

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11b/g/n WLAN + Bluetooth Module Combo Card

MODEL NUMBER: BCM94319SDB

FCC ID: QDS-BRCM1056 IC: 4324A- BRCM1056

REPORT NUMBER: 11U13681-4

ISSUE DATE: FEBRUARY 28, 2011

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	02/28/11	Initial Issue	T. Chan

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 107

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS	5
2.	TEST	ſ METHODOLOGY	6
3.	FACI	LITIES AND ACCREDITATION	6
4.	CALI	BRATION AND UNCERTAINTY	6
4	.1.	MEASURING INSTRUMENT CALIBRATION	. 6
4	.2.	SAMPLE CALCULATION	6
4	.3.	MEASUREMENT UNCERTAINTY	. 6
5.	EQUI	IPMENT UNDER TEST	7
5	.1.	DESCRIPTION OF EUT	7
5	.2.	MAXIMUM OUTPUT POWER	. 7
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5	.4.	SOFTWARE AND FIRMWARE	. 7
5	.5.	WORST-CASE CONFIGURATION AND MODE	. 7
5	.6.	DESCRIPTION OF TEST SETUP	. 8
6.	TEST	AND MEASUREMENT EQUIPMENT	12
7.	ANTE	ENNA PORT TEST RESULTS	12
7.	.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.4. 7.1.5. 7.1.6. 7.1.7.	20 dB BANDWIDTH HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS AVERAGE TIME OF OCCUPANCY OUTPUT POWER	13 16 19 20 23 27
	7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.6. 7.2.7.	20dB BANDWIDTH 2 HOPPING FREQUENCY SEPARATION 2 NUMBER OF HOPPING CHANNELS 2 AVERAGE TIME OF OCCUPANCY 2 OUTPUT POWER 2 CONDUCTED SPURIOUS EMISSIONS 2 <i>LE (LOW ENERGY) MODULATION</i> 2 99% BANDWIDTH 2 20dB BANDWIDTH 2 HOPPING FREQUENCY SEPARATION 6 NUMBER OF HOPPING CHANNELS 6	 35 38 41 42 45 49 52 57 60 63 64

Page 3 of 107

	7.3.6. 7.3.7.	OUTPUT POWER	70 73
8.	RADIATE	ED TEST RESULTS	78
8	.1. LIM	ITS AND PROCEDURE	78
	8.1.1.	BASIC DATA RATE GFSK MODULATION	
	8.1.2.		84
	8.1.3.	LE (LOW ENERGY) MODULATION	89
8	.2. REC	CEIVER ABOVE 1 GHz	94
	8.2.1.		94
g	3 1//0	RST-CASE BELOW 1 GHz	05
0	.3. WO		95
	0.0.1.		30
9.	AC POW	ER LINE CONDUCTED EMISSIONS	96
a	.1. WO	RST-CASE MODE	97
3			51
10.	MAXIN	IUM PERMISSIBLE EXPOSURE1	00
11.	SETU	P PHOTOS	03

Page 4 of 107

1. ATTESTATION OF TEST RESULTS

	STANDARD				
	APPLICABLE STANDARDS				
DATE TESTED:	FEBRUARY 23 to 28, 2011				
SERIAL NUMBER:	336				
MODEL:	BCM94319SDB				
EUT DESCRIPTION:	802.11b/g/n WLAN + Bluetooth Mod	dule Combo Card			
COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.				

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

THU CHAN ENGINEERING MANAGER UL CCS Queryunder

VIEN TRAN EMC ENGINEER UL CCS

Page 5 of 107

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 107

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

802.11b/g/n WLAN + Bluetooth Module Combo Card.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	-1.29	0.74
2402 - 2480	Enhanced 8PSK	1.75	1.50
2402 - 2480	Low Energy BLE	-0.98	0.80

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an 802.11bgn WLAN and Bluetooth antenna with a maximum gain of 3.9 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom Bluetooth 4.0 + HS USB, rev. 5.6.0.3200.

The test utility software used during testing was Bluetool, ver. 1.4.3.0 and BCM_BTDL, ver 1.8.17.

5.5. WORST-CASE CONFIGURATION AND MODE

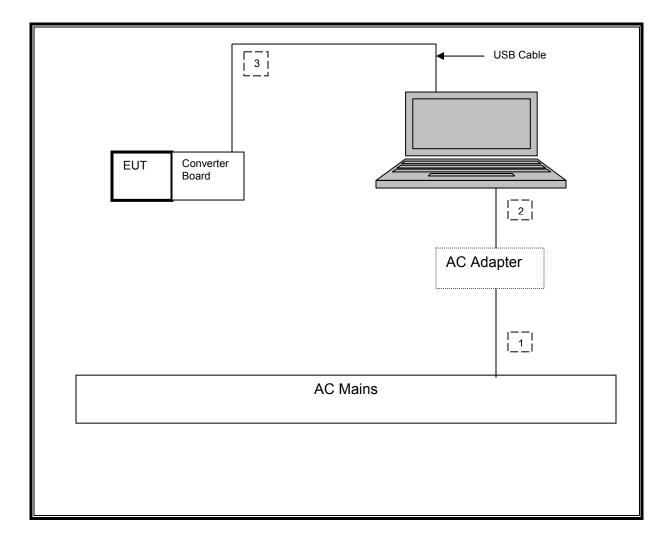
The worst-case channel is determined as the channel with the highest output power.

Page 7 of 107

5.6. DESCRIPTION OF TEST SETUP

FOR GFSK, 8PSK MODES; Hopping ON & OFF and LE MODE; Hopping OFF

SUPPORT EQUIPMENT


PERIPHERAL SUPPORT EQUIPMENT LIST								
Description	Description Manufacturer Model Serial Number FCC ID							
Laptop	Dell	PP09S	N/A	DoC				
AC Adapter	Dell	PA-1650-05D	CN-05U092-71615-49Q-18B8	DoC				
Converter Board	Broadcom	BCM94319SDB	1396825	N/A				
USB Cable	N/A	N/A	N/A	N/A				

I/O CABLES

	I/O CABLE LIST								
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks			
1	AC	1	US 115V	Shielded	1.5m	NA			
2	DC	1	DC	Un-shielded	1.5m	Ferrite at laptop's end			
4	USB	1	USB	Un-shielded	1.0m	NA			

Page 8 of 107

SETUP DIAGRAM

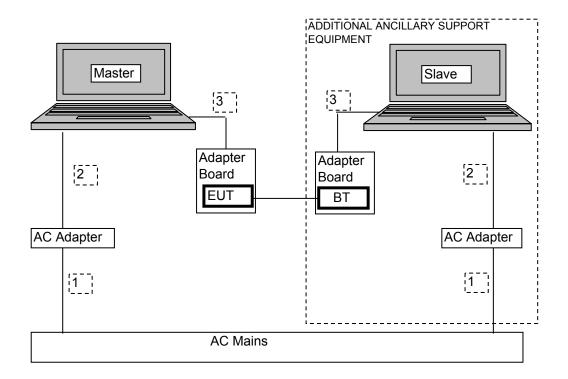
TEST SETUP

The EUT was tested as an external module that installed on a converter board connected to a host Laptop PC USB cable.

Page 9 of 107

FOR LE MODE; Hopping ON

SUPPORT EQUIPMENT


PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	FCC ID	
Laptop	Dell	PP09S	N/A	DoC	
AC Adapter	Dell	PA-1650-05D	CN-05U092-71615-49Q-18B8	DoC	
Converter Board	Broadcom	BCM94319SDB	1396825	N/A	
USB Cable	N/A	N/A	N/A	N/A	
Laptop	Dell	Inspiron 0000	N/A	N/A	
AC Adapter	Dell	PA-1600-06D1	CN-0F9710-71616-56H-510D	N/A	
Converter Board	Broadcom	BCM94319SDB	1408781	N/A	
USB Cable	N/A	N/A	N/A	N/A	

I/O CABLES

	I/O CABLE LIST							
Cable No.		# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	2	AC	Unshielded	1.8m	N/A		
2	DC	2	DC	Unshielded	1.8m	Ferrite at laptop's end		
3	USB	2	USB	Unshielded	1.0m	N/A		

Page 10 of 107

SETUP DIAGRAM FOR HOPPING TEST

TEST SETUP

The EUT and the ancillary support equipment are configured to create an operating communications link. Traffic is sent forward across this link, acknowledgements are sent back, and the performance of the link is monitored.

Page 11 of 107

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST									
Description Manufacturer Model Asset Cal Due									
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	10/29/11					
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	07/14/11					
Antenna, Horn, 18 GHz	EMCO	3115	C00872	07/29/11					
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	07/29/11					
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	01/26/12					
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	08/04/11					
Peak Power Meter	Agilent / HP	E9327A	C00964	12/04/11					
Peak Power Sensor	Agilent / HP	E4416A	C00963	12/04/11					
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR					
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/10					
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11					

Page 12 of 107

7. ANTENNA PORT TEST RESULTS

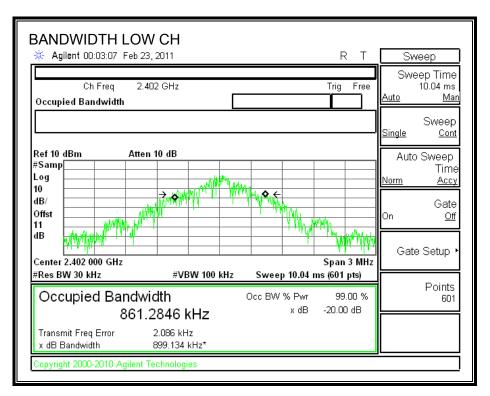
7.1. BASIC DATA RATE GFSK MODULATION

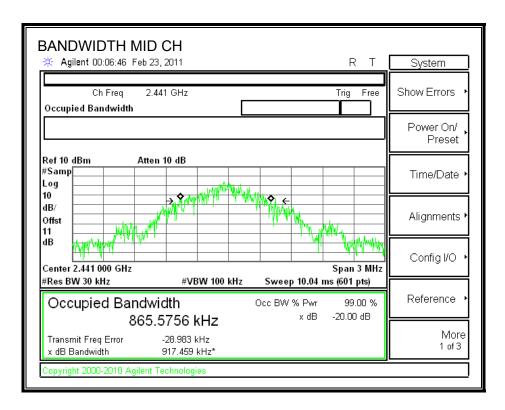
7.1.1.99% BANDWIDTH

<u>LIMIT</u>

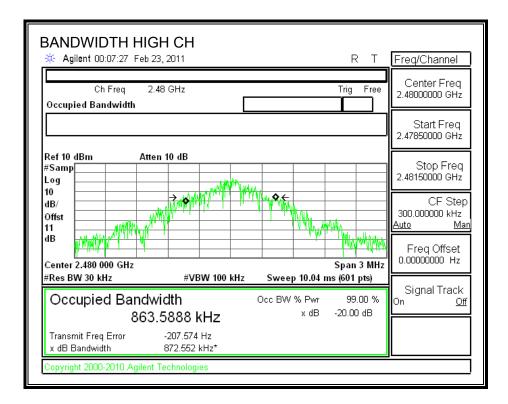
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 99% bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(kHz)
Low	2402	861.2846
Middle	2441	865.5756
High	2480	863.5888


Page 13 of 107 I SERVICES (UL CCS)

99% BANDWIDTH

Page 14 of 107

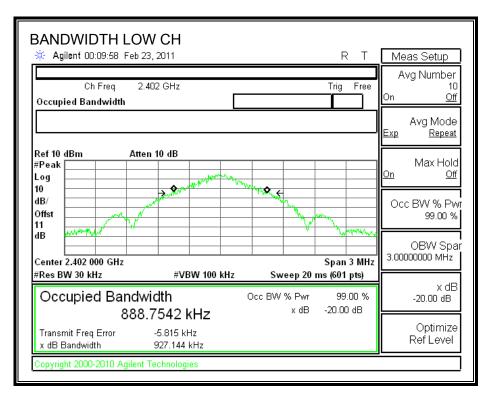
Page 15 of 107

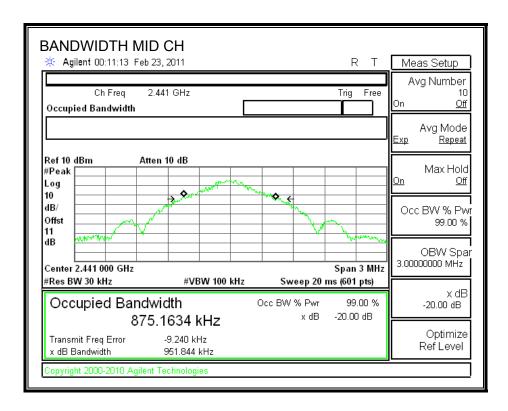
7.1.2. 20 dB BANDWIDTH

<u>LIMIT</u>

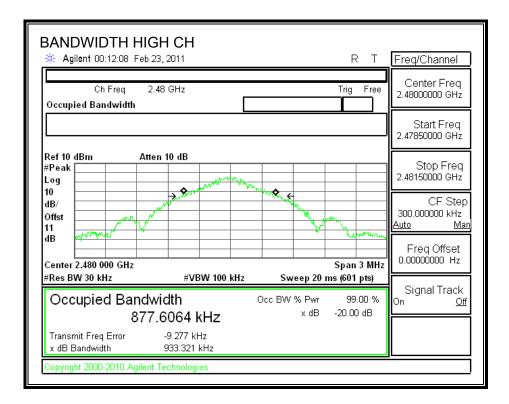
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


