

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM94331PCIEBT3B

FCC ID: QDS-BRCM1066 IC: 4324A-BRCM1066

REPORT NUMBER: 12U14373-1, Revision A

ISSUE DATE: JUNE 28, 2012

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	05/22/12	Initial Issue	F. Ibrahim
A	06/28/12	Updated section 7.2.5	F. Ibrahim

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701D TEL: (510) 771-1000 FAX: (510) 661-0888

Page 2 of 79

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS5
2.	TEST	۲ METHODOLOGY6
3.	FACI	ILITIES AND ACCREDITATION6
4.	CALI	BRATION AND UNCERTAINTY6
4	1.1. I	MEASURING INSTRUMENT CALIBRATION6
2	4.2. 3	SAMPLE CALCULATION
4	1.3. I	MEASUREMENT UNCERTAINTY6
5.	EQU	IPMENT UNDER TEST7
ł	5.1. L	DESCRIPTION OF EUT7
ł	5.2. I	MAXIMUM OUTPUT POWER7
ł	5.3. I	DESCRIPTION OF AVAILABLE ANTENNAS7
ł	5.4. 3	SOFTWARE AND FIRMWARE7
ł	5 <i>.5.</i> I	WORST-CASE CONFIGURATION AND MODE7
ł	5.6. l	DESCRIPTION OF TEST SET8
6.	TEST	۲ AND MEASUREMENT EQUIPMENT
7.	ΔΝΤΓ	ENNA PORT TEST RESULTS
••		BASIC DATA RATE GFSK MODULATION11
	7.1.1	
	7.1.2	
	7.1.3 7.1.4	
	7.1.4	
	7.1.6	OUTPUT POWER
	7.1.7	CONDUCTED SPURIOUS EMISSIONS
7		ENHANCED DATA RATE 8PSK MODULATION
	7.2.1	
	7.2.2 7.2.3	
	7.2.4	. NUMBER OF HOPPING CHANNELS40
	7.2.5	
	7.2.6	
Q		IATED TEST RESULTS
		LIMITS AND PROCEDURE
		TX SPURIOUS ABOVE 1 GHz
č		BASIC DATA RATE GFSK MODULATION
~~~		

	8.2.2.	ENHANCED DATA RATE 8PSK MODULATION	61
8	3.3. W	ORST-CASE BELOW 1 GHz	66
9.	AC PO	WER LINE CONDUCTED EMISSIONS	69
10.	МАХ	IMUM PERMISSIBLE EXPOSURE	73
11.	SET	UP PHOTOS	76

Page 4 of 79

## **1. ATTESTATION OF TEST RESULTS**

COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.				
EUT DESCRIPTION:	802.11a/g/n WLAN + Bluetooth PCI-	802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card			
MODEL:	BCM94331PCIEBT3B				
SERIAL NUMBER:	01 (P100)				
DATE TESTED:	APRIL 05 – MAY 22, 2012				
	APPLICABLE STANDARDS				
ST	ANDARD	TEST RESULTS			
CFR 47 P	art 15 Subpart C	Pass			
INDUSTRY CANADA	A RSS-210 Issue 8 Annex 8	Pass			
INDUSTRY CAN	ADA RSS-GEN Issue 3	Pass			

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

FRANK IBRAHIM EMC SUPERVISOR UL CCS

Tested By:

VIEN TRAN EMC ENGINEER UL CCS

Page 5 of 79

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

## 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

## 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 79

## 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card

The radio module is manufactured by Broadcom.

### 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	7.68	5.86
2402 - 2480	Enhanced 8PSK	7.58	5.73

## 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an 802.11a/g/n WLAN + Bluetooth antenna with a maximum gain of 1.11 dBi.

## 5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom Bluetooth Version 5.1.0.1400

The test utility software used during testing was Blue Tool, ver. 1.6.0.4.

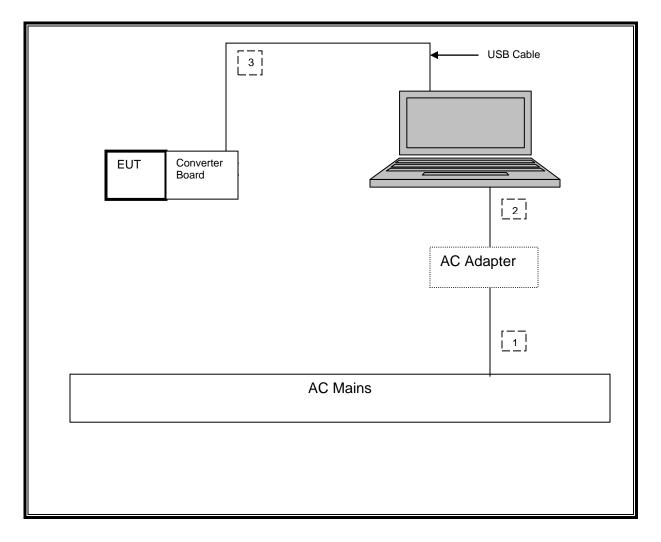
## 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with the highest output power as worst-case scenario.

## 5.6. DESCRIPTION OF TEST SET

### SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC I						
Laptop	Dell	E6400	BDRBKK1	Doc		
AC Adapter	Dell	FA90PE1-00	CN-0CM889-73245-966-3810-A01	N/A		
Converter Board	Broadcom	BCM94331PCIEBT3HAD	95	N/A		
USB Cable	N/A	N/A	N/A	N/A		


#### I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	1	US 115V	Shielded	1.5m	NA		
2	DC	1	DC	Un-shielded	1.5m	Ferrite at laptop's end		
3	USB	1	USB	Un-shielded	1.0m	NA		

Page 8 of 79

### REPORT NO: 12U14373-1A FCC ID: QDS-BRCM1066

### SETUP DIAGRAM



### TEST SETUP

The EUT was tested as an external module that installed on a converter board connected to a host Laptop PC via USB cable.

Page 9 of 79

## 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	03/22/13		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	07/16/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00872	09/20/12		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	07/28/12		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	11/11/12		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	07/18/12		
Peak Power Meter	Agilent / HP	E9327A	C00964	12/13/13		
Peak Power Sensor	Agilent / HP	E4416A	C00963	12/13/13		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	12/13/12		
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	08/19/13		

Page 10 of 79

# 7. ANTENNA PORT TEST RESULTS

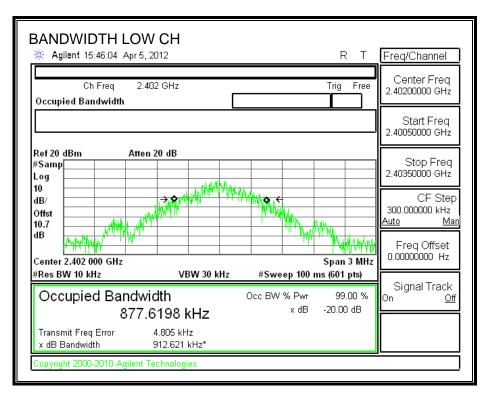
## 7.1. BASIC DATA RATE GFSK MODULATION

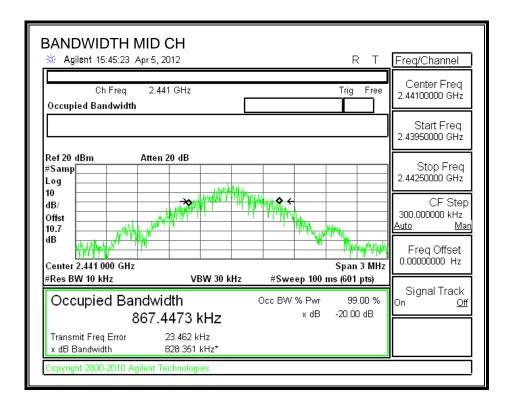
### 7.1.1. 99% BANDWIDTH

### <u>LIMIT</u>

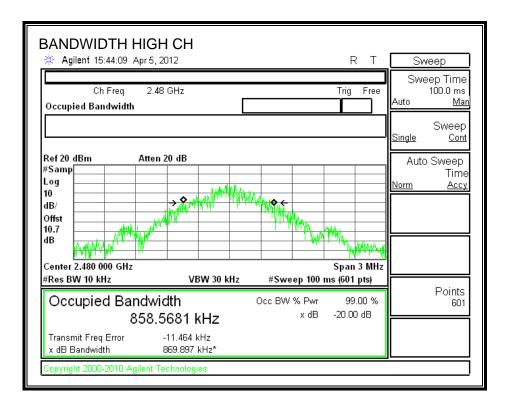
None; for reporting purposes only.

### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 99% bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.


