIDTH1099% BANDWIDTH11OUTPUT POWER10AVERAGE POWER10POWER SPECTRAL DENSITY20CONDUCTED SPURIOUS EMISSIONS23DIATED TEST RESULTS21	0 3 6 9 0 3 7
7. 7 7 7 7 7 7 7 8. 8	AN . 1. . 2. . 3. . 4. . 5. . 6. RA	TENNA PORT TEST RESULTS106 dB BANDWIDTH1099% BANDWIDTH110UTPUT POWER11AVERAGE POWER11POWER SPECTRAL DENSITY20CONDUCTED SPURIOUS EMISSIONS21DIATED TEST RESULTS21LIMITS AND PROCEDURE21	0 3 6 9 0 3 7 8
7. 7 7 7 7 7 7 7 8. 8	AN . 1. . 2. . 3. . 4. . 5. . 6. RA . 1. . 2. . 3.	TENNA PORT TEST RESULTS106 dB BANDWIDTH1099% BANDWIDTH13OUTPUT POWER14AVERAGE POWER14POWER SPECTRAL DENSITY24CONDUCTED SPURIOUS EMISSIONS23DIATED TEST RESULTS21LIMITS AND PROCEDURE24TRANSMITTER ABOVE 1 GHz24	0 3 6 9 0 3 7 8 3

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	IY NAME: BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.			
EUT DESCRIPTION: 802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination				
MODEL: BCM94331PCIEBT3B				
SERIAL NUMBER:	SERIAL NUMBER: 01 (P100)			
DATE TESTED:	MAY 16 - 18, 2012			
	APPLICABLE STANDARDS			
ST	ANDARD	TEST RESULTS		
CFR 47 F	Part 15 Subpart C	Pass		

INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

FRANK IBRAHIM EMC SUPERVISOR UL CCS

Tested By:

VIEN TRAN EMC ENGINEER UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n WLAN + Bluetooth PCI-E Custom Combination Card.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Low Energy BLE	7.23	5.28

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an 802.11a/g/n WLAN + Bluetooth antenna with a maximum gain of 1.11 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom Bluetooth Version 5.1.0.1400

The test utility software used during testing was Blue Tool, ver. 1.6.0.4.

5.5. WORST-CASE CONFIGURATION AND MODE

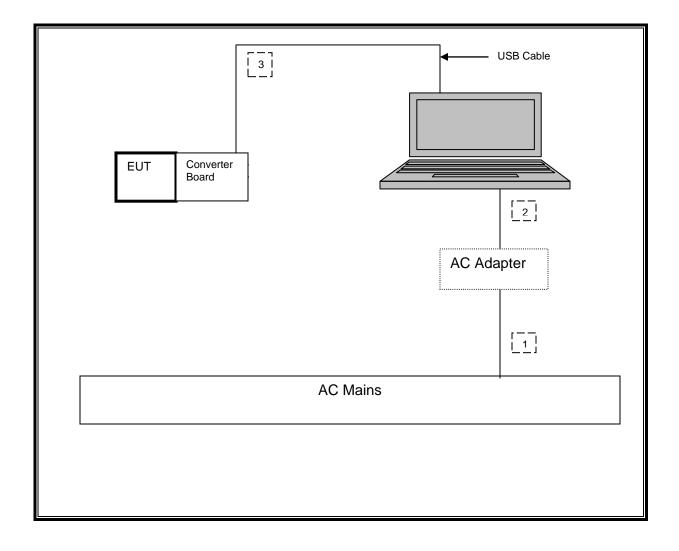
The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC. The EUT was oriented in a flat orientation, similar to the orientation it would have in real installations; see setup photos for details.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Dell	E6400	BDRBKK1	Doc		
AC Adapter	Dell	FA90PE1-00	CN-0CM889-73245-966-3810-A01	N/A		
Converter Board	Broadcom	BCM94331PCIEBT3HAD	95	N/A		
USB Cable	N/A	N/A	N/A	N/A		


I/O CABLES

	I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	AC	1	US 115V	Shielded	1.5m	NA	
2	DC	1	DC	Un-shielded	1.5m	Ferrite at laptop's end	
3	USB	1	USB	Un-shielded	1.0m	NA	

TEST SETUP

The EUT was tested as an external module that installed on a converter board connected to a host Laptop PC via USB cable.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description Manufacturer Model Asset Cal Du						
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	03/22/13		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	07/16/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00872	09/20/12		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	07/28/12		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	11/11/12		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	07/18/12		
Peak Power Meter	Agilent / HP	E9327A	C00964	12/13/13		
Peak Power Sensor	Agilent / HP	E4416A	C00963	12/13/13		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	12/13/12		
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	08/19/13		