<u>RESULTS</u>

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	927.144
Middle	2441	951.844
High	2480	933.321


Page 16 of 107

20 dB BANDWIDTH

Page 17 of 107

Page 18 of 107

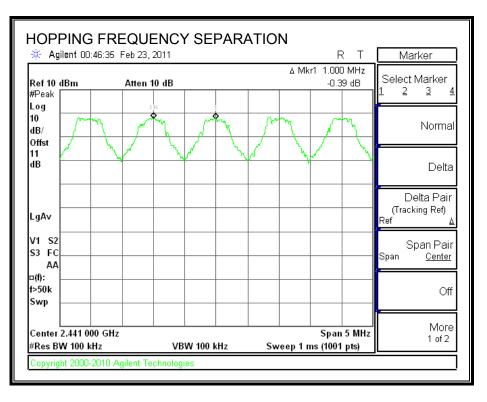
7.1.3. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

Page 19 of 107

7.1.4. NUMBER OF HOPPING CHANNELS

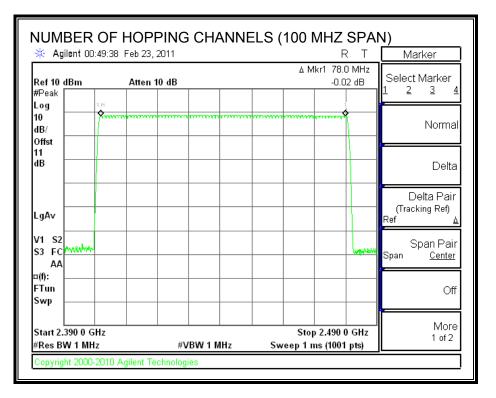
<u>LIMIT</u>

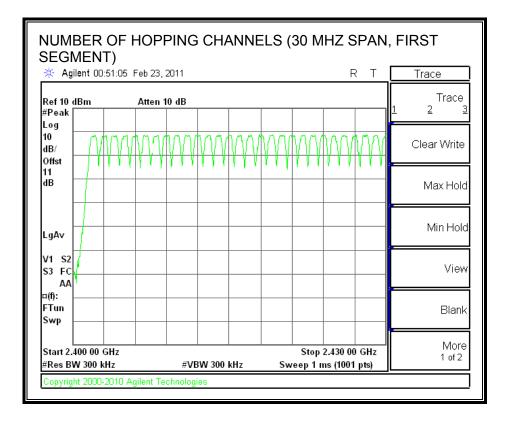
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

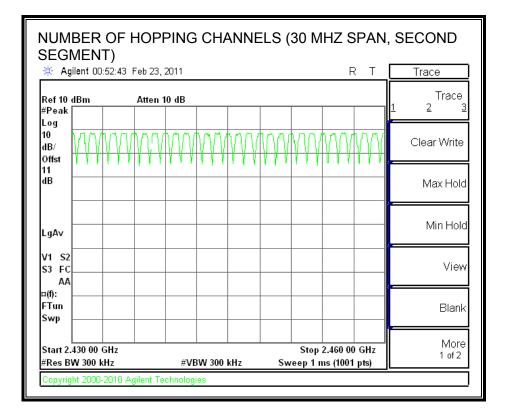
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

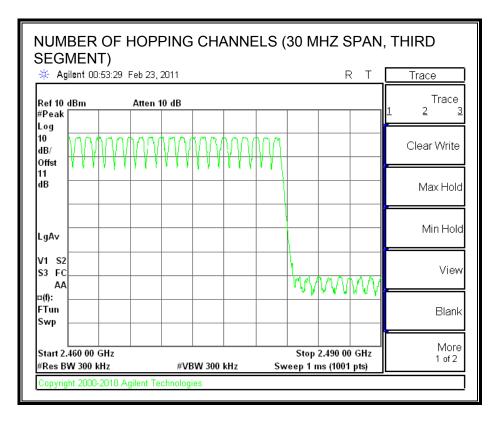
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

79 Channels observed.


Page 20 of 107


NUMBER OF HOPPING CHANNELS

Page 21 of 107

Page 22 of 107

7.1.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

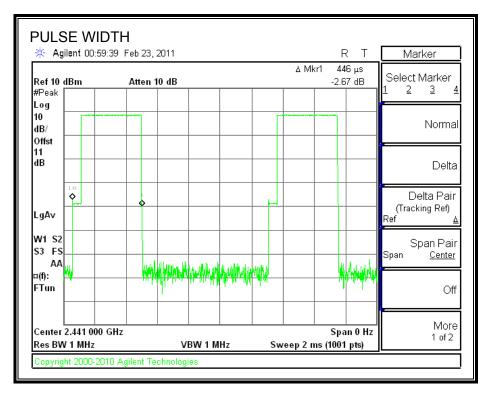
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

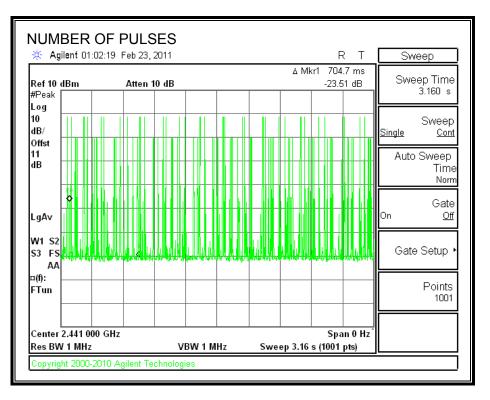
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS


DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.446	32	0.143	0.4	-0.257
DH3	1.705	18	0.307	0.4	-0.093
DH5	2.949	13	0.383	0.4	-0.017

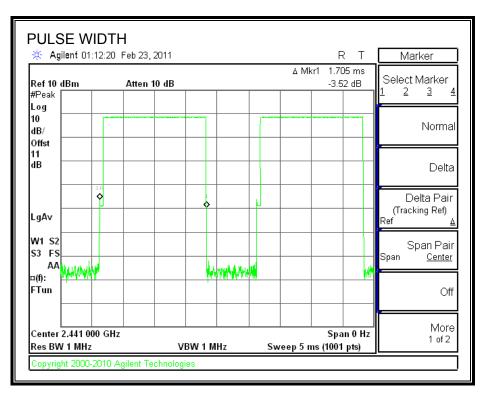
GFSK Mode


Page 23 of 107

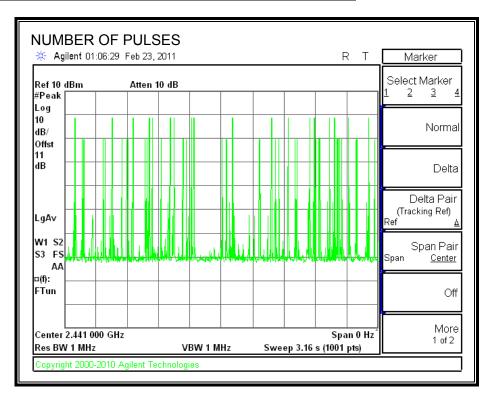
<u>DH1</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

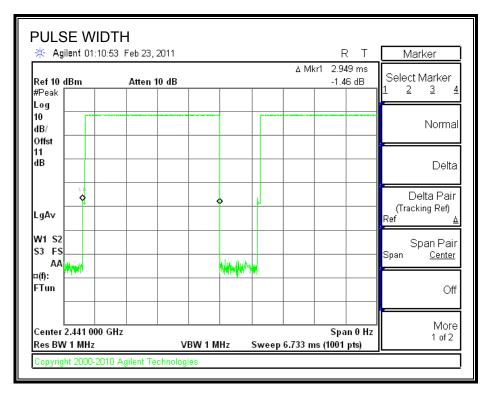


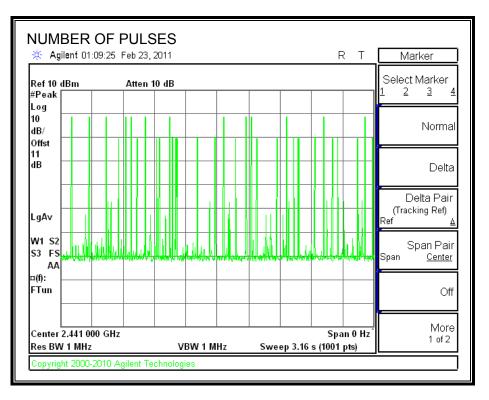
Page 24 of 107


COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

<u>DH3</u>

PULSE WIDTH


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 25 of 107

<u>DH5</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 26 of 107

7.1.6. OUTPUT POWER

<u>LIMIT</u>

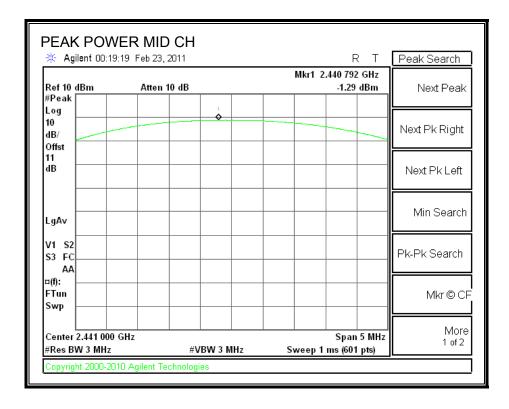
§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-1.43	30	-31.43
Middle	2441	-1.29	30	-31.29
High	2480	-1.54	30	-31.54

Page 27 of 107

OUTPUT POWER

PEAK POWE			RT	Peak Search
Ref 10 dBm #Peak	Atten 10 dB		Mkr1 2.402 008 GHz -1.43 dBm	Next Peak
Log 10 dB/ Offst		* *		Next Pk Right
dB				Next Pk Left
LgAv				Min Search
V1 S2 S3 FC AA				Pk-Pk Search
¤(f): FTun Swp				Mkr © CF
Center 2.402 000 GI #Res BW 3 MHz		W 3 MHz	Span 5 MHz Sweep 1 ms (601 pts)	More 1 of 2
Copyright 2000-2010	Agilent Technologies			

Page 28 of 107

🔆 Agilent 00:20	:07 Feb 23, 2011	R	T Peak Search
Ref 10 dBm #Peak	Atten 10 dB	Mkr1 2.479 992 GH -1.54 dBn	
Log 10 dB/			Next Pk Right
Offst 11 dB			Next Pk Left
LgAv			Min Search
V1 S2 S3 FC			Pk-Pk Search
¤(f): FTun Swp			Mkr © Cl
Center 2.480 000 #Res BW 3 MHz	GHz #VBW 3 MH	Span 5 M Iz Sweep 1 ms (601 pts)	

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 29 of 107

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

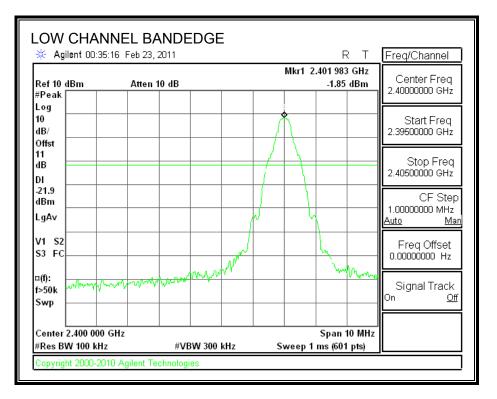
FCC §15.247 (d)

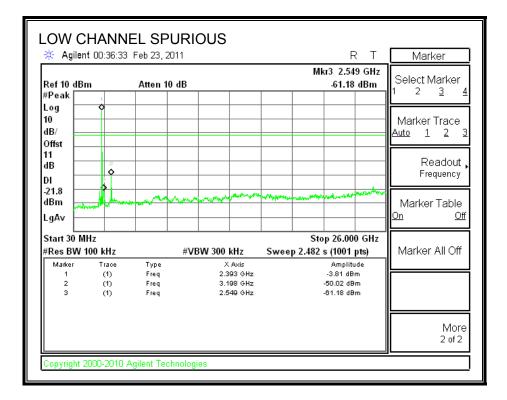
IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

