

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM94331CD

FCC ID: QDS-BRCM1064 IC: 4324A-BRCM1064

REPORT NUMBER: 12U14227-4, Revision C

ISSUE DATE: JUNE 07, 2012

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	05/29/12	Initial Issue	F. Ibrahim
А	06/04/12	Revised sections 5.3, 5.5 and 7.1.4	F. Ibrahim
В	06/06/12	Revised section 7.1.4	F. Ibrahim
С	06/07/12	Revised section 7.1.4	F. Ibrahim

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 87

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	6
4	4.1. MEASURING INSTRUMENT CALIBRATION	6
4	4.2. SAMPLE CALCULATION	6
4	4.3. MEASUREMENT UNCERTAINTY	6
5.	EQUIPMENT UNDER TEST	7
5	5.1. DESCRIPTION OF EUT	7
5	5.2. MAXIMUM OUTPUT POWER	7
5	5.3. DESCRIPTION OF AVAILABLE ANTENNAS	7
5	5.4. SOFTWARE AND FIRMWARE	7
5	5.5. WORST-CASE CONFIGURATION AND MODE	7
5	5.6. DESCRIPTION OF TEST SETUP	8
6	TEST AND MEASUREMENT FOUIPMENT	10
0.		
7.	ANTENNA PORT TEST RESULTS	.11
7	7.1. BASIC DATA RATE GFSK MODULATION	.11
	7.1.2. HOPPING FREQUENCY SEPARATION	.16
	7.1.3. NUMBER OF HOPPING CHANNELS	.18
	7.1.4. AVERAGE TIME OF OCCUPANCY	.21
	7.1.5. OUTPUT POWER	.25
	7.1.7. CONDUCTED SPURIOUS EMISSIONS	.20
7	7.2. ENHANCED DATA RATE 8PSK MODULATION	.34
	7.2.1. 20 dB AND 99% BANDWIDTH	.34
	7.2.2. HOPPING FREQUENCY SEPARATION	.39
	7.2.4. AVERAGE TIME OF OCCUPANCY	.41
	7.2.5. OUTPUT POWER	.48
	7.2.6. AVERAGE POWER	.51
_		.52
8.	RADIATED TEST RESULTS	.57
8	8.1. LIMITS AND PROCEDURE	.57
8	8.2. TRANSMITTER ABOVE 1 GHz	.58
	8.2.1. BASIC DATA RATE GESK MODULATION 8.2.2 ENHANCED DATA RATE 8PSK MODULATION	.58 .67
CO	MPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP47	01F
471	173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0 This report shall not be reproduced except in full, without the written approval of UL CCS.	888

8	3.3.	WORST-CASE BELOW 1 GHz	76
9.	AC	POWER LINE CONDUCTED EMISSIONS	79
10.	5	SETUP PHOTOS	83

Page 4 of 87

1. ATTESTATION OF TEST RESULTS

DATE TESTED:	MAY 01 - MAY 10, 2012
SERIAL NUMBER:	C8Y2104004NDRJVE4 (P508)
MODEL:	BCM94331CD
EUT DESCRIPTION:	802.11a/b/g/n WLAN + Bluetooth PCI-E Custom Combination Card
COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, USA

APPLICABLE STANDARDS						
STANDARD	TEST RESULTS					
CFR 47 Part 15 Subpart C	Pass					
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass					
INDUSTRY CANADA RSS-GEN Issue 3	Pass					

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

FRANK IBRAHIM EMC SUPERVISOR UL CCS

Tested By:

DAVID GARCIA EMC ENGINEER UL CCS

Page 5 of 87

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n WLAN + Bluetooth PCI-E Custom Combination Card.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	7.90	6.17
2402 - 2480	Enhanced 8PSK	9.12	8.17

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an 802.11bgn WLAN and Bluetooth antenna with a maximum gain of 4.8dBi.

Note: This antenna was connected during radiated emissions testing. Part number is (604-3215)

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom Bluetooth Version 1.5.2

The test utility software used during testing was Bluetool, ver. 1.5.2.8.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC.

Radiated emission 30-1000 MHz and power line conducted emission were performed with the EUT set to transmit at the channel with the highest output power as worst-case scenario.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID
Laptop	Lenovo	G560	CBU4495773	DoC
AC Adapter	Lenovo	ADP-65KH B	11S36001646ZZ10011FKEZ	DoC
Adapter Board	Catalyst	MINI2EXP	JUAN 02	N/A
Adapter Board	Broadcom	BCM94331CSMFG	1458923	N/A

I/O CABLES

I/O Cable List								
Cable	Cable Port # of identical Connector Cable Type Cable Remarks							
No		ports	Туре		Length (m)			
1	AC	1	US 115V	Un-Shielded	1m	NA		
2	DC	1	DC	Un-Shielded	1.8m	Ferrite at laptop's end		

TEST SETUP

The EUT is attached to a jig board which is installed in the PCMCI slot of a host laptop computer during the tests. Test software exercised the radio card.