### **RESULTS**

Channel	Frequency	99% Bandwidth
	(MHz)	(kHz)
Low	2402	877.6198
Middle	2441	867.4473
High	2480	858.5681


Page 11 of 79

### 99% BANDWIDTH





Page 12 of 79



COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

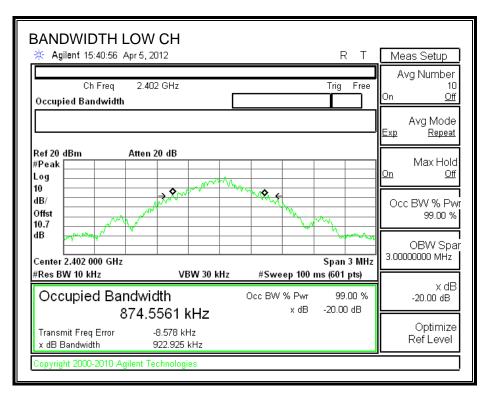
Page 13 of 79

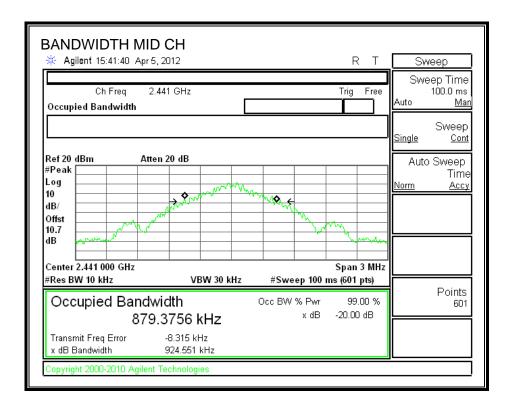
### 7.1.2. 20 dB BANDWIDTH

#### <u>LIMIT</u>

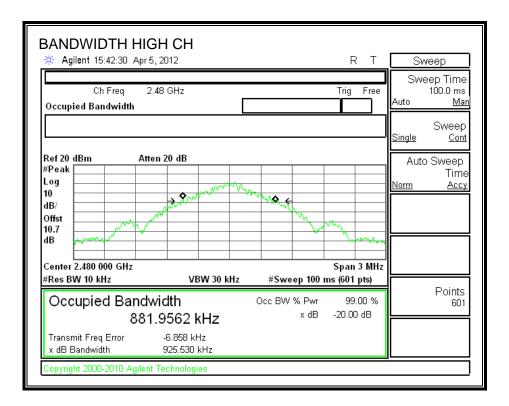
None; for reporting purposes only.

### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.


### <u>RESULTS</u>

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	922.925
Middle	2441	924.551
High	2480	925.530


Page 14 of 79

#### 20 dB BANDWIDTH





Page 15 of 79



COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 16 of 79

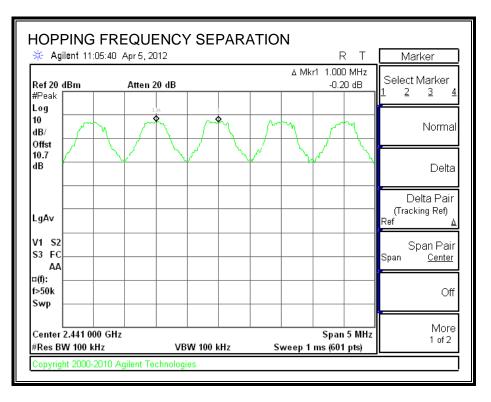
### 7.1.3. HOPPING FREQUENCY SEPARATION

### LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

#### RESULTS

#### **HOPPING FREQUENCY SEPARATION**



Page 17 of 79

### 7.1.4. NUMBER OF HOPPING CHANNELS

### LIMIT

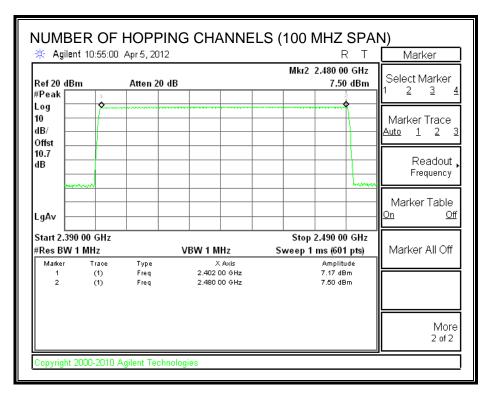
FCC §15.247 (a) (1) (iii)

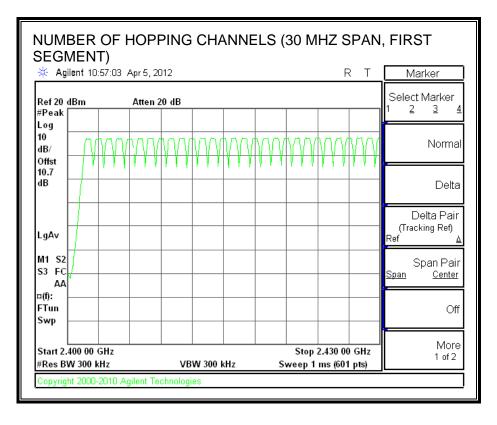
IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

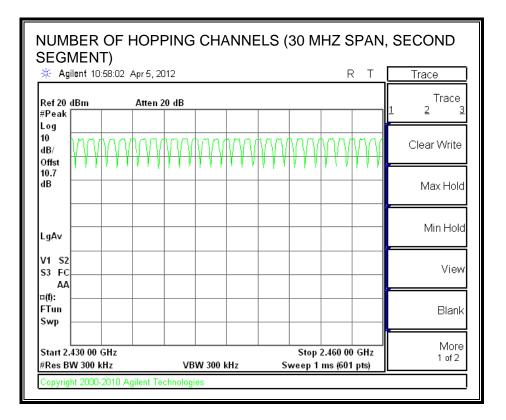
### TEST PROCEDURE

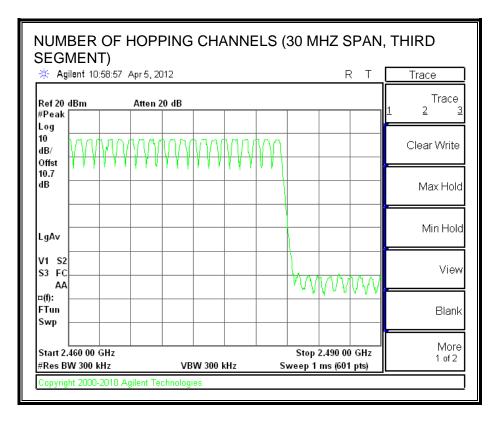
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


### **RESULTS**


Normal Mode: Minimum channels are 20 and maximum channels are 79 AFH Mode: Minimum channels are 20 and maximum channels are 79

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701D TEL: (510) 771-1000 FAX: (510) 661-0888


Page 18 of 79


### NUMBER OF HOPPING CHANNELS





Page 19 of 79





Page 20 of 79

### 7.1.5. AVERAGE TIME OF OCCUPANCY

### LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

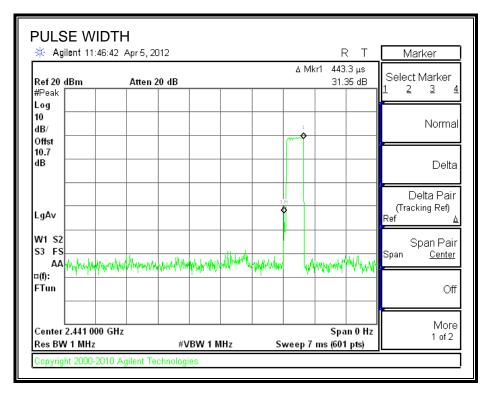
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### TEST PROCEDURE

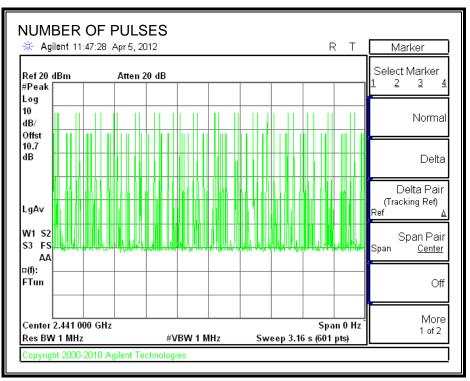
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.


DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
<b>GFSK</b> Norma	I Mode				
DH1	0.4433	32	0.1419	0.4	-0.2581
DH3	1.7030	20	0.3406	0.4	-0.0594
DH5	2.9520	12	0.3542	0.4	-0.0458
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	(msec)	0.8	(sec)	(sec)	(sec)
		seconds			
GFSK AFH M	lode				
DH1	0.4433	64	0.284	0.4	-0.116
DH3	1.703	21	0.358	0.4	-0.042
DH5	2.952	13	0.384	0.4	-0.016

### **RESULTS**

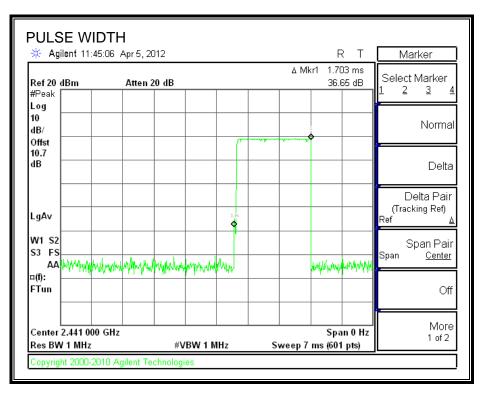

Page 21 of 79

#### <u>DH1</u>

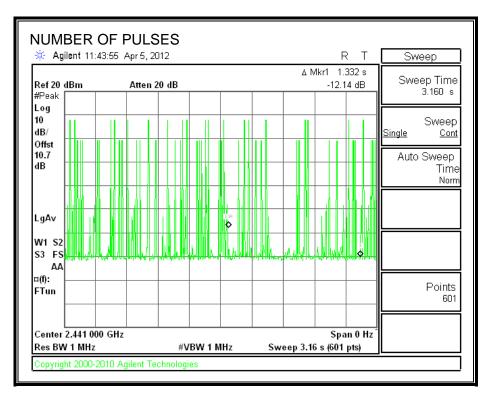
### PULSE WIDTH



### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD




Page 22 of 79

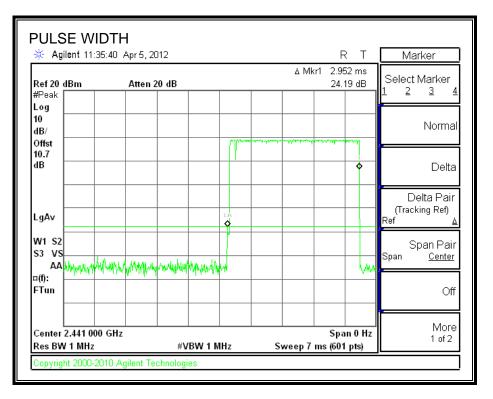

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

### <u>DH3</u>

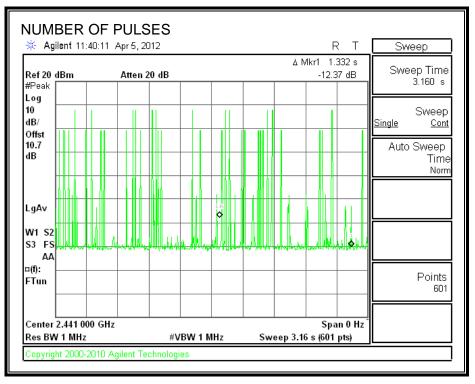
### PULSE WIDTH



### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD




Page 23 of 79


COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

### <u>DH5</u>

### PULSE WIDTH



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



Page 24 of 79

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

### 7.1.6. OUTPUT POWER

### <u>LIMIT</u>

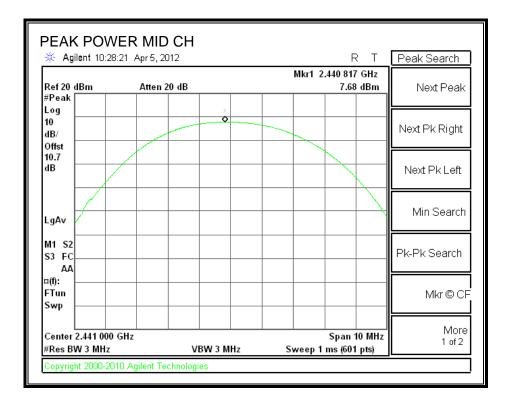
§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


### <u>RESULTS</u>

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	7.32	30	-22.68
Middle	2441	7.68	30	-22.32
High	2480	7.63	30	-22.37

Page 25 of 79

### **OUTPUT POWER**





Page 26 of 79

🔆 Agilent 10:27	:45 Apr 5, 2012			RT	Peak Search
Ref 20 dBm #Peak	Atten 20 dB		Mkr1 2	2.479 867 GHz 7.63 dBm	Next Peak
Log 10 dB/		1 • • •			Next Pk Right
Offst 10.7 dB					Next Pk Left
LgAv					Min Search
M1 S2 S3 FC					Pk-Pk Search
¤(f): FTun Swp					Mkr © Cf
Center 2.480 000 #Res BW 3 MHz		VBW 3 MHz	Sweep 1	Span 10 MHz ms (601 pts)	More 1 of 2

Page 27 of 79

### 7.1.7. CONDUCTED SPURIOUS EMISSIONS

### LIMITS

FCC §15.247 (d)

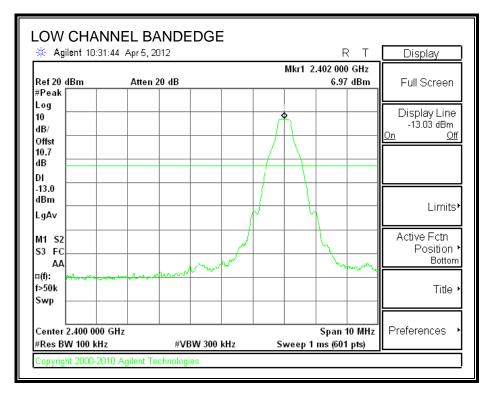
IC RSS-210 A8.5

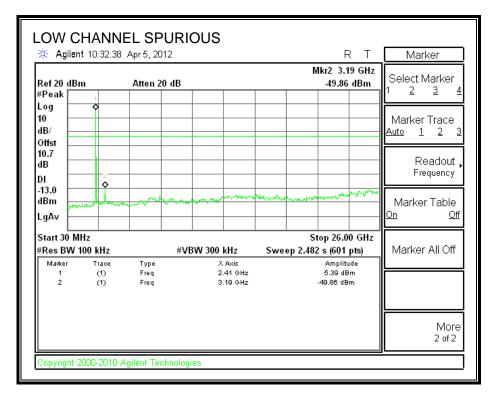
 $Limit = -20 \, dBc$ 

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

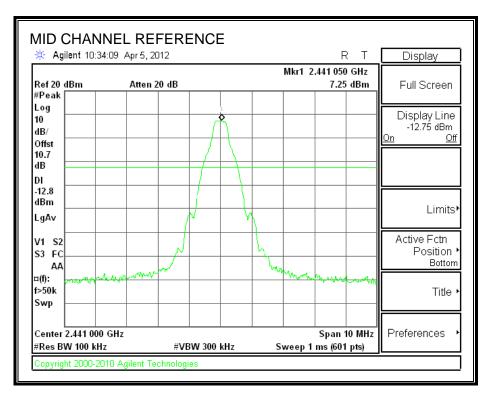

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

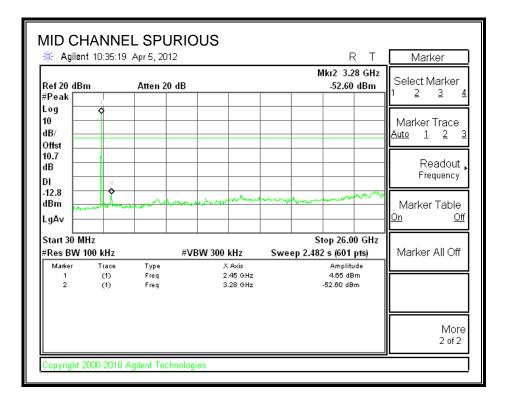

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 28 of 79

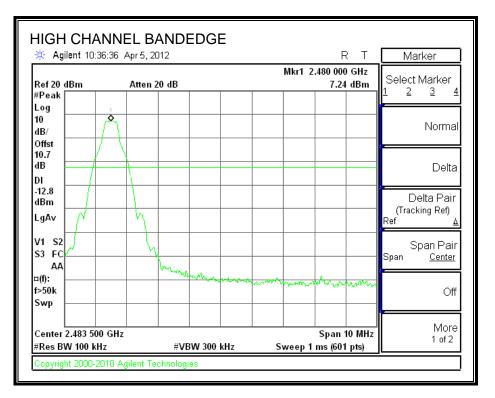
### **RESULTS**

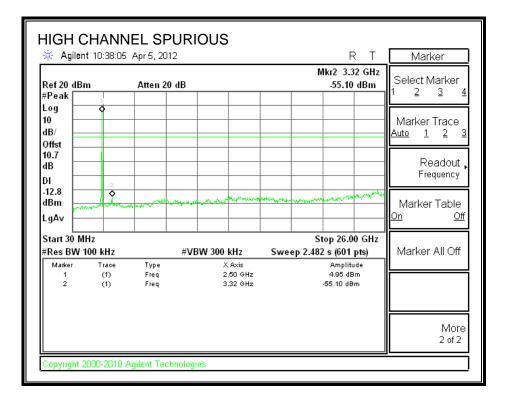
#### SPURIOUS EMISSIONS, LOW CHANNEL



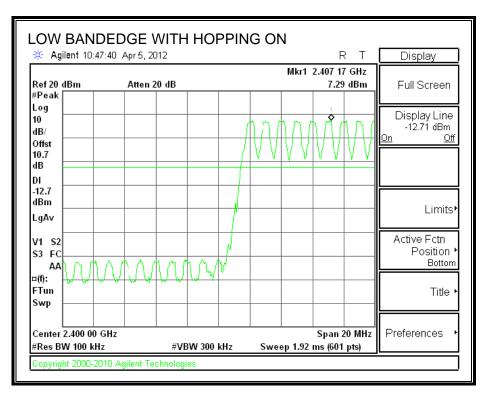



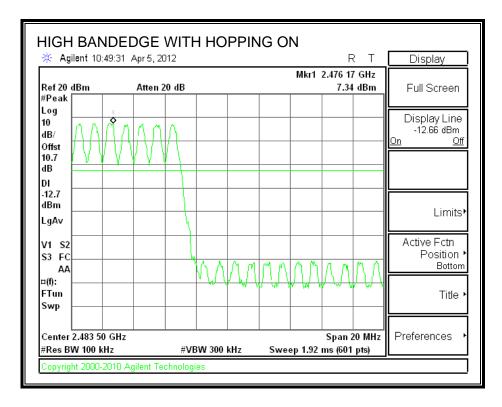

### Page 29 of 79


COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.


#### SPURIOUS EMISSIONS, MID CHANNEL







#### SPURIOUS EMISSIONS, HIGH CHANNEL





### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 32 of 79

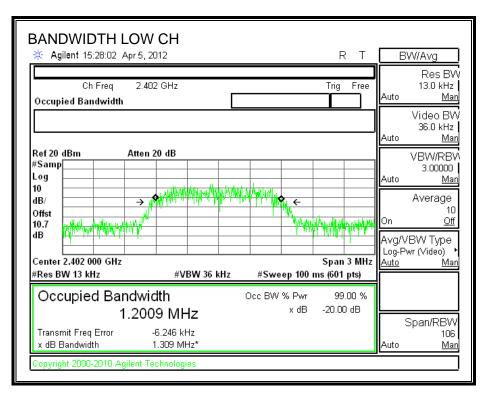
### 7.2. ENHANCED DATA RATE 8PSK MODULATION

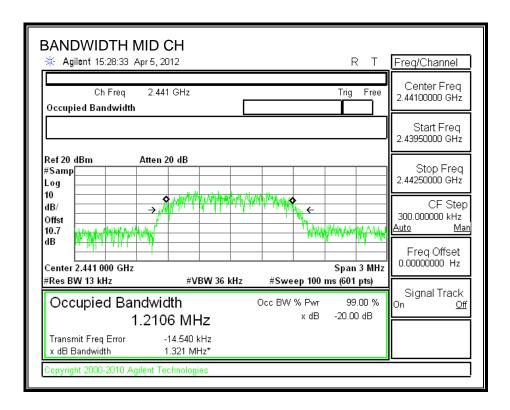
### 7.2.1. 99% BANDWIDTH

### <u>LIMIT</u>

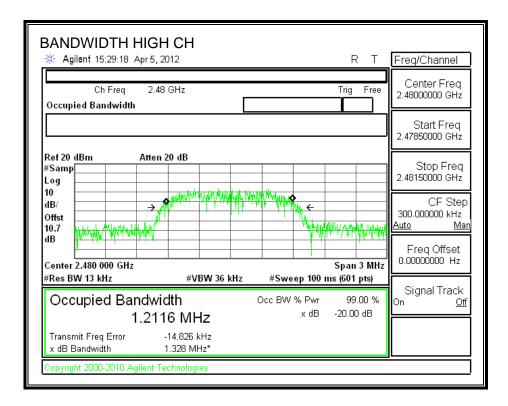
None; for reporting purposes only.

### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 99% bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.


#### RESULTS

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	2402	1.2009	
Middle	2441	1.2106	
High	2480	1.2116	


Page 33 of 79

### 99% BANDWIDTH





Page 34 of 79



COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

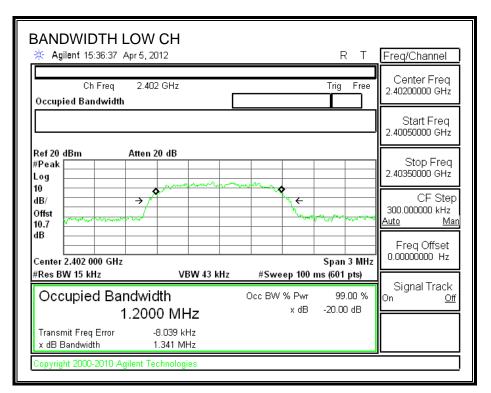
Page 35 of 79

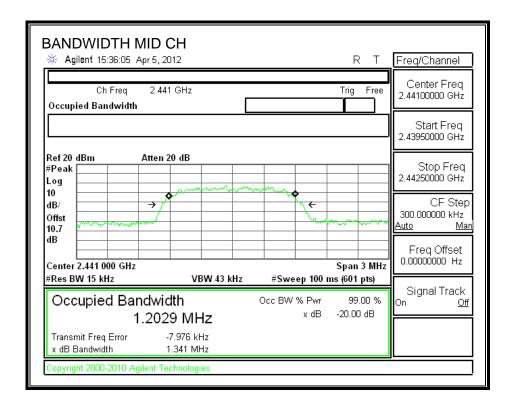
### 7.2.2. 20dB BANDWIDTH

#### LIMIT

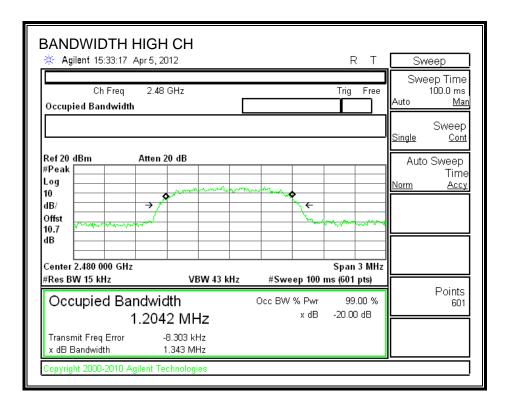
None; for reporting purposes only.

### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.


### <u>RESULTS</u>

Channel	Frequency	20 dB Bandwidth	
	(MHz)	(MHz)	
Low	2402	1.341	
Middle	2441	1.341	
High	2480	1.343	


Page 36 of 79

## 20 dB BANDWIDTH





Page 37 of 79



Page 38 of 79

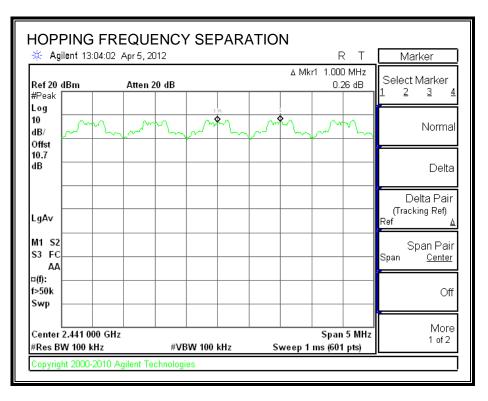
## 7.2.3. HOPPING FREQUENCY SEPARATION

## LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

## RESULTS

## **HOPPING FREQUENCY SEPARATION**



Page 39 of 79

## 7.2.4. NUMBER OF HOPPING CHANNELS

## LIMIT

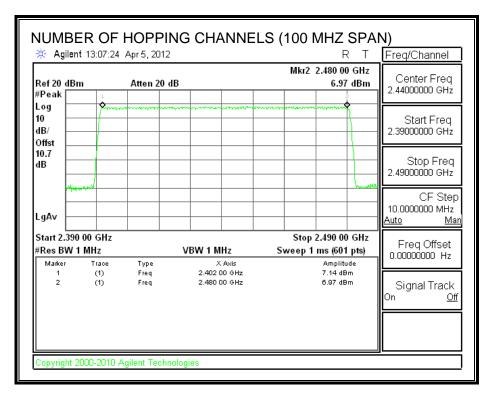
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

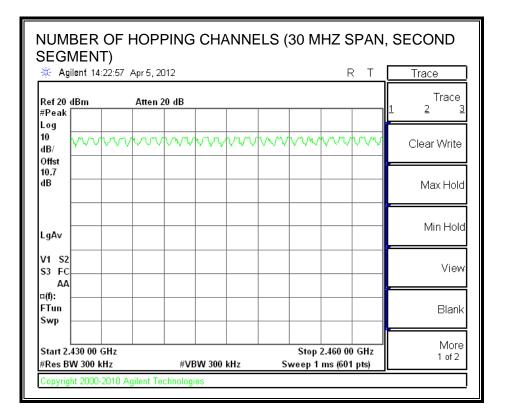
## TEST PROCEDURE

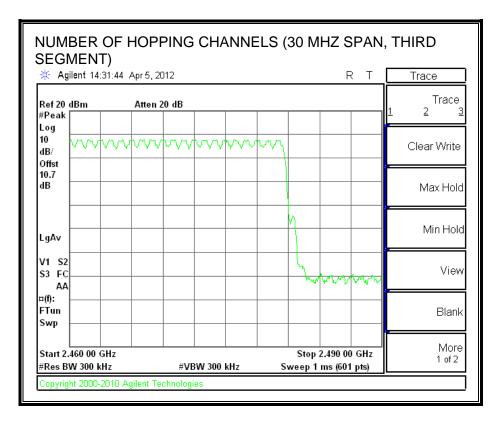
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


## **RESULTS**


Normal Mode: Minimum channels are 20 and maximum channels are 79 AFH Mode: Minimum channels are 20 and maximum channels are 79

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 40 of 79


## NUMBER OF HOPPING CHANNELS





Page 41 of 79





Page 42 of 79

## 7.2.5. AVERAGE TIME OF OCCUPANCY

## LIMIT

FCC §15.247 (a) (1) (iii)

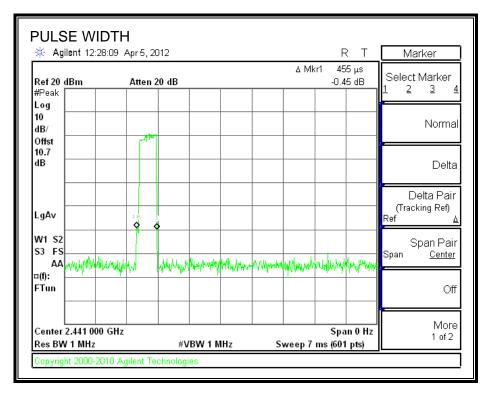
IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

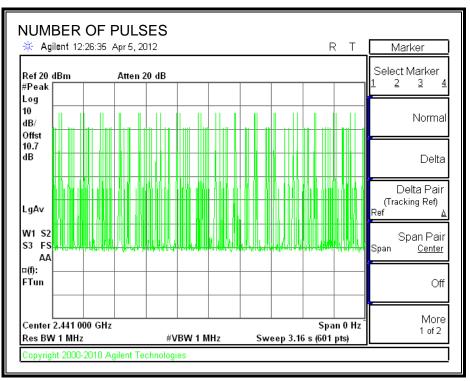
## TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


## **RESULTS**

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)
DH1	0.4450	32	0.1424	0.4	-0.2576
DH3	1.7030	19	0.3236	0.4	-0.0764
DH5	2.9520	13	0.3838	0.4	-0.0162

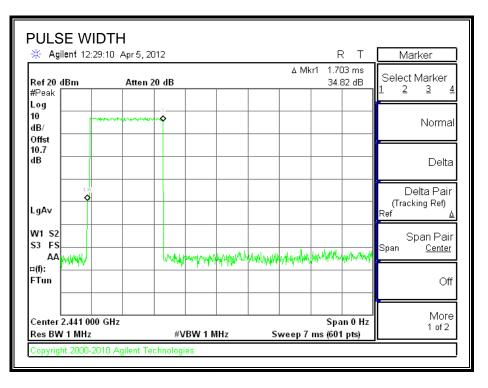

