

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM94331PCIEBT3A

FCC ID: QDS-BRCM1059 IC: 4324A- BRCM1059

REPORT NUMBER: 11U13734-6

ISSUE DATE: MAY 04, 2011

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	05/04/11	Initial Issue	T. Chan

Page 2 of 46

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS4	•
2.	TEST METHODOLOGY5	;
3.	FACILITIES AND ACCREDITATION5)
4.	CALIBRATION AND UNCERTAINTY	;
4.	1. MEASURING INSTRUMENT CALIBRATION5	;
4.	2. SAMPLE CALCULATION	5
4.	3. MEASUREMENT UNCERTAINTY5	;
5.	EQUIPMENT UNDER TEST6	j
5.	1. DESCRIPTION OF EUT6	;
5.	2. MAXIMUM OUTPUT POWER6	;
5.	3. DESCRIPTION OF AVAILABLE ANTENNAS6	;
5.	4. SOFTWARE AND FIRMWARE6	;
5.	5. WORST-CASE CONFIGURATION AND MODE6	;
5.	6. DESCRIPTION OF TEST SET7	,
6.	TEST AND MEASUREMENT EQUIPMENT9)
6. 7.	TEST AND MEASUREMENT EQUIPMENT	
7.	ANTENNA PORT TEST RESULTS)
7.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10))
7.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16))) ; ;
7.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16 7.1.2. POWER SPECTRAL DENSITY 19)));;;)
7 . 7.	ANTENNA PORT TEST RESULTS101. LE (LOW ENERGY) MODULATION107.1.1. 6 dB BANDWIDTH107.1.2. 99% BANDWIDTH137.1.1. OUTPUT POWER167.1.2. POWER SPECTRAL DENSITY197.1.3. CONDUCTED SPURIOUS EMISSIONS22))) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
7 . 7.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16 7.1.2. POWER SPECTRAL DENSITY 19 7.1.3. CONDUCTED SPURIOUS EMISSIONS 22 RADIATED TEST RESULTS 27))) ;))
7. 7. 8. 8.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16 7.1.2. POWER SPECTRAL DENSITY 19 7.1.3. CONDUCTED SPURIOUS EMISSIONS 22 RADIATED TEST RESULTS 27 1. LIMITS AND PROCEDURE 27	
7. 7. 8. 8. 8.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16 7.1.2. POWER SPECTRAL DENSITY 19 7.1.3. CONDUCTED SPURIOUS EMISSIONS 22 RADIATED TEST RESULTS 27 1. LIMITS AND PROCEDURE 27 2. WORST-CASE RECEIVER ABOVE 1 GHz 33	
7. 7. 8. 8. 8. 8. 8. 8.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16 7.1.2. POWER SPECTRAL DENSITY 19 7.1.3. CONDUCTED SPURIOUS EMISSIONS 22 RADIATED TEST RESULTS 27 1. LIMITS AND PROCEDURE 27 2. WORST-CASE RECEIVER ABOVE 1 GHz 33 3. WORST-CASE BELOW 1 GHz 34)))))))))))))))))))
7. 7. 8. 8. 8. 8. 8. 8.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16 7.1.2. POWER SPECTRAL DENSITY 19 7.1.3. CONDUCTED SPURIOUS EMISSIONS 22 RADIATED TEST RESULTS 27 1. LIMITS AND PROCEDURE 27 2. WORST-CASE RECEIVER ABOVE 1 GHz 33	
7. 7. 8. 8. 8. 8. 8. 8.	ANTENNA PORT TEST RESULTS 10 1. LE (LOW ENERGY) MODULATION 10 7.1.1. 6 dB BANDWIDTH 10 7.1.2. 99% BANDWIDTH 13 7.1.1. OUTPUT POWER 16 7.1.2. POWER SPECTRAL DENSITY 19 7.1.3. CONDUCTED SPURIOUS EMISSIONS 22 RADIATED TEST RESULTS 27 1. LIMITS AND PROCEDURE 27 2. WORST-CASE RECEIVER ABOVE 1 GHz 33 3. WORST-CASE BELOW 1 GHz 34)))))))))))))))))))

Page 3 of 46

Pass

Pass

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.				
EUT DESCRIPTION:	802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card				
MODEL:	BCM94331PCIEBT3AX				
SERIAL NUMBER:	C961095004UDJY01W				
DATE TESTED: APRIL 26 – 27 & MAY 04, 2011					
APPLICABLE STANDARDS					
ST	ANDARD	TEST RESULTS			
CFR 47 P	art 15 Subpart C	Pass			

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the
requirements set forth in the above standards. All indications of Pass/Fail in this report are
opinions expressed by UL CCS based on interpretations and/or observations of test results.
Measurement Uncertainties were not taken into account and are published for informational
purposes only. The test results show that the equipment tested is capable of demonstrating
compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

81

THU CHAN ENGINEERING MANAGER UL CCS

Tested By:

Maution guyon

THANH NGUEN EMC ENGINEER UL CCS

Page 4 of 46

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Low Energy BLE	-2.06	0.62

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an 802.11bgn WLAN and Bluetooth antenna with a maximum gain of 1.11 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom Bluetooth Version 1.4.3

The test utility software used during testing was Bluetool, ver. 1.4.3.0 and BCM_BTDL,ver 1.8.4.pl

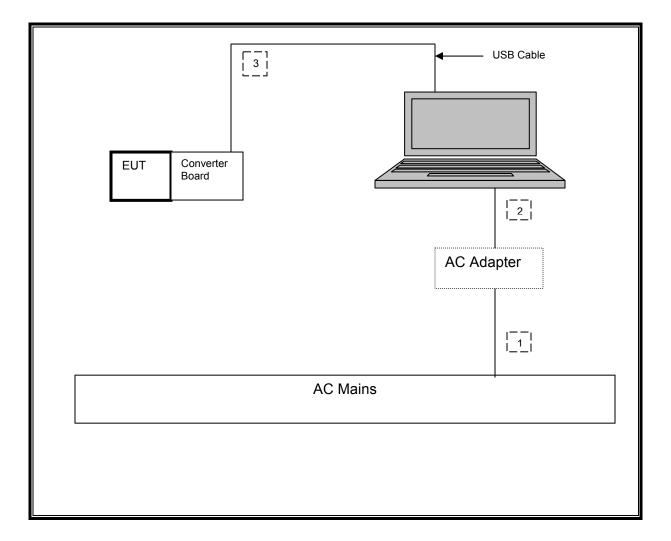
5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