Page 8 of 87

SETUP DIAGRAM FOR TESTS

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 9 of 87

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	09/02/11	09/02/12	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01176	08/04/11	08/04/12	
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESCI 7	1000741	07/06/11	07/06/12	
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	08/19/11	08/19/13	
Antenna, Horn, 18 GHz	EMCO	3115	C00872	09/20/11	09/20/12	
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	01/26/12	01/26/13	
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	07/28/11	07/28/12	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	07/18/11	07/18/12	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	11/11/11	11/11/12	
LISN, 30 MHz	FCC	50/250-25-2	C00626	12/13/11	12/13/12	

Page 10 of 87

7. ANTENNA PORT TEST RESULTS

7.1. BASIC DATA RATE GFSK MODULATION

7.1.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	923.088	877.2073
Middle	2441	923.072	915.2411
High	2480	920.597	902.4211

Page 11 of 87

20 dB BANDWIDTH

Page 12 of 87

Page 13 of 87

99% BANDWIDTH

Page 14 of 87

Page 15 of 87

7.1.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

Page 16 of 87

RESULTS

HOPPING FREQUENCY SEPARATION

Page 17 of 87

7.1.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels observed.

Page 18 of 87

NUMBER OF HOPPING CHANNELS

Page 19 of 87

Page 20 of 87

7.1.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

RESULTS

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

DH Packet	Pulse	Number of	Average Time	Limit	Margin		
	Width	Pulses in	of Occupancy		-		
	(msec)	3.16	(sec)	(sec)	(sec)		
		seconds	· · ·				
DH1	0.445	36	0.160	0.4	-0.240		
DH3	1.708	17	0.290	0.4	-0.110		
DH5	2.947	13	0.383	0.4	-0.017		

GFSK Mode

AFH Mode

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		-
	(msec)	0.8	(sec)	(sec)	(sec)
		seconds			
DH1	0.445	64	0.285	0.4	-0.115
DH3	1.708	21	0.359	0.4	-0.041
DH5	2.947	13	0.383	0.4	-0.017

Page 21 of 87

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH1

Page 22 of 87

PULSE WIDTH - DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3

Page 23 of 87

PULSE WIDTH – DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 24 of 87

7.1.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	7.27	30	-22.73
Middle	2441	7.90	30	-22.10
High	2480	7.90	30	-22.10

Page 25 of 87

OUTPUT POWER

Page 26 of 87

						F) т	Erod/Channol
Ref 20 dBm	Atten	20 dB		м	lkr1 2.	479 917 7.90	GHz dBm	Center Freq 2.48000000 GHz
Log 10 dB/				_				Start Freq 2.47500000 GHz
Offst 10.7 dB								Stop Freq 2.48500000 GHz
LgAv							$\overline{}$	CF Step 1.00000000 MHz Auto Man
M1 S2 S3 FS								Freq Offset 0.00000000 Hz
⊐(f): FTun Swp								Signal Track ^{On <u>Off</u>}
Center 2.480 (#Res BW 3 MI	DOO GHz Hz	VBW 3 M	Hz	#Swee	p 100 i	Span 1 ms (601	IO MHz pts)	
Copyright 2000-2010 Agilent Technologies								

Page 27 of 87

7.1.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.68 dB (including 10 dB pad and 0.68 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power		
	(MHz)	(dBm)		
Low	2402	6.99		
Middle	2441	7.66		
High	2480	7.71		

Page 28 of 87

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 29 of 87

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 30 of 87

SPURIOUS EMISSIONS, MID CHANNEL

Page 31 of 87

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 32 of 87

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 33 of 87

7.2. ENHANCED DATA RATE 8PSK MODULATION

7.2.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth	
	(MHz)	(kHz)	(kHz)	
Low	2402	1345	1216.2	
Middle	2441	1363	1199.1	
High	2480	1357	1219.1	

Page 34 of 87

20 dB BANDWIDTH

Page 35 of 87

Page 36 of 87
99% BANDWIDTH

Page 37 of 87

Page 38 of 87

7.2.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

Page 39 of 87

RESULTS

HOPPING FREQUENCY SEPARATION

Page 40 of 87

7.2.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels observed.

