

#### SAR Test Report

#### Model: BCM943228HMB

| IC CERTIFICATION #:<br>FCC ID: | 4324A-BRCM1058<br>QDS-BRCM1058                                     |
|--------------------------------|--------------------------------------------------------------------|
| APPLICANT:                     | Broadcom Corporation<br>190 Mathilda Ave<br>Sunnyvale, CA 94089    |
| TEST SITE(S):                  | NTS Silicon Valley<br>41039 Boyce Road.<br>Fremont, CA. 94538-2435 |
| IC SITE REGISTRATION #:        | 2845B-3; 2845B-4, 2845B-5                                          |
| FINAL TEST DATES:              | May 1, 2013                                                        |
| <b>REPORT DATE:</b>            | May 6, 2013                                                        |
| <b>REISSUE DATE:</b>           | May 9, 2013                                                        |
| TOTAL NUMBER OF PAGES:         | 131                                                                |

PROGRAM MGR / TECHNICAL REVIEWER:

Deniz Demirci Senior Wireless / EMC Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer



NTS Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

#### **REVISION HISTORY**

| Rev# | Date        | Comments                                    | Modified By   |
|------|-------------|---------------------------------------------|---------------|
| 1    | May 6, 2013 | First Release                               |               |
| 2    | May 9, 2013 | Added scaled-up SAR results for 5 GHz bands | Deniz Demirci |

## **Table of contents**

| REVISION HISTORY                                           | 2   |
|------------------------------------------------------------|-----|
| 1. Introduction                                            | 4   |
| SAR definition                                             | . 5 |
| 2. SAR measurement setup                                   | 6   |
| Robotic system                                             | . 6 |
| System hardware                                            | . 6 |
| System electronics                                         | . 7 |
| Probe measurement system                                   | . 7 |
| 3. Probe and dipole calibration                            | 12  |
| 4. Simulating tissue specifications                        | 13  |
| 5. SAR measurement procedure                               | 14  |
| 6. Definition of reference points                          | 15  |
| 7. ANSI/IEEE C95.1 – 1992 RF exposure limits               | 18  |
| Uncontrolled environment                                   | 18  |
| Controlled environment                                     | 18  |
| 8. Measurement uncertainty                                 | 19  |
| 9. System validation                                       | 20  |
| Tissue Verification                                        | 20  |
| Test system verification                                   | 22  |
| 10. SAR test data summary (5180 - 5825 MHz Body 802.11a/n) | 26  |
| 11. SAR test data summary (2450 MHz Body 802.11b)          | 28  |
| Procedures used to establish test signal                   | 29  |
| Device test condition                                      | 29  |
| Simultaneous transmission capabilities                     | 29  |
| 12. Test equipment list                                    | 30  |
| 13. Conclusion                                             | 31  |
| 14. References                                             | 32  |
| Appendix A – Tissue and system validation data and plots   | 33  |
| Appendix B – SAR test data plots                           | 55  |
| Appendix C – SAR Test Setup Photos                         | 88  |
| Picture 1: ACON APP8P-700045 antenna Orientation – Loft    | .09 |
| Picture 2: ACON APP8P 700045 antenna, Orientation = Right  | .90 |
| Picture 4: ACON APP8P-700045 antenna, Orientation = Front  | 92  |
| Picture 5: ACON APP8P-700045 antenna, Orientation = Back   | 93  |
| Picture 6: ACON APP8P-700045 antenna, Orientation = Top    | .94 |
| Picture 7: ACON APP8P-700045 antenna, Orientation = Bottom | .95 |
| Picture 8: EUT setup                                       | .96 |
| Appendix D – Probe Calibration Data Sheets                 | 97  |
| Appendix E – Dipole Calibration Data Sheets1               | 09  |
| End of test report1                                        | 31  |

## 1. Introduction

This measurement report shows compliance of the Broadcom Corporation Model BCM943228HMB FCC ID: QDS- BRCM1058 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 4324A- BRCM1058 with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The purpose of this report is to show compliance of this wireless module to be used in multiple host platforms with antenna-to-user separation distance of 5 mm or greater per FCC KDB 616217 D04 SAR for laptop and tablets v01 and FCC KDB 447498 D01 General RF Exposure Guidance v05

Per FCC KDB 447498 D01 v05; When the highest *reported* 1-g SAR is > 0.4 W/kg and  $\le 0.8$  W/kg, modules and peripheral transmitters may be approved to operate in multiple host platforms. To qualify for multiple host platforms, the modular transmitter may be approved under one FCC ID, either in the initial filing or through Class II permissive changes. All subsequent Class II permissive changes must be within the scope of the defined host platform configurations and exposure conditions in the initial equipment approval.

Per FCC KDB 616217 D04; The *modular approach* is applied to this module in order to use it in qualified laptop and tablet hosts. When the test separation distances and test setups for the laptop and tablet host platforms are satisfied by the antenna and host configurations and the highest *reported* SAR for a host platform is  $\leq 0.8$  W/kg, testing in representative hosts is optional for the *modular approach*.

The test results recorded herein are based on a single type test of Broadcom Corporation model BCM943228HMB with ACON APP8P-700045 antenna and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz were employed.

## **SAR definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density  $(\rho)$ .

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). *SAR* can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

 $\sigma$  = conductivity of the tissue (S/m)

 $\rho$  = mass density of the tissue (kg/m<sup>3</sup>)

E = rms electric field strength (V/m)

## 2. SAR measurement setup

#### **Robotic system**

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the body equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

#### System hardware

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.



Figure 2.1 SAR measurement system setup

#### System electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

#### Probe measurement system

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving This reflection increases first during the approach, reaches fibers. maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.



DAE system

#### **Probe specifications**

Calibration: In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz

Frequency: 10 MHz to 6 GHz

**Linearity:**  $\pm 0.2$ dB (30 MHz to 6 GHz)

**Dynamic:** 10 mW/kg to 100 W/kg

- **Range:** Linearity: ±0.2dB
- Dimensions: Overall length: 330 mm
- Tip length: 20 mm
- Body diameter: 12 mm
- Tip diameter: 2.5 mm

Distance from probe tip to sensor center: 1 mm

Application: SAR Dosimetry Testing Compliance tests of wireless device



Figure 2.2 Triangular Probe Configurations



Figure 2.3 Probe Thick-Film Technique

#### **Probe calibration process**

#### **Dosimetric assessment procedure**

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than  $\pm$ -10%. The spherical isotropy was evaluated with the procedure described in and found to be better than  $\pm$ -0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

#### Free space assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to  $1 \text{ mW/cm}^2$ .

#### **Temperature assessment \***

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

$$SAR = C \frac{\Delta T}{\Delta t} \qquad SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

where:

thermally derived SAR to the E- field;

where:

| $\Delta t$ | = | exposure time (30 seconds),                | σ | = | simulated tissue conductivity,                           |
|------------|---|--------------------------------------------|---|---|----------------------------------------------------------|
| С          | = | heat capacity of tissue (brain or muscle), | ρ | = | Tissue density (1.25 g/cm <sup>3</sup> for brain tissue) |
| $\Delta T$ | = | temperature increase due to RF exposure.   |   |   |                                                          |

SAR is proportional to  $\Delta T / \Delta t$ , the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the



Figure 2.4 E-Field and Temperature Measurements at 900MHz



Figure 2.5 E-Field and Temperature Measurements at 1800MHz

#### **Data extrapolation**

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$W_{i} = U_{i} + U_{i}^{2} \cdot \frac{g}{dcp_{i}}$$
with  $V_{i}$  = compensated signal of channel i (i=x,y,z)  
 $U_{i}$  = input signal of channel i (i=x,y,z)  
 $Cf$  = crest factor of exciting field (DASY parameter)  
 $dcp_{i}$  = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field

| -field probes:                    | with              | V <sub>i</sub><br>Norm <sub>i</sub> | = compensated signal of channel i (i = x,y,z<br>= sensor sensitivity of channel i (i = x,y,z |  |  |
|-----------------------------------|-------------------|-------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| V .                               |                   |                                     | $\mu V/(V/m)^2$ for E-field probes                                                           |  |  |
| $E_i = \sqrt{\frac{1}{N_{comp}}}$ |                   | ConvF                               | = sensitivity of enhancement in solution                                                     |  |  |
| Norm ; Convr                      | $m_i \cdot Convr$ |                                     | = electric field strength of channel i in V/m                                                |  |  |

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

| $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$ | with | SAR<br>E <sub>tot</sub><br>o | <ul> <li>= local specific absorption rate in W/g</li> <li>= total field strength in V/m</li> <li>= conductivity in [mho/m] or [Siemens/m]</li> <li>= equivalent tissue density in g/cm<sup>3</sup></li> </ul> |
|--------------------------------------------------------|------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        |      | ρ                            | = equivalent tissue density in g/cm <sup>2</sup>                                                                                                                                                              |

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pur} = \frac{E_{tot}^{2}}{3770}$$
 with 
$$P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^{2}$$
$$= \text{total electric field strength in V/m}$$

#### SAM phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom:SAM Twin Phantom (V4.0)Shell material:Vivac CompositeThickness: $2.0 \pm 0.2$  mm



Figure 2.6 SAM twin phantom

#### **Device holder for transmitters**

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).



**Figure 2.7 Mounting device** 

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

## **3.** Probe and dipole calibration

See Appendix D and E.

## 4. Simulating tissue specifications



The head and body simulating mixtures consist of the material based on the table listed below.

The mixture is calibrated to obtain proper permittivity and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations

|                     | ,      |                        |                                                                                                                                                        |             |             |  |  |  |  |  |
|---------------------|--------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--|--|--|--|--|
| I                   |        | Body simulating tissue |                                                                                                                                                        |             |             |  |  |  |  |  |
| Ingreatents         |        | 2450 MHz               | Body simulating tissue       5200 MHz     5500 MHz       Proprietary     Proprietary       mixture     mixture       49.0     48.6       5.30     5.65 | 5800 MHz    |             |  |  |  |  |  |
| Mixing Percentage   |        |                        |                                                                                                                                                        |             |             |  |  |  |  |  |
| Water               |        | 73.20                  |                                                                                                                                                        |             |             |  |  |  |  |  |
| Sugar               |        | 0.00                   |                                                                                                                                                        |             |             |  |  |  |  |  |
| Salt                |        | 0.00                   | Proprietary                                                                                                                                            | Proprietary | Proprietary |  |  |  |  |  |
| HEC                 |        | 0.00                   | mixture                                                                                                                                                | mixture     | mixture     |  |  |  |  |  |
| Bactericide         |        | 0.00                   |                                                                                                                                                        |             |             |  |  |  |  |  |
| DGBE                |        | 26.70                  |                                                                                                                                                        |             |             |  |  |  |  |  |
| Dielectric Constant | Target | 52.70                  | 49.0                                                                                                                                                   | 48.6        | 48.20       |  |  |  |  |  |
| Conductivity (S/m)  | Target | 1.95                   | 5.30                                                                                                                                                   | 5.65        | 6.00        |  |  |  |  |  |

#### Table 4.1 Typical composition of ingredients for tissue

## 5. SAR measurement procedure

The evaluation was performed using the following procedure:

- 1. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9mm from the Inner surface of the shell. The area covered



the entire dimension of the head and the horizontal grid spacing was 15 mm Sample SAR Area Scan

- 3. Based on the area scan data, the area of the maximum absorption was determined by sp line interpolation. Around this point, a volume of 32 mm x32 mm x 30 mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see Sample SAR Area Scan):
- a. The data at the surface was extrapolated, since the center of the dipoles is 2.5 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional sp lines with the "Not a knot" condition (in x, y, and z directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 1, was re-measured. If the value changed by more than 5%, the evaluation is repeated.

#### Specific anthropomorphic mannequin (SAM) specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 5.1). The perimeter side walls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.



Figure 5.1 Sam twin phantom

## 6. Definition of reference points

#### EAR reference point

Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point"M" is the reference point for the center of the mouth, "LE" is the left ear reference point(ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.5. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference

Pivoting Line (see Figure 6.2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.





Figure 6.1 Front, back and side view of SAM twin phantom

## Figure 6.2 Close-up side view of ERPs

#### Handset reference points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.



Figure 6.3 Handset vertical center & horizontal line reference points

#### Test configuration positions Positioning for cheek/touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6.4), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.



Figure 6.4 Front, side and top view of cheek/touch position

2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.

3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).

4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.

5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 6.5)

#### Positioning for ear / 15 ° tilt

With the test device aligned in the "Cheek/Touch Position":

1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degrees.

2. The phone was then rotated around the horizontal line by 15 degrees.

3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6.6).



Figure 6.6 Front, side and top view of ear/15° tilt position



Figure 6.5 Side view w/ relevant markings

#### **Body holster /belt clip configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.7). A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.



Figure 6.7 Body belt clip & holster configurations

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distances between the back of the device and the flat phantom is used. All test position spacing is documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

## 7. ANSI/IEEE C95.1 – 1992 RF exposure limits

#### Uncontrolled environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

#### **Controlled environment**

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

|                               | Uncontrolled environment | Controlled environment  |
|-------------------------------|--------------------------|-------------------------|
|                               | general population       | professional population |
|                               | (W/kg) or (mW/g)         | (W/kg) or (mW/g)        |
| Spatial Peal SAR <sup>1</sup> | 1.60                     | 8.00                    |
| Head                          | 1.00                     | 8.00                    |
| Spatial Peal SAR <sup>2</sup> | 0.08                     | 0.40                    |
| Whole Body                    | 0.08                     | 0.40                    |
| Spatial Peal SAR <sup>3</sup> | 4.00                     | 20.00                   |
| Hands, Feet, Ankles, Wrist    | 4.00                     | 20.00                   |

#### Table 7.1 Human exposure limits

<sup>1</sup> The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

<sup>2</sup> The Spatial Average value of the SAR averaged over the whole body.