Page 6 of 46

5.6. DESCRIPTION OF TEST SET

SUPPORT EQUIPMENT


PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	Dell	PP09S	N/A	DoC		
AC Adapter	Dell	PA-1650-05D	CN-05U092-71615-49Q-18B8	DoC		
Converter Board	Broadcom	BCM94319SDB	1396825	N/A		
USB Cable	N/A	N/A	N/A	N/A		

I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	1	US 115V	Shielded	1.5m	NA		
2	DC	1	DC	Un-shielded	1.5m	Ferrite at laptop's end		
4	USB	1	USB	Un-shielded	1.0m	NA		

Page 7 of 46

SETUP DIAGRAM

TEST SETUP

The EUT was tested as an external module that installed on a converter board connected to a host Laptop PC USB cable.

Page 8 of 46

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Due			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	10/29/11			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	07/14/11			
Antenna, Horn, 18 GHz	EMCO	3115	C00872	07/29/11			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	07/29/11			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	01/26/12			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	08/04/11			
Peak Power Meter	Agilent / HP	E9327A	C00964	12/04/11			
Peak Power Sensor	Agilent / HP	E4416A	C00963	12/04/11			
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR			
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/11			
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11			

Page 9 of 46

7. ANTENNA PORT TEST RESULTS

7.1. LE (LOW ENERGY) MODULATION

7.1.1.6 dB BANDWIDTH

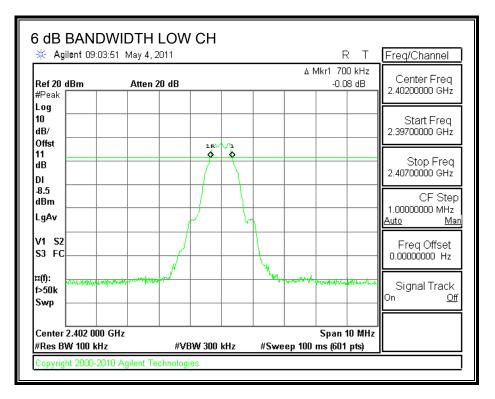
<u>LIMITS</u>

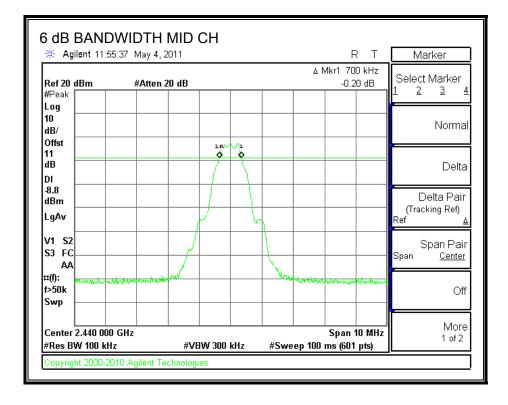
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2402	0.700	0.5
Middle	2442	0.700	0.5
High	2480	0.700	0.5

Page 10 of 46

6 dB BANDWIDTH

Page 11 of 46

🔆 Agilent 09:16:	VIDTH HIGI 07 May 4, 2011				RΤ	Freq/Channel
Ref 20 dBm #Peak	Atten 20 dB			∆ Mkr1 70 0.	00 kHz 23 dB	Center Freq 2.48000000 GHz
Log 10 dB/						Start Freq 2.47500000 GHz
Offst 11 dB						Stop Freq 2.48500000 GHz
49.0 dBm						CF Step 1.00000000 MHz Auto Man
V1 S2 S3 FC						Freq Offset 0.00000000 Hz
#(f): f>50k Swp	and some and		- 14 MM	1. North Martin Contraction	(Krishi Adilani	Signal Track On <u>Off</u>
Center 2.480 000 (#Res BW 100 kHz		BW 300 kHz	#Swoo	Span p 100 ms (60'	10 MHz	

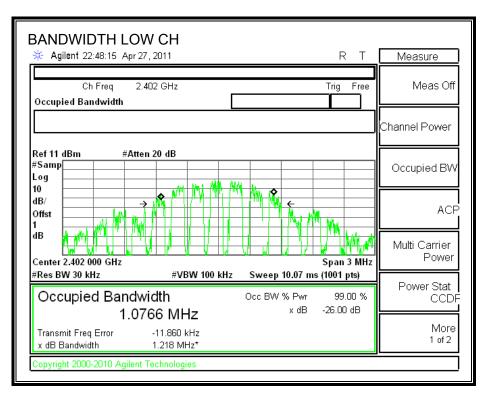
Page 12 of 46

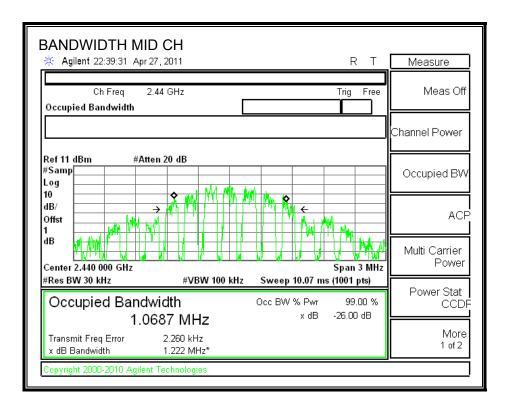
7.1.2. 99% BANDWIDTH

<u>LIMIT</u>

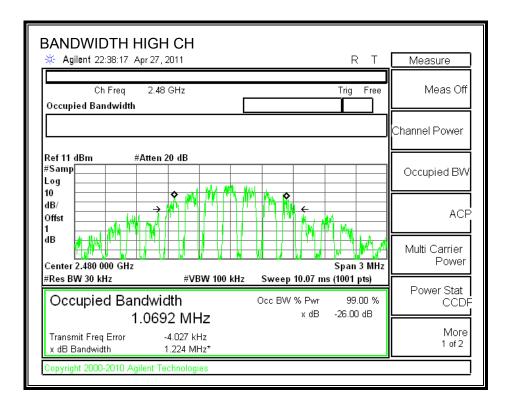
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 99% bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0766
Middle	2440	1.0687
High	2480	1.0692