Page 41 of 87

NUMBER OF HOPPING CHANNELS

Page 42 of 87

Page 43 of 87

7.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

8PSK (EDR) Mode

DH Packet	Pulse Width	Number of Pulses in	Average	Limit	Margin
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
DH1	0.4517	32	0.145	0.4	-0.255
DH3	1.7	16	0.272	0.4	-0.128
DH5	2.947	12	0.354	0.4	-0.046

Page 44 of 87

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

Page 45 of 87

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3

Page 46 of 87

PULSE WIDTH – DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 47 of 87

7.2.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 20.97 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	8.50	20.97	-12.47
Middle	2441	8.30	20.97	-12.67
High	2480	9.12	20.97	-11.85

Page 48 of 87

OUTPUT POWER

Page 49 of 87

Page 50 of 87

7.2.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.68 dB (including 10 dB pad and 0.68 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	5.52
Middle	2441	6.21
High	2480	6.27

Page 51 of 87

7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 52 of 87

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 53 of 87

SPURIOUS EMISSIONS, MID CHANNEL

Page 54 of 87

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 55 of 87

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 56 of 87

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 57 of 87

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 58 of 87

Page 59 of 87

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.COMPLIANCE CERTIFICATION SERVICES (UL CCS)

Page 60 of 87

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 61 of 87

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 62 of 87

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 63 of 87

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 64 of 87

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 65 of 87

HARMONICS AND SPURIOUS EMISSIONS

		_											
Test Engr:David GarciaDate:05/08/12Project #:12U14227Company:Broadcom		David Garcia											
		05/08/12											
Test Targe	et:	15.205											
Mode Ope	er:	Bluetoo	th GFSE										
	f	Measuren	nent Fred	mency	Amn	Preamn (Gain			Average	Field Stren	eth Limit	
	Dist	Distance	to Anter	1021123	D Corr	Distance	Corre	nt to 3 me	ters	Peak Fie	ld Strength	Limit	
	Read	Analyzer	Randing		Δυσ	Average Field Strength @ 2				Margin x	ο Δυρεασο	Limit	
	ΔF	Antenna	Factor		Peatr	Calculate	loulated Paals Field Strength		Margin va Pask Limit				
	CL	Cable Los	15		HPF	High Pas	s Filter	r			5. 1 Call 21		
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Char	nel: 24	02 MHz											
4.804	3.0	40.1	33.1	6.8	-34.1	0.0	0.0	45.9	74.0	-28.1	H	P	
4.804	3.0	33.9	33.1	6.8	-34.1	0.0	0.0	39.7	54.0	-14.3	H	A	
4.804	3.0	39.5	33.1	6.8	-34.1	0.0	0.0	45.3	74.0	-28.7	V	P	
4.804	3.0	31.2	33.1	6.8	-34.1	0.0	0.0	37.0	54.0	-17.0	V	A	
Mid Chan	nel: 24	41 MHz		ļ	ļ	ļ	ļ			ļ			
4.882	3.0	40.0	33.2	6.8	-34.0	0.0	0.0	45.9	74.0	-28.1	H	P	
4.882	3.0	31.6	33.2	6.8	-34.0	0.0	0.0	37.6	54.0	-16.4	H	A	
7.323	3.0	35.5	36.3	9.1	-33.1	0.0	0.0	47.8	74.0	-26.2	H	P	
7.323	3.0	23.2	36.3	9.1	-33.1	0.0	0.0	35.5	54.0	-18.5	H	A	
4.882	3.0	41.7	33.2	0.8	-34.0	0.0	0.0	47.0	74.0	-20.4	V	P	
4.004	3.0	35.5	363	0.0	-34.0	0.0	0.0	39.4	54.0	-14.0	v	D D	
7 323	3.0	22.2	363	9.1	-33.1	0.0	0.0	35.6	54.0	-18.4	v	A	
High Cha	nnel: 2	480 MHz		~	-0011	0.0	0.0	00.0		-10.4	•	**	
4.960	3.0	51.9	33.2	6.9	-34.0	0.0	0.0	58.0	74.0	-16.0	Н	Р	
4.960	3.0	25.6	33.2	6.9	-34.0	0.0	0.0	31.7	54.0	-22.3	H	Ā	
7.440	3.0	35.7	36.5	9.1	-33.0	0.0	0.0	48.2	74.0	-25.8	H	P	
7.440	3.0	23.9	36.5	9.1	-33.0	0.0	0.0	36.4	54.0	- 17.6	H	Α	
4.960	3.0	51.3	33.2	6.9	-34.0	0.0	0.0	57.4	74.0	-16.6	V	P	
4.960	3.0	31.4	33.2	6.9	-34.0	0.0	0.0	37.4	54.0	- 16.6	V	Α	
7.440	3.0	35.2	36.5	9.1	-33.0	0.0	0.0	47.8	74.0	-26.2	V	Р	
7.440	3.0	23.1	36.5	9.1	-33.0	0.0	0.0	35.6	54.0	- 18.4	V	Α	
	1							1					
Rev. 4.1.2	.7												
Mater Ma	other e	missions	were de	tected	l above t	the system	m noi:	se floor.					