<sup>3</sup> The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

## 8. Measurement uncertainty

| Source of                                              | Source of Tolerance Probability |              | $c_i^1$    | c <sub>i</sub> <sup>1</sup> | Standard | Standard               |                         |          |
|--------------------------------------------------------|---------------------------------|--------------|------------|-----------------------------|----------|------------------------|-------------------------|----------|
| Uncertainty                                            | Value                           | Distribution | Divisor    | (1-g)                       | (10-g)   | Uncertainty<br>(1-g) % | Uncertainty<br>(10-g) % | Vi       |
| Measurement System                                     | 1                               |              |            |                             |          |                        |                         |          |
| Probe Calibration                                      | 5.5                             | normal       | 1          | 1                           | 1        | 5.5                    | 5.5                     | x        |
| Axial Isotropy                                         | 4.7                             | rectangular  | $\sqrt{3}$ | 0.7                         | 0.7      | 1.9                    | 1.9                     | $\infty$ |
| Hemispherical<br>Isotropy                              | 9.6                             | rectangular  | $\sqrt{3}$ | 0.7                         | 0.7      | 3.9                    | 3.9                     | x        |
| Boundary Effect                                        | 1                               | rectangular  | $\sqrt{3}$ | 1                           | 1        | 0.6                    | 0.6                     | $\infty$ |
| Linearity                                              | 4.7                             | rectangular  | $\sqrt{3}$ | 1                           | 1        | 2.7                    | 2.7                     | x        |
| Detection Limit                                        | 1                               | rectangular  | $\sqrt{3}$ | 1                           | 1        | 0.6                    | 0.6                     | x        |
| Readout Electronics                                    | 0.3                             | normal       | 1          | 1                           | 1        | 0.3                    | 0.3                     | x        |
| Response Time                                          | 0.8                             | rectangular  | $\sqrt{3}$ | 1                           | 1        | 0.5                    | 0.5                     | $\infty$ |
| Integration Time                                       | 2.6                             | rectangular  | $\sqrt{3}$ | 1                           | 1        | 1.5                    | 1.5                     | $\infty$ |
| RF Ambient<br>Condition                                | 3                               | rectangular  | $\sqrt{3}$ | 1                           | 1        | 1.7                    | 1.7                     | x        |
| Probe Positioner<br>Mech. Restriction                  | 0.4                             | rectangular  | $\sqrt{3}$ | 1                           | 1        | 0.2                    | 0.2                     | x        |
| Probe Positioning<br>with respect to<br>Phantom Shell  | 2.9                             | rectangular  | $\sqrt{3}$ | 1                           | 1        | 1.7                    | 1.7                     | œ        |
| Extrapolation and<br>Integration                       | 1                               | rectangular  | $\sqrt{3}$ | 1                           | 1        | 0.6                    | 0.6                     | x        |
| Test Sample<br>Positioning                             | 2.9                             | normal       | 1          | 1                           | 1        | 2.9                    | 2.9                     | 145      |
| Device Holder<br>Uncertainty                           | 3.6                             | normal       | 1          | 1                           | 1        | 3.6                    | 3.6                     | 5        |
| Drift of Output<br>Power                               | 5                               | rectangular  | $\sqrt{3}$ | 1                           | 1        | 2.9                    | 2.9                     | œ        |
| Phantom and Setup                                      | -                               |              |            | -                           |          |                        | -                       | _        |
| Phantom<br>Uncertainty(shape &<br>thickness tolerance) | 4                               | rectangular  | $\sqrt{3}$ | 1                           | 1        | 2.3                    | 2.3                     | œ        |
| Liquid<br>Conductivity(target)                         | 5                               | rectangular  | $\sqrt{3}$ | 0.64                        | 0.43     | 1.8                    | 1.2                     | x        |
| Liquid<br>Conductivity(meas.)                          | 2.5                             | normal       | 1          | 0.64                        | 0.43     | 1.6                    | 1.1                     | 5        |
| Liquid<br>Permittivity(target)                         | 5                               | rectangular  | $\sqrt{3}$ | 0.6                         | 0.49     | 1.7                    | 1.4                     | $\infty$ |
| Liquid<br>Permittivity(meas.)                          | 2.5                             | normal       | 1          | 0.6                         | 0.49     | 1.5                    | 1.2                     | 5        |
| Combined Uncertainty                                   | /                               | RSS          |            |                             |          | 10.7                   | 10.5                    | 387      |
| Combined Uncertainty<br>(coverage factor=2)            | /                               | Normal(k=2)  |            |                             |          | 21.4                   | 21.0                    |          |

## 9. System validation

#### **Tissue Verification**

Prior to assessment, the system is verified to the  $\pm 5\%$  of the specifications at the test frequency by using the speag DAK (Dielectric Assessment Kit) measurement kit

| Frequency<br>(MHz) | Tissue<br>type | Tissue<br>temp.<br>(°C) | Measured<br>dielec. cons.<br>(ε) | Measured<br>conductivity<br>(σ) | Target<br>value | Deviation<br>(%) | Date    |        |     |         |
|--------------------|----------------|-------------------------|----------------------------------|---------------------------------|-----------------|------------------|---------|--------|-----|---------|
| 2452               | Dodu           | 22.0                    | 52.45                            |                                 | 52.70           | 0.5              | 4/10/12 |        |     |         |
| 2432               | Бойу           | 25.0                    |                                  | 1.99                            | 1.95            | 1.8              | 4/19/13 |        |     |         |
| 2452               | Body           | 23.0                    | 52.74                            |                                 | 52.70           | 0.1              | 1/22/13 |        |     |         |
| 2432               | Bouy           | 23.0                    |                                  | 2.02                            | 1.95            | 3.7              | 4/22/13 |        |     |         |
| 5200               | Body           | 23.0                    | 48.43                            |                                 | 49.03           | 1.2              | 1/21/13 |        |     |         |
| 5200               | Douy           | 23.0                    |                                  | 5.30                            | 5.35            | 1.1              | 4/24/13 |        |     |         |
| 5500               | Body           | 23.0                    | 48.04                            |                                 | 48.62           | 1.3              | 4/24/13 |        |     |         |
| 5500               | Douy           | 23.0                    |                                  | 5.64                            | 5.68            | 1.3              | T/27/13 |        |     |         |
| 5800               | Body           | Body                    | Body                             | Body                            | 23.0            | 47.69            |         | 48.20  | 1.1 | 4/24/13 |
| 5800               |                |                         |                                  |                                 | 23.0            |                  | 5.99    | 6.00   | 0.2 |         |
| 5200               | Body           | 23.0                    | 48.10                            |                                 | 49.03           | 1.9              | 4/20/13 |        |     |         |
| 5200               | Douy           | 23.0                    |                                  | 5.35                            | 5.35            | 0.0              | 7/27/15 |        |     |         |
| 5500               | Body           | 23.0                    | 47.55                            |                                 | 48.62           | 2.2              | 4/20/13 |        |     |         |
| 5500               |                | 23.0                    |                                  | 5.73                            | 5.68            | 1.8              | 7/27/15 |        |     |         |
| 5800               | Body           | 23.0                    | 47.13                            |                                 | 48.20           | 2.2              | 4/20/13 |        |     |         |
| 5000               | Douy           | 23.0                    |                                  | 6.17                            | 6.00            | 2.8              | 7/27/15 |        |     |         |
| 5200               | Body           | 23.0                    | 48.76                            |                                 | 49.03           | 0.6              | 5/1/13  |        |     |         |
| 5200               | Douy           | 23.0                    |                                  | 5.35                            | 5.35            | 0.0              | 5/1/15  |        |     |         |
| 5500               | Body           | 23.0                    | 48.17                            |                                 | 48.62           | 0.9              | 5/1/13  |        |     |         |
| 5500               | Douy           | Бойу                    | 23.0                             |                                 | 5.70            | 5.68             | 0.3     | 5/1/15 |     |         |
| 5800               | Body           | 23.0                    | 47.77                            |                                 | 48.20           | 0.8              | 5/1/12  |        |     |         |
| 5000               | Body           | Body                    | 23.0                             |                                 | 6.16            | 6.00             | 2.7     | 5/1/15 |     |         |

 Table 9.1 Measured tissue parameters

#### Tissue depth (>15 cm)



#### Test system verification

Prior to assessment, the system is verified to the  $\pm 10\%$  of the specifications at the test frequency by using the system kit.

| Test Frequency | Targeted<br>SAR <sub>1g</sub><br>(W/kg) | Measured<br>SAR <sub>1g</sub><br>(W/kg) | Tissue Used<br>for<br>Verification | Deviation<br>(%) | Verification<br>Date |
|----------------|-----------------------------------------|-----------------------------------------|------------------------------------|------------------|----------------------|
| 2450 MHz       | 12.8                                    | 12.7                                    | Body                               | 0.8              | 4/19/13              |
| 2450 MHz       | 12.8                                    | 13.0                                    | Body                               | 1.6              | 4/22/13              |
| 5200 MHz       | 7.21                                    | 6.66                                    | Body                               | 7.6              | 4/24/13              |
| 5500 MHz       | 7.95                                    | 8.61                                    | Body                               | 8.3              | 4/24/13              |
| 5800 MHz       | 7.33                                    | 7.12                                    | Body                               | 2.9              | 4/24/13              |
| 5200 MHz       | 7.21                                    | 7.05                                    | Body                               | 2.2              | 4/29/13              |
| 5500 MHz       | 7.95                                    | 7.58                                    | Body                               | 4.7              | 4/29/13              |
| 5800 MHz       | 7.33                                    | 7.44                                    | Body                               | 1.5              | 4/29/13              |
| 5200 MHz       | 7.21                                    | 7.06                                    | Body                               | 2.1              | 5/1/13               |
| 5500 MHz       | 7.95                                    | 7.75                                    | Body                               | 2.5              | 5/1/13               |
| 5800 MHz       | 7.33                                    | 7.00                                    | Body                               | 4.1              | 5/1/13               |

#### Table 9.2 System dipole validation target & measured

See Appendix A for detailed results and plots.

#### Figure 9.1 Dipole validation test setup

Note: KDB 450824 was applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.





## Dipole validation photo



# EUT SAR location diagram (Antenna)

| Can  | Con Fr   |      | quency  | Data           |         | Meas.          | End                 | SAD    |  |  |
|------|----------|------|---------|----------------|---------|----------------|---------------------|--------|--|--|
| (mm) | Position | MHz  | Channel | rate<br>(Mbps) | Antenna | Plot<br>page # | power<br>(dBm)      | (W/kg) |  |  |
| 5    | Left     | 5180 | 36      | 6              | Main    | 56             | 13.9                | 0.567  |  |  |
| 5    | Right    | 5180 | 36      | 6              | Main    | 57             | 13.9                | 0.185  |  |  |
| 5    | Front    | 5180 | 36      | 6              | Main    | 58             | 13.9                | 0.300  |  |  |
| 5    | Back     | 5180 | 36      | 6              | Main    | 59             | 13.9                | 0.327  |  |  |
| 5    | Тор      | 5180 | 36      | 6              | Main    | 60             | 13.9                | 0.017  |  |  |
| 5    | Bottom   | 5180 | 36      | 6              | Main    | 61             | 13.9                | 0.039  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5240 | 48      | 6              | Main    | 62             | 13.7                | 0.570  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5260 | 52      | 6              | Main    | 63             | 13.6                | 0.652  |  |  |
| 5    | Right    | 5260 | 52      | 6              | Main    | 64             | 13.6                | 0.229  |  |  |
| 5    | Front    | 5260 | 52      | 6              | Main    | 65             | 13.6                | 0.280  |  |  |
| 5    | Back     | 5260 | 52      | 6              | Main    | 66             | 13.6                | 0.405  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5320 | 64      | 6              | Main    | 67             | 14.3                | 0.395  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5500 | 100     | 6              | Main    | 68             | 13.8                | 0.182  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5580 | 116     | 6              | Main    | 69             | 14.0                | 0.464  |  |  |
| 5    | Right    | 5580 | 116     | 6              | Main    | 70             | 14.0                | 0.232  |  |  |
| 5    | Front    | 5580 | 116     | 6              | Main    | 71             | 14.0                | 0.430  |  |  |
| 5    | Back     | 5580 | 116     | 6              | Main    | 72             | 14.0                | 0.431  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5700 | 140     | 6              | Main    | 73             | 13.9                | 0.202  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5745 | 149     | 6              | Main    | 74             | 18.4                | 0.727  |  |  |
| 5    | Right    | 5745 | 149     | 6              | Main    | 75             | 18.4                | 0.484  |  |  |
| 5    | Front    | 5745 | 149     | 6              | Main    | 76             | 18.4                | 0.600  |  |  |
| 5    | Back     | 5745 | 149     | 6              | Main    | 77             | 18.4                | 0.613  |  |  |
|      |          |      |         |                |         |                |                     |        |  |  |
| 5    | Left     | 5825 | 165     | 6              | Main    | 78             | 18.1                | 0.340  |  |  |
| 5    | Right    | 5825 | 165     | 6              | Main    | 79             | 18.1                | 0.361  |  |  |
| 5    | Front    | 5825 | 165     | 6              | Main    | 80             | 18.1                | 0.412  |  |  |
| 5    | Back     | 5825 | 165     | 6              | Main    | 81             | 18.1                | 0.370  |  |  |
|      |          |      |         |                | Maximu  | m body SA      | $\mathbf{R} = 0.72$ | 7 W/kg |  |  |
|      |          |      |         |                | (mW/g)  |                |                     |        |  |  |
|      |          |      |         |                | 2       | veraged ov     | er 1 gram           |        |  |  |