7. ANTENNA PORT TEST RESULTS

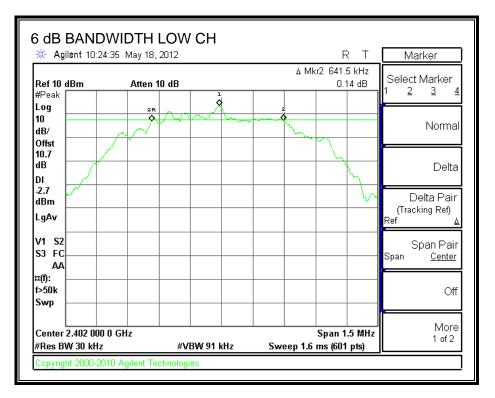
7.1. 6 dB BANDWIDTH

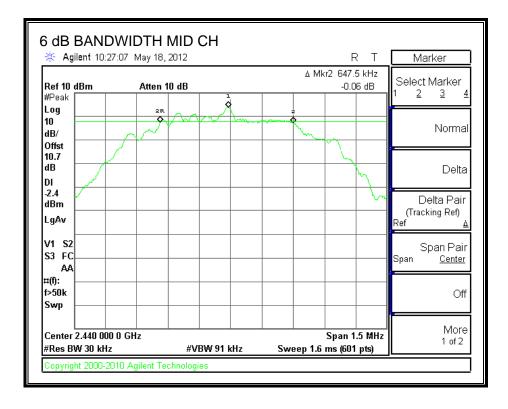
<u>LIMITS</u>

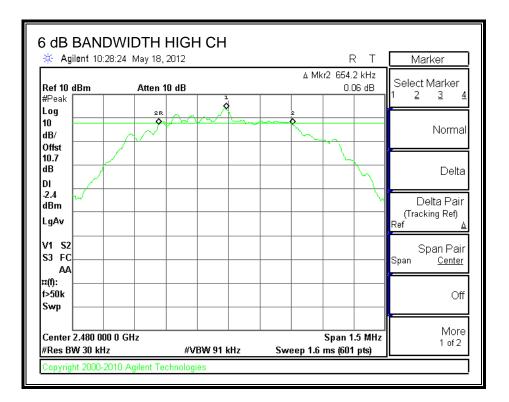
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.


RESULTS

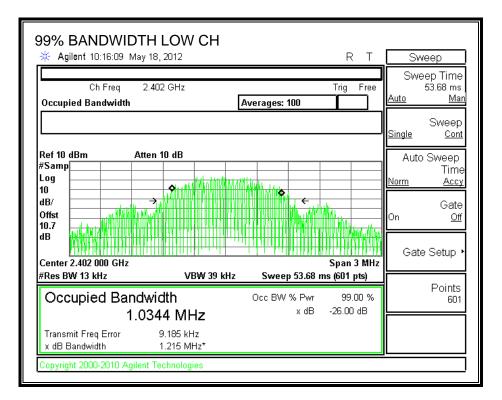
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.6415	0.5
Middle	2440	0.6475	0.5
High	2480	0.6542	0.5

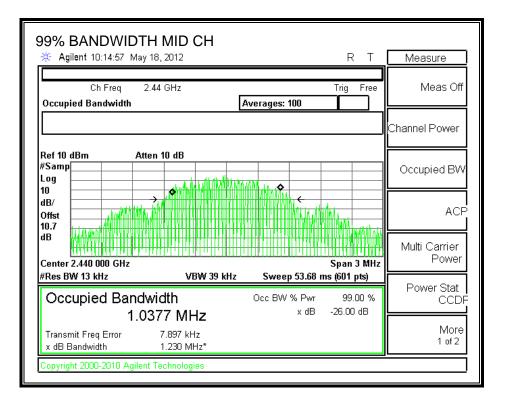
6 dB BANDWIDTH

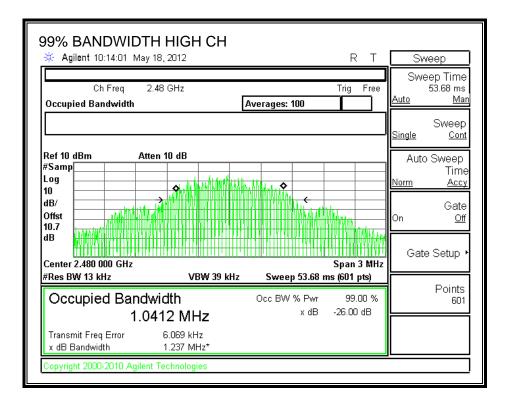
7.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	2402	1.0344	
Middle	2440	1.0377	
High	2480	1.0412	