Page 13 of 46

99% BANDWIDTH

Page 14 of 46

Page 15 of 46

7.1.1. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

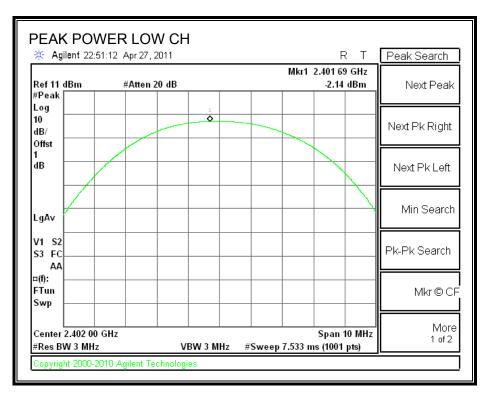
RSS-210 Issue 7 Clause A8.4

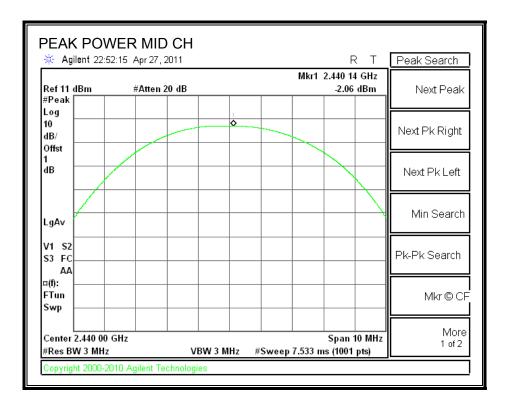
The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

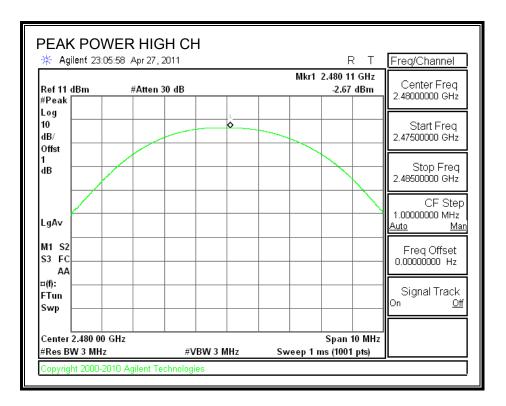
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS


LE MODE

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-2.14	30	-32.14
Middle	2440	-2.06	30	-32.06
High	2480	-2.67	30	-32.67


Page 16 of 46

LE MODE

Page 17 of 46

Page 18 of 46

7.1.2. POWER SPECTRAL DENSITY

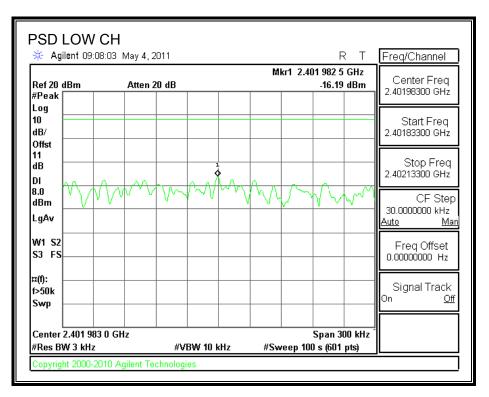
LIMITS

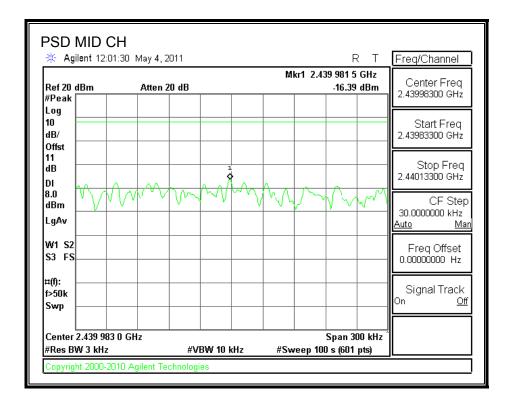
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-16.19	8	-24.19
Middle	2442	-16.39	8	-24.39
High	2480	-16.66	8	-24.66

Page 19 of 46

POWER SPECTRAL DENSITY

Page 20 of 46

🔆 Agilent I						M	kr1 2.47	9 981 0	GHz	Freq/Channel
Ref 20 dBm #Peak		Atten 2	0 dB					-16.66		Center Freq 2.47998300 GHz
Log 10 dB/ Offst										Start Freq 2.47983300 GHz
11 dB DI		0.0		1						Stop Freq 2.48013300 GHz
8.0 dBm LgAv	γh		\mathcal{M}		~~	ĥΛ	\sum	$\sqrt{\gamma}$	YM M	CF Step 30.0000000 kHz <u>Auto Mar</u>
W1 S2 S3 FS										Freq Offset 0.00000000 Hz
¤(f): f>50k Swp										Signal Track On <u>Off</u>
Center 2.479 #Res BW 3 k		lz	#14	BW 10 I	(H-2	#6		Span 30) s (601		