## 10. SAR test data summary (5180 - 5825 MHz Body 802.11a/n)

| (5180 - 5825 MHZ BOUY 802.11a/ll)                                                                                            |                    |         |                       |                 |               |            |                           |                            |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|-----------------------|-----------------|---------------|------------|---------------------------|----------------------------|--|
| Gap<br>(mm)                                                                                                                  | Frequency<br>(MHz) | Channel | End<br>power<br>(dBm) | Target<br>(dBm) | Delta<br>(dB) | Multiplier | Measured<br>SAR<br>(W/kg) | Scaled-up<br>SAR<br>(W/kg) |  |
| 5                                                                                                                            | 5180               | 36      | 13.6                  | 13.0            | -0.6          | 1.000      | 0.567                     | 0.567                      |  |
| 5                                                                                                                            | 5240               | 48      | 14.0                  | 13.5            | -0.5          | 1.000      | 0.570                     | 0.570                      |  |
| 5                                                                                                                            | 5260               | 52      | 13.6                  | 14.0            | 0.4           | 1.096      | 0.652                     | 0.715                      |  |
| 5                                                                                                                            | 5320               | 64      | 14.3                  | 14.0            | -0.3          | 1.000      | 0.395                     | 0.395                      |  |
| 5                                                                                                                            | 5500               | 100     | 13.8                  | 14.0            | 0.2           | 1.047      | 0.182                     | 0.191                      |  |
| 5                                                                                                                            | 5580               | 116     | 14.0                  | 14.0            | 0.0           | 1.000      | 0.464                     | 0.464                      |  |
| 5                                                                                                                            | 5700               | 140     | 13.9                  | 14.0            | 0.1           | 1.023      | 0.213                     | 0.218                      |  |
| 5                                                                                                                            | 5745               | 149     | 18.4                  | 17.0            | -1.4          | 1.000      | 0.727                     | 0.727                      |  |
| 5                                                                                                                            | 5825               | 165     | 18.1                  | 17.0            | 0.0           | 1.000      | 0.412                     | 0.412                      |  |
| Scaled-up maximum body SAR = 0.727 W/kg<br>(mW/g)<br>averaged over 1 gram                                                    |                    |         |                       |                 |               |            |                           |                            |  |
| 1. Power Measured     Conducted     ERP     EIRP       2. Phantom Configuration     Left Head     Uni-phantom     Right Head |                    |         |                       |                 |               |            |                           |                            |  |

### Scaled-up SAR levels to manufacturing tolerances $(5100 \quad 5075 \text{ MHz} \text{ Dody } 007 110/m)$

| Power Measured        | Conducted      | ERP                                 |
|-----------------------|----------------|-------------------------------------|
| Phantom Configuration | Left Head      | $\Box$ Uni-phantom $\Box$ Right H   |
| SAR Configuration     | Head           | Body                                |
| Test Signal Call Mode | ⊠Test Code     | Base Station Simulator              |
| Test Configuration    | With Belt Clip | $\Box$ Without Belt Clip $\Box$ N/A |

4.

3.

5. Tissue Depth is at least 15.0 cm

Note 1: SAR Tested on the Highest output power channel. When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than <sup>1</sup>/<sub>4</sub> dB higher than that measured in the 802.11b. The testing was conducted on all sides of the antenna. All testing was conducted per KDB 447498, 248227, 616217 and OET Bulletin 65. See the photo in Appendix C and diagram on page 14 for a pictorial of the setup and labeling of the test locations.

Note 2: All measurements were performed with 5 mm gap (Antenna to Flat phantom measurement distance)

Note 3: Number of test channels and SAR test reductions determined based on 447498 D01 v05 Note 4: Main and Aux. chains have identical power outputs, hence SAR evaluation of Main antenna output is sufficient to represent Aux. antenna output compliance.

Note 5: Measured 1-g SAR values of top and bottom positions of the antenna at channel 36 are less than 0.05 W/kg. These measurements are closer to system noise and different channel frequencies will not create any significant change of SAR values in that positions. Hence these positions are not measured for other channels in 5 GHz band

Note 6: Target level is the highest power level in manufacturers tune up procedure, including tolerances, declared by applicant.

| Gan                          |                           | Fre     | quency           | Data     |                                                  | Meas.               | End                        | SAR        |  |
|------------------------------|---------------------------|---------|------------------|----------|--------------------------------------------------|---------------------|----------------------------|------------|--|
| (mm) Position                | MHz                       | Channel | rate<br>(Mbps)   | Antenna  | Plot<br>page #                                   | power<br>(dBm)      | (W/kg)                     |            |  |
| 5                            | Left                      | 2437    | 6                | 1        | Main                                             | 82                  | 17.5                       | 0.337      |  |
| 5                            | Right                     | 2437    | 6                | 1        | Main                                             | 83                  | 17.5                       | 0.579      |  |
| 5                            | Front                     | 2437    | 6                | 1        | Main                                             | 84                  | 17.5                       | 0.726      |  |
| 5                            | Back                      | 2437    | 6                | 1        | Main                                             | 85                  | 17.5                       | 0.514      |  |
| 5                            | Тор                       | 2437    | 6                | 1        | Main                                             | 86                  | 17.5                       | 0.015      |  |
| 5                            | Bottom                    | 2437    | 6                | 1        | Main                                             | 87                  | 17.5                       | 0.041      |  |
|                              |                           |         |                  |          | Maximum body SAR = 0.726 W/kg                    |                     |                            |            |  |
|                              |                           |         |                  |          | 2                                                | (mW)<br>averaged ov | 7/ <b>g)</b><br>ver 1 gram |            |  |
| 1. Pov<br>2 SAI              | ver Measure<br>8 Measurem | d       | $\triangleright$ | Conducte | ed 🗌 I                                           | ERP                 |                            | ]EIRP      |  |
| Phantom Configuration        |                           |         |                  |          | d XUni-phantom Right Head                        |                     |                            | Right Head |  |
| 3. SAR Configuration         |                           |         | Head             | Body     |                                                  |                     |                            |            |  |
| Test Signal Call Mode Test   |                           |         |                  | Test Cod | e Base Station Simulator                         |                     |                            |            |  |
| 4. Test Configuration With B |                           |         |                  |          | t Clip $\square$ Without Belt Clip $\square$ N/A |                     |                            |            |  |

## 11. SAR test data summary (2450 MHz Body 802.11b)

5. Tissue Depth is at least 15.0 cm

**Note 1:** SAR Tested on the Highest output power channel. When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than <sup>1</sup>/<sub>4</sub> dB higher than that measured in the 802.11b. The testing was conducted on all sides of the antenna. All testing was conducted per KDB 447498, 248227, 616217 and OET Bulletin 65. See the photo in Appendix C and diagram on page 14 for a pictorial of the setup and labeling of the test locations.

**Note 2:** All measurements were performed with 5 mm gap (Antenna to Flat phantom measurement distance)

**Note 3:** Number of test channels and SAR test reductions determined based on 447498 D01 v05 October 24 2012

**Note 4:** Main and Aux. chains have identical power outputs, hence SAR evaluation of Main antenna output is sufficient to represent Aux. antenna output compliance.

**Note 6:** For 2.4 GHz, measured end power values exceeds the maximum output levels of the production units (including tolerances) declared by the applicant. Scaling measured SAR results are not required

See Appendix B for SAR Test Data Plots.

See Appendix C for SAR Test Setup Photos.

#### Procedures used to establish test signal

The device was placed into simulated transmit mode using the manufacturer's test codes See data pages for actual procedure used in measurement.

#### **Device test condition**

The EUT is a 802.11abgn 2x2 / 802.11ac WLAN + Bluetooth module with external antennas (ACON APP8P-700045). Module dimensions are approximately 30 mm x 30 mm x 5 mm, antenna dimensions are approximately 100 mm x 7 mm x 5 mm. The antenna RF cable is approximately 600 mm long

The EUT was configured via a notebook to transmit at maximum power with desired channel and modes. The module and notebook were positioned with a distance longer than 30 cm from the transmit antenna. The antenna was positioned with all six sides, with 5 mm gap under the phantom.

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)\*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

#### Simultaneous transmission capabilities

The module has a build in Bluetooth transmitter and it is <u>not</u> able to transmit with WIFI simultaneously.

Per KDB Publication 447498 and 616217, Bluetooth SAR was not required since the maximum conducted power of Bluetooth Tx is 1 mW.

Main and Aux. chains have identical power outputs. In normal operation, antennas will be separated each other, hence SAR evaluation of Main antenna output is considered sufficient to show Aux. antenna output compliance.

## 12. Test equipment list

| <u>Manufacturer</u>                | <b>Description</b>                                                 | Model         | Asset # | Cal Due   |
|------------------------------------|--------------------------------------------------------------------|---------------|---------|-----------|
| SAR                                |                                                                    |               |         |           |
| Speag                              | SAR Probe                                                          | EX3DV4        | 3833    | 11-Mar-14 |
| Schmid & Partner<br>Engineering AG | Data acquisition<br>Electronics                                    | DAE 4         | 2661    | 05-Mar-14 |
| Speag                              | Phantom                                                            | SM 000 T02 EA | 2667    | N/A       |
| NTS                                | Body Equivalent Matter                                             | N/A           | N/A     | N/A       |
| SAR verification                   |                                                                    |               |         |           |
| Speag                              | DAK 3.5mm Probe                                                    | SM DAK 040    | 2660    | 13-Jun-13 |
| Speag                              | SAR Dipole                                                         | D2450V2       | 2654    | 07-Feb-14 |
| Speag                              | SAR Dipole                                                         | D5GHzV2       | 2658    | 01-Feb-14 |
| Agilent                            | PSG Vector Signal<br>Generator                                     | E8267C        | 2200    | 21-Dec-13 |
| SM Electronics                     | Directional coupler                                                | MC2045        | N/A     | N/A       |
| Macom                              | Attenuator (3 dB)                                                  | 2082-61       | N/A     | N/A       |
| Mini Circuits                      | RF Amplifier                                                       | ZVE-8G+       | N/A     | N/A       |
| Rohde & Schwarz                    | Power Sensor 100 uW - 2<br>Watts (w/ 20 dB pad, SN<br>B844664/018) | NRV-Z53       | 1555    | 26-Feb-14 |
| Rohde & Schwarz<br>EUT power       | Power Meter                                                        | NRVS          | 1290    | 18-Dec-13 |
| Agilent                            | USB Power Sensor                                                   | U2001A        | 2442    | 17-Dec-13 |

## 13. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

#### 14. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.

[4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, June 2001.

[5] IEEE Standard 1528 – 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.

[6] Industry Canada, RSS – 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

[8] KDB 450824 D02 Dipole Requirements for SAR System Validation and Verification

[9] KDB 447498 D01 General RF Exposure Guidance v05. Section 5.2.2.2 When the highest reported 1-g SAR is > 0.4 W/kg and  $\leq 0.8$  W/kg, modules and peripheral transmitters may be approved to operate in multiple host platforms

[10] KDB 248227 SAR Measurement Procedures for 802.11 a/b/g Transmitters

[11] KDB 616217 D01 SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens

[12] KDB 616217 D02 Review and Approval Policies for SAR Evaluation of Laptop Computers with Antennas Built-in on Display Screens

[13] KDB 616217 D03 SAR Evaluation considerations for Laptop/Notebook/Netbook and Tablet Computers

## Appendix A – Tissue and system validation data and plots

| Name : Body 23 deg.C, 2013/04/19, 12:13:24 |             |               |                 |              |        |        |  |  |  |
|--------------------------------------------|-------------|---------------|-----------------|--------------|--------|--------|--|--|--|
| Date : Body 23 deg.C, 2013/04/19, 12:13:24 |             |               |                 |              |        |        |  |  |  |
| Temperature(C): 23                         |             |               |                 |              |        |        |  |  |  |
| Probe : DAK_35                             |             |               |                 |              |        |        |  |  |  |
| Network Analyzer : HP8753X                 |             |               |                 |              |        |        |  |  |  |
| Notes : 2.4                                | GHz Body ti | ssue validati | on May 19, 2013 | 5            |        |        |  |  |  |
| Measured d                                 | lata        | 1             |                 |              |        |        |  |  |  |
| f(MHz)                                     | eps.R       | eps.I         | sigma(S/m)      | loss tangent | refl.R | refl.I |  |  |  |
| 2402                                       | 52.64       | 14.38         | 1.92            | 0.27         | 0.17   | -0.74  |  |  |  |
| 2407                                       | 52.63       | 14.39         | 1.93            | 0.27         | 0.17   | -0.74  |  |  |  |
| 2412                                       | 52.61       | 14.39         | 1.93            | 0.27         | 0.17   | -0.74  |  |  |  |
| 2417                                       | 52.58       | 14.45         | 1.94            | 0.27         | 0.17   | -0.74  |  |  |  |
| 2422                                       | 52.59       | 14.46         | 1.95            | 0.27         | 0.17   | -0.74  |  |  |  |
| 2427                                       | 52.49       | 14.46         | 1.95            | 0.28         | 0.17   | -0.73  |  |  |  |
| 2432                                       | 52.51       | 14.47         | 1.96            | 0.28         | 0.16   | -0.73  |  |  |  |
| 2437                                       | 52.52       | 14.53         | 1.97            | 0.28         | 0.16   | -0.73  |  |  |  |
| 2442                                       | 52.52       | 14.51         | 1.97            | 0.28         | 0.16   | -0.73  |  |  |  |
| 2447                                       | 52.47       | 14.54         | 1.98            | 0.28         | 0.16   | -0.73  |  |  |  |
| 2452                                       | 52.45       | 14.57         | 1.99            | 0.28         | 0.16   | -0.73  |  |  |  |
| 2457                                       | 52.43       | 14.54         | 1.99            | 0.28         | 0.16   | -0.73  |  |  |  |
| 2462                                       | 52.48       | 14.63         | 2.00            | 0.28         | 0.15   | -0.73  |  |  |  |
| 2467                                       | 52.35       | 14.62         | 2.01            | 0.28         | 0.15   | -0.73  |  |  |  |
| 2472                                       | 52.42       | 14.62         | 2.01            | 0.28         | 0.15   | -0.73  |  |  |  |