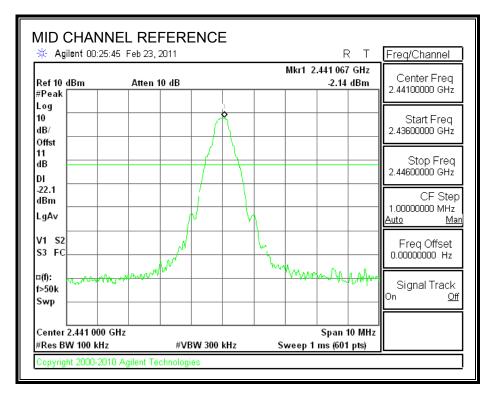
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

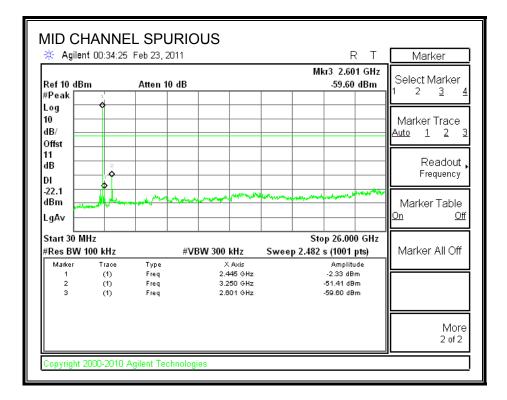

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

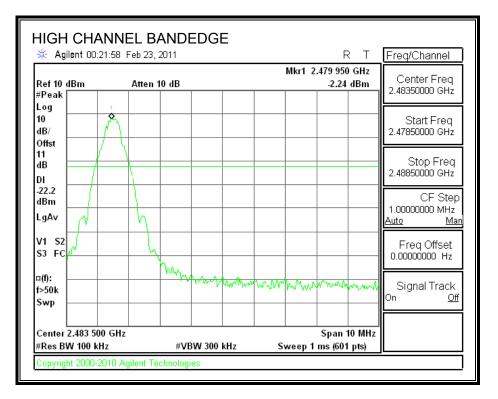
RESULTS

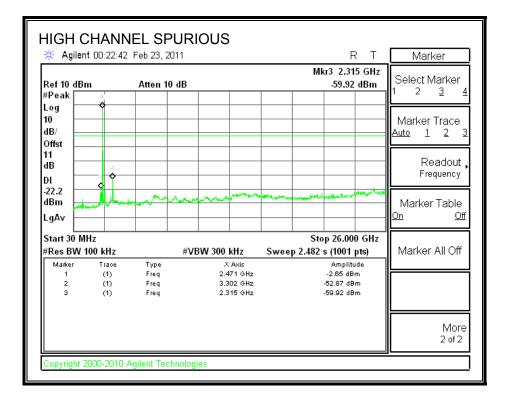
Page 30 of 107


SPURIOUS EMISSIONS, LOW CHANNEL

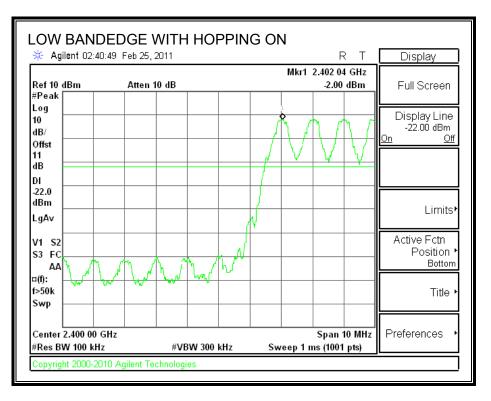


Page 31 of 107


SPURIOUS EMISSIONS, MID CHANNEL



Page 32 of 107


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 33 of 107

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 34 of 107

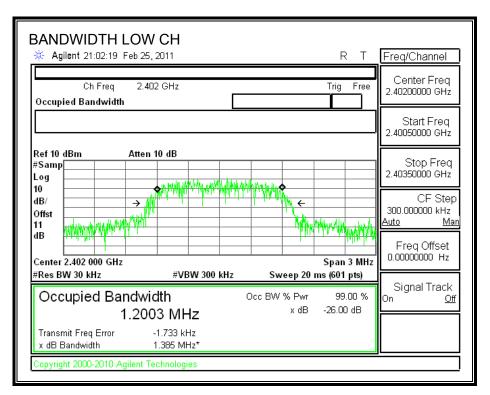
7.2. ENHANCED DATA RATE 8PSK MODULATION

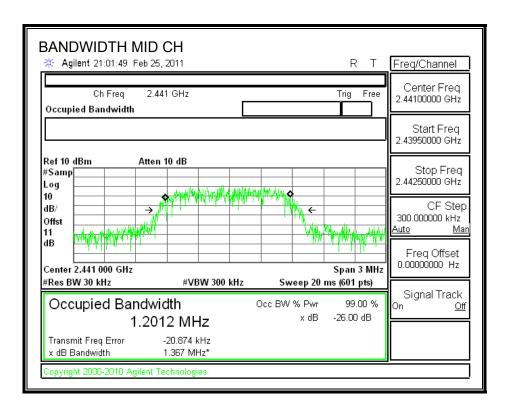
7.2.1. 99% BANDWIDTH

<u>LIMIT</u>

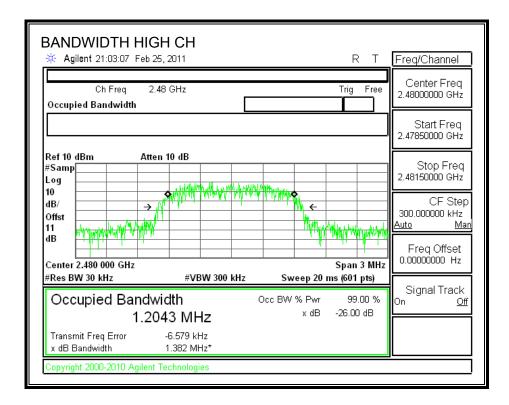
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 99% bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.2003
Middle	2441	1.2012
High	2480	1.2043


Page 35 of 107

99% BANDWIDTH

Page 36 of 107

Page 37 of 107

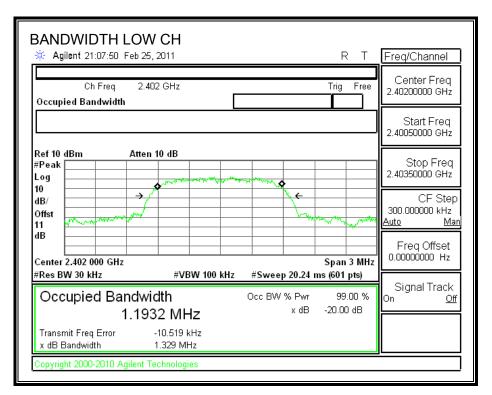
7.2.2. 20dB BANDWIDTH

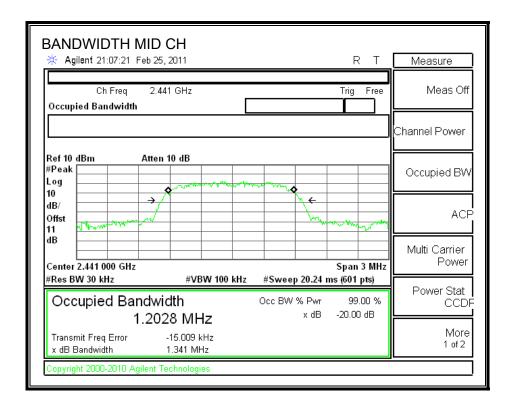
<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


<u>RESULTS</u>


Channel	Frequency	20 dB Bandwidth
	(MHz)	(MHz)
Low	2402	1.329
Middle	2441	1.341
High	2480	1.342

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.COMPLIANCE CERTIFICATION SERVICES (UL CCS)

Page 38 of 107

20 dB BANDWIDTH

Page 39 of 107

BANDWIDTH HIGH CH	RT	Measure
Ch Freq 2.48 GHz Occupied Bandwidth	Trig Free	Meas Off
		Channel Power
Ref 10 dBm Atten 10 dB #Peak Log 10		Occupied BW
dB/ Offst 11 M ⁻ m		ACP
dB Center 2.480 000 GHz	Span 3 MHz	Multi Carrier Power
#Res BW 30 kHz #VBW 100 kHz	#Sweep 20.24 ms (601 pts)	Power Stat
Occupied Bandwidth 1.1956 MHz	Occ BW % Pwr 99.00 % x dB -20.00 dB	
Transmit Freq Error -9.398 kHz x dB Bandwidth 1.342 MHz		More 1 of 2
Copyright 2000-2010 Agilent Technologies		

Page 40 of 107

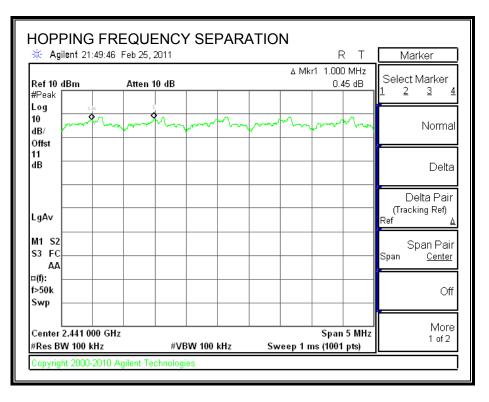
7.2.3. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

Page 41 of 107

7.2.4. NUMBER OF HOPPING CHANNELS

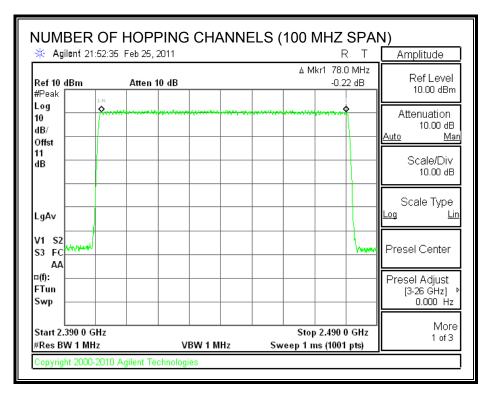
LIMIT

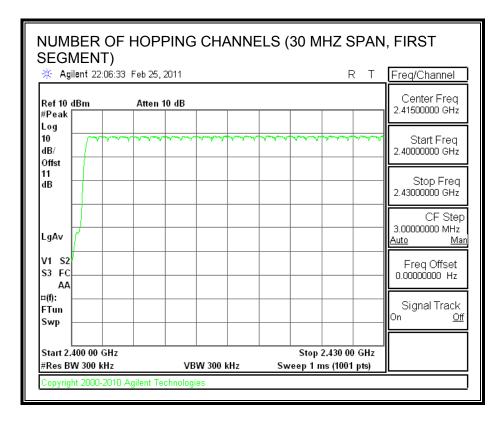
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

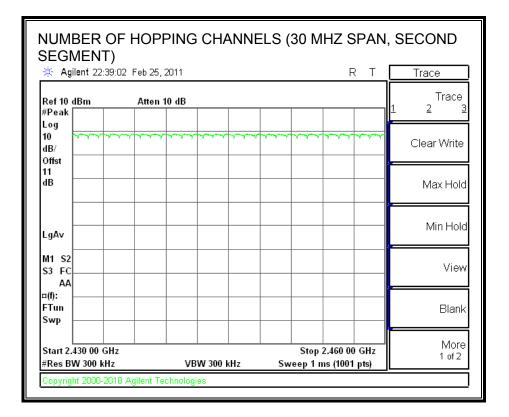
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

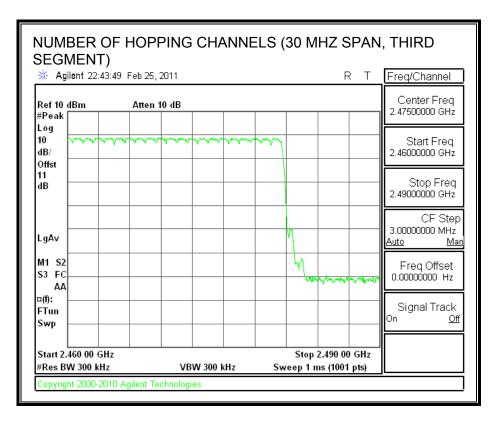
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

79 Channels observed.


Page 42 of 107


NUMBER OF HOPPING CHANNELS

Page 43 of 107

Page 44 of 107

7.2.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

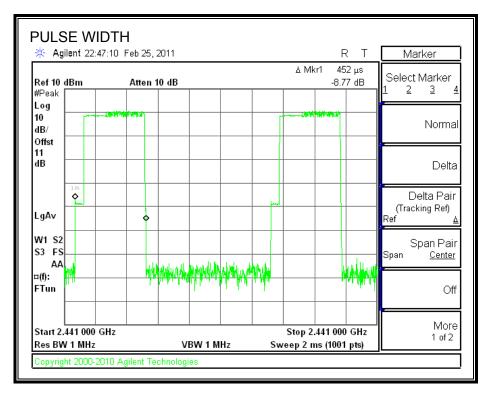
IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