Page 43 of 79

## <u>DH1</u>

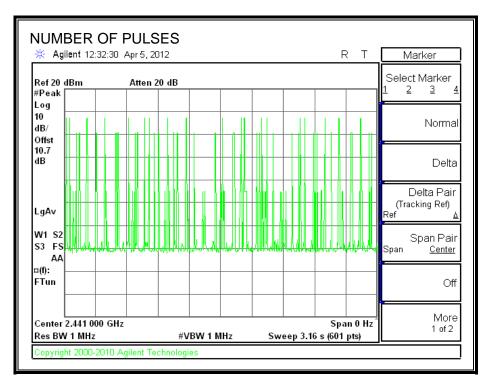
## PULSE WIDTH



## NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



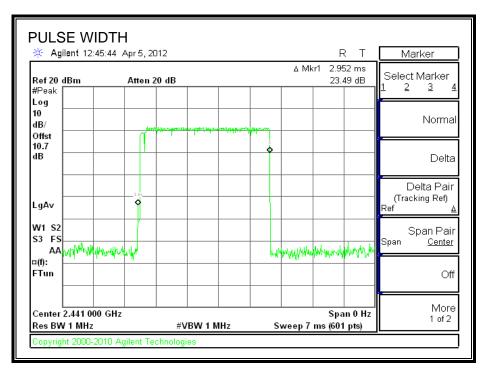

Page 44 of 79


COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

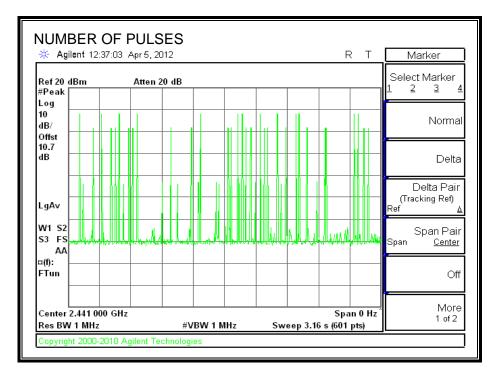
## <u>DH3</u>

## PULSE WIDTH




## NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD




Page 45 of 79

## <u>DH5</u>

## PULSE WIDTH



## NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



Page 46 of 79

## 7.2.6. OUTPUT POWER

## LIMIT

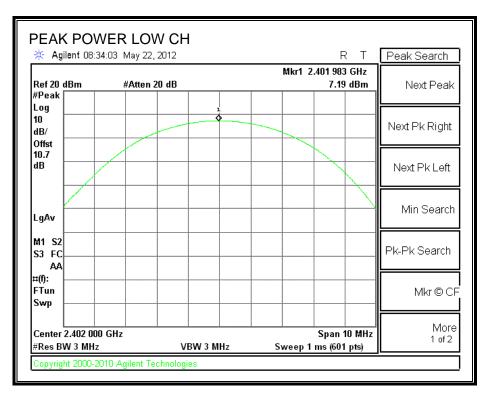
§15.247 (b) (1)

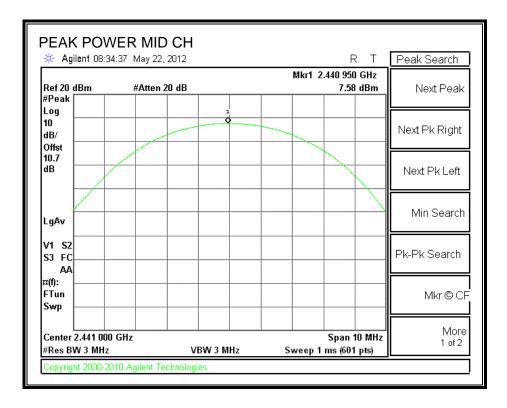
RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 20.97 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

## TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


## RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	7.19	20.97	-13.78
Middle	2441	7.58	20.97	-13.39
High	2480	7.53	20.97	-13.44

Page 47 of 79

## **OUTPUT POWER**





Page 48 of 79

🔆 Agilent 08:3	5:13 May 22, 2012			RT	Peak Search
Ref 20 dBm #Peak	#Atten 20 dB		Mkr1 2	.480 000 GHz 7.53 dBm	Next Peak
Log 10 dB/ Offst		1 			Next Pk Right
dB					Next Pk Left
LgAv					Min Search
V1 S2 S3 FC AA					Pk-Pk Search
¤(f): FTun Swp					Mkr©Cł
Center 2.480 000 #Res BW 3 MHz		VBW 3 MHz	Sweep 1	Span 10 MHz ms (601 pts)	More 1 of 2

Page 49 of 79

## 7.2.7. CONDUCTED SPURIOUS EMISSIONS

## LIMITS

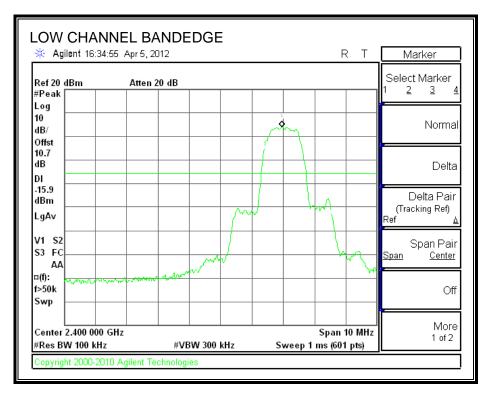
FCC §15.247 (d)

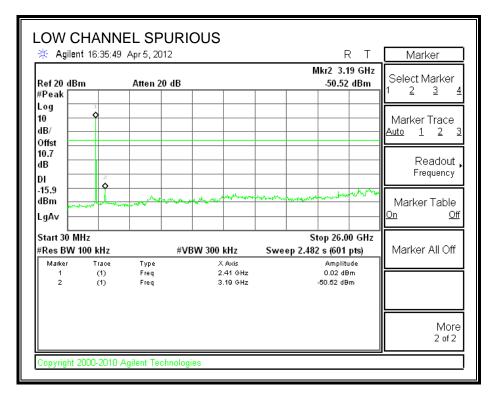
IC RSS-210 A8.5

Limit = -20 dBc

## TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

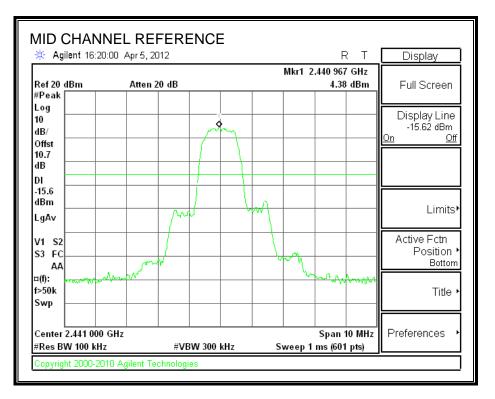

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

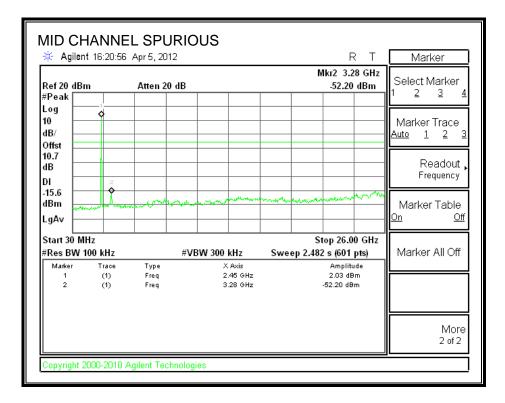

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 50 of 79

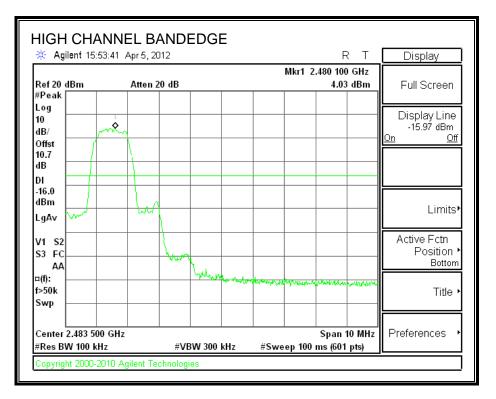
## **RESULTS**

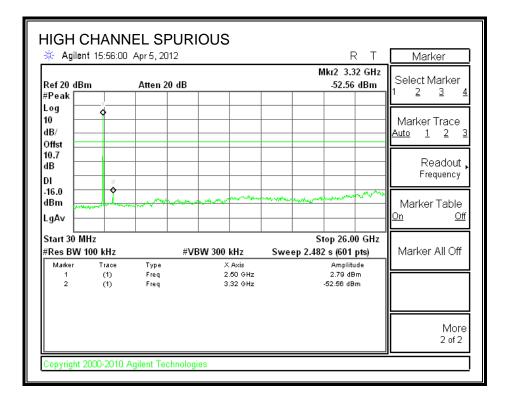
#### SPURIOUS EMISSIONS, LOW CHANNEL



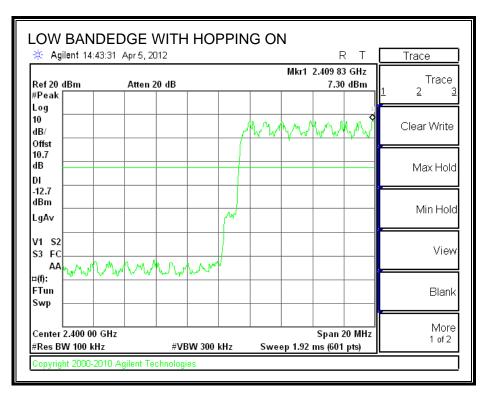




## Page 51 of 79


COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.