Name : Body 23 deg.C, 2013/04/22, 11:43:51 Date : Body 23 deg.C, 2013/04/22, 11:43:51 Temperature(C) : 23 Probe : DAK\_35 Network Analyzer : HP8753X Notes : 2GHZ body 4-22-2013

Measured data

| f(MHz)      | eps.R        | eps.I | sigma(S/m) | loss tangent | refl.R | refl.I |
|-------------|--------------|-------|------------|--------------|--------|--------|
| 2407        | 52.90        | 14.66 | 1.96       | 0.28         | 0.17   | -0.73  |
| 2412        | 52.88        | 14.69 | 1.97       | 0.28         | 0.16   | -0.73  |
| 2417        | 52.88        | 14.69 | 1.98       | 0.28         | 0.16   | -0.73  |
| 2422        | 52.85        | 14.75 | 1.99       | 0.28         | 0.16   | -0.73  |
| 2427        | 52.83        | 14.73 | 1.99       | 0.28         | 0.16   | -0.73  |
| 2432        | 52.78        | 14.74 | 1.99       | 0.28         | 0.16   | -0.73  |
| 2437        | 52.82        | 14.82 | 2.01       | 0.28         | 0.16   | -0.73  |
| 2442        | 52.78        | 14.81 | 2.01       | 0.28         | 0.16   | -0.73  |
| 2447        | 52.77        | 14.80 | 2.02       | 0.28         | 0.15   | -0.73  |
| 2452        | 52.74        | 14.84 | 2.02       | 0.28         | 0.15   | -0.73  |
| 2457        | 52.71        | 14.88 | 2.03       | 0.28         | 0.15   | -0.73  |
| 2462        | 52.76        | 14.91 | 2.04       | 0.28         | 0.15   | -0.73  |
| 2467        | 52.67        | 14.93 | 2.05       | 0.28         | 0.15   | -0.73  |
| 2472        | 52.66        | 14.93 | 2.05       | 0.28         | 0.15   | -0.73  |
| Target data | : Body 23 de | g.C   |            |              |        |        |
| f(MHz)      | eps.R        | eps.I | sigma(S/m) | loss tangent | refl.R | refl.I |
| 2407        | 52.76        | 14.15 | 1.89       | 0.27         | 0.17   | -0.74  |
| 2412        | 52.75        | 14.17 | 1.90       | 0.27         | 0.17   | -0.74  |
| 2417        | 52.74        | 14.18 | 1.91       | 0.27         | 0.17   | -0.74  |
| 2422        | 52.74        | 14.20 | 1.91       | 0.27         | 0.17   | -0.74  |
| 2427        | 52.73        | 14.22 | 1.92       | 0.27         | 0.16   | -0.74  |
| 2432        | 52.72        | 14.24 | 1.93       | 0.27         | 0.16   | -0.74  |
| 2437        | 52.72        | 14.26 | 1.93       | 0.27         | 0.16   | -0.74  |
| 2442        | 52.71        | 14.28 | 1.94       | 0.27         | 0.16   | -0.74  |
| 2447        | 52.70        | 14.30 | 1.95       | 0.27         | 0.16   | -0.74  |
| 2452        | 52.70        | 14.31 | 1.95       | 0.27         | 0.16   | -0.74  |
| 2457        | 52.69        | 14.33 | 1.96       | 0.27         | 0.15   | -0.74  |
| 2462        | 52.68        | 14.35 | 1.97       | 0.27         | 0.15   | -0.74  |
| 2467        | 52.68        | 14.37 | 1.97       | 0.27         | 0.15   | -0.74  |
| 2472        | 52.67        | 14.39 | 1.98       | 0.27         | 0.15   | -0.74  |

| Name : Body 23.5 deg.C, 2013/04/24, 08:25:06 |                  |               |               |              |        |        |  |  |  |
|----------------------------------------------|------------------|---------------|---------------|--------------|--------|--------|--|--|--|
| Date : Body                                  | 23.5 deg.C, 20   | 13/04/24, 08  | :25:06        |              |        |        |  |  |  |
| Temperature(C): 23.5                         |                  |               |               |              |        |        |  |  |  |
| Probe : DA                                   | K_35             |               |               |              |        |        |  |  |  |
| Network An                                   | nalyzer : HP875. | 3X            |               |              |        |        |  |  |  |
| Notes : 5 G                                  | Hz body tissue   | validation Ap | oril 24, 2013 |              |        |        |  |  |  |
| Measured d                                   | lata             |               |               |              |        |        |  |  |  |
| f(MHz)                                       | eps.R            | eps.I         | sigma(S/m)    | loss tangent | refl.R | refl.I |  |  |  |
| 5160                                         | 48.54            | 18.26         | 5.24          | 0.38         | -0.36  | -0.56  |  |  |  |
| 5180                                         | 48.43            | 18.28         | 5.27          | 0.38         | -0.36  | -0.56  |  |  |  |
| 5200                                         | 48.43            | 18.31         | 5.30          | 0.38         | -0.36  | -0.55  |  |  |  |
| 5220                                         | 48.37            | 18.24         | 5.30          | 0.38         | -0.37  | -0.55  |  |  |  |
| 5240                                         | 48.41            | 18.22         | 5.31          | 0.38         | -0.37  | -0.55  |  |  |  |
| 5260                                         | 48.35            | 18.27         | 5.35          | 0.38         | -0.37  | -0.55  |  |  |  |
| 5280                                         | 48.31            | 18.23         | 5.35          | 0.38         | -0.37  | -0.55  |  |  |  |
| 5300                                         | 48.32            | 18.33         | 5.41          | 0.38         | -0.37  | -0.55  |  |  |  |
| 5320                                         | 48.38            | 18.34         | 5.43          | 0.38         | -0.38  | -0.55  |  |  |  |
| 5340                                         | 48.24            | 18.34         | 5.45          | 0.38         | -0.38  | -0.54  |  |  |  |
| 5360                                         | 48.23            | 18.31         | 5.46          | 0.38         | -0.38  | -0.54  |  |  |  |
| 5380                                         | 48.13            | 18.36         | 5.49          | 0.38         | -0.38  | -0.54  |  |  |  |
| 5400                                         | 48.14            | 18.32         | 5.50          | 0.38         | -0.38  | -0.54  |  |  |  |
| 5420                                         | 48.07            | 18.34         | 5.53          | 0.38         | -0.38  | -0.54  |  |  |  |
| 5440                                         | 48.08            | 18.37         | 5.56          | 0.38         | -0.39  | -0.54  |  |  |  |
| 5460                                         | 48.13            | 18.36         | 5.58          | 0.38         | -0.39  | -0.54  |  |  |  |
| 5480                                         | 48.05            | 18.35         | 5.59          | 0.38         | -0.39  | -0.54  |  |  |  |
| 5500                                         | 48.04            | 18.42         | 5.64          | 0.38         | -0.39  | -0.53  |  |  |  |
| 5520                                         | 47.98            | 18.38         | 5.64          | 0.38         | -0.39  | -0.53  |  |  |  |
| 5540                                         | 47.96            | 18.40         | 5.67          | 0.38         | -0.40  | -0.53  |  |  |  |
| 5560                                         | 47.93            | 18.38         | 5.69          | 0.38         | -0.40  | -0.53  |  |  |  |
| 5580                                         | 47.89            | 18.48         | 5.74          | 0.39         | -0.40  | -0.53  |  |  |  |
| 5660                                         | 47.80            | 18.51         | 5.83          | 0.39         | -0.41  | -0.52  |  |  |  |
| 5680                                         | 47.77            | 18.51         | 5.85          | 0.39         | -0.41  | -0.52  |  |  |  |
| 5700                                         | 47.80            | 18.51         | 5.87          | 0.39         | -0.41  | -0.52  |  |  |  |
| 5720                                         | 47.72            | 18.60         | 5.92          | 0.39         | -0.41  | -0.52  |  |  |  |
| 5740                                         | 47.80            | 18.53         | 5.92          | 0.39         | -0.41  | -0.52  |  |  |  |
| 5760                                         | 47.69            | 18.58         | 5.95          | 0.39         | -0.41  | -0.51  |  |  |  |
| 5780                                         | 47.69            | 18.54         | 5.96          | 0.39         | -0.42  | -0.51  |  |  |  |
| 5800                                         | 47.69            | 18.56         | 5.99          | 0.39         | -0.42  | -0.51  |  |  |  |
| 5820                                         | 47.67            | 18.60         | 6.02          | 0.39         | -0.42  | -0.51  |  |  |  |
| Name : Body 23 deg.C, 2013/04/29, 08:55:19 |                                            |              |              |              |        |        |  |  |  |
|--------------------------------------------|--------------------------------------------|--------------|--------------|--------------|--------|--------|--|--|--|
| Date : Body                                | Date : Body 23 deg.C, 2013/04/29, 08:55:19 |              |              |              |        |        |  |  |  |
| Temperatur                                 | re(C): 23                                  |              |              |              |        |        |  |  |  |
| Probe : DAK_35                             |                                            |              |              |              |        |        |  |  |  |
| Network A                                  | nalyzer : HP8753                           | 3X           |              |              |        |        |  |  |  |
| Notes : 5 G                                | Hz body tissue v                           | alidation Ap | oril 29 2013 |              |        |        |  |  |  |
| Measured data                              |                                            |              |              |              |        |        |  |  |  |
| f(MHz)                                     | eps.R                                      | eps.I        | sigma(S/m)   | loss tangent | refl.R | refl.I |  |  |  |
| 5160                                       | 48.09                                      | 18.47        | 5.30         | 0.38         | -0.35  | -0.56  |  |  |  |
| 5180                                       | 48.10                                      | 18.49        | 5.33         | 0.38         | -0.36  | -0.55  |  |  |  |
| 5200                                       | 48.10                                      | 18.51        | 5.35         | 0.38         | -0.36  | -0.55  |  |  |  |
| 5220                                       | 48.04                                      | 18.54        | 5.38         | 0.39         | -0.36  | -0.55  |  |  |  |
| 5240                                       | 47.99                                      | 18.52        | 5.40         | 0.39         | -0.36  | -0.55  |  |  |  |
| 5260                                       | 47.92                                      | 18.55        | 5.43         | 0.39         | -0.36  | -0.55  |  |  |  |
| 5280                                       | 47.94                                      | 18.64        | 5.48         | 0.39         | -0.37  | -0.55  |  |  |  |
| 5300                                       | 47.89                                      | 18.60        | 5.48         | 0.39         | -0.37  | -0.54  |  |  |  |
| 5320                                       | 47.88                                      | 18.58        | 5.50         | 0.39         | -0.37  | -0.54  |  |  |  |
| 5340                                       | 47.81                                      | 18.62        | 5.53         | 0.39         | -0.37  | -0.54  |  |  |  |
| 5360                                       | 47.82                                      | 18.65        | 5.56         | 0.39         | -0.37  | -0.54  |  |  |  |
| 5380                                       | 47.75                                      | 18.66        | 5.58         | 0.39         | -0.38  | -0.54  |  |  |  |
| 5400                                       | 47.77                                      | 18.64        | 5.60         | 0.39         | -0.38  | -0.54  |  |  |  |
| 5420                                       | 47.70                                      | 18.66        | 5.63         | 0.39         | -0.38  | -0.54  |  |  |  |
| 5440                                       | 47.70                                      | 18.70        | 5.66         | 0.39         | -0.38  | -0.53  |  |  |  |
| 5460                                       | 47.60                                      | 18.72        | 5.69         | 0.39         | -0.38  | -0.53  |  |  |  |
| 5480                                       | 47.61                                      | 18.69        | 5.70         | 0.39         | -0.39  | -0.53  |  |  |  |
| 5500                                       | 47.55                                      | 18.72        | 5.73         | 0.39         | -0.39  | -0.53  |  |  |  |
| 5520                                       | 47.50                                      | 18.76        | 5.76         | 0.40         | -0.39  | -0.53  |  |  |  |
| 5540                                       | 47.54                                      | 18.85        | 5.81         | 0.40         | -0.39  | -0.53  |  |  |  |
| 5560                                       | 47.44                                      | 18.79        | 5.81         | 0.40         | -0.39  | -0.53  |  |  |  |
| 5580                                       | 47.38                                      | 18.88        | 5.86         | 0.40         | -0.39  | -0.52  |  |  |  |
| 5660                                       | 47.32                                      | 18.84        | 5.93         | 0.40         | -0.40  | -0.52  |  |  |  |
| 5680                                       | 47.28                                      | 18.92        | 5.98         | 0.40         | -0.40  | -0.52  |  |  |  |
| 5700                                       | 47.27                                      | 18.97        | 6.01         | 0.40         | -0.40  | -0.51  |  |  |  |
| 5720                                       | 47.33                                      | 18.93        | 6.02         | 0.40         | -0.41  | -0.51  |  |  |  |
| 5740                                       | 47.22                                      | 19.00        | 6.07         | 0.40         | -0.41  | -0.51  |  |  |  |
| 5760                                       | 47.13                                      | 18.99        | 6.08         | 0.40         | -0.41  | -0.51  |  |  |  |
| 5780                                       | 47.10                                      | 19.04        | 6.12         | 0.40         | -0.41  | -0.51  |  |  |  |
| 5800                                       | 47.13                                      | 19.12        | 6.17         | 0.41         | -0.41  | -0.51  |  |  |  |
| 5820                                       | 47.09                                      | 19.05        | 6.17         | 0.40         | -0.41  | -0.51  |  |  |  |