99% BANDWIDTH

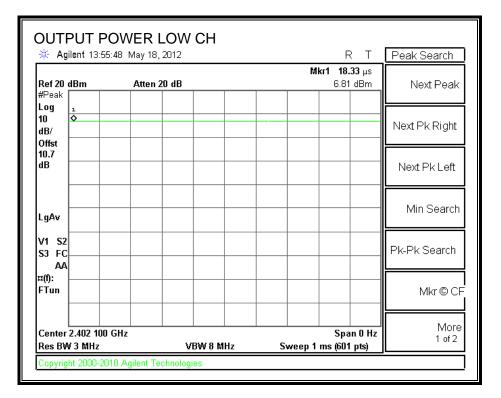
7.3. OUTPUT POWER

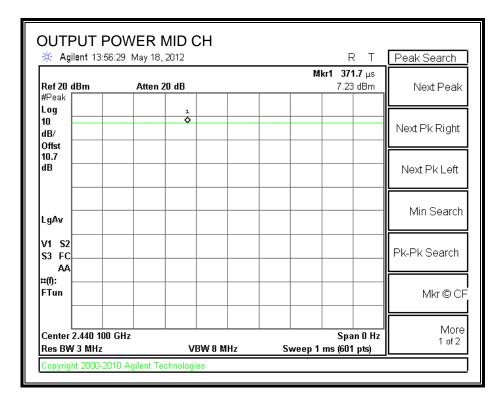
LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.

RESULTS

Channel	Frequency	Peak Power	Limit	Margin
		Reading		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	6.81	30	-23.19
Middle	2440	7.23	30	-22.77
High	2480	7.22	30	-22.78

OUTPUT POWER

🔆 Agilent 13:5	7:43 May 18, 2012	RT	Display
Ref 20 dBm	Atten 20 dB	Mkr1 988.3 μs 7.22 dBm	Full Screen
#Peak Log 10 dB/ Offst 10.7			Display Line 20.00 dBm On <u>Off</u>
dB			Limits
V1 S2 S3 FC AA ¤(f):			Active Fctn Position • Bottom
FTun Center 2.480 100 Res BW 3 MHz	GHz VBW 8 MHz	Span 0 Hz Sweep 1 ms (601 pts)	Title • Preferences •

7.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.68 dB (including 10 dB pad and 0.68 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2402	6.05
Middle	2440	6.67
High	2480	6.38

7.5. POWER SPECTRAL DENSITY

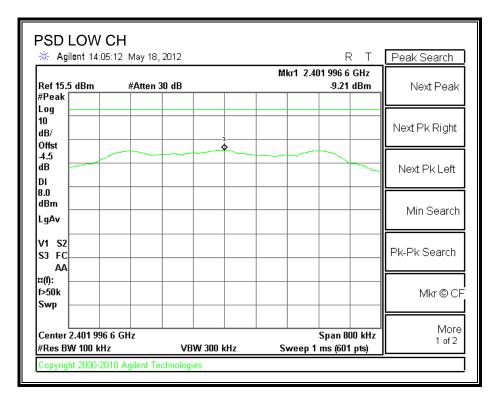
LIMITS

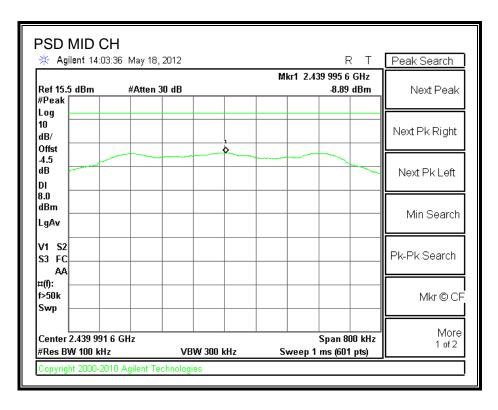
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.


RESULTS


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-9.21	8	-17.21
Middle	2440	-8.89	8	-16.89
High	2480	-9.01	8	-17.01

Note:

The spectrum analyzer offset = attenuator loss + cable loss + $10 \log (3/100 \text{ kHz}) = -4.53 \text{dB}.$