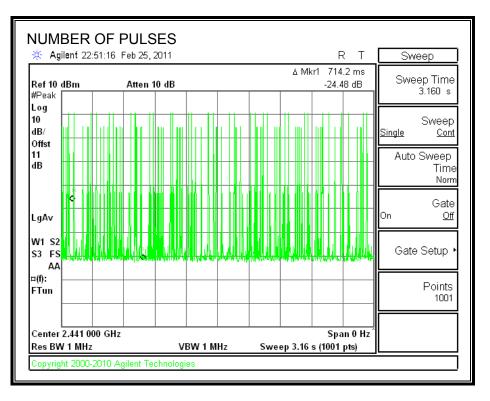
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


RESULTS

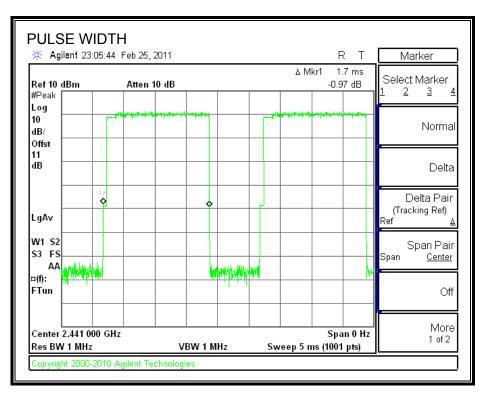
DH Packet	Pulse Width	Number of Pulses in 3.16 seconds	Average Time of Occupancy	Limit	Margin
	(msec)		(sec)	(sec)	(sec)
DH1	0.452	32	0.145	0.4	-0.255
DH3	1.700	17	0.289	0.4	-0.111
DH5	2.950	13	0.384	0.4	-0.017


Page 45 of 107

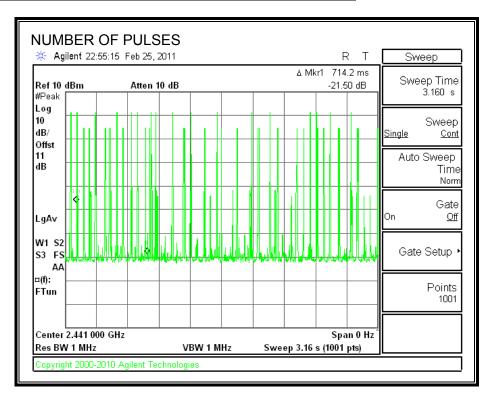
<u>DH1</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

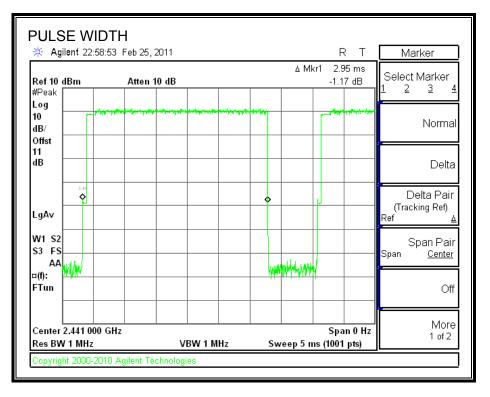


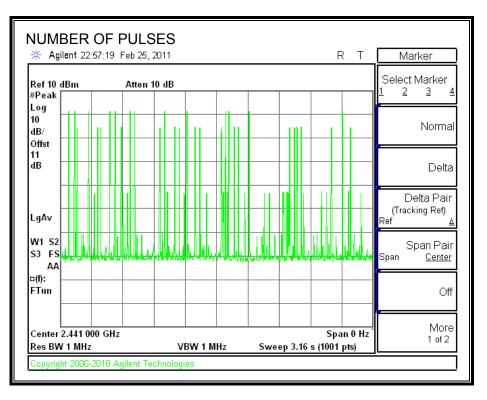
Page 46 of 107


COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

<u>DH3</u>

PULSE WIDTH


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 47 of 107

<u>DH5</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 48 of 107

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

7.2.6. OUTPUT POWER

<u>LIMIT</u>

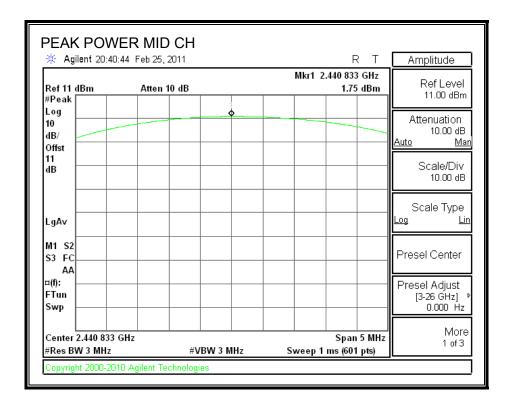
§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	1.66	20.97	-19.31
Middle	2441	1.75	20.97	-19.22
High	2480	1.40	20.97	-19.57

OUTPUT POWER

PEAK POWE		4	R T	Peak Search
Ref 11 dBm #Peak	Atten 10 dB		Mkr1 2.401 842 GHz 1.66 dBm	Next Peak
Log 10 dB/ Offst				Next Pk Right
dB				Next Pk Left
LgAv				Min Search
V1 S2 S3 FC AA				Pk-Pk Search
¤(f): FTun Swp				Mkr © CF
Center 2.402 000 G #Res BW 3 MHz		VBW 3 MHz	Span 5 MHz Sweep 1 ms (601 pts)	More 1 of 2
Copyright 2000-2010) Agilent Technolog	jies		

Page 50 of 107

🔆 Agilent 20:43	2:35 Feb 25,	2011	RT	Peak Search
Ref 11 dBm	Atten	10 dB	Mkr1 2.479 842 GHz 1.40 dBm	Next Peak
#Peak Log		1		
10 dB/ Offst				Next Pk Right
dB				Next Pk Left
LgAv				Min Search
V1 S2 S3 FC				Pk-Pk Search
¤(f): FTun Swp				- Mkr © Cl
Center 2.479 933 #Res BW 3 MHz	GHz	#VBW 3 MHz	Span 5 MHz Sweep 1 ms (601 pts)	More 1 of 2

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.COMPLIANCE CERTIFICATION SERVICES (UL CCS)

Page 51 of 107

7.2.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

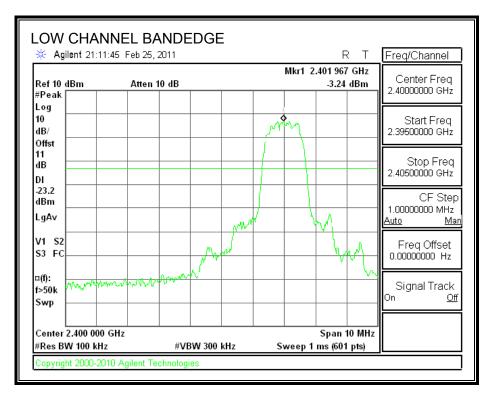
FCC §15.247 (d)

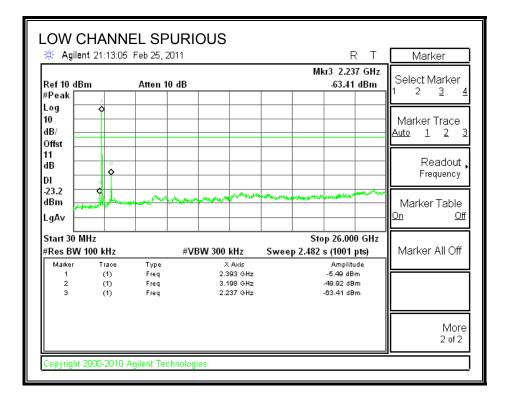
IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

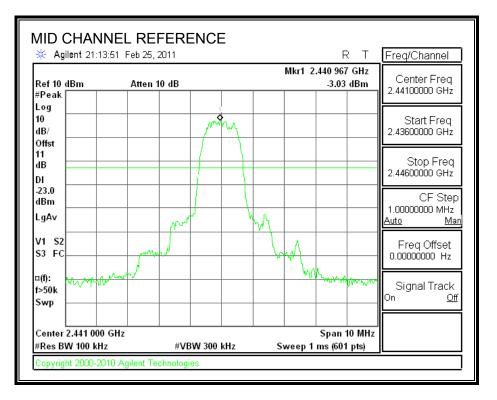
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

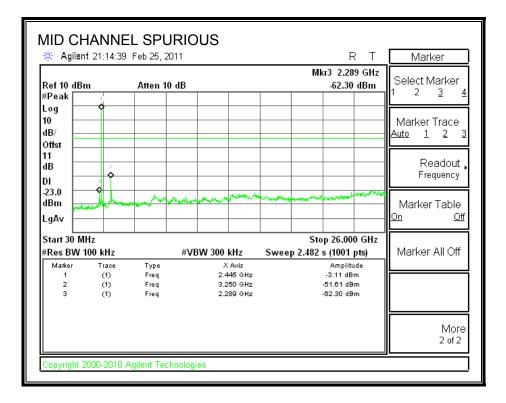

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

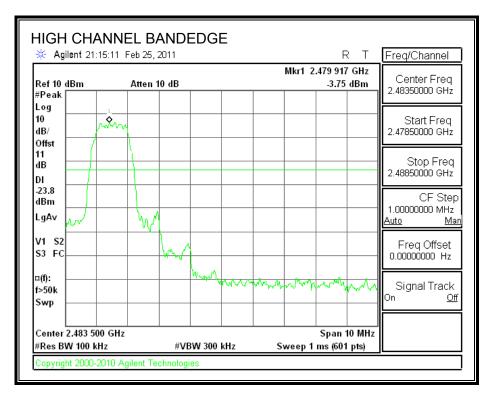

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

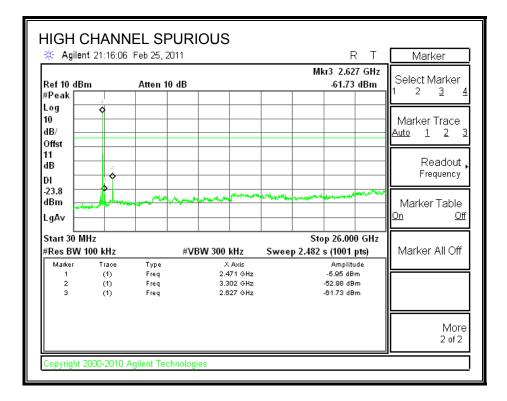
RESULTS

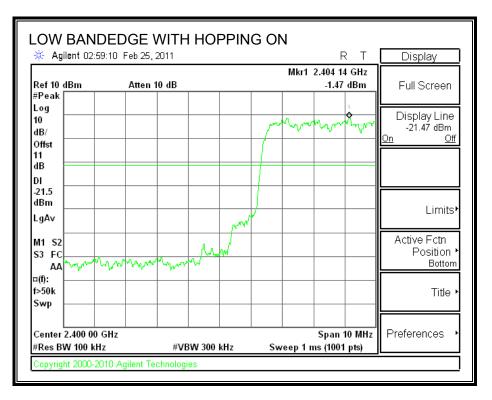
Page 52 of 107

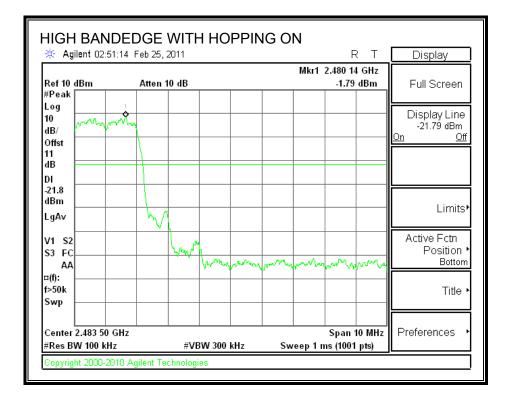

SPURIOUS EMISSIONS, LOW CHANNEL




Page 53 of 107


SPURIOUS EMISSIONS, MID CHANNEL




SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 56 of 107

7.3. LE (LOW ENERGY) MODULATION

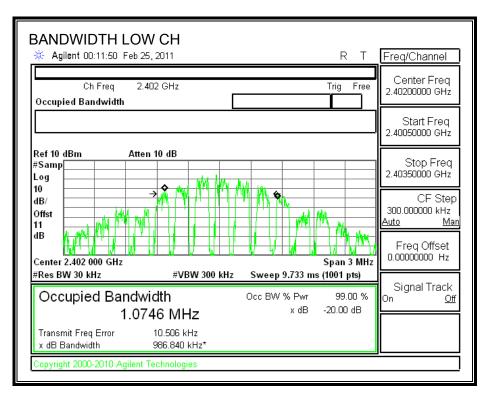
7.3.1.99% BANDWIDTH

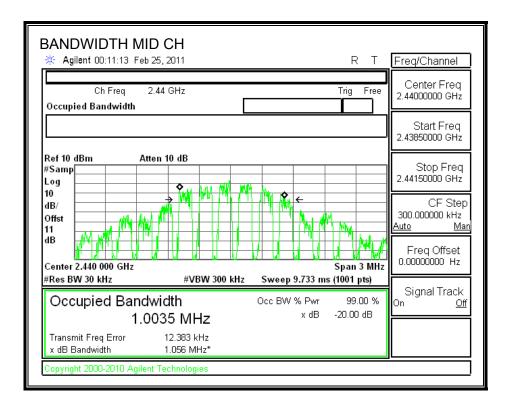
<u>LIMIT</u>

None; for reporting purposes only.