Page 21 of 46

7.1.3. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

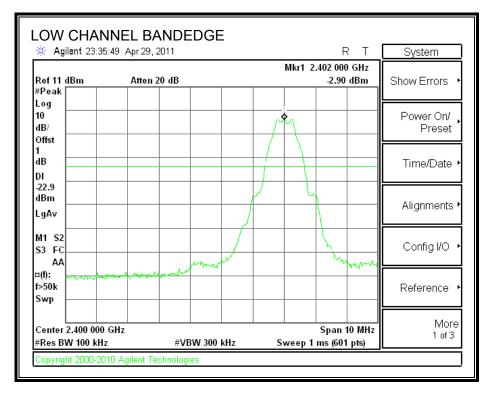
IC RSS-210 A8.5

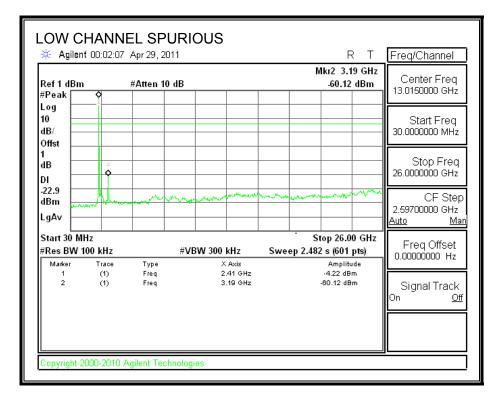
Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

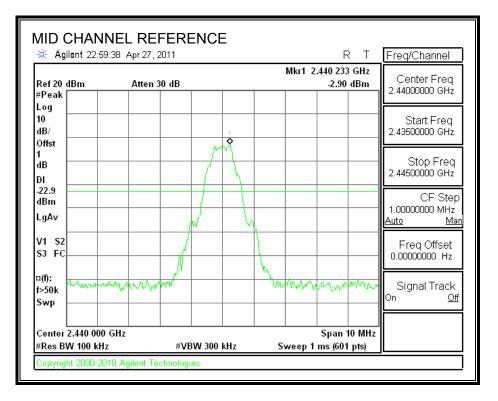

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

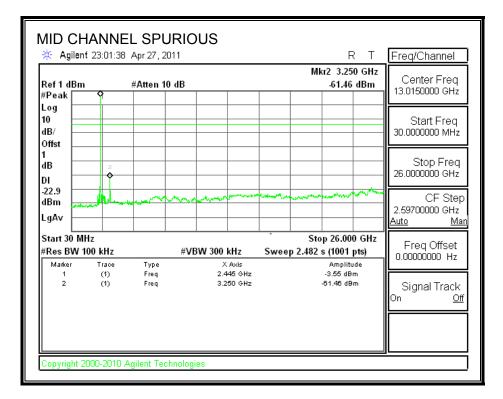

RESULTS

Page 22 of 46

LE MODE

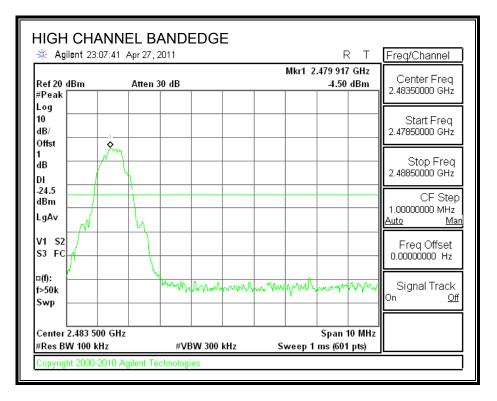
SPURIOUS EMISSIONS, LOW CHANNEL

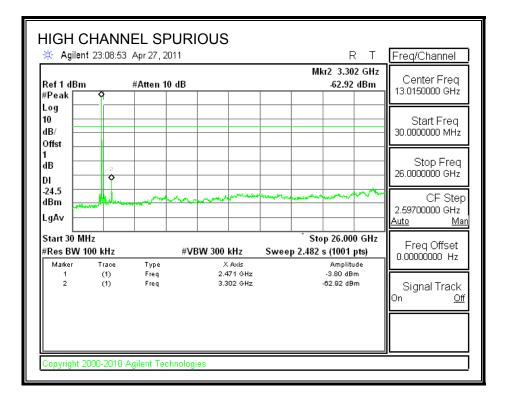




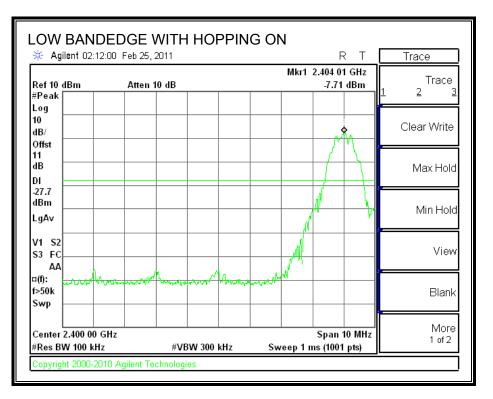
Page 23 of 46

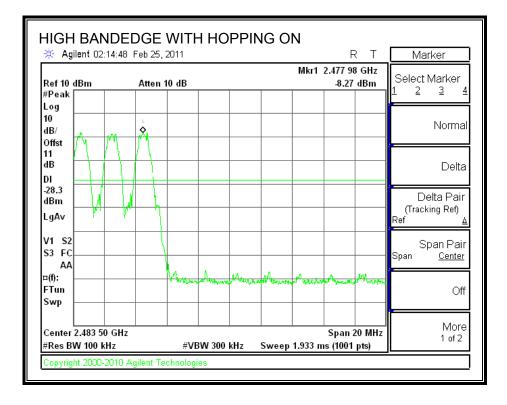
COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.