POWER SPECTRAL DENSITY

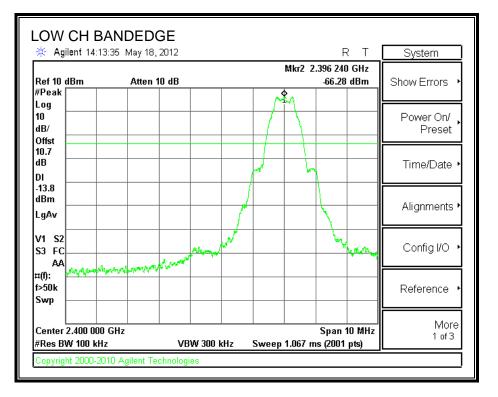
🔆 Agilent 14:0	02:15 May 18, 201	2		RT	Peak Search
Ref 15.5 dBm #Peak	#Atten 30 d	B	Mkr1	2.479 978 5 GHz -9.01 dBm	Next Peak
Log 10 dB/		1			Next Pk Right
Offst 4.5 dB					Next Pk Left
DI 8.0 dBm LgAv					Min Search
V1 S2 S3 FC					Pk-Pk Search
AA ¤(f): f>50k Swp					Mkr © Cf
Center 2.479 99 #Res BW 100 kt		VBW 300 kHz	Swee	Span 800 kHz pan 800 kHz	More 1 of 2

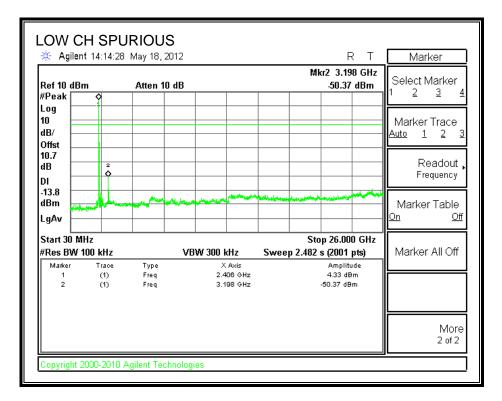
7.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

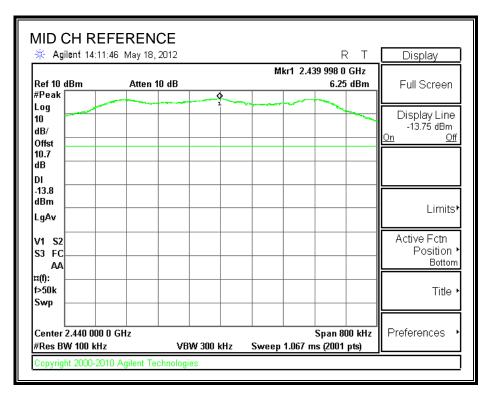
FCC §15.247 (d)

IC RSS-210 A8.5

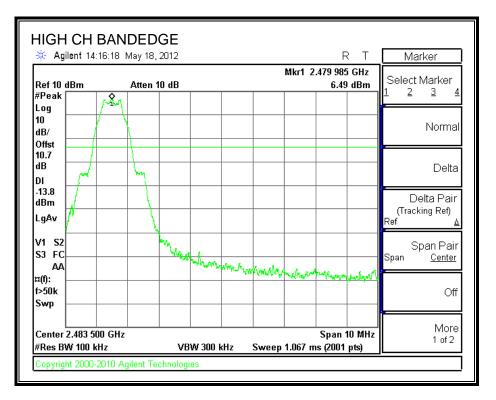

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

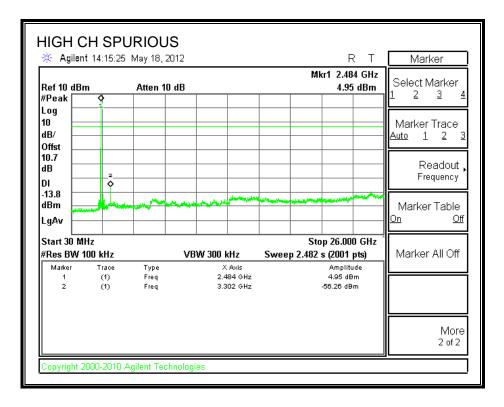

TEST PROCEDURE

KDB 558074 D01 DTS Measurement Guidance V01 dated 01-18-12.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

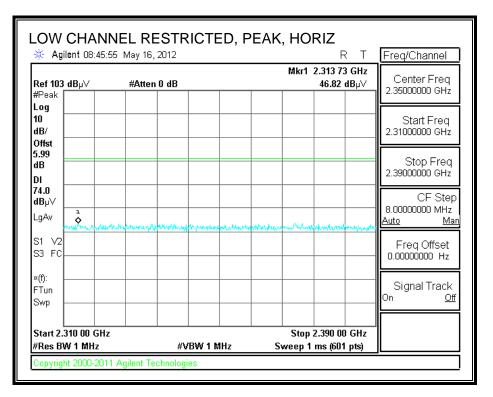
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