## SPURIOUS EMISSIONS, MID CHANNEL







## SPURIOUS EMISSIONS, HIGH CHANNEL





## SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 54 of 79

# 8. RADIATED TEST RESULTS

## 8.1. LIMITS AND PROCEDURE

## <u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

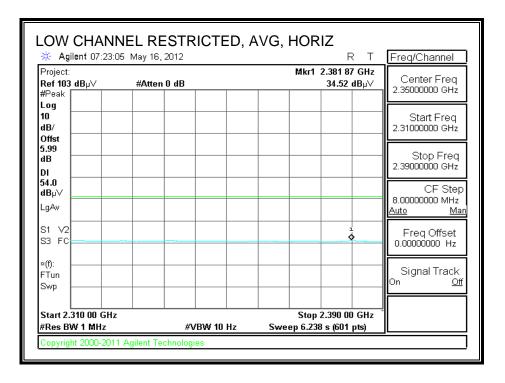
## TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

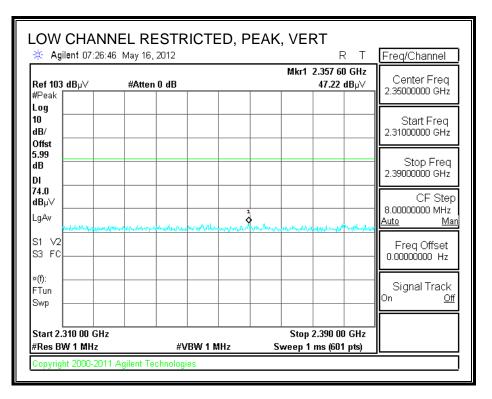
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

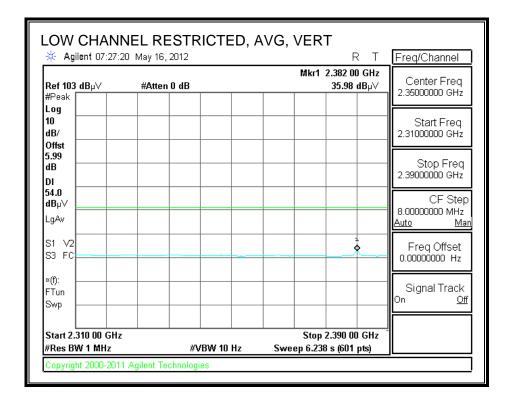

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

## 8.2. TX SPURIOUS ABOVE 1 GHz

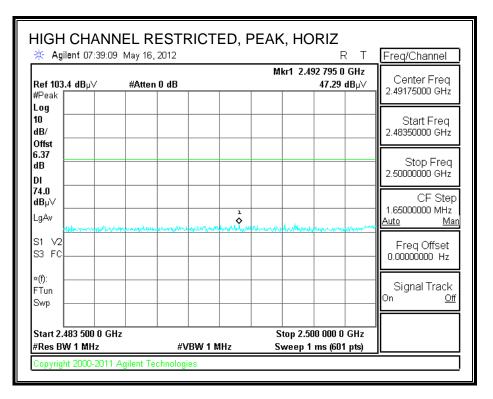
## 8.2.1. BASIC DATA RATE GFSK MODULATION

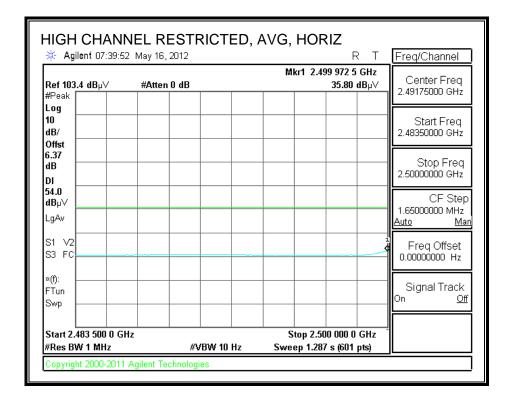

## **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**





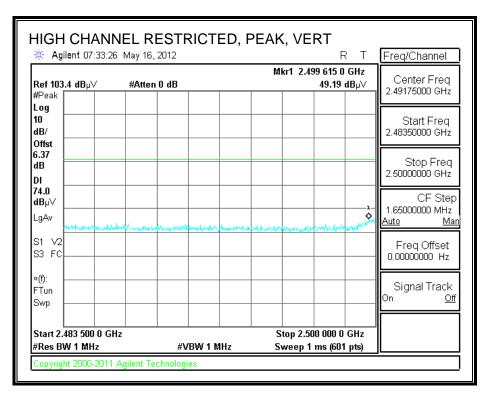

Page 56 of 79

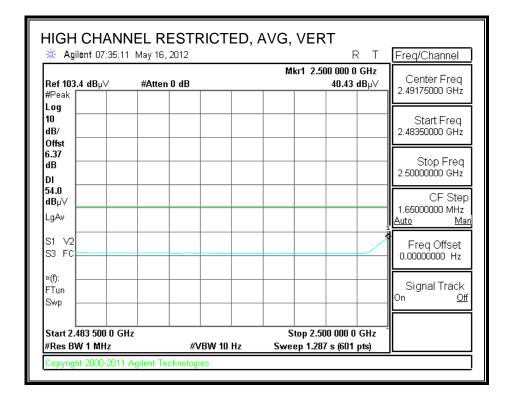

## **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**






Page 57 of 79


## **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**





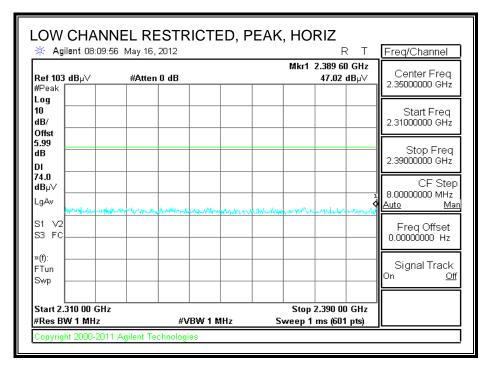

Page 58 of 79

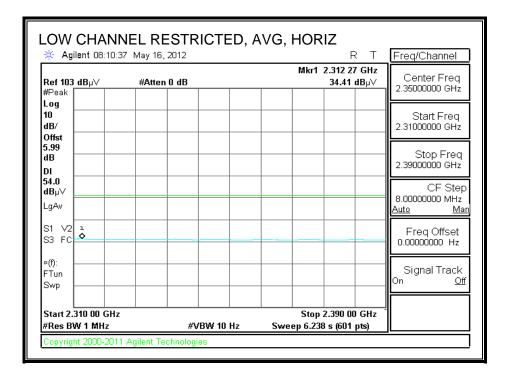
## **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**





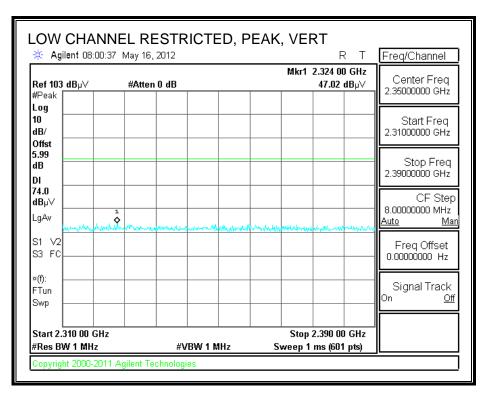
Page 59 of 79

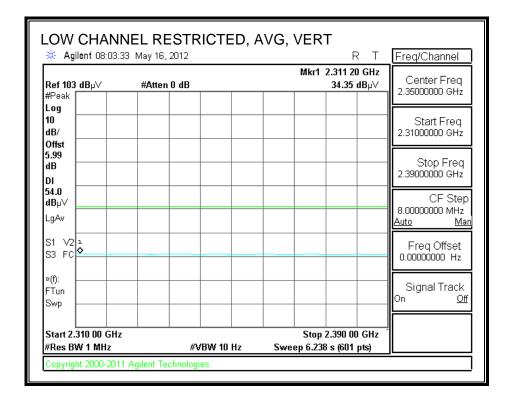

## HARMONICS AND SPURIOUS EMISSIONS


-		Measuren tification		s, Fre	mont 51	n Chamb	er								
Test Engr		Vien Tra	n												
Date:		05/16/12													
Project #		12U1437	3												
Company	7 <b>:</b>	Broadco	m												
Test Targ		FCC 15.247													
Mode Op	er:	Tx GFSK	1												
	f	Measurement Frequency Amp Preamp Gain						Average	Field Stren	gth Limit					
	Dist	Distance			D Corr			ct to 3 met			ald Strength				
	Read	Analyzer	-		Avg	_		trength @		-	vs. Average				
	AF	Antenna			Peak			c Field Strer	ngth	Margin v	vs. Peak Li	mit			
	CL	Cable Los	88		HPF	High Pas	Filter	r							
f	Dist	Read	AF	CL	•	D Corr		Corr.		-	Ant. Pol.		Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	lBuV/m	dB	V/H	P/A/QP	cm	Degree	
		, 2402MH													
4.804	3.0	41.0	33.4	6.2	-35.5	0.0	0.0	45.1	74.0	-28.9	V	P	100.7	97.2	
4.804	3.0	35.5	33.4	6.2		0.0	0.0	39.6	54.0	-14.4	V	A	100.7	97.2	
4.804	3.0	39.0	33.4	6.2	-35.5	0.0	0.0	43.1	74.0	-30.9	H	P	100.3	185.9	
4.804	3.0	29.7	33.4	6.2	-35.5	0.0	0.0	33.8	54.0	-20.2	H	Α	100.3	185.9	
		2441MHz		~ ~					=				102 -	100.5	
4.882 4.882	3.0	42.0 37.5	33.5	6.2	-35.5 -35.5	0.0	0.0	46.2 41.7	74.0	-27.8	V V	P	103.5 103.5	122.7 122.7	
4.884 7.323	3.0	35.5	33.5 35.7	6.2 8.4	-35.5	0.0	0.0	41.7	54.0 74.0	-12.3 -29.8	V	A P	105.5	122.7	
7.323	3.0	23.4	35.7	8.4		0.0	0.0	32.1	54.0	-23.0	v	A	197.8	187.6	
4.882	3.0	38.4	33.5			0.0	0.0	42.7	74.0	-31.3	H	P	103.1	171.2	
4.882	3.0	28.7	33.5	6.2	-35.5	0.0	0.0	32.9	54.0	-21.1	H	A	103.1	171.2	
7.323	3.0	35.8	35.7	8.4	-35.4	0.0	0.0	44.5	74.0	-29.5	H	P	103.5	94.7	
7.323	3.0	23.6	35.7			0.0	0.0	32.2	54.0	-21.8	H	Ā	103.5	94.7	
		, 2480MH						1							
4.960	3.0	41.6	33.6	6.3	-35.5	0.0	0.0	46.0	74.0	-28.0	V	P	102.9	122.3	
4.960	3.0	36.8	33.6		-35.5	0.0	0.0	41.1	54.0	-12.9	V	A	102.9	122.3	
7.440	3.0	36.4	35.9	8.4	-35.5	0.0	0.0	45.3	74.0	-28.7	V	P	102.9	122.3	
7.440	3.0	23.8	35.9	8.4	-35.5	0.0	0.0	32.6	54.0	-21.4	V	A	102.9	122.3	
	3.0	36.9	33.6	6.3	-35.5	0.0	0.0	41.3	74.0	-32.7	H	P	100.0	261.3	
	3.0	27.9	33.6	6.3	-35.5	0.0	0.0	32.3	54.0	-21.7	H	A	100.0	261.3	
4.960		36.0	35.9	8.4	-35.5	0.0	0.0	44.9	74.0	-29.1	H	P	100.1	114.1	
4.960 4.960 7.440 7.440	3.0	23.8	35.9	8.4	-35.5	0.0		32.7	54.0	-21.3	H	A	100.1	114.1	

Page 60 of 79

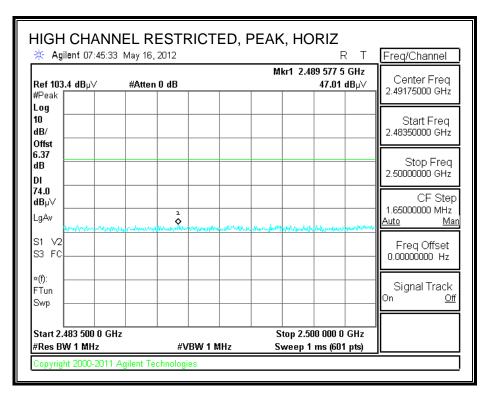
## 8.2.2. ENHANCED DATA RATE 8PSK MODULATION

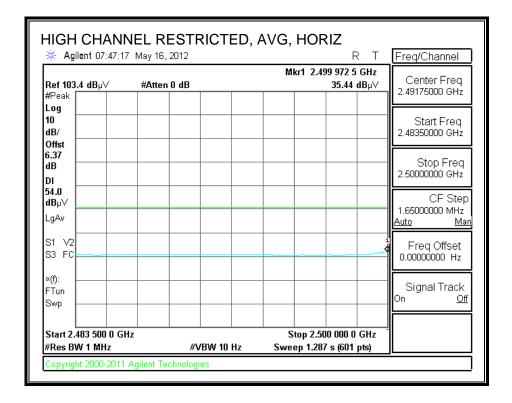

#### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**