SPURIOUS EMISSIONS, MID CHANNEL



Page 24 of 46


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 25 of 46

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 26 of 46

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

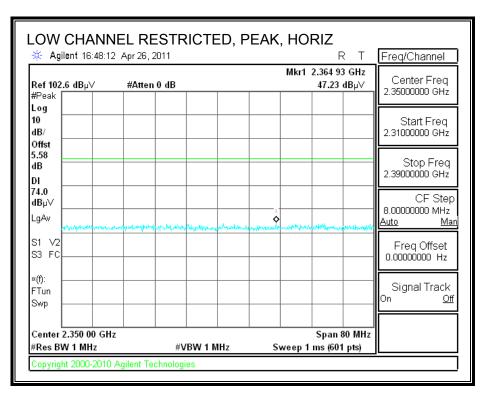
IC RSS-GEN Clause 6 (Receiver)

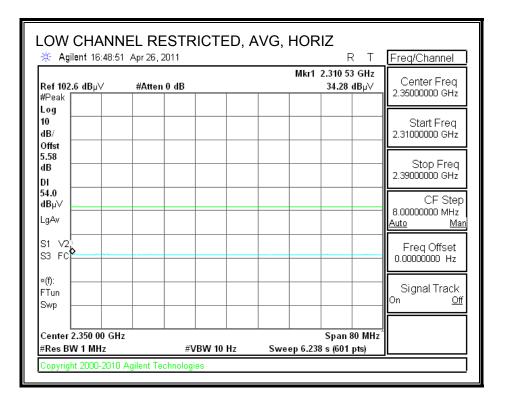
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

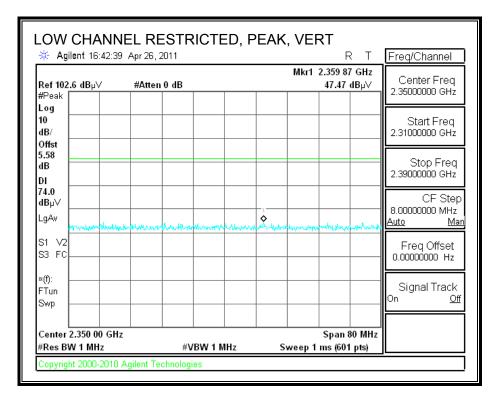
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

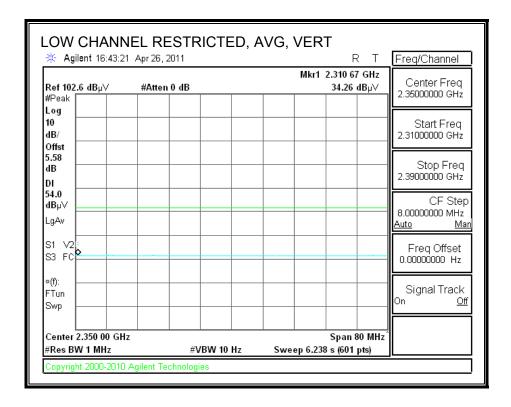

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

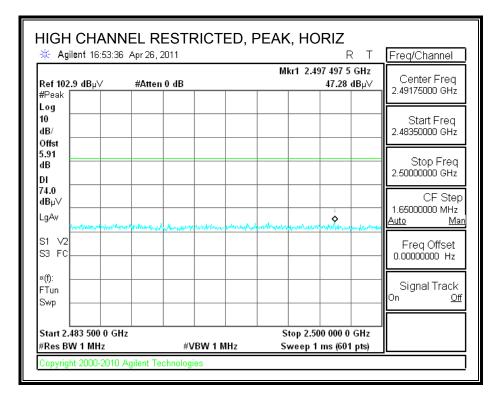
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