| Name : Body 23 deg.C, 2013/05/01, 08:07:23        |                |               |            |              |        |        |  |  |
|---------------------------------------------------|----------------|---------------|------------|--------------|--------|--------|--|--|
| Date : Body                                       | 23 deg.C, 2013 | 8/05/01, 08:0 | 7:23       |              |        |        |  |  |
| Temperatur                                        | e(C):23        |               |            |              |        |        |  |  |
| Probe : DAK_35                                    |                |               |            |              |        |        |  |  |
| Network Analyzer : HP8753X                        |                |               |            |              |        |        |  |  |
| Notes : 5 GHz Body tissue verification May 1 2013 |                |               |            |              |        |        |  |  |
| Measured data                                     |                |               |            |              |        |        |  |  |
| f(MHz)                                            | eps.R          | eps.I         | sigma(S/m) | loss tangent | refl.R | refl.I |  |  |
| 5160                                              | 48.79          | 18.46         | 5.30       | 0.38         | -0.36  | -0.56  |  |  |
| 5180                                              | 48.77          | 18.49         | 5.33       | 0.38         | -0.37  | -0.55  |  |  |
| 5200                                              | 48.76          | 18.48         | 5.35       | 0.38         | -0.37  | -0.55  |  |  |
| 5220                                              | 48.67          | 18.41         | 5.35       | 0.38         | -0.37  | -0.55  |  |  |
| 5240                                              | 48.60          | 18.52         | 5.40       | 0.38         | -0.37  | -0.55  |  |  |
| 5260                                              | 48.60          | 18.53         | 5.42       | 0.38         | -0.37  | -0.55  |  |  |
| 5280                                              | 48.60          | 18.53         | 5.44       | 0.38         | -0.38  | -0.55  |  |  |
| 5300                                              | 48.56          | 18.63         | 5.49       | 0.38         | -0.38  | -0.54  |  |  |
| 5320                                              | 48.50          | 18.61         | 5.51       | 0.38         | -0.38  | -0.54  |  |  |
| 5340                                              | 48.51          | 18.61         | 5.53       | 0.38         | -0.38  | -0.54  |  |  |
| 5360                                              | 48.43          | 18.58         | 5.54       | 0.38         | -0.38  | -0.54  |  |  |
| 5380                                              | 48.37          | 18.57         | 5.56       | 0.38         | -0.38  | -0.54  |  |  |
| 5400                                              | 48.37          | 18.65         | 5.60       | 0.39         | -0.39  | -0.54  |  |  |
| 5420                                              | 48.34          | 18.76         | 5.66       | 0.39         | -0.39  | -0.53  |  |  |
| 5440                                              | 48.34          | 18.68         | 5.65       | 0.39         | -0.39  | -0.53  |  |  |
| 5460                                              | 48.32          | 18.69         | 5.68       | 0.39         | -0.39  | -0.53  |  |  |
| 5480                                              | 48.25          | 18.72         | 5.71       | 0.39         | -0.39  | -0.53  |  |  |
| 5500                                              | 48.17          | 18.63         | 5.70       | 0.39         | -0.39  | -0.53  |  |  |
| 5520                                              | 48.11          | 18.76         | 5.76       | 0.39         | -0.40  | -0.53  |  |  |
| 5540                                              | 48.14          | 18.77         | 5.78       | 0.39         | -0.40  | -0.53  |  |  |
| 5560                                              | 48.13          | 18.80         | 5.82       | 0.39         | -0.40  | -0.52  |  |  |
| 5580                                              | 48.10          | 18.78         | 5.83       | 0.39         | -0.40  | -0.52  |  |  |
| 5660                                              | 47.96          | 18.90         | 5.95       | 0.39         | -0.41  | -0.52  |  |  |
| 5680                                              | 47.97          | 18.98         | 6.00       | 0.40         | -0.41  | -0.51  |  |  |
| 5700                                              | 47.93          | 18.91         | 6.00       | 0.39         | -0.41  | -0.51  |  |  |
| 5720                                              | 47.93          | 18.98         | 6.04       | 0.40         | -0.41  | -0.51  |  |  |
| 5740                                              | 47.82          | 18.98         | 6.06       | 0.40         | -0.41  | -0.51  |  |  |
| 5760                                              | 47.77          | 19.07         | 6.11       | 0.40         | -0.41  | -0.51  |  |  |
| 5780                                              | 47.72          | 19.07         | 6.13       | 0.40         | -0.42  | -0.51  |  |  |
| 5800                                              | 47.77          | 19.10         | 6.16       | 0.40         | -0.42  | -0.50  |  |  |
| 5820                                              | 47.76          | 19.08         | 6.18       | 0.40         | -0.42  | -0.50  |  |  |

| f(MHz) | eps.R | eps.I | sigma(S/m) | loss tangent | refl.R | refl.I |
|--------|-------|-------|------------|--------------|--------|--------|
| 5160   | 49.09 | 18.50 | 5.31       | 0.38         | -0.37  | -0.55  |
| 5180   | 49.06 | 18.50 | 5.33       | 0.38         | -0.37  | -0.55  |
| 5200   | 49.03 | 18.51 | 5.35       | 0.38         | -0.37  | -0.55  |
| 5220   | 49.01 | 18.51 | 5.38       | 0.38         | -0.37  | -0.55  |
| 5240   | 48.98 | 18.52 | 5.40       | 0.38         | -0.38  | -0.55  |
| 5260   | 48.95 | 18.52 | 5.42       | 0.38         | -0.38  | -0.55  |
| 5280   | 48.92 | 18.53 | 5.44       | 0.38         | -0.38  | -0.55  |
| 5300   | 48.90 | 18.53 | 5.46       | 0.38         | -0.38  | -0.54  |
| 5320   | 48.87 | 18.54 | 5.49       | 0.38         | -0.38  | -0.54  |
| 5340   | 48.84 | 18.54 | 5.51       | 0.38         | -0.39  | -0.54  |
| 5360   | 48.81 | 18.55 | 5.53       | 0.38         | -0.39  | -0.54  |
| 5380   | 48.79 | 18.55 | 5.55       | 0.38         | -0.39  | -0.54  |
| 5400   | 48.76 | 18.55 | 5.57       | 0.38         | -0.39  | -0.54  |
| 5420   | 48.73 | 18.56 | 5.60       | 0.38         | -0.39  | -0.54  |
| 5440   | 48.70 | 18.56 | 5.62       | 0.38         | -0.39  | -0.53  |
| 5460   | 48.67 | 18.56 | 5.64       | 0.38         | -0.40  | -0.53  |
| 5480   | 48.65 | 18.57 | 5.66       | 0.38         | -0.40  | -0.53  |
| 5500   | 48.62 | 18.57 | 5.68       | 0.38         | -0.40  | -0.53  |
| 5520   | 48.59 | 18.57 | 5.70       | 0.38         | -0.40  | -0.53  |
| 5540   | 48.56 | 18.58 | 5.73       | 0.38         | -0.40  | -0.53  |
| 5560   | 48.54 | 18.58 | 5.75       | 0.38         | -0.40  | -0.53  |
| 5580   | 48.51 | 18.58 | 5.77       | 0.38         | -0.41  | -0.52  |
| 5600   | 48.48 | 18.58 | 5.79       | 0.38         | -0.41  | -0.52  |
| 5620   | 48.45 | 18.58 | 5.81       | 0.38         | -0.41  | -0.52  |
| 5640   | 48.42 | 18.59 | 5.83       | 0.38         | -0.41  | -0.52  |
| 5660   | 48.40 | 18.59 | 5.85       | 0.38         | -0.41  | -0.52  |
| 5680   | 48.37 | 18.59 | 5.87       | 0.38         | -0.41  | -0.52  |
| 5700   | 48.34 | 18.59 | 5.90       | 0.38         | -0.42  | -0.52  |
| 5720   | 48.31 | 18.59 | 5.92       | 0.38         | -0.42  | -0.52  |
| 5740   | 48.28 | 18.59 | 5.94       | 0.39         | -0.42  | -0.51  |
| 5760   | 48.26 | 18.59 | 5.96       | 0.39         | -0.42  | -0.51  |
| 5780   | 48.23 | 18.59 | 5.98       | 0.39         | -0.42  | -0.51  |
| 5800   | 48.20 | 18.60 | 6.00       | 0.39         | -0.42  | -0.51  |

Target data : Body 23 deg.C

## DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:881 Procedure Name: 2450 MHz Body Validation

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz;  $\sigma$  = 1.984 mho/m;  $\epsilon_r$  = 52.457;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/19/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- **2450 MHz Body Validation/2450 MHz Body Validation/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 19.128 mW/g

2450 MHz Body Validation/2450 MHz Body Validation/Zoom Scan (7x7x8)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 80.060 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 25.9900

## SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.92 mW/g

Maximum value of SAR (measured) = 19.179 mW/g



## DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:881 Procedure Name: 2450 MHz Body Validation

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz;  $\sigma$  = 2.021 mho/m;  $\epsilon_r$  = 52.755;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/22/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- **2450 MHz Body Validation/2450 MHz Body Validation/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 19.734 mW/g

2450 MHz Body Validation/2450 MHz Body Validation/Zoom Scan (7x7x8)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 81.226 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.5820

#### SAR(1 g) = 13 mW/g; SAR(10 g) = 6.01 mW/g

Maximum value of SAR (measured) = 19.705 mW/g



DUT: Dipole 2450 MHz D2450V2; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used (interpolated): f = 2450 MHz;  $\sigma = 2.021$  mho/m;  $\varepsilon_r = 52.755$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Date: 4/22/2013 Probe: EX3DV4 - SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013 Sensor-Surface: 0mm (Fix Surface) Electronics: DAE4 Sn1321; Calibrated: 3/5/2013 Phantom: SAM 1; Type: SAM Twin Phantom Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989) **2450 MHz Body Validation/2450 MHz Body Validation/Z Scan (1x1x31):** Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (interpolated) = 7.948 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5200 MHz Body Validation

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz;  $\sigma = 5.298 \text{ mho/m}$ ;  $\varepsilon_r = 48.433$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 4/24/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5200 MHz Body Validation/5200 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 12.893 mW/g

5200 MHz Body Validation/5200 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 33.374 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.8480

SAR(1 g) = 6.66 mW/g; SAR(10 g) = 1.9 mW/g

Maximum value of SAR (measured) = 12.953 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5500 MHz Body Validation

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz;  $\sigma = 5.636 \text{ mho/m}$ ;  $\varepsilon_r = 48.038$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 4/24/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5500 MHz Body Validation/5500 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 17.524 mW/g

5500 MHz Body Validation/5500 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 37.781 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 37.8160

SAR(1 g) = 8.61 mW/g; SAR(10 g) = 2.42 mW/g

Maximum value of SAR (measured) = 17.119 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5800 MHz Body Validation

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz;  $\sigma = 5.99 \text{ mho/m}$ ;  $\varepsilon_r = 47.689$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 4/24/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5800 MHz Body Validation/5800 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.794 mW/g

5800 MHz Body Validation/5800 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 33.309 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 31.2190

SAR(1 g) = 7.12 mW/g; SAR(10 g) = 2.01 mW/g

Maximum value of SAR (measured) = 14.307 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5200 MHz Body Validation

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz;  $\sigma = 5.355 \text{ mho/m}$ ;  $\varepsilon_r = 48.103$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5200 MHz Body Validation/5200 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.242 mW/g

5200 MHz Body Validation/5200 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 34.404 V/m; Power Drift = 0.24 dB

Peak SAR (extrapolated) = 29.8120

SAR(1 g) = 7.05 mW/g; SAR(10 g) = 2 mW/g

Maximum value of SAR (measured) = 13.525 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5500 MHz Body Validation

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz;  $\sigma = 5.728 \text{ mho/m}$ ;  $\varepsilon_r = 47.547$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5500 MHz Body Validation/5500 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 15.952 mW/g

5500 MHz Body Validation/5500 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 34.625 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 32.5030

SAR(1 g) = 7.58 mW/g; SAR(10 g) = 2.12 mW/g

Maximum value of SAR (measured) = 14.980 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5800 MHz Body Validation

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz;  $\sigma = 6.168 \text{ mho/m}$ ;  $\varepsilon_r = 47.128$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5800 MHz Body Validation/5800 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 15.847 mW/g

5800 MHz Body Validation/5800 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 33.218 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 31.6300

SAR(1 g) = 7.44 mW/g; SAR(10 g) = 2.09 mW/g

Maximum value of SAR (measured) = 14.782 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5200 MHz Body Validation

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz;  $\sigma = 5.347 \text{ mho/m}$ ;  $\varepsilon_r = 48.761$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5200 MHz Body Validation/5200 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.029 mW/g

5200 MHz Body Validation/5200 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 35.617 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.9560

SAR(1 g) = 7.06 mW/g; SAR(10 g) = 2.01 mW/g

Maximum value of SAR (measured) = 13.650 mW/g



## DUT: Dipole D5GHzV2; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz;  $\sigma = 5.347$  mho/m;  $\varepsilon_r = 48.761$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Date: 5/1/2013Probe: EX3DV4 - SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013Sensor-Surface: 0mm (Fix Surface) Electronics: DAE4 Sn1321; Calibrated: 3/5/2013Phantom: SAM 1; Type: SAM Twin Phantom Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989) **5200** MHz Body Validation/5200 MHz Body Validation/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=10mm Maximum value of SAR (interpolated) = 0.422 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5500 MHz Body Validation

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz;  $\sigma = 5.701 \text{ mho/m}$ ;  $\varepsilon_r = 48.167$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5500 MHz Body Validation/5500 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 15.901 mW/g

5500 MHz Body Validation/5500 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 35.795 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 33.2170