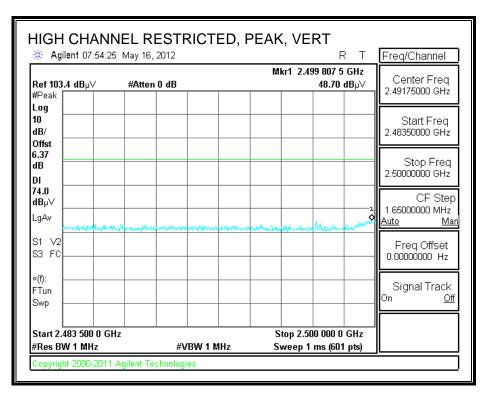

Page 61 of 79

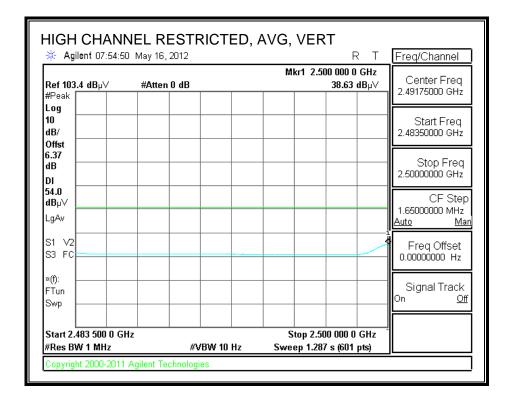

## **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**






Page 62 of 79


## **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**





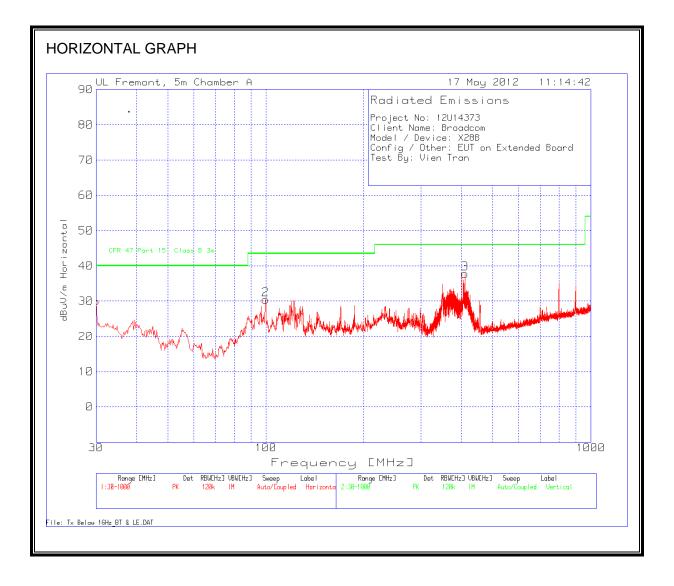

Page 63 of 79

## **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**

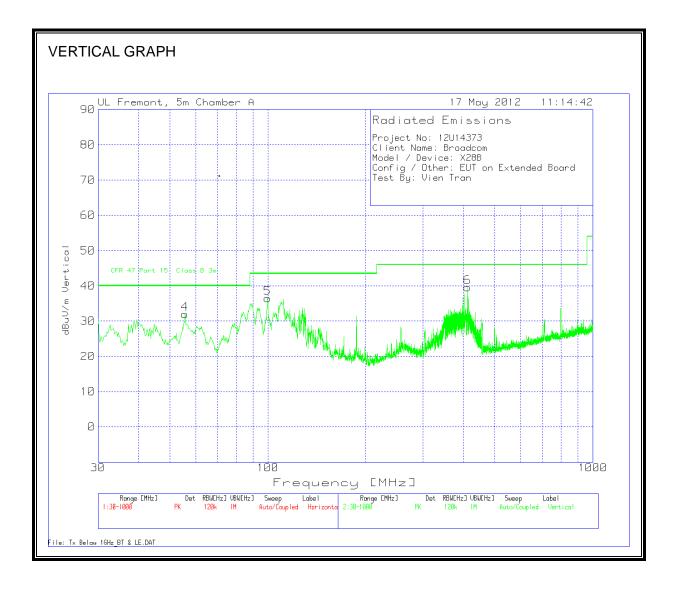




Page 64 of 79


## HARMONICS AND SPURIOUS EMISSIONS

Project #: Company: Fest Targe Mode Ope	t:	Vien Tra 05/16/12 12U1437 Broadco FCC 15. Tx 8PSK	73 m 247												
	f	Measuren	nent Fred	mency	Amp	Preamp (	Jain			Average	Field Stren	eth Limit			
	Dist Distance to Antenna D Corr Distance Correct to 3 meters					ters	-	ld Strength	-						
	Read	Analyzer	Reading		Avg			trength @			s. Average				
	AF	Antenna	-		Peak	-		Field Stre		-	s. Peak Li				
	CL	Cable Los	55		HPF	High Pas			-						
f	Dist	Read	AF	CL	Amp	D Corr		Corr.			Ant. Pol.	Det.	-	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	đВ	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
LOW CH/ 4.804	ANNEL 3.0	, 2402MH 40.6	z 33.4	6.2	-35.5	0.0	0.0	44.7	74.0	-29.3	v	P	100.0	96.7	
4.804 4.804	3.0	40.6	33.4	6.2 6.2	-35.5	0.0	0.0	44.7 36.2	54.0	-29.5	V	P A	100.0	96.7	
4.804	3.0	37.2	33.4	6.2	-35.5	0.0	0.0	41.3	74.0	-32.7	H	P	100.0	145.4	
4.804	3.0	26.9	33.4	6.2	-35.5	0.0	0.0	31.0	54.0	-23.0	H	Ā	100.4	145.4	
MID CHAI		Å							2.110				20011		
4.882	3.0	41.5	33.5	6.2	-35.5	0.0	0.0	45.7	74.0	-28.3	V	P	103.4	121.8	
4.882	3.0	33.8	33.5	6.2	-35.5	0.0	0.0	38.1	54.0	-15.9	V	A	103.4	121.8	
7.323	3.0	35.6	35.7	8.4	-35.4	0.0	0.0	44.3	74.0	-29.7	V	P	138.5	355.9	
7.323	3.0	23.2	35.7	8.4	-35.4	0.0	0.0	31.9	54.0	-22.1	V	A	138.5	355.9	
4.882	3.0	36.0	33.5	6.2	-35.5	0.0	0.0	40.3	74.0	-33.7	H	P	100.7	77.4	
4.882	3.0	25.2	33.5	6.2	-35.5	0.0	0.0	29.4	54.0	-24.6	H	Α	100.7	77.4	
7.323	3.0	36.6	35.7	8.4	-35.4	0.0	0.0	45.3	74.0	- <b>28.7</b>	H	P	199.1	70.1	
7.323	3.0	23.6	35.7	8.4	-35.4	0.0	0.0	32.3	54.0	-21.7	H	A	199.1	70.1	
HIGH CH		· 6 · · · · · · · · · · · · · · · · · ·													
4.960	3.0	40.2	33.6	6.3	-35.5	0.0	0.0	44.6	74.0	-29.4	V	P	100.6	122.8	
4.960	3.0	32.2	33.6	6.3	-35.5	0.0	0.0	36.6	54.0	-17.4	V	A	100.6	122.8	
7.440 7.440	3.0 3.0	36.2 23.6	35.9 35.9	8.4 8.4	-35.5 -35.5	0.0 0.0	0.0	45.1 32.5	74.0 54.0	-28.9 -21.5	V V	P	100.6 100.6	122.8 122.8	
7.440 4.960	3.0	23.0 36.7	33.6	6.3	-35.5	0.0	0.0	32.5 41.0	54.0	-21.5	N H	A P	100.0	122.8	
4.960	3.0	25.5	33.6	6.3	-35.5	0.0	0.0	29.9	54.0	-33.0	H H	P A	100.0	189.1	
7.440	3.0	36.1	35.9	8.4	-35.5	0.0	0.0	45.0	74.0	-29.0	H	P	100.0	189.1	
7.440	3.0	23.6	35.9	8.4	-35.5	0.0	0.0	32.5	54.0	-21.5	H	Ā	100.0	189.1	
Rev. 4.1.2.							0.0								
Note: No o		missions	were de	tecter	ahove	the system	n nois	e fleer							


Page 65 of 79

## 8.3. WORST-CASE BELOW 1 GHz

# SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)



Page 66 of 79



COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 67 of 79

Project No:	12U14373								
Client Nam									
Model / De									
Config / Ot			d Board						
Test By: Vie									
Horizontal 3	30 - 1000M	Hz							
			25MHz-1GHz	T243		CFR 47			
			ChmbrA	Sunol		Part 15			
Test	Meter		Amplified.TX	Bilog.TXT		Class B		Height	
Frequency	Reading	Detector		[dB]	dBuV/m	3m	Margin	[cm]	Polarity
30	36.18	РК	-27.5	21.3	29.98	40	-10.02	100	Horz
99.7842	47.18	РК	-26.9	10.1	30.38	43.5	-13.12	200	Horz
410.7114	47.08	PK	-25.2	15.9	37.78	46	-8.22	100	Horz
Vertical 30	- 1000MHz								
			25MHz-1GHz	T243		CFR 47			
			ChmbrA	Sunol		Part 15			
Test	Meter		Amplified.TX	Bilog.TXT		Class B		Height	
Frequency	Reading	Detector	[dB]	[dB]	dBuV/m	3m	Margin	[cm]	Polarity