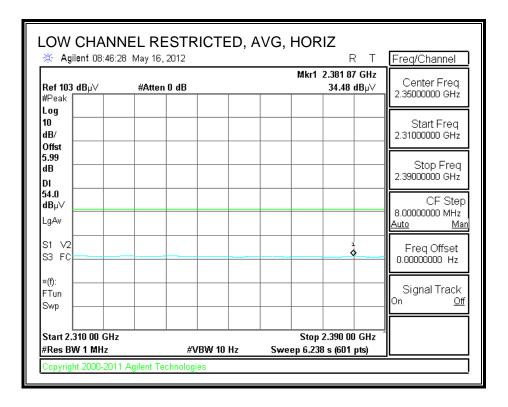
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

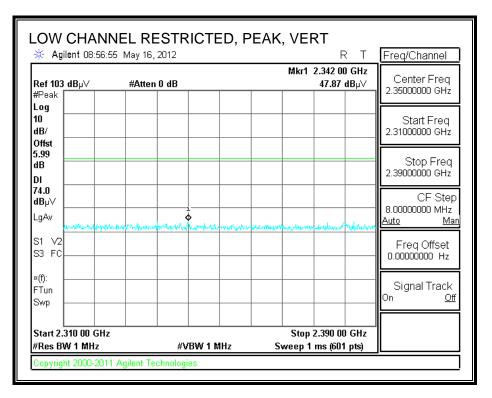
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

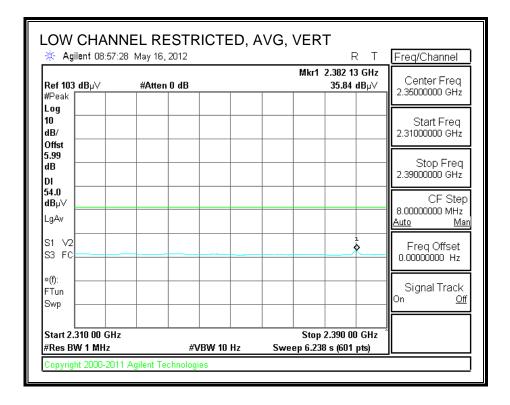
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

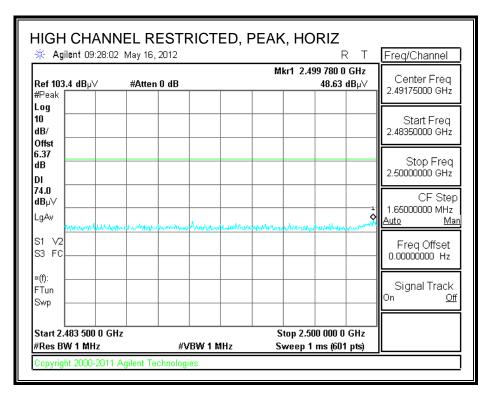

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

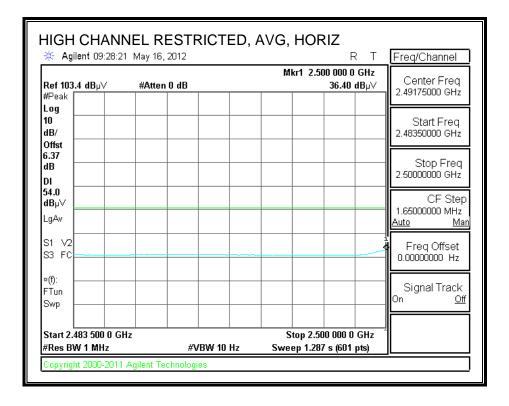

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

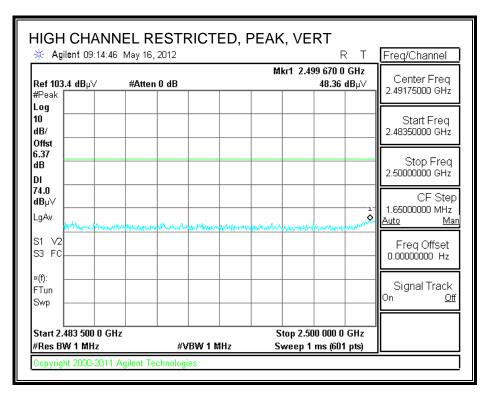
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