SAR(1 g) = 7.75 mW/g; SAR(10 g) = 2.17 mW/g

Maximum value of SAR (measured) = 15.203 mW/g



## DUT: Dipole D5GHzV2; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5500 MHz;  $\sigma = 5.701$  mho/m;  $\varepsilon_r = 48.167$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Date: 5/1/2013Probe: EX3DV4 - SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013Sensor-Surface: 0mm (Fix Surface) Electronics: DAE4 Sn1321; Calibrated: 3/5/2013Phantom: SAM 1; Type: SAM Twin Phantom Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989) **5500** MHz Body Validation/5500 MHz Body Validation/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=10mm Maximum value of SAR (interpolated) = 0.380 mW/g



## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Procedure Name: 5800 MHz Body Validation

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz;  $\sigma = 6.163 \text{ mho/m}$ ;  $\varepsilon_r = 47.773$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**5800 MHz Body Validation/5800 MHz Body Validation/Area Scan (51x51x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.817 mW/g

5800 MHz Body Validation/5800 MHz Body Validation/Zoom Scan (8x8x11)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 34.434 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 29.8340

SAR(1 g) = 7 mW/g; SAR(10 g) = 1.97 mW/g

Maximum value of SAR (measured) = 13.732 mW/g



## DUT: Dipole D5GHzV2; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz;  $\sigma = 6.163$  mho/m;  $\varepsilon_r = 47.773$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Date: 5/1/2013 Probe: EX3DV4 - SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013 Sensor-Surface: 0mm (Fix Surface) Electronics: DAE4 Sn1321; Calibrated: 3/5/2013 Phantom: SAM 1; Type: SAM Twin Phantom Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989) **5800 MHz Body Validation/5800 MHz Body Validation/Z Scan (1x1x21):** Measurement grid: dx=20mm, dy=20mm, dz=10mm Maximum value of SAR (interpolated) = 0.231 mW/g



## Appendix B – SAR test data plots

## Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz;  $\sigma = 5.327$  mho/m;  $\varepsilon_r = 48.095$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.240 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.444 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 3.0820

SAR(1 g) = 0.567 mW/g; SAR(10 g) = 0.125 mW/g Maximum value of SAR (measured) = 1.291 mW/g



#### Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz;  $\sigma = 5.268$  mho/m;  $\varepsilon_r = 48.426$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/24/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.427 mW/g

**BCM943228HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.419 V/m; Power Drift = 0.22 dB

Peak SAR (extrapolated) = 0.8330

SAR(1 g) = 0.185 mW/g; SAR(10 g) = 0.048 mW/g Maximum value of SAR (measured) = 0.456 mW/g



#### **Procedure Name: 5 mm Front**

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz;  $\sigma = 5.268 \text{ mho/m}$ ;  $\varepsilon_r = 48.426$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Test Date: 4/24/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.665 mW/g

**BCM943228HMB/5 mm Front/Zoom Scan (9x9x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.393 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.7320

SAR(1 g) = 0.300 mW/g; SAR(10 g) = 0.090 mW/gMaximum value of SAR (measured) = 0.701 mW/g



#### Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz;  $\sigma = 5.327$  mho/m;  $\varepsilon_r = 48.766$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.780 mW/g

**BCM943228HMB/5 mm Back/Zoom Scan (9x10x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.055 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.2800

```
SAR(1 g) = 0.327 \text{ mW/g}; SAR(10 g) = 0.095 \text{ mW/g}
Maximum value of SAR (measured) = 0.684 \text{ mW/g}
```



## Procedure Name: 5 mm Top

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz;  $\sigma = 5.327 \text{ mho/m}$ ;  $\varepsilon_r = 48.766$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**BCM943228HMB/5 mm Top/Area Scan (61x61x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.061 mW/g

**BCM943228HMB/5 mm Top/Zoom Scan (10x9x9)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 1.771 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.1220

SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.00739 mW/g

Maximum value of SAR (measured) = 0.039 mW/g



## **Procedure Name: 5 mm Bottom**

Communication System: 802.11a - 6 Mbps; Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz;  $\sigma = 5.327 \text{ mho/m}$ ;  $\varepsilon_r = 48.766$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Thanton Section. Flat S

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Bottom/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.076 mW/g

**BCM943228HMB/5 mm Bottom/Zoom Scan (12x12x9)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 2.387 V/m; Power Drift = -0.90 dB

Peak SAR (extrapolated) = 0.1460

SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.016 mW/gMaximum value of SAR (measured) = 0.071 mW/g



## Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz;  $\sigma = 5.399$  mho/m;  $\varepsilon_r = 48.604$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.25, 4.25, 4.25); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.275 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.741 V/m; Power Drift = 0.72 dB

Peak SAR (extrapolated) = 3.1550

SAR(1 g) = 0.570 mW/g; SAR(10 g) = 0.124 mW/g Maximum value of SAR (measured) = 1.300 mW/g



## Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz;  $\sigma = 5.347$  mho/m;  $\varepsilon_r = 48.352$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/24/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.292 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.464 V/m; Power Drift = 0.62 dB

Peak SAR (extrapolated) = 3.5490

SAR(1 g) = 0.652 mW/g; SAR(10 g) = 0.138 mW/g Maximum value of SAR (measured) = 1.458 mW/g



## Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz;  $\sigma = 5.421$  mho/m;  $\varepsilon_r = 48.597$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.446 mW/g

**BCM943228HMB/5 mm Right/Zoom Scan (9x9x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.451 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 2.0460

SAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.083 mW/gMaximum value of SAR (measured) = 0.772 mW/g



#### **Procedure Name: 5 mm Front**

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz;  $\sigma = 5.421$  mho/m;  $\varepsilon_r = 48.597$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.814 mW/g

**BCM943228HMB/5 mm Front/Zoom Scan (10x10x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.125 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.6400

SAR(1 g) = 0.280 mW/g; SAR(10 g) = 0.115 mW/g Maximum value of SAR (measured) = 0.884 mW/g



#### Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz;  $\sigma = 5.421$  mho/m;  $\varepsilon_r = 48.597$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.072 mW/g

**BCM943228HMB/5 mm Back/Zoom Scan (9x10x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.748 V/m; Power Drift = 0.44 dB

Peak SAR (extrapolated) = 2.4940

SAR(1 g) = 0.405 mW/g; SAR(10 g) = 0.145 mW/gMaximum value of SAR (measured) = 1.039 mW/g



#### Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5320 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5320 MHz;  $\sigma = 5.498$  mho/m;  $\varepsilon_r = 47.876$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(4.06, 4.06, 4.06); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.965 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.633 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 2.1900

SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.089 mW/g Maximum value of SAR (measured) = 0.846 mW/g



#### Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz;  $\sigma = 5.728$  mho/m;  $\varepsilon_r = 47.547$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.451 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.730 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.7600

SAR(1 g) = 0.182 mW/g; SAR(10 g) = 0.045 mW/gMaximum value of SAR (measured) = 0.417 mW/g



#### Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5580 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5580 MHz;  $\sigma = 5.738$  mho/m;  $\varepsilon_r = 47.886$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/24/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.888 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.196 V/m; Power Drift = 1.37 dB

Peak SAR (extrapolated) = 4.5620

SAR(1 g) = 0.464 mW/g; SAR(10 g) = 0.068 mW/g Maximum value of SAR (measured) = 1.063 mW/g



#### Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5580 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5580 MHz;  $\sigma = 5.831$  mho/m;  $\varepsilon_r = 48.097$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.557 mW/g

**BCM943228HMB/5 mm Right/Zoom Scan (9x10x15)/Cube 0:** Measurement grid: dx=4mm, dv=4mm, dz=2mm

Reference Value = 4.460 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.0880

SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.061 mW/g Maximum value of SAR (measured) = 0.597 mW/g



#### **Procedure Name: 5 mm Front**

Communication System: 802.11a - 6 Mbps; Frequency: 5580 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5580 MHz;  $\sigma = 5.831$  mho/m;  $\varepsilon_r = 48.097$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**BCM943228HMB/5 mm Front/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.827 mW/g

**BCM943228HMB/5 mm Front/Zoom Scan (9x9x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.746 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.9580

SAR(1 g) = 0.430 mW/g; SAR(10 g) = 0.120 mW/g Maximum value of SAR (measured) = 0.880 mW/g



#### Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5580 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5580 MHz;  $\sigma = 5.831 \text{ mho/m}$ ;  $\varepsilon_r = 48.097$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- **BCM943228HMB/5 mm Back/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.823 mW/g

**BCM943228HMB/5 mm Back/Zoom Scan (9x10x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.528 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 2.0790

SAR(1 g) = 0.431 mW/g; SAR(10 g) = 0.123 mW/g Maximum value of SAR (measured) = 0.846 mW/g


#### Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5700 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5700 MHz;  $\sigma = 6.014 \text{ mho/m}$ ;  $\varepsilon_r = 47.271$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.57, 3.57, 3.57); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.406 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.230 V/m; Power Drift = 0.54 dB

Peak SAR (extrapolated) = 1.0630

SAR(1 g) = 0.202 mW/g; SAR(10 g) = 0.053 mW/gMaximum value of SAR (measured) = 0.413 mW/g



#### Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz;  $\sigma$  = 6.07 mho/m;  $\epsilon_r$  = 47.197;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 4/29/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 1.534 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.163 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.5870

```
SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.190 mW/g
Maximum value of SAR (measured) = 1.500 mW/g
```



#### Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz;  $\sigma$  = 6.073 mho/m;  $\epsilon_r$  = 47.804;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 1.101 mW/g

**BCM943228HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.918 V/m; Power Drift = -0.61 dB

Peak SAR (extrapolated) = 2.2570

```
SAR(1 g) = 0.484 mW/g; SAR(10 g) = 0.107 mW/g
Maximum value of SAR (measured) = 1.246 mW/g
```



#### **Procedure Name: 5 mm Front**

Communication System: 802.11a - 6 Mbps; Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz;  $\sigma$  = 6.073 mho/m;  $\epsilon_r$  = 47.804;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 1.422 mW/g

**BCM943228HMB/5 mm Front/Zoom Scan (9x9x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.298 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 3.0810

```
SAR(1 g) = 0.600 mW/g; SAR(10 g) = 0.175 mW/g
```



#### Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5745 MHz;  $\sigma$  = 6.073 mho/m;  $\epsilon_r$  = 47.804;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 1.315 mW/g

BCM943228HMB/5 mm Back/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.496 V/m; Power Drift = -0.22 dB

Peak SAR (extrapolated) = 2.7290

```
SAR(1 g) = 0.613 \text{ mW/g}; SAR(10 g) = 0.181 \text{ mW/g}
```

Maximum value of SAR (measured) = 1.336 mW/g



#### Procedure Name: 5 mm Left

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz;  $\sigma$  = 6.183 mho/m;  $\epsilon_r$  = 47.768;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.675 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (9x9x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.885 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.7070

```
SAR(1 g) = 0.340 mW/g; SAR(10 g) = 0.093 mW/g
```

Maximum value of SAR (measured) = 0.745 mW/g



#### Procedure Name: 5 mm Right

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz;  $\sigma$  = 6.183 mho/m;  $\epsilon_r$  = 47.768;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.774 mW/g

**BCM943228HMB/5 mm Right/Zoom Scan (8x8x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.463 V/m; Power Drift = 0.33 dB

Peak SAR (extrapolated) = 1.7090

SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.079 mW/g



#### **Procedure Name: 5 mm Front**

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz;  $\sigma$  = 6.183 mho/m;  $\epsilon_r$  = 47.768;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Front/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.939 mW/g

**BCM943228HMB/5 mm Front/Zoom Scan (9x9x15)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.167 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 2.2040

```
SAR(1 g) = 0.412 \text{ mW/g}; SAR(10 g) = 0.105 \text{ mW/g}
Maximum value of SAR (measured) = 0.917 \text{ mW/g}
```

0.917 0.734 0.550 0.367 0.183

#### Procedure Name: 5 mm Back

Communication System: 802.11a - 6 Mbps; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 5825 MHz;  $\sigma$  = 6.183 mho/m;  $\epsilon_r$  = 47.768;  $\rho$  = 1000 kg/m^3

Phantom section: Flat Section

Test Date: 5/1/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(3.64, 3.64, 3.64); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.789 mW/g

BCM943228HMB/5 mm Back/Zoom Scan (9x9x15)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.464 V/m; Power Drift = -0.30 dB

Peak SAR (extrapolated) = 1.7930

```
SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.099 mW/g
```

Maximum value of SAR (measured) = 0.821 mW/g



#### Procedure Name: 5 mm Left

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz;  $\sigma = 2.009$  mho/m;  $\epsilon_r = 52.818$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: 4/22/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Left/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.534 mW/g

**BCM943228HMB/5 mm Left/Zoom Scan (9x9x9)/Cube 0:** Measurement grid: dx=4mm, dv=4mm, dz=4mm

Reference Value = 10.570 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.7140

SAR(1 g) = 0.337 mW/g; SAR(10 g) = 0.156 mW/gMaximum value of SAR (measured) = 0.516 mW/g



#### Procedure Name: 5 mm Right

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz;  $\sigma = 2.009$  mho/m;  $\epsilon_r = 52.818$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: 4/22/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

BCM943228HMB/5 mm Right/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.939 mW/g

**BCM943228HMB/5 mm Right/Zoom Scan (9x9x9)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 13.128 V/m; Power Drift = 0.58 dB

Peak SAR (extrapolated) = 1.2360

SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.273 mW/g Maximum value of SAR (measured) = 0.878 mW/g



#### Procedure Name: 5 mm Back

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.969$  mho/m;  $\epsilon_r = 52.519$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: 4/19/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.123 mW/g

**BCM943228HMB/5 mm Back/Zoom Scan (9x9x9)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 20.520 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.5050

SAR(1 g) = 0.726 mW/g; SAR(10 g) = 0.333 mW/g Maximum value of SAR (measured) = 1.118 mW/g