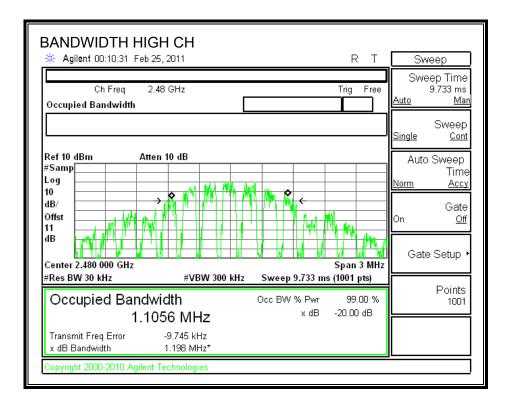
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 99% bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0746
Middle	2440	1.0035
High	2480	1.1056

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 57 of 107

99% BANDWIDTH

Page 58 of 107

Page 59 of 107

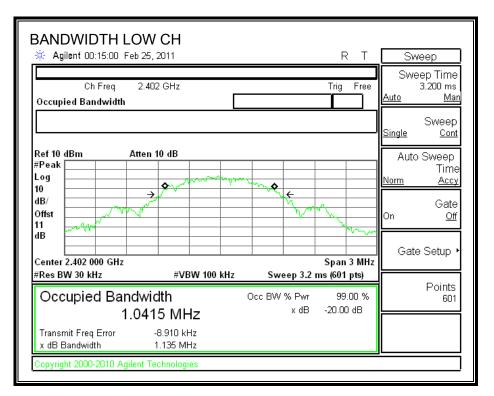
7.3.2. 20dB BANDWIDTH

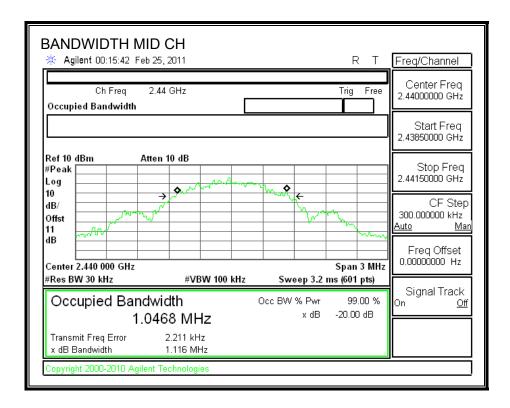
<u>LIMIT</u>

None; for reporting purposes only.

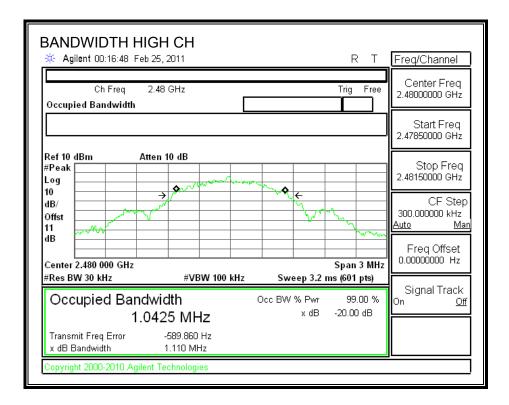
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


<u>RESULTS</u>


Channel	Frequency	20 dB Bandwidth
	(MHz)	(MHz)
Low	2402	1.135
Middle	2440	1.116
High	2480	1.110

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701D TEL: (510) 771-1000 FAX: (510) 661-0888


Page 60 of 107

20 dB BANDWIDTH

Page 61 of 107

Page 62 of 107

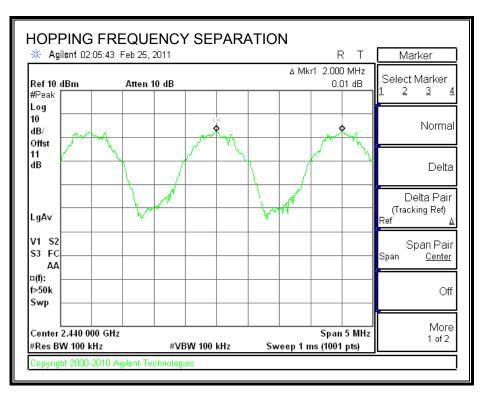
7.3.3. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

Page 63 of 107

7.3.4. NUMBER OF HOPPING CHANNELS

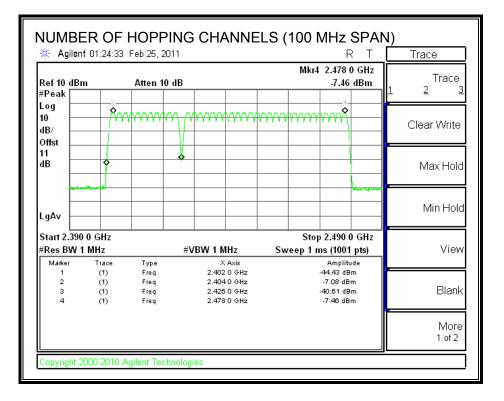
<u>LIMIT</u>

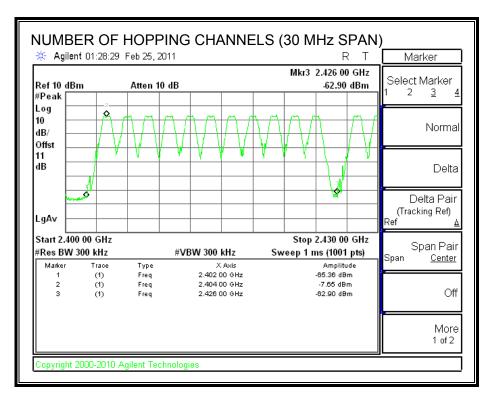
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

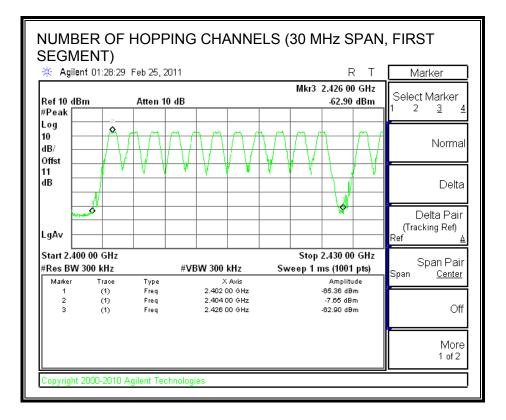
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

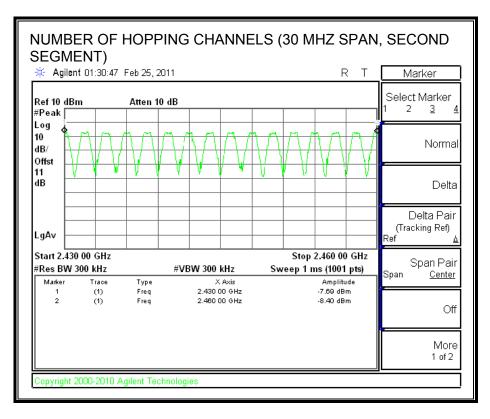
TEST PROCEDURE

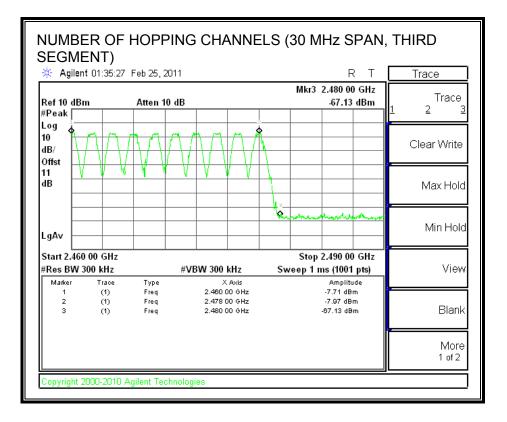

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

Please see advertising channels for 2402, 2426, and 2480MHz explanation in separated document.


Page 64 of 107


NUMBER OF HOPPING CHANNELS



Page 65 of 107

Page 66 of 107

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 67 of 107

7.3.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

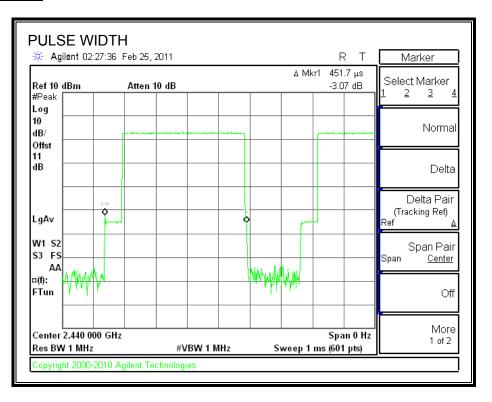
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

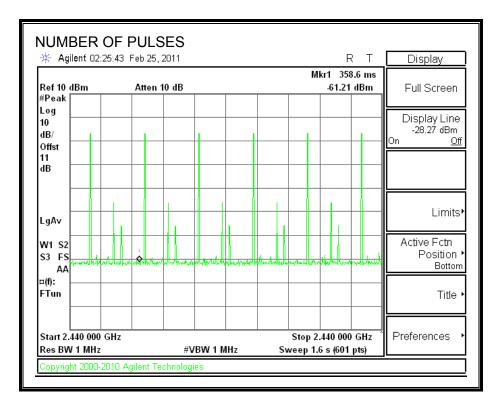
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 1.60 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 1.60 second period (40 channels * 0.4 s) is equal to 10 * (# of pulses in 1.60 s) * pulse width.

RESULTS


Pulse Width (msec)	Number of Pulses in 1.6 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
0.452	6	0.027	0.4	-0.373

Page 68 of 107

PULSE WIDTH

NUMBER OF PULSES IN 1.60 SECOND OBSERVATION PERIOD

Page 69 of 107

7.3.6. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

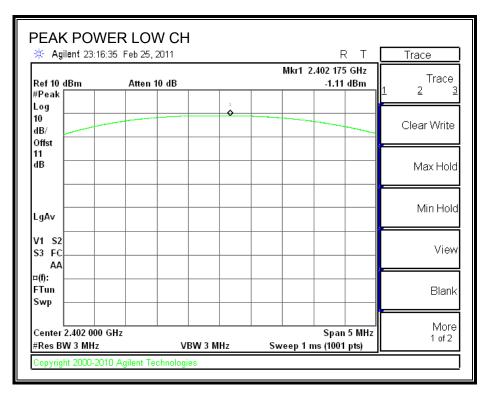
RSS-210 Issue 7 Clause A8.4

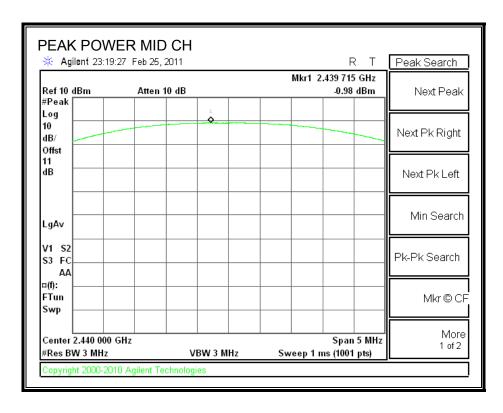
The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS


LE MODE

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-1.11	30	-31.11
Middle	2440	-0.98	30	-30.98
High	2480	-1.31	30	-31.31

Page 70 of 107

LE MODE

Page 71 of 107

🔆 Agilent 23:20	:27 Feb 25, 2011		R 1	Peak Search
Ref 10 dBm #Peak	Atten 10 dB		Mkr1 2.479 670 GH -1.31 dBn	- 11
Log 10 dB/				Next Pk Right
dB				Next Pk Left
LgAv				- Min Search
V1 S2 S3 FC AA				Pk-Pk Search
⊐(f): FTun Swp				Mkr©CF
Center 2.480 000 #Res BW 3 MHz		/BW 3 MHz	Span 5 M Sweep 1 ms (1001 pts)	