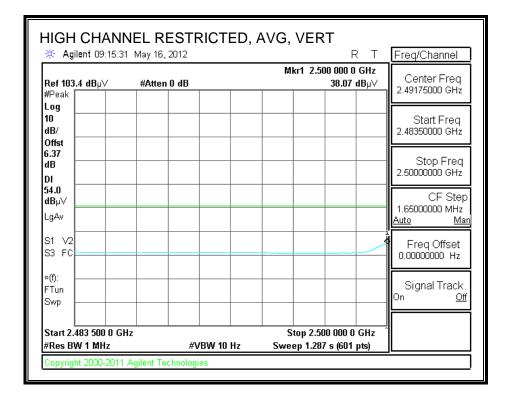

8.2. TRANSMITTER ABOVE 1 GHz


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

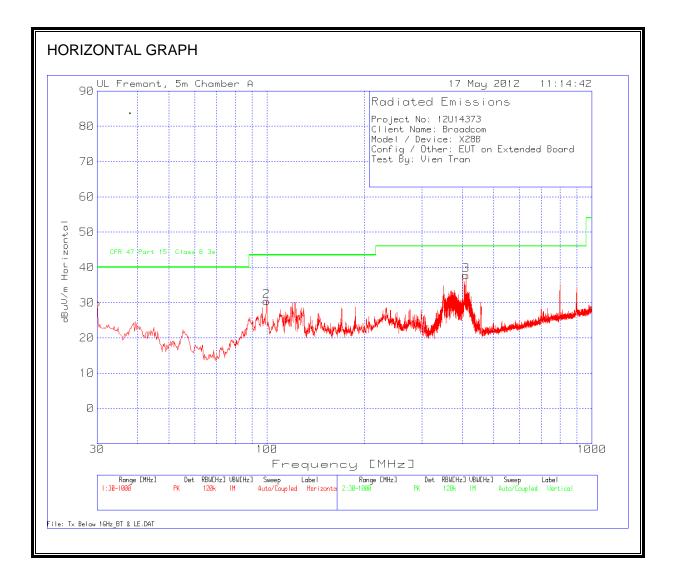


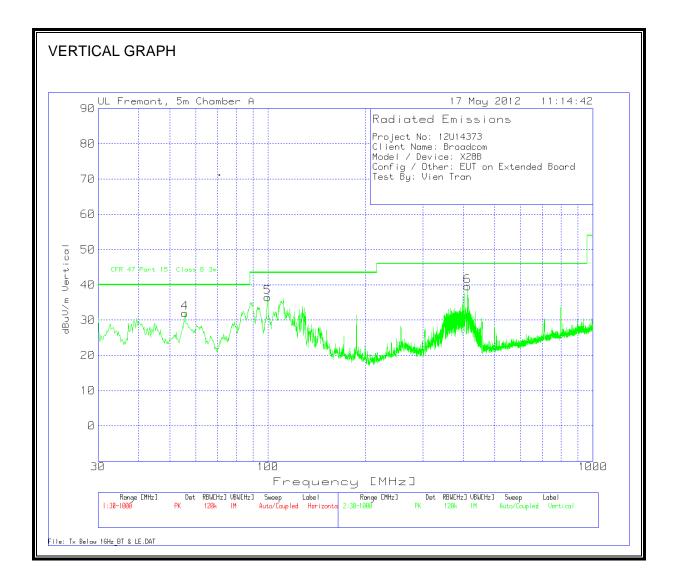

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)