Page 66 of 87

8.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 67 of 87

Page 68 of 87

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 69 of 87

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 70 of 87

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.COMPLIANCE CERTIFICATION SERVICES (UL CCS)

Page 71 of 87

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 72 of 87
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701F47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 73 of 87

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 74 of 87

HARMONICS AND SPURIOUS EMISSIONS

High Freq Complian	uency l ce Cer	Measuren tification	nent Service	s, Fre	mont 5n	n Chamb	er						
Test Engr: David Garcia													
Date: Project #: Company: Test Target: Mode Oper:		05/08/12											
		12U14227											
		Broadcom											
		15.205											
		Bluetooth 8PSK											
	I D' i	Measuren	nent Fred	quency	Amp	Preamp	Gain			Average	Field Stren	gth Limit	
	Dist	Distance	to Anter	ina	D Corr	Distance Correct to 3 meters				Peak Fie	ld Strength	Limit	
	A E	Analyzer	Analyzer Reading Av			Average Field Strength @ 3 m				Margin v	s. Average	Limit	
	Ar	Antenna Calla T	ractor		Peak	Peak Calculated Peak Field Strength					s. Peak Lii	nit	
	CL	Cable Los	55		nPF	rligh Pas	s Filte	r					
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Char	inel: 24	02 MHz				ļ							
4.804	3.0	39.8	33.1	6.8	-34.1	0.0	0.0	45.6	74.0	-28.4	H	Р	
4.804	3.0	30.5	33.1	6.8	-34.1	0.0	0.0	36.3	54.0	-17.7	H	A	
4.004	3.0	20.5	22.1	0.0	-34.1	0.0	0.0	25.2	74.0	-49.1	v	P	
4.004 Mid Char	5.0 nol: 24	41 MH-	33.1	0.0	-34.1	0.0	0.0	39.3	54.0	-10.7	v	A	
4 882	3.0	38.7	33.2	6.8	-34.0	0.0	0.0	44.6	74.0	-29.4	н	P	
4.882	3.0	28.7	33.2	6.8	-34.0	0.0	0.0	34.6	54.0	-19.4	H	Ā	
7.323	3.0	35.0	36.3	9.1	-33.1	0.0	0.0	47.3	74.0	-26.7	H	P	
7.323	3.0	23.0	36.3	9.1	-33.1	0.0	0.0	35.3	54.0	-18.7	H	A	
4.882	3.0	39.6	33.2	6.8	-34.0	0.0	0.0	45.5	74.0	-28.5	V	P	
4.882	3.0	30.1	33.2	6.8	-34.0	0.0	0.0	36.0	54.0	- 18.0	V	A	
7.323	3.0	35.3	36.3	9.1	-33.1	0.0	0.0	47.6	74.0	- 26.4	V	P	
7.323	3.0	23.1	36.3	9.1	-33.1	0.0	0.0	35.4	54.0	- 18.6	V	A	
High Cha	nnel: 2	480 MHz				ļ				ļ			
4.960	3.0	52.7	33.2	6.9	-34.0	0.0	0.0	58.8	74.0	-15.2	H	P	
4.960	3.0	25.6	33.2	6.9	-34.0	0.0	0.0	31.7	54.0	-22.3	H	A	
7.440	3.0	35.9	36.5	9.1	-33.0	0.0	0.0	48.5	74.0	-25.5	H	Р	
/.440	3.0	23.6	36.5	9.1	-33.0	0.0	0.0	36.1	54.0	-17.9	H	A	
4.900	3.0	26.0	33.2	6.9	-34.0	0.0	0.0	32.0	74.0	-14.2	V	r A	
7 440	3.0	35 5	36 5	0.9	-34.0	0.0	0.0	48 1	54.0 74.0	-21.7	v	P	
7 440	3.0	23 5	36.5	9.1	-33.0	0.0	0.0	36.0	54.0	-40.7	v	A	
	0.0			~.1	-00.0	0.0	0.0		JT.V	-10.0	•		
Rev. 4.1.2	7	:	:		:	:		:		: :		· · · · ·	
Note: No	other e	missions	were de	tecter	above i	the system	m noi	se floor					
	other c		were de	teete	1 40010	are system							