#### Procedure Name: 5 mm Back

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz;  $\sigma = 2.009$  mho/m;  $\epsilon_r = 52.818$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: 4/22/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)
- BCM943228HMB/5 mm Back/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.818 mW/g

**BCM943228HMB/5 mm Back/Zoom Scan (9x9x9)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 15.495 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.0520

SAR(1 g) = 0.514 mW/g; SAR(10 g) = 0.247 mW/g Maximum value of SAR (measured) = 0.785 mW/g



#### Procedure Name: 5 mm Top

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz;  $\sigma = 2.009$  mho/m;  $\varepsilon_r = 52.818$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Test Date: 4/22/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom

• Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**BCM943228HMB/5 mm Top/Area Scan (61x61x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.019 mW/g

**BCM943228HMB/5 mm Top/Zoom Scan (9x10x9)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 2.205 V/m; Power Drift = 1.27 dB

Peak SAR (extrapolated) = 0.0330

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.00891 mW/g

Maximum value of SAR (measured) = 0.021 mW/g



#### **Procedure Name: 5 mm Bottom**

Communication System: 802.11b - 1 Mbps; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz;  $\sigma = 2.009$  mho/m;  $\epsilon_r = 52.818$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: 4/22/2012

Test Date: 4/22/2013

DASY5 Configuration:

- Probe: EX3DV4 SN3833; ConvF(6.69, 6.69, 6.69); Calibrated: 3/11/2013
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1321; Calibrated: 3/5/2013
- Phantom: SAM 1; Type: SAM Twin Phantom
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**BCM943228HMB/5 mm Bottom/Area Scan (61x61x1):** Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.057 mW/g

**BCM943228HMB/5 mm Bottom/Zoom Scan (9x9x9)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 4.061 V/m; Power Drift = 0.30 dB

Peak SAR (extrapolated) = 0.0720

SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.023 mW/gMaximum value of SAR (measured) = 0.058 mW/g



## **Appendix C – SAR Test Setup Photos**



#### Picture 1: ACON APP8P-700045 antenna



Picture 2: ACON APP8P-700045 antenna, Orientation= Left



Picture 3: ACON APP8P-700045 antenna, Orientation = Right



Picture 4: ACON APP8P-700045 antenna, Orientation = Front



Picture 5: ACON APP8P-700045 antenna, Orientation = Back



Picture 6: ACON APP8P-700045 antenna, Orientation = Top



Picture 7: ACON APP8P-700045 antenna, Orientation = Bottom

Picture 8: EUT setup



## **Appendix D – Probe Calibration Data Sheets**

# 2650

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

s

|                                                                                                     | CEDTIEICATE                                                                                       | Genincale no.                                                                                           | EX3-3035_Mar15               |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------|
| ALIBRATION                                                                                          | CENTIFICATE                                                                                       |                                                                                                         |                              |
| Dbject                                                                                              | EX3DV4 - SN:383                                                                                   | 33                                                                                                      |                              |
| Calibration procedure(s)                                                                            | QA CAL-01.v8, Q<br>Calibration proces                                                             | A CAL-14.v3, QA CAL-23.v4, QA<br>dure for dosimetric E-field probes                                     | CAL-25.v4                    |
| Calibration date:                                                                                   | March 11, 2013                                                                                    | he make and the state                                                                                   |                              |
| The measurements and the unc<br>All calibrations have been condu-<br>Calibration Equipment used (M8 | ertainties with confidence pr<br>ucted in the closed laboratory<br>\$TE critical for calibration) | obability are given on the following pages and<br>y facility: environment temperature $(22 \pm 3)$ °C ( | are part of the certificate. |
| Primary Standards                                                                                   | ID                                                                                                | Cal Date (Certificate No.)                                                                              | Scheduled Calibration        |
| Power meter E4419B                                                                                  | GB41293874                                                                                        | 29-Mar-12 (No. 217-01508)                                                                               | Anr-13                       |
| Power sensor E4412A                                                                                 | MY41498087                                                                                        | 29-Mar-12 (No. 217-01508)                                                                               | Anr-13                       |
| Reference 3 dB Attenuator                                                                           | SN: S5054 (3c)                                                                                    | 27-Mar-12 (No. 217-01531)                                                                               | Anr-13                       |
| Reference 20 dB Attenuator                                                                          | SN: S5086 (20b)                                                                                   | 27-Mar-12 (No. 217-01529)                                                                               | Apr-13                       |
| Reference 30 dB Attenuator                                                                          | SN: S5129 (30b)                                                                                   | 27-Mar-12 (No. 217-01532)                                                                               | Apr-13                       |
| Reference Probe ES3DV2                                                                              | 5N: 3013                                                                                          | 28-Dec-12 (No. ES3-3013 Dec12)                                                                          | Dec-13                       |
| DAE4                                                                                                | SN: 660                                                                                           | 31-Jan-13 (No. DAE4-660_Jan13)                                                                          | Jan-14                       |
| Secondary Standards                                                                                 | 10                                                                                                | Chack Data (in bours)                                                                                   | Pahodulad Chasis             |
|                                                                                                     | US3642U01700                                                                                      | 4-Aug-99 (in house check Apr-11)                                                                        | In house check Apr. 13       |
| RF generator HP 8648C                                                                               |                                                                                                   | 10 Control (In the second of the second                                                                 | In house check, Oct-13       |
| RF generator HP 8648C<br>Network Analyzer HP 8753E                                                  | US37390585                                                                                        | 18-Oct-01 (in house check Oct-12)                                                                       | The trade of the one of the  |
| RF generator HP 8648C<br>Network Analyzer HP 8753E                                                  | US37390585                                                                                        | Function                                                                                                | Sinnature                    |
| RF generator HP 8648C<br>Network Analyzer HP 8753E<br>Calibrated by:                                | US37390585<br>Name<br>Claudio Leubler                                                             | Function<br>Laboratory Technician                                                                       | Signature                    |
| RF generator HP 8648C<br>Network Analyzer HP 8753E<br>Calibrated by:<br>Approved by:                | US37390585<br>Name<br>Claudio Leubler<br>Katja Pokovic                                            | Function<br>Laboratory Technician                                                                       | Signature                    |

Certificate No: EX3-3833\_Mar13

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

S

C

s

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL            | tissue simulating liquid                                                                                                         |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| NORMx,y,z      | sensitivity in free space                                                                                                        |
| ConvF          | sensitivity in TSL / NORMx,y,z                                                                                                   |
| DCP            | diode compression point                                                                                                          |
| CF             | crest factor (1/duty_cycle) of the RF signal                                                                                     |
| A, B, C, D     | modulation dependent linearization parameters                                                                                    |
| Polarization o | o rotation around probe axis                                                                                                     |
| Polarization 9 | 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis |
|                |                                                                                                                                  |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
  exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3833\_Mar13

Page 2 of 11

EX3DV4 - SN:3833

March 11, 2013

# Probe EX3DV4

## SN:3833

Manufactured: Calibrated: November 7, 2011 March 11, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3833\_Mar13

Page 3 of 11

EX3DV4-SN:3833

March 11, 2013

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

#### **Basic Calibration Parameters**

|                                            | Sensor X Sensor Y |       | Sensor Z | Unc (k=2) |  |
|--------------------------------------------|-------------------|-------|----------|-----------|--|
| Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.47              | 0.49  | 0.35     | ± 10.1 %  |  |
| DCP (mV) <sup>8</sup>                      | 101.1             | 101.3 | 101.2    |           |  |

#### **Modulation Calibration Parameters**

| UID  | Communication System Name |   | A<br>dB | B<br>dBõV | С   | D<br>dB | VR<br>mV | Unc <sup>t</sup><br>(k=2) |
|------|---------------------------|---|---------|-----------|-----|---------|----------|---------------------------|
| 0 CW | CW                        | X | 0.0     | 0.0       | 1.0 | 0.00    | 154.8    | ±3.5 %                    |
|      |                           | Y | 0.0     | 0.0       | 1.0 |         | 154.2    |                           |
|      |                           | Z | 0.0     | 0.0       | 1.0 | -       | 133.1    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3833\_Mar13

Page 4 of 11

 <sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>9</sup>-field uncertainty inside TSL (see Pages 5 and 6).
 <sup>a</sup> Numerical linearization parameter: uncertainty not required.
 <sup>c</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3833

March 11, 2013

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------|
| 750                  | 41.9                                  | 0.89                  | 9,31    | 9.31    | 9.31    | 0.28  | 1.05          | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                  | 8.91    | 8.91    | 8.91    | 0.37  | 0.89          | ± 12.0 %       |
| 900                  | 41.5                                  | 0.97                  | 8.77    | 8.77    | 8.77    | 0.27  | 1.00          | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                  | 7.47    | 7.47    | 7.47    | 0.48  | 0.72          | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                  | 7.22    | 7.22    | 7.22    | 0.37  | 0.82          | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                  | 6.71    | 6.71    | 6.71    | 0.39  | 0.76          | ± 12.0 %       |
| 5200                 | 36.0                                  | 4.66                  | 4.78    | 4.78    | 4.78    | 0.30  | 1.80          | ± 13.1 %       |
| 5300                 | 35.9                                  | 4.76                  | 4.55    | 4.55    | 4.55    | 0.30  | 1.80          | ± 13.1 %       |
| 5600                 | 35.5                                  | 5.07                  | 4.01    | 4.01    | 4.01    | 0.40  | 1.80          | ± 13.1 %       |
| 5800                 | 35.3                                  | 5.27                  | 3.90    | 3.90    | 3.90    | 0.50  | 1.80          | ± 13.1 %       |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>o</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvE uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
<sup>5</sup> At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3833\_Mar13

Page 5 of 11

EX3DV4-SN:3833

March 11, 2013

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>*</sup> | Conductivity<br>(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------|
| 750                  | 55.5                                  | 0.96                  | 9.00    | 9.00    | 9.00    | 0.37  | 0.90          | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                  | 8.93    | 8.93    | 8.93    | 0.35  | 1.00          | ± 12.0 %       |
| 900                  | 55.0                                  | 1.05                  | 8.75    | 8.75    | 8.75    | 0.80  | 0.60          | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                  | 7.21    | 7.21    | 7.21    | 0.75  | 0.63          | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                  | 6.97    | 6.97    | 6.97    | 0.31  | 0.99          | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                  | 6.69    | 6.69    | 6.69    | 0.80  | 0.57          | ± 12.0 %       |
| 5200                 | 49.0                                  | 5.30                  | 4.25    | 4.25    | 4.25    | 0.30  | 1.90          | ± 13.1 %       |
| 5300                 | 48.9                                  | 5.42                  | 4.06    | 4.06    | 4.06    | 0.30  | 1.90          | ± 13.1 %       |
| 5600                 | 48.5                                  | 5.77                  | 3.57    | 3.57    | 3.57    | 0.40  | 1.90          | ± 13.1 %       |
| 5800                 | 48.2                                  | 6.00                  | 3.64    | 3.64    | 3.64    | 0.50  | 1.90          | ± 13.1 %       |

#### Calibration Parameter Determined in Body Tissue Simulating Media

<sup>C</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. <sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3833\_Mar13

Page 6 of 11

EX3DV4- SN:3833

March 11, 2013

#### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3833\_Mar13

Page 7 of 11

EX3DV4- SN:3833

March 11, 2013



EX3DV4~ SN:3833

March 11, 2013





EX3DV4- SN:3833

March 11, 2013

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

#### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (*)                           | 11.5       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 2 mm       |