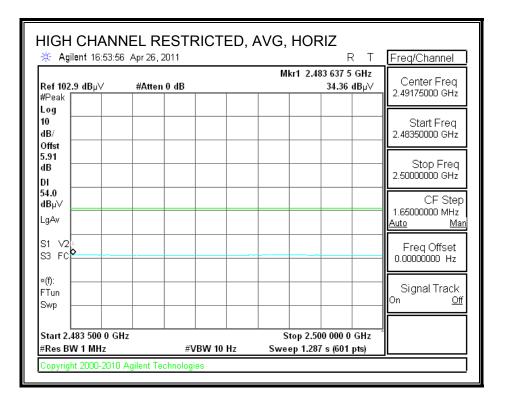
Page 27 of 46


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

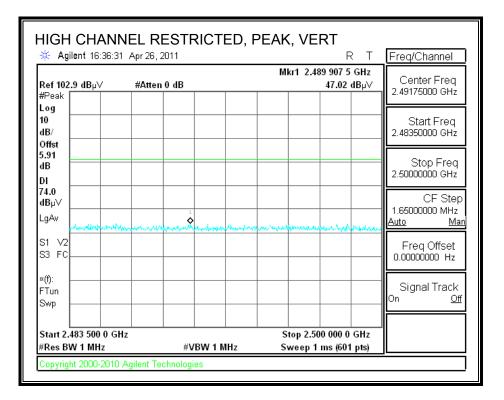


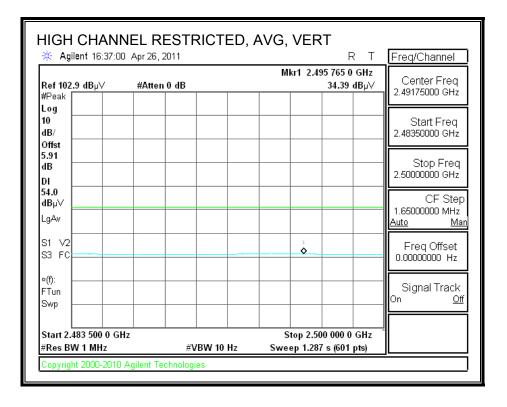
Page 28 of 46


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 29 of 46


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 30 of 46

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

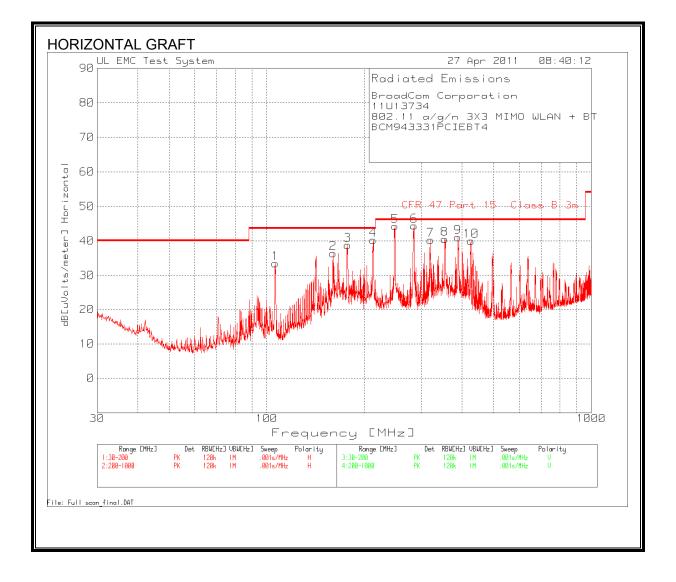
Page 31 of 46

HARMONICS AND SPURIOUS EMISSIONS

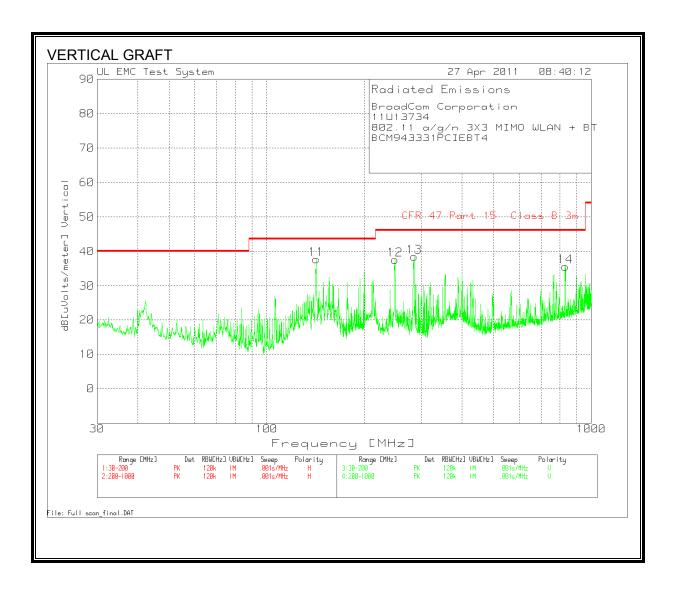
T60; S/N:	on: <u>nent:</u> 1 1-1		4/26/2011 Thanh Nguyer EUT, Antenna Transmit LE	a, remot											
Configuratio Aode: <u>Cest Equipm</u> Horn T60; S/N:	on: <u>nent:</u> 1 1-1		EUT, Antenna	a, remot											
fode: <u>est Equipm</u> Horn T60; S/N: Hi Frequency	<u>nent:</u> 1 1-1				to owner	ut Tanta									
Horn T60; S/N:	י 1-1			Mode	te suppo	гі саріо	Р								
T60; S/N:															
- Hi Frequency	2238	8GHz	Pre-an	nplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	Ho	rn > 180	Hz		Limit
	If Frequency Cables T34 HP 8449B					•				▼ T12	5; ARA 18-2	6GHz;S/N:	1007	-	FCC 15.209
		807700	12' c	able 2	28076	00	20' cal	ole 22	2807500		HPF	Re	ject Filte		<u>k Measurements</u> W=VBW=1MHz
3' cable	e 2280	7700 -	12' ca	ble 228	07600	-	20' cabl	e 2280	⁷⁵⁰⁰ -			- R_	001	- Avera	age Measurements 1MHz ; VBW=10Hz
f I	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz ((m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
Iarmonics		ous			ļ										
ow Ch 2402	2MHz 3.0	36.9	24.4	22.7	50	24.0	0.0	0.0	40.5	28.0	74	54	-33.5	260	V
	3.0 3.0	35.7	24.4	32.7 35.4	5.8 7.2	-34.8 -34.2	0.0	0.0	40.5	28.0 31.5	74	54	-33.5 -29.9	-26.0 -22.5	Noise floor
	3.0	36.9	24.4	32.7	5.8	-34.8	0.0	0.0	40.5	28.0	74	54	-33.5	-26.0	Н
	3.0	35.7	23.0	35.4	7.2	34.2	0.0	0.0	44.1	31.5	74	54	29.9	22.5	Noise floor
1id Ch 2440 .880		38.4	25.3	32.7	5.8	-34.8	0.0	0.0	42.1	29.1	74	54	-31.9	-24.9	V
	3.0 3.0	35.1	25.5	35.5	5.8 7.3	-34.8 -34.1	0.0	0.0	42.1	29.1 31.7	74	54	-31.9	-24.9	Noise floor
	3.0	37.0	24.2	32.7	5.8	-34.8	0.0	0.0	40.7	27.9	74	54	-33.3	-26.1	H
.320 3	3.0	35.4	23.4	35.5	7.3	-34.1	0.0	0.0	44.0	32.0	74	54	-30.0	-22.0	Noise floor
ligh Ch 248															
	3.0 3.0	37.9 36.2	25.3 23.2	32.8 35.6	5.9 7.3	-34.8 -34.1	0.0 0.0	0.0	41.8 45.1	29.2 32.1	74 74	54 54	-32.2 -28.9	-24.8 -21.9	V Noise floor
	3.0 3.0	35.3	23.2	32.8	7.3 5.9	-34.1	0.0	0.0	45.1 39.1	28.2	74 74	54	-28.9 -34.9	-21.9	H
	3.0	34.3	23.5	35.6	7.3	-34.1	0.0	0.0	43.2	32.4	74	54	-30.8	-21.6	Noise floor
purious Em															
	3.0	54.4	43.4	24.9	2.5	-38.1	0.0	0.0	43.7	32.8	74	54	-30.3	-21.2	V
	3.0 3.0	54.2 54.2	40.6 34.2	25.2 25.4	2.6 2.7	-38.0 -37.9	0.0 0.0	0.0 0.0	44.0 44.3	30.3 24.4	74 74	54 54	-30.0 -29.7	-23.7 -29.6	V
	3.0 3.0	54.2	34.2	25.4	3.2	-37.9	0.0	0.0	44.3 46.4	24.4	74 74	54 54	-29.7 -27.6	-29.6 -26.0	v v
	3.0	45.6	34.3	20.8	3.3	-37.1	0.0	0.0	39.3	27.9	74	54	-34.7	-26.1	v
				ļ											
l	l			l	l										
ev. 07.22.09)														
f			nt Frequency	7		Amp	Preamp C					-	-	ield Strengt	
		Distance to							ct to 3 mete			Pk Lim		1 Strength Li	
		Analyzer R	0			Avg			Strength @					. Average L	
Al		Antenna Fa				Peak			k Field Stre	ength		Pk Mar	Margin vs	. Peak Limit	t
CI	L (Cable Loss				HPF	High Pas	s Filte	r						