Page 72 of 107

7.3.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

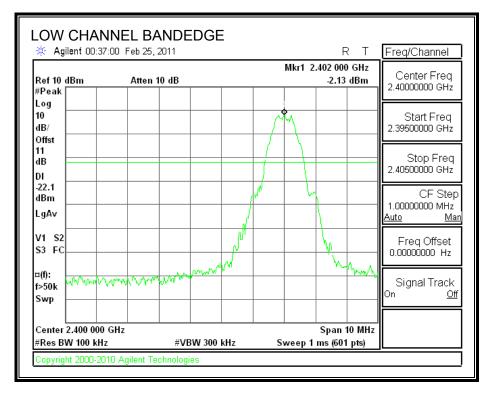
IC RSS-210 A8.5

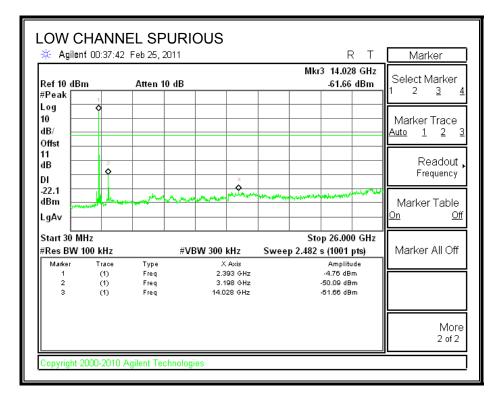
Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

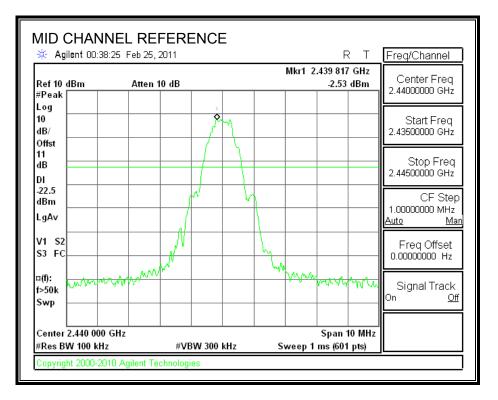

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

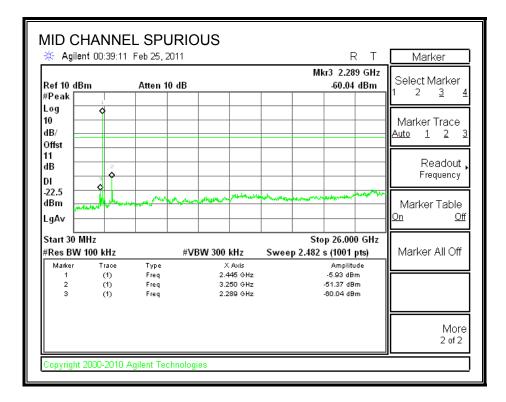

<u>RESULTS</u>

Page 73 of 107

LE MODE

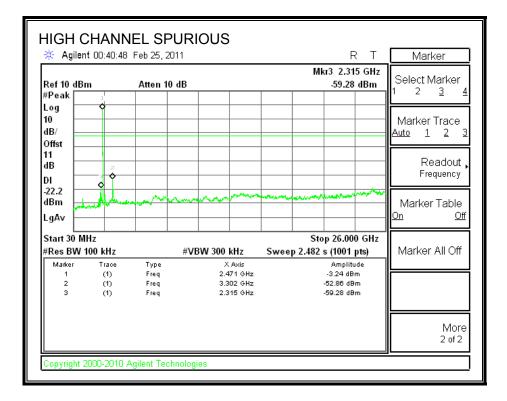
SPURIOUS EMISSIONS, LOW CHANNEL

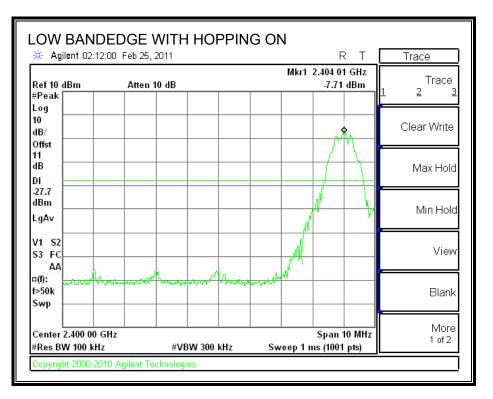


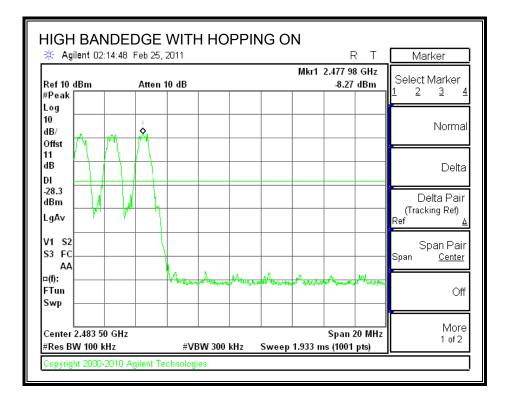


Page 74 of 107

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.CCS.


SPURIOUS EMISSIONS, MID CHANNEL


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 76 of 107

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 77 of 107

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

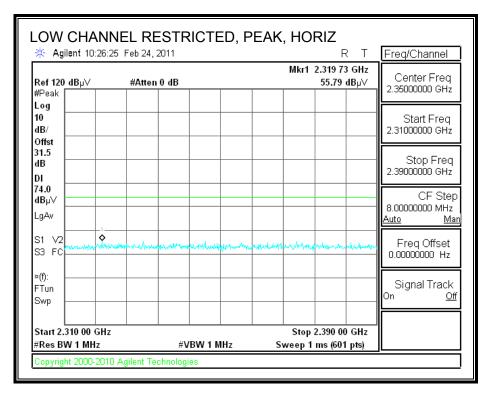
IC RSS-GEN Clause 6 (Receiver)

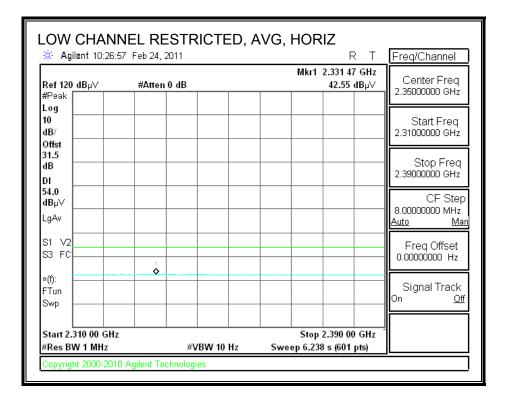
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

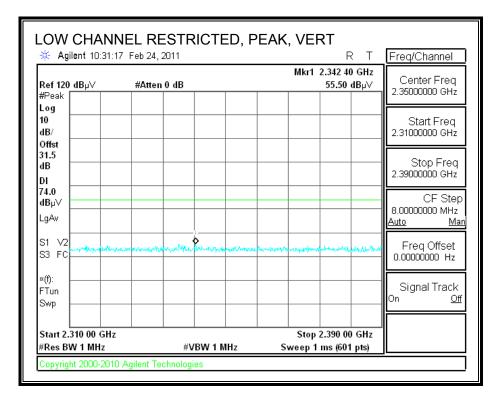
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

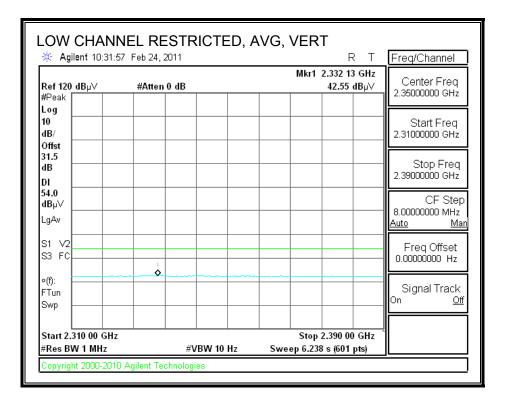

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

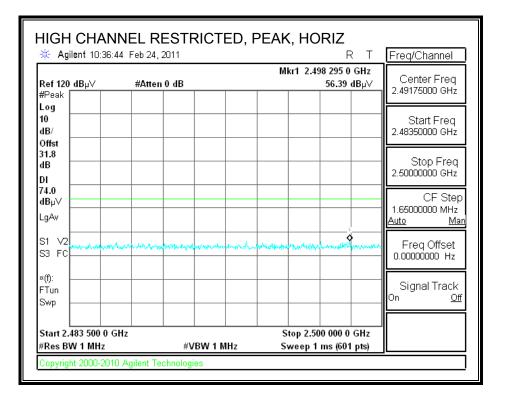
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

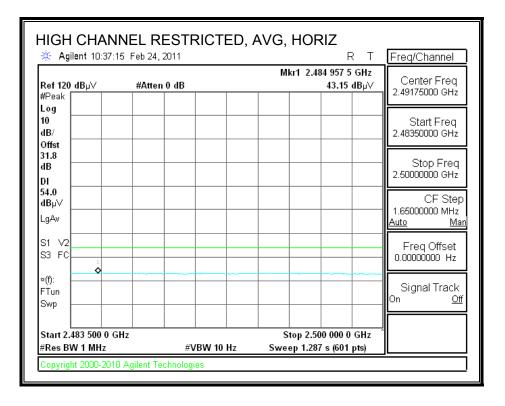
8.1.1. BASIC DATA RATE GFSK MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