55.5875	52.19	PK	-27.3	7.1	31.99	40	-8.01	200	Vert
99.7842	53.25	PK	-26.9	10.1	36.45	43.5	-7.05	100	Vert
411.6807	48.84	PK	-25.2	16	39.64	46	-6.36	100	Vert
PK - Peak d	etector								
QP - Quasi-	Peak dete	ctor							
LnAv - Linea	-								
LgAv - Log A	-								
Av - Averag	ge detecto	r							
CAV - CISPI	_	detector							
RMS - RMS									
CRMS - CISF									
Text File: T		_							
File: Tx Bel	ow 1GHz_E	BT & LE.DA	Т						

Page 68 of 79

# 9. AC POWER LINE CONDUCTED EMISSIONS

## LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 "
0.5-5	56	46
5-30	60	50

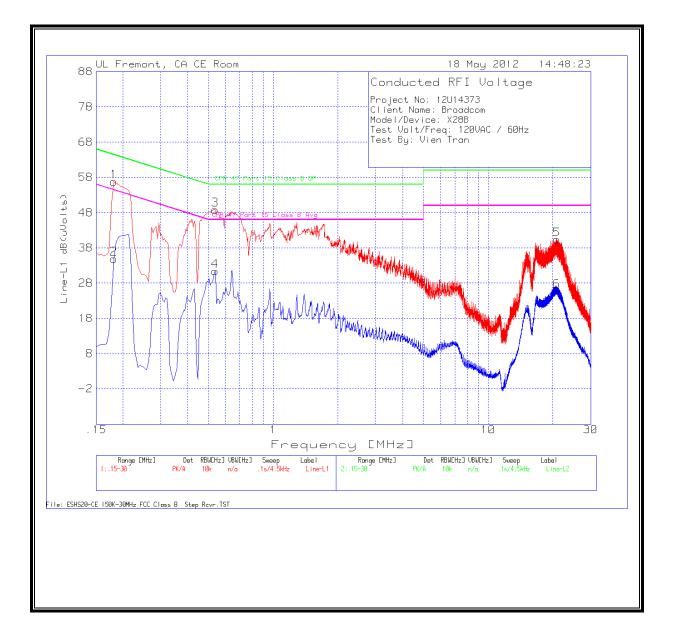
* Decreases with the logarithm of the frequency.

## TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

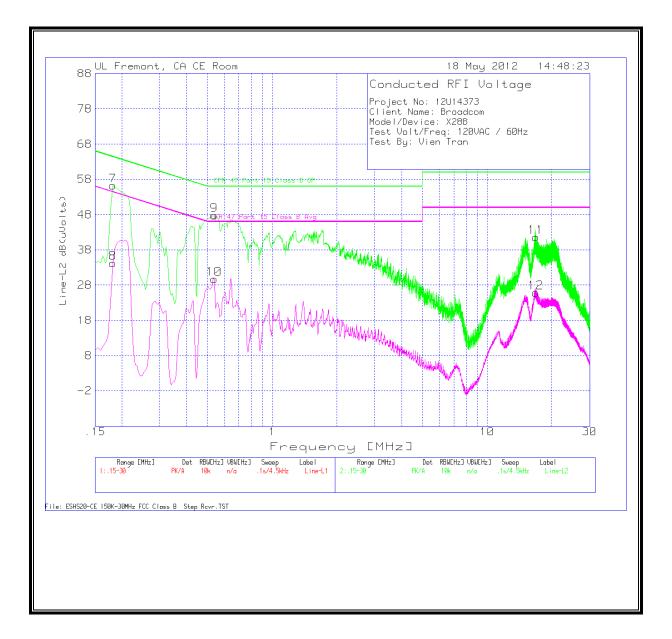
The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.


Page 69 of 79

## **RESULTS**

Project No:	12U14373								
Client Nam	e: Broadco	om							
Model/Dev	rice: X28B								
Test Volt/F	req: 120VA	AC / 60Hz							
Test By: Vie	en Tran								
Line-L1 .15	- 30MHz								
						CFR 47		CFR 47	
			T24 IL	LC Cables		Part 15		Part 15	
Test	Meter		L1.TXT	1&3.TXT		Class B		Class B	
Frequency	Reading	Detector	(dB)	(dB)	dB(uVolts)	QP	Margin	Avg	Margin
0.1815	56.69	PK	0.1	0	56.79	64.4	-7.61	-	-
0.1815	34.74	Av	0.1	0	34.84	-	-	54.4	-19.56
0.537	48.75	PK	0.1	0	48.85	56	-7.15	-	-
0.537	31.25	Av	0.1	0	31.35	-	-	46	-14.65
20.8365	39.86	РК	0.3	0.2	40.36	60	-19.64	-	-
20.8365	25.29	Av	0.3	0.2	25.79	-	-	50	-24.21
Line-L2 .15	- 30MHz								
						CFR 47		CFR 47	
			T24 IL	LC Cables		Part 15		Part 15	
Test	Meter		L1.TXT	1&3.TXT		Class B		Class B	
Frequency	Reading	Detector	(dB)	(dB)	dB(uVolts)	QP	Margin	Avg	Margin
0.1815	56.12	PK	0.1	0	56.22	64.4	-8.18	-	-
0.1815	34.18	Av	0.1	0	34.28	-	-	54.4	-20.12
0.537	47.69	PK	0.1	0	47.79	56	-8.21	-	-
0.537	29.64	Av	0.1	0	29.74	-	-	46	-16.26
16.8315	41.15	PK	0.2	0.2	41.55	60	-18.45	-	-
16.8315	25.48	Av	0.2	0.2	25.88	-	-	50	-24.12
PK - Peak d		-							
QP - Quasi-									
LnAv - Line									
LgAv - Log A	_								
Av - Averag	-								
CAV - CISPI	_								
RMS - RMS									
CRMS - CISF	PR RMS de C BT & LE.								
		1 1 1							


Page 70 of 79

## LINE 1 RESULTS



Page 71 of 79 COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

## LINE 2 RESULTS



COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 72 of 79

#### MAXIMUM PERMISSIBLE EXPOSURE 10.

## FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	its for Occupational	l/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/F 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6	
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure		
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30	

#### TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

#### TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 73 of 79

## IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

## Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ² )	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /ƒ ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm².
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 74 of 79

## EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m^2 EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m^2

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP = (P1 * G1) + (P2 * G2) + ... + (Pn * Pn)

where

Px = Power of transmitter xGx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

## <u>LIMITS</u>

From FCC §1.1310 Table 1 (B), the maximum value of S =  $1.0 \text{ mW/cm}^2$ From IC Safety Code 6, Section 2.2 Table 5 Column 4, S =  $10 \text{ W/m}^2$ 

## **RESULTS**

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	7.68	1.11	0.0151	0.0015

Page 75 of 79