Page 75 of 87

8.3. WORST-CASE BELOW 1 GHz

IONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 76 of 87

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 77 of 87

Project No: 12U14227									
Client Nam	e: Broado	om							
Model / De	vice: X33								
Config / Ot	her: FUT i	nside Maci	Book/Anten	na					
Test By: Vie	n Tran								
100104110									
Horizontal	30 - 1000N	ЛНz							
			1GHz	T243		CFR 47			
			ChmbrA	Sunol		Part 15			
Test	Meter		Amplified.	Bilog,TXT		Class B		Height	
Frequency	Reading	Detector	TX [dB]	[dB]	dBuV/m	3m	Margin	[cm]	Polarity
30	42.99	PK	-27.5	21.3	36.79	40.0	-3.21	200	Horz
42.9876	48.53	РК	-27.4	11.9	33.03	40.0	-6.97	400	Horz
137.3901	57.02	РК	-26.7	13.0	43.32	43.5	-0.18	200	Horz
137.3901	53.81	QK	-26.7	13.0	40.11	43.5	-3.39	200	Horz
725.9033	47.02	PK	-23.3	20.2	43.92	46.0	-2.08	100	Horz
725.9033	45.14	PK	-23.3	20.2	42.04	46.0	-3.96	100	Horz
Vertical 30	- 1000MH	z							
			1GHz	T243		CFR 47			
			ChmbrA	Sunol		Part 15			
Test	Meter		Amplified.	Bilog.TXT		Class B		Height	
Frequency	Reading	Detector	TX [dB]	[dB]	dBuV/m	3m	Margin	[cm]	Polarity
30	46.01	PK	-27.5	21.3	39.81	40.0	-0.19	400	Vert
30	40.72	PK	-27.5	21.3	34.52	40.0	-5.48	400	Vert
42.9876	51.35	PK	-27.4	11.9	35.85	40.0	-4.15	100	Vert
137.3901	49.18	PK	-26.7	13.0	35.48	43.5	-8.02	200	Vert
717.3741	43.66	PK	-23.2	20.1	40.56	46.0	-5.44	100	Vert
PK - Peak detector									
QP - Quasi-	Peak dete	ector							
Av - Averag	ge detecto	or							

Page 78 of 87

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 "	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 79 of 87

RESULTS

<u>6 WORST EMISSIONS</u>

Project No:	12U14227								
Client Nam	e:Broadco	m							
Model/Dev	vice:802.11	.a/g/n 3x3 M		AN + BT					
Test Volt/F	req:120 Va	ac / 60Hz							
Test By:Vie	n Tran								
Line-L1.15	- 30MHz								
			T24 IL	LC Cables		CISPR 22		CISPR 22	
Test	Meter		L1.TXT	1&3.TXT		Class B		Class B	
Frequency	Reading	Detector	[dB]	[dB]	dBuV	QP	Margin	Avg	Margin
0.155	58.27	PK	0.1	0.00	58.37	65.8	-7.43	-	-
0.155	27.73	Av	0.1	0.00	27.83	-	-	55.80	-27.97
4.308	36.5	PK	0.1	0.10	36.70	56	-19.30	-	-
4.308	18.47	Av	0.1	0.10	18.67	-	-	46.00	-27.33
12.615	40.75	PK	0.2	0.20	41.15	60	-18.85	-	-
12.615	29.67	Av	0.2	0.20	30.07	-	-	50.00	-19.93
Line-L2.15	- 30MHz								
			T24 IL	LC Cables		CISPR 22		CISPR 22	
Test	Meter		L1.TXT	1&3.TXT		Class B		Class B	
Frequency	Reading	Detector	[dB]	[dB]	dBuV	QP	Margin	Avg	Margin
0.164	54.87	PK	0.1	0	54.97	65.3	-10.33	-	-
0.164	35.78	Av	0.1	0	35.88	-	-	55.3	-19.42
4.232	36.83	PK	0.1	0.1	37.03	56	-18.97	-	-
4.232	19.17	Av	0.1	0.1	19.37	-	-	46	-26.63
12.539	41.39	PK	0.2	0.2	41.79	60	-18.21	-	-
12.539	29.68	Av	0.2	0.2	30.08	-	-	50	-19.92
PK - Peak d	etector								
QP - Quasi-	Peak dete	ctor							
Av - Avera	ge detecto	or							

LINE 1 RESULTS

Page 81 of 87

LINE 2 RESULTS

Page 82 of 87