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 32 of 46


8.2. WORST-CASE RECEIVER ABOVE 1 GHz

Jompha	nee ee	i tilication .	Services, Fre	monto	m en.	moer									
ompan	•		BroadCom C	orporati	ion										
roject # ate:	:		11U3734 4/26/2011												
ate: est Eng	ineer:		Thanh Nguyer	n											
onfigur			EUT, Antenna		e suppo	ort Lapto	р								
lode:			Receive Mode	e											
est Equ	ipment:														
		18GHz		nplifer		GHz	Pre-am	plifer	26-40GH	z	Но	orn > 180	SHz		Limit
	5/N: 223	-	• T34 HP	P 8449B		-				-				•	RX RSS 210
	uency Cabl	es 2807700	12' c	able 2	28076	300	20' cal	ble 22	807500		HPF	Re	ject Filte		<u>k Measurements</u> W=VBW=1MHz
3' ca	able 228	307700	12' ca	ble 228	07600	-	20' cabl	e 2280)7500 🖵			•		Avera	age Measurements
														RBW=	1MHz ; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
	402MH														
.134 .204	3.0 3.0	54.0 52.5	41.3 38.6	24.9 25.1	2.5 2.6	-38.1 -38.0	0.0 0.0	0.0 0.0	43.4 42.2	30.7 28.3	74 74	54 54	-30.6 -31.8	-23.3 -25.7	v v
204	3.0	53.3	37.6	25.4	2.0	-37.9	0.0	0.0	43.5	28.5	74	54	-31.8	-26.3	v
996	3.0	49.2	36.6	27.8	3.5	-36.9	0.0	0.0	43.5	30.9	74	54	-30.5	-23.1	Н
204	3.0	52.7	38.8	25.1	2.6	-38.0	0.0	0.0	42.4	28.5	74	54	- 31.6	-25.5	Н
.274	3.0	55.5	34.2	25.4	2.7	-37.9	0.0	0.0	45.7	24.4	74	54	-28.3	-29.6	Н
11d Ch 2 .210	440MHz 3.0	51.4	32.5	25.2	2.6	-38.0	0.0	0.0	41.2	22.3	74	54	-32.8	-31.7	v
.275	3.0	52.3	31.6	25.4	2.0	-37.9	0.0	0.0	42.5	22.5	74	54	-31.5	-32.2	v
.705	3.0	54.7	33.6	26.8	3.2	-37.3	0.0	0.0	47.4	26.3	74	54	-26.6	-27.7	v
.205	3.0	52.3	30.6	25.2	2.6	-38.0	0.0	0.0	42.1	20.3	74	54	-31.9	-33.7	Н
.275	3.0	54.1	32.6	25.4	2.7	-37.9	0.0	0.0	44.3	22.7	74	54	- 29. 7	-31.3	Н
	2480MH														
.130 .207	3.0 3.0	54.4 54.2	42.3 39.3	24.9 25.2	2.5 2.6	-38.1 -38.0	0.0	0.0 0.0	43.7 44.0	31.7 29.1	74 74	54 54	-30.3 -30.0	-22.3 -24.9	V
207 270	3.0	54.2 54.2	39.5 33.6	25.2	2.0	-38.0	0.0	0.0	44.0	29.1	74	54 54	-30.0	-24.9	v
.702	3.0	53.7	34.6	26.8	3.2	-37.3	0.0	0.0	46.4	27.3	74	54	-27.6	-26.7	H
.867	3.0	45.6	33.3	27.4	3.3	-37.1	0.0	0.0	39.3	26.9	74	54	-34.7	-27.1	Н
ev. 07.22	2.09														
	f	Measurem	ent Frequency			Amp	Preamp (Fain				AveLim	Average F	Field Strengt	h Limit
		Distance to		'			•		ct to 3 mete	TS		Pk Lim	-	d Strength Li	
		Analyzer F				Avg			Strength @					. Average L	
	AF	Antenna Fa	-			Peak	-		k Field Stre			Pk Mar	-	. Peak Limit	
	CL	Cable Loss				HPF	High Pas			-15th		I K IVIUI	inter gin vo	. I Cuk Dillin	•
									-						


Page 33 of 46

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

Page 34 of 46

Page 35 of 46

	m Corpora	tion									
11U13734											
		MO WLAN	+ BT								
BCM9433	31PCIEBT	4									
	30 - 200MH										
	Reading		3m below	PreAmp [dB]				-	Height [cm]	-	
106.1219	49.92		1	-28			43.5	-9.98		Horz	
159.9001	49.68		1.3	-27.8			43.5	-7.12		Horz	
177.6562	54.53	PK	1.3	-27.7	10.6	38.73	43.5	-4.77	200	Horz	
	200 - 1000										
				PreAmp [dB]				Margin	Height [cm]	-	
213.058	54.49		1.4	-27.6			43.5	-3.31		Horz	
248.7675	58.37		1.6	-27.5			46	-1.73		Horz	
284.2105		PK	1.7	-27.3			46	-1.6		Horz	
319.6536	51.98		1.8	-27.4				-5.82		Horz	
353.2312	51.88		1.9	-27.6			46	-5.52		Horz	
388.4077	51.92		2.1	-27.8			46	-4.98		Horz	
426.2492	50.38	PK	2.1	-28	15.5	39.98	46	-6.02	150	Horz	
	30 - 200MH										
				PreAmp [dB]					Height [cm]		
142.1439	51.45	РК	1.2	-27.9	13	37.75	43.5	-5.75	115	Vert	
	200 - 1000		2	Day Array FelD		0	1 1	Manada	Listante de Comme	Delevite	
248.7675	Reading			PreAmp [dB]					Height [cm]	Vert	
	51.65		1.6	-27.5			46	-8.45			
284.2105	51.05		1.7	-27.3			46 46	-7.55		Vert	
833.1779	39.18	РŃ	3	-27.9	21.3	35.58	40	-10.42	100	Vert	
Denge: 2	200 - 1000	MU-									
	Reading		3m below	PreAmp [dB]		Correction	Limit	Margin	Height [cm]	Azimuth	Polarity
248.67	54.23		1.6	-27.5			46	-5.87	Height [Chi] 101		Horz
246.07	44.9		1.0	-27.3			40	-5.67	81		Horz
204.22	44.9	QI ⁻	1.1	-21.3	13	32.3	40	-13.7	01	120	