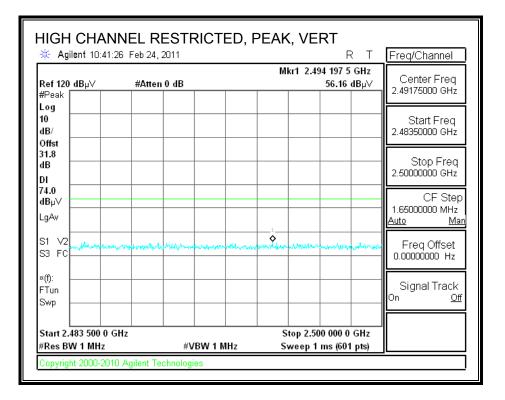


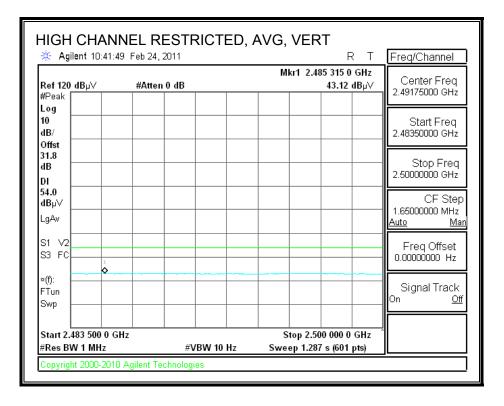
Page 79 of 107


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 80 of 107

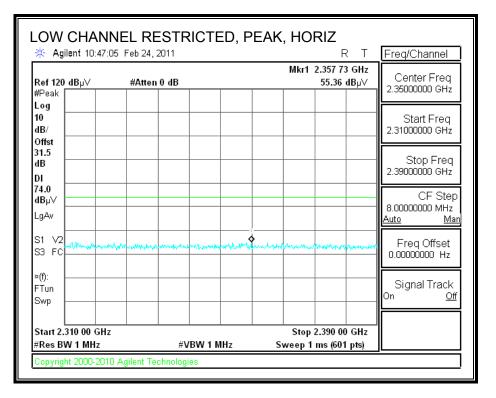

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

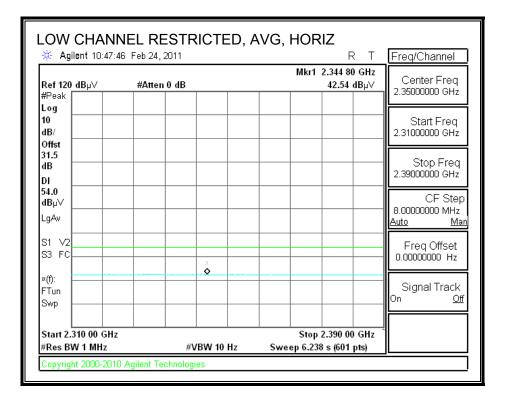


Page 81 of 107

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

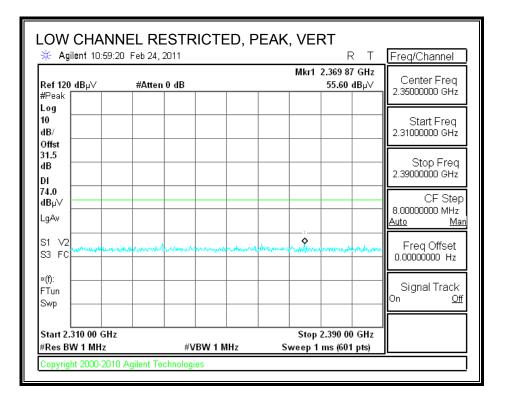
Page 82 of 107

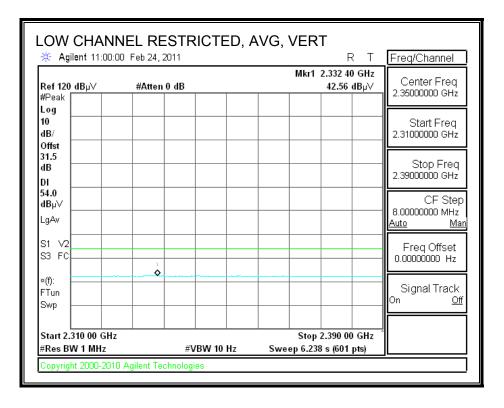

HARMONICS AND SPURIOUS EMISSIONS


		Measuren tification		s, Fre	mont 51	n Chamb	er						
Test Engr		David Ga	arcia										
Date:		02/24/11											
Project #		11U1368	1										
Company		Broadco	m										
Test Targ	et:	FCC 15.3	205										
Mode Op	er:	Tx GFSK	c										
	f	Measuren		• •	-	Preamp (-	Field Stren	-	
	Dist	Distance		ma		Distance					ld Strength		
	Read	Analyzer	-		Avg	-		trength @	·	-	rs. Average		
	AF	Antenna			Peak			Field Str	ength	Margin v	rs. Peak Lii	nit	
	CL	Cable Los	55		HPF	High Pas	s Filter	,					
f	Dist	Read	AF	CL	Атр	D Corr		Corr.			Ant. Pol.		Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
		; 2402 MF											
4.804	3.0	36.7	32.7	5.8	-34.8	0.0	0.0	40.3	74.0	-33.7	V	P	
4.804	3.0	23.7	32.7	5.8	-34.8	0.0	0.0	27.3	54.0	-26.7	<u>v</u>	A	
4.804 4.804	3.0 3.0	35.9 23.7	32.7 32.7	5.8 5.8	-34.8 -34.8	0.0 0.0	0.0 0.0	39.5 27.4	74.0 54.0	-34.5 -26.6	H H	P	
		A		7.0	-340	0.0	0.0	£1.4	24U	-20.0		A	
	INNEL -	244 I M H 2					å						
MID CHA	NNEL:	2441 MHa 36.2		5.8	-34.8	0.0	0.0	39.9	74.0	-34.1	v	Р	
		·····	32.7 32.7	5.8 5.8	-34.8 -34.8	0.0 0.0	0.0 0.0	39.9 27.1	74.0 54.0	-34.1 -26.9	v v	P A	
MID CHA 4.882	3.0	36.2	32.7	\$			å			\$		P A P	
MID CH/ 4.882 4.882	3.0 3.0	36.2 23.3	32.7 32.7	5.8	-34.8	0.0	0.0	27.1	54.0	- 26.9	V	A P A	
MID CH/ 4.882 4.882 7.323 7.323 4.882	3.0 3.0 3.0 3.0 3.0 3.0	36.2 23.3 34.9 23.0 36.0	32.7 32.7 35.5 35.5 32.7	5.8 7.3 7.3 5.8	-34.8 -34.1 -34.1 -34.8	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7	54.0 74.0 54.0 74.0	-26.9 -30.5 -22.3 -34.3	V V V H	A P A P	
MID CH/ 4.882 4.882 7.323 7.323 4.882 4.882 4.882	3.0 3.0 3.0 3.0 3.0 3.0 3.0	36.2 23.3 34.9 23.0 36.0 23.3	32.7 32.7 35.5 35.5 32.7 32.7	5.8 7.3 7.3 5.8 5.8	-34.8 -34.1 -34.1 -34.8 -34.8	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0	54.0 74.0 54.0 74.0 54.0	-26.9 -30.5 -22.3 -34.3 -27.0	V V V H H	A P A P A	
MID CH/ 4.882 4.882 7.323 7.323 4.882 4.882 4.882 7.323	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	36.2 23.3 34.9 23.0 36.0 23.3 36.3	32.7 32.7 35.5 35.5 32.7 32.7 32.7 35.5	5.8 7.3 7.3 5.8 5.8 7.3	-34.8 -34.1 -34.1 -34.8 -34.8 -34.1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0 44.9	54.0 74.0 54.0 74.0 54.0 54.0 74.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1	V V V H H H	A P A P A P	
MID CH/ 4.882 7.323 7.323 4.882 4.882 4.882 7.323 7.323 7.323	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	36.2 23.3 34.9 23.0 36.0 23.3 36.3 23.0	32.7 32.7 35.5 35.5 32.7 32.7 35.5 35.5 35.5	5.8 7.3 7.3 5.8 5.8	-34.8 -34.1 -34.1 -34.8 -34.8	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0	54.0 74.0 54.0 74.0 54.0	-26.9 -30.5 -22.3 -34.3 -27.0	V V V H H	A P A P A	
MID CH/ 4.882 7.323 7.323 4.882 4.882 4.882 7.323 7.323 7.323 HIGH CH	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4ANNEL	36.2 23.3 34.9 23.0 23.3 36.0 23.3 36.3 23.0 : 2480 MI	32.7 35.5 35.5 35.5 32.7 32.7 35.5 35.5 35.5 Hz	5.8 7.3 7.3 5.8 5.8 7.3 7.3	-34.8 -34.1 -34.1 -34.8 -34.8 -34.1 -34.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0 44.9 31.7	54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1 -22.3	V V H H H H	A P A P A P A	
MID CH/ 4.882 7.323 7.323 4.882 4.882 7.323 7.323 7.323 HIGH CH 4.960	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4ANNEL 3.0	36.2 23.3 34.9 23.0 36.0 23.3 36.3 23.0 : 2480 MI 36.6	32.7 32.7 35.5 35.5 32.7 32.7 35.5 35.5 Hz 32.8	5.8 7.3 5.8 5.8 7.3 7.3 7.3 5.9	-34.8 -34.1 -34.1 -34.8 -34.8 -34.1 -34.1 -34.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0 44.9 31.7 40.5	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1 -22.3 -33.5	V V H H H Y	A P A P A P A P A P	
MID CH/ 4.882 4.882 7.323 7.323 4.882 4.882 4.882 7.323 7.323 7.323 HICH CH 4.960 4.960	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4ANNEL 3.0 3.0	36.2 23.3 34.9 23.0 23.3 36.3 23.0 : 2480 MI 36.6 23.6	32.7 32.7 35.5 35.5 32.7 32.7 35.5 35.5 35.5 35.5 Hz 32.8 32.8 32.8	5.8 7.3 7.3 5.8 5.8 7.3 7.3 7.3 5.9 5.9	-34.8 -34.1 -34.8 -34.8 -34.8 -34.1 -34.1 -34.1 -34.8 -34.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0 44.9 31.7 40.5 27.5	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1 -22.3 -33.5 -26.5	V V H H H V V	A P A A P A A P A A P A	
MID CH/ 4.882 7.323 7.323 4.882 4.882 7.323 7.323 7.323 HIGH CH 4.960 4.960 7.440	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4ANNEL 3.0 3.0 3.0 3.0	36.2 23.3 34.9 23.0 23.3 36.3 23.0 : 2480 MI 36.6 23.6 35.1	32.7 35.5 35.5 35.5 32.7 32.7 35.5 35.5 35.5 Hz 32.8 32.8 32.8 32.8 35.6	5.8 7.3 7.3 5.8 5.8 7.3 7.3 7.3 5.9 5.9 5.9 7.3	-34.8 -34.1 -34.8 -34.8 -34.8 -34.1 -34.1 -34.1 -34.8 -34.8 -34.8 -34.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0 44.9 31.7 40.5 27.5 44.0	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1 -22.3 -33.5 -26.5 -30.0	V V H H H V V V V	A P A P A A P A A P A P A P P	
MID CH/ 4.882 7.323 7.323 4.882 7.323 7.323 7.323 7.323 HIGH CH 4.960 4.960 7.440 7.440	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4ANNEL 3.0 3.0	36.2 23.3 34.9 23.0 23.3 36.3 23.0 : 2480 MI 36.6 23.6	32.7 32.7 35.5 35.5 32.7 32.7 35.5 35.5 35.5 35.5 Hz 32.8 32.8 32.8	5.8 7.3 7.3 5.8 5.8 7.3 7.3 7.3 5.9 5.9	-34.8 -34.1 -34.8 -34.8 -34.8 -34.1 -34.1 -34.1 -34.8 -34.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0 44.9 31.7 40.5 27.5	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1 -22.3 -33.5 -26.5 -30.0 -22.2	V V H H H V V V V V	A P A P A P A P A P A A	
MID CH/ 4.882 7.323 7.323 4.882 4.882 4.882 7.323 7.323 7.323 HIGH CH	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4ANNEL 3.0 3.0 3.0 3.0 3.0	36.2 23.3 34.9 23.0 36.0 23.3 36.3 23.0 23.0 2480 MI 36.6 23.6 35.1 22.9	32.7 32.7 35.5 35.5 32.7 32.7 35.5 35.5 35.5 Hz 32.8 32.8 32.8 32.8 35.6 35.6	5.8 7.3 5.8 5.8 7.3 7.3 7.3 5.9 5.9 7.3 7.3	-34.8 -34.1 -34.1 -34.8 -34.8 -34.8 -34.1 -34.1 -34.8 -34.8 -34.8 -34.8 -34.1 -34.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 27.0 44.9 31.7 40.5 27.5 44.0 31.8	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1 -22.3 -33.5 -26.5 -30.0 -22.2 -33.7	V V H H H V V V V	A P A P A P A P A P A P A P P A P	
MID CH/ 4.882 7.323 7.323 4.882 4.882 7.323 4.882 7.323 HICH CH 4.960 7.440 7.440 7.440 4.960	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	36.2 23.3 34.9 23.0 36.0 23.3 36.3 23.0 : 2480 MI 36.6 23.6 35.1 22.9 36.4	32.7 32.7 35.5 35.5 32.7 32.7 35.5 35.5 35.5 Hz 32.8 32.8 32.8 35.6 35.6 32.8	5.8 7.3 5.8 5.8 7.3 7.3 5.9 5.9 7.3 7.3 7.3 5.9	-34.8 -34.1 -34.1 -34.8 -34.8 -34.1 -34.1 -34.1 -34.8 -34.8 -34.8 -34.1 -34.1 -34.1 -34.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.1 43.5 31.7 39.7 27.0 44.9 31.7 40.5 27.5 44.0 31.8 40.3	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-26.9 -30.5 -22.3 -34.3 -27.0 -29.1 -22.3 -33.5 -26.5 -30.0 -22.2	V V H H H V V V V V	A P A P A P A P A P A A	

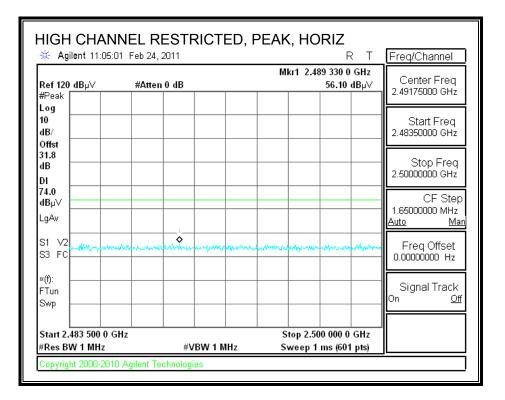
Page 83 of 107

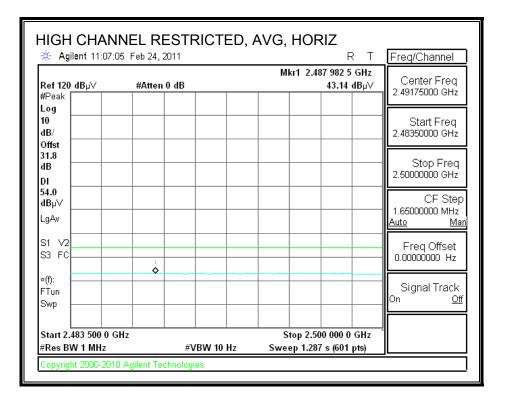
8.1.2. ENHANCED DATA RATE 8PSK MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