Certificate No: EX3-3833\_Mar13

Page 11 of 11
# **Appendix E – Dipole Calibration Data Sheets**

#2654

**Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

S

C

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

NTS Client

Certificate No: D2450V2-881\_Feb12

| Object                                                                                                                                                                                                                                            | D2450V2 - SN: 881                                                                                                                        |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                                                                                          | QA CAL-05.v8<br>Calibration procedure for dipole validation kits above 700 MHz                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |
| Calibration date:                                                                                                                                                                                                                                 | February 07, 2012                                                                                                                        |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |
| This calibration certificate docum<br>The measurements and the unce<br>All calibrations have been condu<br>Calibration Equipment used (M&                                                                                                         | rents the traceability to nat<br>entainties with confidence p<br>cted in the closed laborato<br>TE critical for calibration)             | ional standards, which realize the physical un robability are given on the following pages arry facility: environment temperature (22 $\pm$ 3)°                                                                                                                                                                 | nits of measurements (SI),<br>nd are part of the certificate,<br>C and humidity < 70%.                                                   |
| Primary Standards                                                                                                                                                                                                                                 | 1D #                                                                                                                                     | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                      | Scheduled Calibration                                                                                                                    |
| Power meter EPM-442A                                                                                                                                                                                                                              | GB37480704<br>US37292783<br>SN: 5086 (200)                                                                                               | 05-Oct-11 (No. 217-01451)<br>05-Oct-11 (No. 217-01451)<br>29-Mar-11 (No. 217-01368)                                                                                                                                                                                                                             | Oct-12<br>Oct-12<br>Apr-12                                                                                                               |
| Reference 20 dB Attenuator<br>[ype-N mismatch combination<br>Reference Probe ES3DV3<br>)AE4                                                                                                                                                       | SN: 5047.2 / 06327<br>SN: 3205<br>SN: 601                                                                                                | 29-Mar-11 (No. 217-01371)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>04-Jul-11 (No. DAE4-601_Jul11)                                                                                                                                                                                                                   | Apr-12<br>Dec-12<br>Jul-12                                                                                                               |
| Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards                                                                                                                                | SN: 5047.2 / 06327<br>SN: 3205<br>SN: 601                                                                                                | 29-Mar-11 (No. 217-01371)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>04-Jul-11 (No. DAE4-601_Jul11)<br>Check Date (in bouse)                                                                                                                                                                                          | Apr-12<br>Dec-12<br>Jul-12<br>Schertulert Check                                                                                          |
| Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>1F generator R&E EMT-06<br>Network Analyzer HP 8753E                                               | SN: 5047.2 / 06327           SN: 3205           SN: 601           ID #           MY41092317           100005           US37390565 \$4206 | 29-Mar-11 (No. 217-01371)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>04-Jul-11 (No. DAE4-601_Jul11)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-99 (in house check Oct-11)<br>18-Oct-01 (in house check Oct-11)                                                                           | Apr-12<br>Dec-12<br>Jul-12<br>Scheduled Check<br>In house check: Oct-13<br>In house check: Oct-10<br>In house check: Oct-12              |
| Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>TF generator R&E CMT-06<br>Vetwork Analyzer HP 8753E                                               | SN: 5047.2 / 06327<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390565 S4206                                            | 29-Mar-11 (No. 217-01371)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>04-Jul-11 (No. DAE4-601_Jul11)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-99 (in house check Oct-11)<br>18-Oct-01 (in house check Oct-11)                                                                           | Apr-12<br>Dec-12<br>Jul-12<br>Scheduled Check<br>In house check: Oct-13<br>In house check: Oct-13<br>In house check: Oct-12              |
| Calibrated by:                                                                                                                                                                                                                                    | SN: 5047.2 / 06327<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390565 S4206<br>Name<br>Israe El-Naouq                  | 29-Mar-11 (No. 217-01371)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>04-Jul-11 (No. DAE4-601_Jul11)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-99 (in house check Oct-11)<br>18-Oct-01 (in house check Oct-11)<br>Function<br>Laboratory Technician                                      | Apr-12<br>Dec-12<br>Jul-12<br>Scheduled Check<br>In house check: Oct-13<br>In house check: Oct-10<br>In house check: Oct-12<br>Signature |
| Advance Sensor AF Ore FA<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>1F generator R&E CMT-06<br>Vetwork Analyzer HP 8753E<br>Calibrated by: | SN: 5047.2 / 06327<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390565 S4206<br>Name<br>Israe El-Naouq<br>Katja Pokowic | 29-Mar-11 (No. 217-01371)<br>30-Dec-11 (No. ES3-3205_Dec11)<br>04-Jul-11 (No. DAE4-601_Jul11)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)<br>04-Aug-09 (in house check Oct-11)<br>18-Oct-01 (in house check Oct-11)<br>18-Oct-01 (in house check Oct-11)<br>Function<br>Laboratory Technician | Apr-12<br>Dec-12<br>Jul-12<br>Scheduled Check<br>In house check: Oct-13<br>In house check: Oct-10<br>In house check: Oct-12<br>Signature |

Certificate No: D2450V2-881\_Feb12

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

# Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

### Additional Documentation:

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-881\_Feb12

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.0     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity    | Conductivity     |
|-----------------------------------------|-----------------|-----------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2            | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | $38.9 \pm 6 \%$ | 1.86 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |                 |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 13.5 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 53.1 mW /g ± 17.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
| SAR measured                                            | 250 mW input power | 6.23 mW / a               |

normalized to 1W

24.7 mW /g ± 16.5 % (k=2)

#### **Body TSL parameters**

The following parameters and calculations were applied.

SAR for nominal Head TSL parameters

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.3 ± 6 %   | 2.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                            |
|-------------------------------------------------------------------------|---------------------------------|----------------------------|
| SAR measured                                                            | 250 mW input power              | 12.8 mW / g                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 50.3 mW / g ± 17.0 % (k=2) |
|                                                                         |                                 |                            |
| SAR averaged over 10 cm <sup>3</sup> (10 c) of Body TSI                 | condition                       |                            |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAB measured | condition<br>250 mW input power | 5.93 mW / a                |

Certificate No: D2450V2-881\_Feb12

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.6 Ω + 3.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.7 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.7 Ω + 4.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26.7 dB       |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.154 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 18, 2010 |

## DASY5 Validation Report for Head TSL

#### Date: 07.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 881

Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.86 mho/m;  $\epsilon_r$  = 38.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.0 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.2110 SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.23 mW/g Maximum value of SAR (measured) = 17.226 mW/g



0 dB = 17.230mW/g = 24.73 dB mW/g

Certificate No: D2450V2-881\_Feb12

Page 5 of 8

# Impedance Measurement Plot for Head TSL



Certificate No: D2450V2-881\_Feb12

Page 6 of 8

## DASY5 Validation Report for Body TSL

Date: 07.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 881

Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 2.02 mho/m;  $\varepsilon_r$  = 52.3; p = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.726 V/m; Power Drift = 0.00039 dB Peak SAR (extrapolated) = 26.1450 SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.93 mW/g Maximum value of SAR (measured) = 16.781 mW/g



0 dB = 16.780mW/g = 24.50 dB mW/g

Certificate No: D2450V2-881\_Feb12

Page 7 of 8

# Impedance Measurement Plot for Body TSL



Certificate No: D2450V2-881\_Feb12

Page 8 of 8

# # 2658

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



SWISS

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

С

s

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

|                                                                                                                                          |                                                                                                                              | Certificate N                                                                                                                                      | Certificate No: D5GHzV2-1119_Feb12                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| CALIBRATION                                                                                                                              | CERTIFICATI                                                                                                                  | E                                                                                                                                                  |                                                                                        |  |
| Dbject                                                                                                                                   | D5GHzV2 - SN:                                                                                                                | 1119                                                                                                                                               |                                                                                        |  |
| Calibration procedure(s)                                                                                                                 | QA CAL-22.v1<br>Calibration proce                                                                                            | QA CAL-22.v1<br>Calibration procedure for dipole validation kits between 3-6 GHz                                                                   |                                                                                        |  |
| Calibration date:                                                                                                                        | February 01, 201                                                                                                             | 2                                                                                                                                                  |                                                                                        |  |
| 'his calibration certilicate docum<br>'he measurements and the unce<br>Il calibrations have been condu<br>Calibration Equipment used (M& | rents the traceability to nat<br>artainties with confidence p<br>cted in the closed laborato<br>TE critical for calibration) | ional standards, which realize the physical ur<br>robability are given on the following pages ar<br>ry facility: environment temperature (22 ± 3)° | nits of measurements (SI).<br>nd are part of the certificate.<br>C and humidity < 70%. |  |
| rimary Standards                                                                                                                         | ID #                                                                                                                         | Cal Date (Certificate No.)                                                                                                                         | Schedulad Calibration                                                                  |  |
| ower meter EPM-442A                                                                                                                      | GB37480704                                                                                                                   | 05-Oct-11 (No. 217-01451)                                                                                                                          | Oct-12                                                                                 |  |
| wer sensor HP 8481A                                                                                                                      | U\$37292783                                                                                                                  | 05-Oct-11 (No. 217-01451)                                                                                                                          | Oct-12                                                                                 |  |
| ference 20 dB Attenuator                                                                                                                 | SN: 5086 (20g)                                                                                                               | 29-Mar-11 (No. 217-01368)                                                                                                                          | Apr-12                                                                                 |  |
| pe-N mismatch combination                                                                                                                | SN: 5047.2 / 06327                                                                                                           | 29-Mar-11 (No. 217-01371)                                                                                                                          | Apr-12                                                                                 |  |
| ference Probe EX3DV4                                                                                                                     | SN: 3503                                                                                                                     | 30-Dec-11 (No. EX3-3503 Dec11)                                                                                                                     | Dec-12                                                                                 |  |
| E4                                                                                                                                       | SN: 601                                                                                                                      | 04-Jul-11 (No. DAE4-601_Jul11)                                                                                                                     | Jul-12                                                                                 |  |
| and a Observation                                                                                                                        | 100                                                                                                                          | Charle Date in Louis                                                                                                                               |                                                                                        |  |
| condary Standards                                                                                                                        |                                                                                                                              | Check Date (in house)                                                                                                                              | Scheduled Check                                                                        |  |
| AND SENSOF HP 646 M                                                                                                                      | MT41092317                                                                                                                   | 16-Oct-02 (in house check Oct-11)                                                                                                                  | In house check: Oct-13                                                                 |  |
| twork Analyzer HP 8753E                                                                                                                  | US37390585 S4206                                                                                                             | 18-Oct-01 (in house check Oct-11)                                                                                                                  | In house check: Oct-12                                                                 |  |
|                                                                                                                                          |                                                                                                                              |                                                                                                                                                    |                                                                                        |  |
|                                                                                                                                          | Name                                                                                                                         | Function                                                                                                                                           | Signature                                                                              |  |
| librated by:                                                                                                                             | Name<br>Jeton Kastrati                                                                                                       | Function<br>Laboratory Technician                                                                                                                  | Signature                                                                              |  |
| librated by:<br>proved by:                                                                                                               | Name<br>Jeton Kastrati<br>Katja Pokovic                                                                                      | Function<br>Laboratory Technician                                                                                                                  | Signature<br>F-U<br>Mbbb                                                               |  |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Sills S Schweize

Schweizerischer Kalibrierdienst Service suisse d'étaionnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

### Additional Documentation:

d) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.8.0                          |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

## Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity    | Conductivity     |
|-----------------------------------------|-----------------|-----------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0            | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | $36.3 \pm 6 \%$ | 4.60 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |                 |                  |

## SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 100 mW input power | 8.05 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 80.6 mW /g ± 17.0 % (k=2) |
|                                                         |                    |                           |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
| SAR measured                                            | 100 mW input power | 2.30 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.0 mW /g ± 16.5 % (k=2) |

## Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity    | Conductivity     |
|-----------------------------------------|-----------------|-----------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6            | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | $35.8 \pm 6 \%$ | 4.90 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |                 |                  |

## SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                                           |
|---------------------------------------------------------|--------------------|-------------------------------------------|
| SAR measured                                            | 100 mW input power | 8.46 mW / g                               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 84.6 mW / g ± 17.0 % (k=2)                |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                                           |
| SAR measured                                            | 100 mW input power | 2.40 mW / g                               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | $24.0 \text{ mW} / \alpha + 16.5\% (k-2)$ |

## Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity  | Conductivity     |
|-----------------------------------------|-----------------|---------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3          | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | $35.3\pm6~\%$ | 5.22 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |               |                  |

## SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.93 mW / g                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.3 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.26 mW / g                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.6 mW / g ± 16.5 % (k=2) |

### Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 49.2 ± 6 %   | 5.46 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.21 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 72.2 mW / g ± 18.1 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.02 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 mW / g ± 17.6 % (k=2) |

## Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 48.7 ± 6 %   | 5.86 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.95 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 79.7 mW / g ± 18.1 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.21 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.1 mW / g ± 17.6 % (k=2) |

### Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 48.2 ± 6 %   | 6.28 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.33 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 73.4 mW / g ± 18.1 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.03 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 mW / g ± 17.6 % (k=2) |

#### Appendix

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 52.2 Ω - 7.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.4 dB       |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 54.8 Ω - 3.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.1 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 57.0 Ω - 2.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.1 dB       |

# Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 52.3 Ω - 4.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.0 dB       |

#### Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 55.9 Ω - 0.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.4 dB       |

#### Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 58.2 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.0 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.207 ns |
|----------------------------------|----------|
| ,                                |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 08, 2011 |

## DASY5 Validation Report for Head TSL

Date: 01.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz;  $\sigma$  = 4.6 mho/m;  $\epsilon_r$  = 36.3;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5500 MHz;  $\sigma$  = 4.9 mho/m;  $\epsilon_r$  = 35.8;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5800 MHz;  $\sigma$ = 5.22 mho/m;  $\epsilon_r$  = 35.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.696 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.1420 SAR(1 g) = 8.05 mW/g; SAR(10 g) = 2.3 mW/g Maximum value of SAR (measured) = 18.341 mW/g

```
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 65.190 V/m; Power Drift = 0.07 dB
Peak SAR (extrapolated) = 33.7070
SAR(1 g) = 8.46 mW/g; SAR(10 g) = 2.4 mW/g
Maximum value of SAR (measured) = 19.665 mW/g
```

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.520 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 33.0670 SAR(1 g) = 7.93 mW/g; SAR(10 g) = 2.26 mW/g Maximum value of SAR (measured) = 18.794 mW/g



0 dB = 18.790 mW/g = 25.48 dB mW/g

Certificate No: D5GHzV2-1119\_Feb12

Page 9 of 13

## Impedance Measurement Plot for Head TSL



Certificate No: D5GHzV2-1119\_Feb12

Page 10 of 13

## DASY5 Validation Report for Body TSL

Date: 31.01.2012

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz;  $\sigma$  = 5.46 mho/m;  $\varepsilon_r$  = 49.2;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5500 MHz;  $\sigma$  = 5.86 mho/m;  $\varepsilon_r$  = 48.7;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5800 MHz;  $\sigma$  = 6.28 mho/m;  $\varepsilon_r$  = 48.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.414 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.2590 SAR(1 g) = 7.21 mW/g; SAR(10 g) = 2.02 mW/g Maximum value of SAR (measured) = 16.585 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.115 V/m; Power Drift = -0.0036 dB Peak SAR (extrapolated) = 34.0110 SAR(1 g) = 7.95 mW/g; SAR(10 g) = 2.21 mW/g Maximum value of SAR (measured) = 18.670 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.109 V/m; Power Drift = -0.0044 dB Peak SAR (extrapolated) = 33.9510 SAR(1 g) = 7.33 mW/g; SAR(10 g) = 2.03 mW/g Maximum value of SAR (measured) = 17.843 mW/g



0 dB = 17.840 mW/g = 25.03 dB mW/g

Certificate No: D5GHzV2-1119\_Feb12

Page 12 of 13

Impedance Measurement Plot for Body TSL



Certificate No: D5GHzV2-1119\_Feb12

Page 13 of 13

# End of test report