Page 36 of 46

8.4. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 "
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

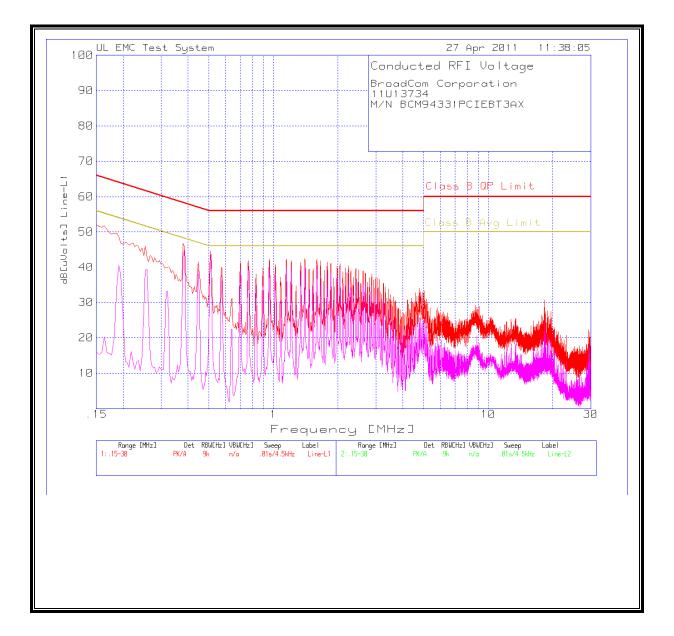
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

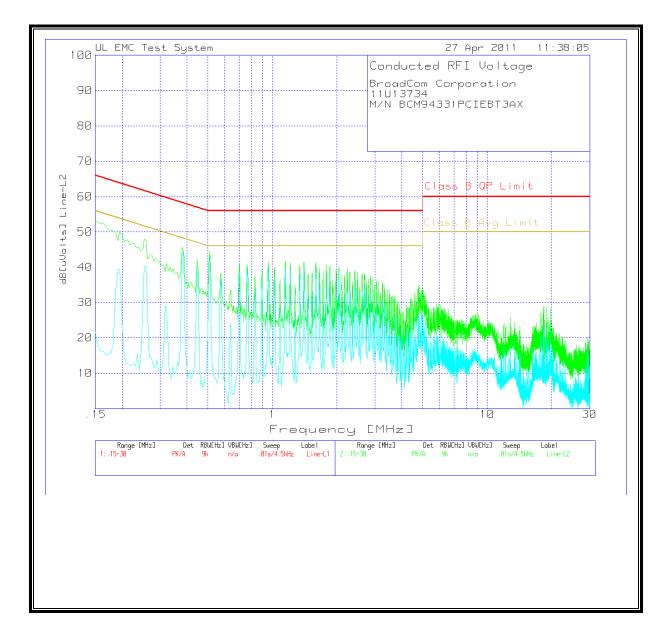
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


Page 37 of 46

6 WORST EMISSIONS

BroadCom	n Corporat	ion						
11U13734								
M/N BCM9	4331PCIE	BT3AX						
Line-L1 .15	- 30MHz							
Test	Meter	Detector	dB[uVolts	Class B	Margin	Class B	Margin	
Frequency	Reading			QP Limit		Avg Limit		
0.384	45.89	PK	45.89	58.2	-12.31	48.2	-2.31	
0.384	44.8	Av	44.8	58.2	-13.4	48.2	-3.4	
0.51	44.71	PK	44.71	56	-11.29	46	-1.29	
0.51	43.84	Av	43.84	56	-12.16	46	-2.16	
1.4055	41.9	PK	41.9	56	-14.1	46	-4.1	
1.4055	38.92	Av	38.92	56	-17.08	46	-7.08	
Line-L2 .15	- 30MHz							
Test	Meter	Detector	dB[uVolts	Class B	Margin	Class B	Margin	
Frequency	Reading			QP Limit		Avg Limit		
0.258	47.64	PK	47.64	61.5	-13.86	51.5	-3.86	
0.258	40.35	Av	40.35	61.5	-21.15	51.5	-11.15	
0.7665	40.67	PK	40.67	56	-15.33	46	-5.33	
0.7665	39.6	Av	39.6	56	-16.4	46	-6.4	
1.5945	41.48	PK	41.48	56	-14.52	46	-4.52	
1.5945	40.03	Av	40.03	56	-15.97	46	-5.97	
PK - Peak								
QP - Quasi								
LnAv - Line	-							
LgAv - Log	-							
Av - Avera	-							
CAV - CIS	_							
RMS - RMS								
CRMS - CIS		detection						
Text File: F	inal TXT							


Page 38 of 46

LINE 1 RESULTS

Page 39 of 46

LINE 2 RESULTS

Page 40 of 46

9. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	l/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/F 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500		0.073	0.2 f/1500	30 30 30
1500–100,000			1.0	

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 41 of 46

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163 10		616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /ƒ ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 42 of 46

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP = (P1 * G1) + (P2 * G2) + ... + (Pn * Pn)

where

Px = Power of transmitter x Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2 From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	1.02	1.11	0.0033	0.0003

Page 43 of 46