HARMONICS AND SPURIOUS EMISSIONS

High Free Compliar		Measuren tification		s, Fre	mont 51	n Chamb	er								
Test Engr		Vien Tra	in												
Date:	-	05/16/12													
Project #:		12U1437													
Company		Broadco	-												
Test Targe		FCC15.2													
Mode Op		Tx LE Mo													
	f	Measuren	nent Fre	quency	7 Amp	Preamp	Gain			Average	Field Stren	gth Limit			
	Dist	Distance	to Anter	ina	D Corr	Distance	Corre	et to 3 me	eters	Peak Fie	ald Strength	Limit			
	Read	Analyzer	Reading		Avg	Average	Field S	trength @) 3 m	Margin	vs. Average	Limit			
	AF	Antenna	Factor		Peak	Calculate	d Peak	Field Str	ength	Margin	vs. Peak Lis	mit			
	CL	Cable Los	55		HPF	High Pas	s Filter	r							
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
LOW CH	ANNEL,	2402MH	z												
4.804	3.0	40.9	33.4	6.2	-35.5	0.0	0.0	45.1	74.0	-28.9	V	P	100.1	96.4	
4.804	3.0	30.6	33.4	6.2	-35.5	0.0	0.0	34.7	54.0	-19.3	V	A	100.1	96.4	
4.804	3.0	38.4	33.4	6.2	-35.5	0.0	0.0	42.5	74.0	-31.5	H	P	100.0	185.4	
4.804	3.0	27.6	33.4	6.2	-35.5	0.0	0.0	31.7	54.0	-22.3	H	A	100.0	185.4	
MID CHA	NNEL, 2	2440MHz		Į											
4.880	3.0	42.6	33.5	6.2	-35.5	0.0	0.0	46.8	74.0	-27.2	V	P	103.1	121.8	
4.880	3.0	32.3	33.5	6.2	-35.5	0.0	0.0	36.6	54.0	-17.4	V	A	103.1	121.8	
7.320	3.0	35.6	35.7	8.4	-35.4	0.0	0.0	44.3	74.0	-29.7	V	P	101.0	70.9	
7.320	3.0	23.4	35.7	8.4	-35.4	0.0	0.0	32.0	54.0	-22.0	V	A	101.0	70.9	
4.880	3.0	37.5	33.5	6.2	-35.5	0.0	0.0	41.7	74.0	-32.3	H	P	133.3	157.4	
4.880	3.0	26.5	33.5	6.2	-35.5	0.0	0.0	30.7	54.0	-23.3	H	A	133.3	157.4	
7.320	3.0	35.0	35.7	8.4	-35.4	0.0	0.0	43.7	74.0	-30.3	H	P	133.3	157.4	
7.320	3.0	23.3	35.7	8.4	-35.4	0.0	0.0	31.9	54.0	-22.1	H	A	133.3	157.4	
HGH CH	········	~		ļ						ļ					
4.960	3.0	41.2	33.6	6.3	-35.5	0.0	0.0	45.6	74.0	-28.4	V	P	103.3	123.1	
	3.0	30.9	33.6	6.3	-35.5	0.0	0.0	35.3	54.0	-18.7	V	A	103.3	123.1	
	3.0	35.9	35.9	8.4	-35.5	0.0	0.0	44.8	74.0	-29.2	V	P	146.5	161.8	
7.440	3.0	23.5	35.9	8.4		0.0	0.0	32.4	54.0	-21.6	V	A	146.5	161.8	
7.440 7.440	3.0	37.2	33.6 33.6	6.3	••	0.0	0.0	41.6	74.0	-32.4	H	P	100.0	170.4	
7.440 7.440 4.960	3.0		116	6.3	-35.5	0.0	0.0	30.1	54.0 74.0	-23.9 -28.9	H H	A P	100.0 100.0	170.4	
7.440 7.440 4.960 4.960	3.0	25.7		0 /	2	0.0									
4.960 7.440 7.440 4.960 4.960 7.440 7.440		25.7 36.2 23.7	35.9 35.9	8.4 8.4	-35.5 -35.5	0.0 0.0	0.0	45.1 32.6	74.0 54.0	-20.9	H H	A	100.0	170.4 170.4	

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

Project No:	12U14373								
Client Nam		m							
Model / De									
Config / Ot			d Board						
Test By: Vie									
Horizontal	30 - 1000M	Hz							
			25MHz-1GHz	T243		CFR 47			
			ChmbrA	Sunol		Part 15			
Test	Meter		Amplified.TX	Bilog.TXT		Class B		Height	
Frequency	Reading	Detector	[dB]	[dB]	dBuV/m	3m	Margin	[cm]	Polarity
30	36.18	РК	-27.5	21.3	29.98	40	-10.02	100	Horz
99.7842	47.18	РК	-26.9	10.1	30.38	43.5	-13.12	200	Horz
410.7114	47.08	PK	-25.2	15.9	37.78	46	-8.22	100	Horz
Vertical 30	- 1000MHz								
			25MHz-1GHz	T243		CFR 47			
			ChmbrA	Sunol		Part 15			
Test	Meter		Amplified.TX	Bilog.TXT		Class B		Height	
Frequency	Reading	Detector	[dB]	[dB]	dBuV/m	3m	Margin	[cm]	Polarity
55.5875	52.19	PK	-27.3	7.1	31.99	40	-8.01	200	Vert
99.7842	53.25	PK	-26.9	10.1	36.45	43.5	-7.05	100	Vert
411.6807	48.84	PK	-25.2	16	39.64	46	-6.36	100	Vert
PK - Peak d									
QP - Quasi-									
LnAv - Line	<u> </u>								
LgAv - Log A									
Av - Averag									
CAV - CISP RMS - RMS	-	uetector							
CRMS - CISE		toction							
Text File: T									
File: Tx Bel		-							
rite. IX bel	0.0012_0	T & LE.DA							

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

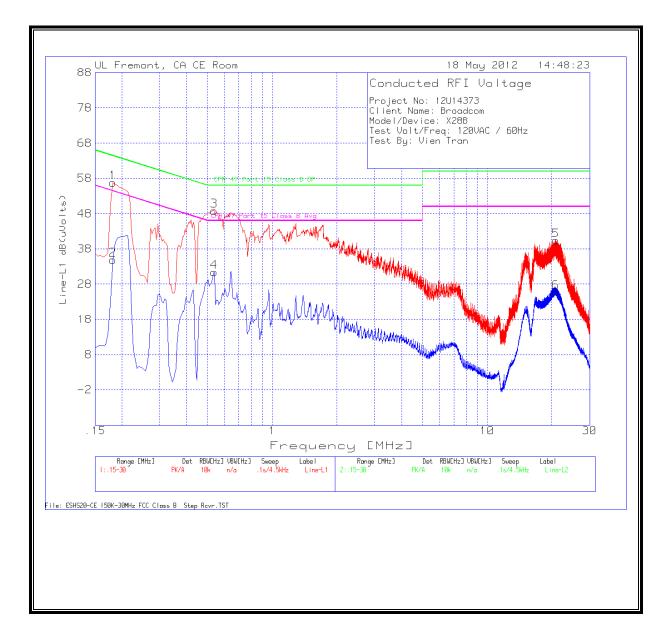
RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

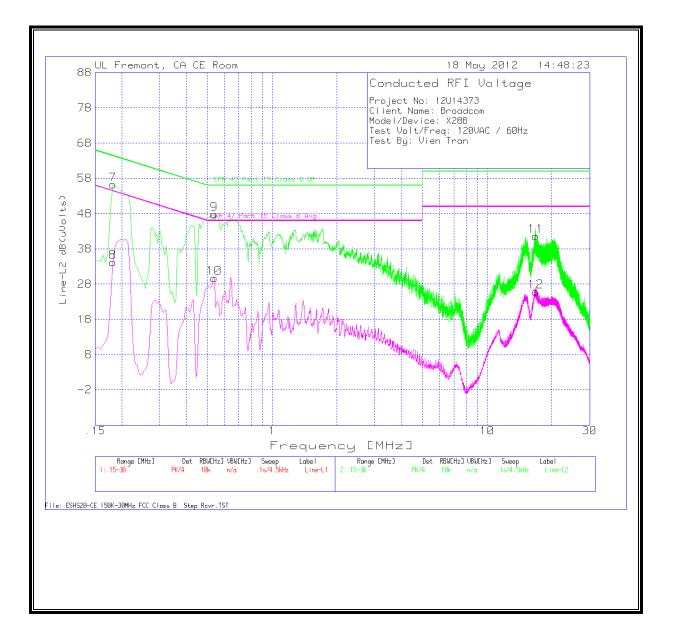
Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

Project No:	12U14373								
Client Nam									
Model/Dev	vice: X28B								
Test Volt/F	req: 120VA	AC / 60Hz							
Test By: Vie	en Tran								
Line-L1 .15	- 30MHz								
						CFR 47		CFR 47	
			T24 IL	LC Cables		Part 15		Part 15	
Test	Meter		L1.TXT	1&3.TXT		Class B		Class B	
Frequency	Reading	Detector	(dB)	(dB)	dB(uVolts)	QP	Margin	Avg	Margin
0.1815	56.69	PK	0.1	0	56.79	64.4	-7.61	-	-
0.1815	34.74	Av	0.1	0	34.84	-	-	54.4	-19.56
0.537	48.75	PK	0.1	0	48.85	56	-7.15	-	-
0.537	31.25	Av	0.1	0	31.35	-	-	46	-14.65
20.8365	39.86	PK	0.3	0.2	40.36	60	-19.64	-	-
20.8365	25.29	Av	0.3	0.2	25.79	-	-	50	-24.21
Line-L2 .15	- 30MHz								
						CFR 47		CFR 47	
			T24 IL	LC Cables		Part 15		Part 15	
Test	Meter		L1.TXT	1&3.TXT		Class B		Class B	
Frequency	Reading	Detector	(dB)	(dB)	dB(uVolts)	QP	Margin	Avg	Margin
0.1815	56.12	PK	0.1	0	56.22	64.4	-8.18	-	-
0.1815	34.18	Av	0.1	0	34.28	-	-	54.4	-20.12
0.537	47.69	PK	0.1	0	47.79	56	-8.21	-	-
0.537	29.64	Av	0.1	0	29.74	-	-	46	-16.26
16.8315	41.15	РК	0.2	0.2	41.55	60	-18.45	-	-
16.8315	25.48	Av	0.2	0.2	25.88	-	-	50	-24.12
PK - Peak d									
QP - Quasi-									
LnAv - Line									
.gAv - Log /	_								
Av - Avera	-								
CAV - CISP	_								
RMS - RMS									
CRMS - CISI									
Toyt Filo: Li	C_BT & LE.	TXT							

LINE 1 RESULTS

LINE 2 RESULTS