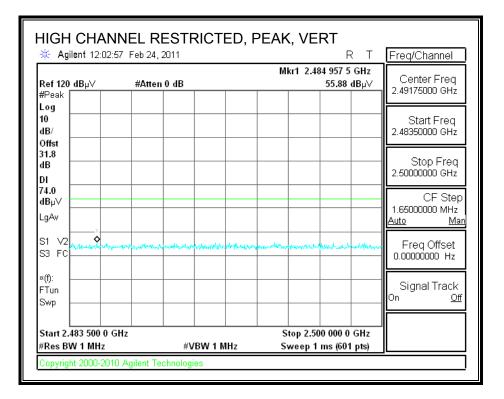


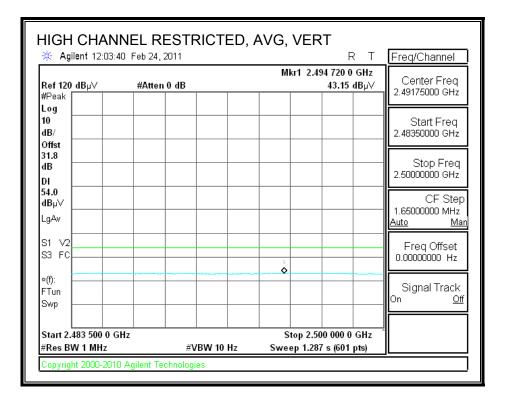
Page 84 of 107


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 85 of 107

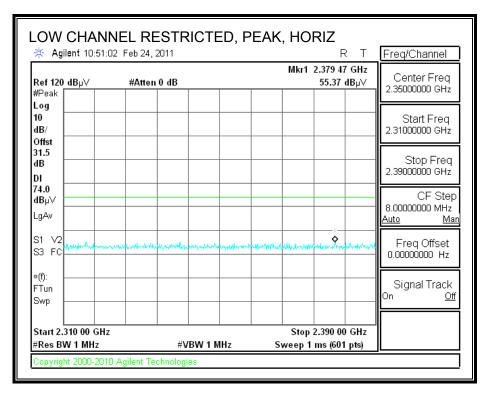

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

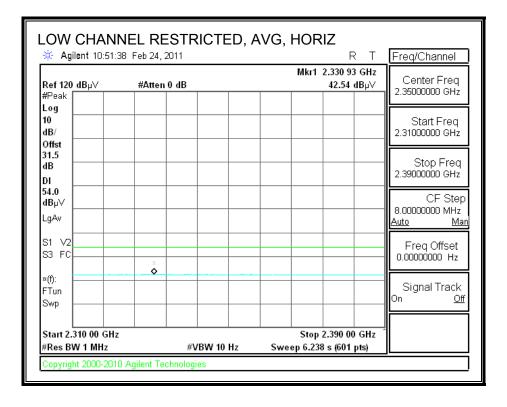


Page 86 of 107

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

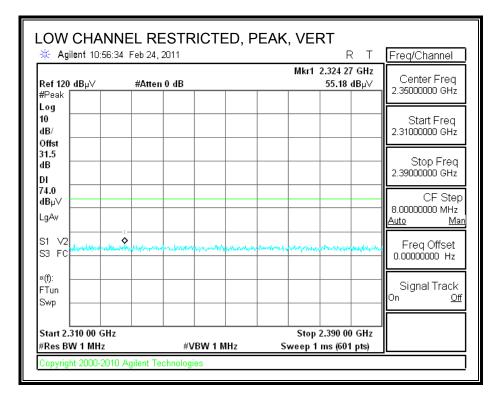
Page 87 of 107

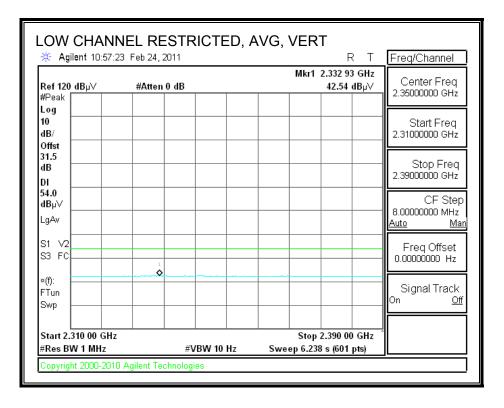

HARMONICS AND SPURIOUS EMISSIONS


-		Measuren tification		s, Fre	mont 5n	n Chamb	er						
Test Engi		David Ga	arcia										
Date:		02/24/11											
Project #	:	11U1368	1										
Company	/:	Broadco	m										
Test Targ	et:	FCC 15.3	205										
Mode Op	er:	Tx 8PSK											
	f	Measuren		• •	-	Preamp (-	Field Stren	-	
	Dist	Distance				Distance					ld Strength		
	Read	Analyzer	~		Avg	-		trength @	r	-	s. Average		
	AF	Antenna			Peak			Field Stre	ength	Margin v	rs. Peak Lii	mut	
	CL	Cable Los	55		HPF	High Pas	s Filter						
f	Dist	Read	AF	CL	Amp	D Corr		Corr.	:		Ant. Pol.		Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
		: 2402 MH	·····										
4.804	3.0	36.1	32.7	5.8	-34.8	0.0	0.0	39.7	74.0	-34.3	V	Р	
4.804	3.0	23.8	32.7	5.8	-34.8	0.0	0.0	27.4	54.0	-26.6	<u>v</u>	A	
4.804	3.0	35.9	32.7	5.8	-34.8	0.0	0.0	39.5	74.0	-34.5	H	P	
4.804 MID CH	3.0	23.8 2441 MHz	32.7	5.8	-34.8	0.0	0.0	27.4	54.0	-26.6	H	A	
4.882	3.0	35.8	32.7	5.8	-34.8	0.0	0.0	39.5	74.0	-34.5	v	Р	
4.882	3.0	23.3	32.7	5.8	-34.8	0.0	0.0	27.0	54.0	-27.0	v	Å	
7.323	3.0	34.9	35.5	7.3	-34.1	0.0	0.0	43.6	74.0	-30.4	v	P	
7.323	3.0	23.0	35.5	7.3	-34.1	0.0	0.0	31.7	54.0	-22.3	V	A	
4.882	3.0	36.0	32.7	5.8	-34.8	0.0	0.0	39.8	74.0	-34.2	H	Р	
4.882	3.0	23.4	32.7	5.8	-34.8	0.0	0.0	27.1	54.0	- 26.9	H	A	
7.323	3.0	35.6	35.5	7.3	-34.1	0.0	0.0	44.2	74.0	-29.8	H	Р	
7.323	3.0	23.1	35.5	7.3	-34.1	0.0	0.0	31.7	54.0	-22.3	H	A	
		: 2480 MI	·····					46.5					
4.960	3.0	36.9	32.8	5.9	-34.8	0.0	0.0	40.8	74.0	-33.2	V	P	
4.960 7.440	3.0 3.0	23.7 35.1	32.8 35.6	5.9 7.3	-34.8 -34.1	0.0 0.0	0.0 0.0	27.6 44.0	54.0 74.0	-26.4 -30.0	v v	A P	
(.440	3.0	35.1 22.9	35.0 35.6	7.3	-34.1	0.0	0.0	44.0 31.8	74.0 54.0	-30.0	v V	P A	
T 440	3.0	36.6	32.8	7.3 5.9	-34.1	0.0	0.0	40.4	54.0 74.0	-33.6	v H	P P	
		23.7	32.8	5.9	-34.8	0.0	0.0	40.4 27.6	74.0 54.0	-33.0	H H	r A	
7.440 4.960 4.960	3.0		35.6	7.3	-34.1	0.0	0.0	44.6	74.0	-29.4	H	P	
4.960 4.960	3.0	35.7										••••••••••••••••••••••••••••••••••••••	
4.960	3.0 3.0 3.0	35.7 22.9	35.6	7.3	-34.1	0.0	0.0	31.8	54.0	-22.2	н	A	

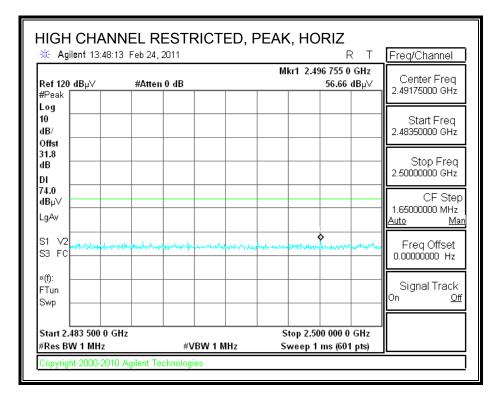
Page 88 of 107

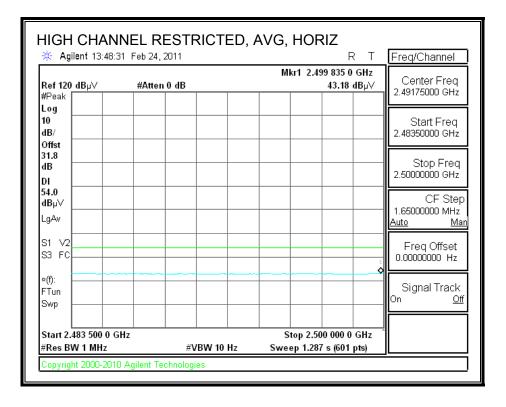
8.1.3. LE (LOW ENERGY) MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

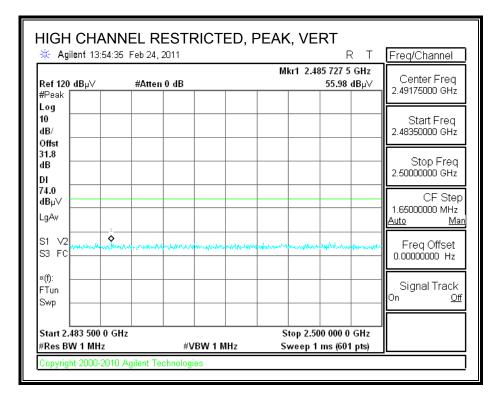


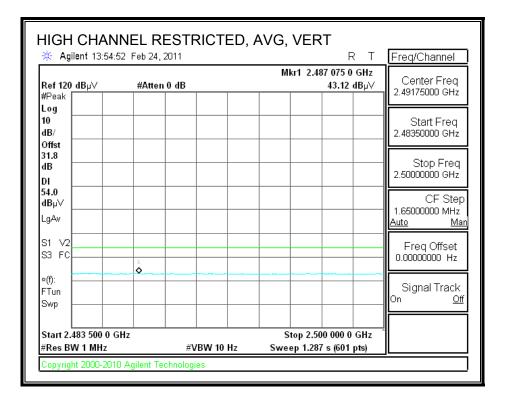
Page 89 of 107


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 90 of 107


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 91 of 107

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 92 of 107

HARMONICS AND SPURIOUS EMISSIONS

-		Measuren tification		s, Fre	mont 3n	n Chamb	er						
Test Engr		David G	arcia										
Date:	-	02/24/11											
Project #		11U1368											
Company		Broadco											
Test Targ		FCC 15.											
Mode Op		Tx LE GI	FSK										
•													
	f	Measuren	nent Freq	piency	Amp	Preamp (Gain			Average	Field Stren	gth Limit	
	Dist	Distance	to Anter	ma -	D Corr	Distance	Correc	ct to 3 me	ters	Peak Fie	ld Strength	Limit	
	Read	Analyzer	Reading		Avg	Average	Field S	trength @	3 m	Margin v	rs. Average	Limit	
	AF	Antenna	Factor		Peak	Calculate	d Peak	r Field Stre	ength	Margin v	rs. Peak Lii	nit	
	CL	Cable Los	55		HPF	High Pas	s Filter	r					
f	Dist	Read	AF	CL	Атр	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
LOW CE	IANNEL	: 2402 MF	Ł							1			
4.804	3.0	38.0	32.7	5.8	-34.8	0.0	0.0	41.6	74.0	-32.4	V	P	
4.804	3.0	27.4	32.7	5.8	-34.8	0.0	0.0	31.0	54.0	- 23.0	V	A	
4.804	3.0	41.1	32.7	5.8	-34.8	0.0	0.0	44.8	74.0	-29.3	H	P	
4.804	3.0	30.2	32.7	5.8	-34.8	0.0	0.0	33.8	54.0	-20.2	H	A	
		2440 MHL		ļ	ļ								
4.880	3.0	35.6	32.7	5.8	-34.8	0.0	0.0	39.3	74.0	-34.7	V	P	
4.880	3.0	23.3	32.7	5.8	-34.8	0.0	0.0	27.0	54.0	-27.0	V	A	
7.320	3.0	35.8	35.5	7.3	-34.1	0.0	0.0	44.4	74.0	-29.6	V	P	
7.320	3.0	23.0	35.5	7.3	-34.1	0.0	0.0	31.7	54.0	-22.3	V	A	
4.880	3.0	42.5	32.7	5.8	-34.8	0.0	0.0	46.2	74.0	-27.8	H	P	
4.880 7.320	3.0	32.2	32.7 35.5	5.8	-34.8 -34.1	0.0	0.0	35.9	54.0 74.0	-18.1	H	A	
7.320 7.320	3.0	35.5 23.0	35.5	7.3 7.3	-34.1	0.0 0.0	0.0 0.0	44.1	74.0 54.0	-29.9 -22.3	H H	P A	
		: 23.0 4: 2480 MD		· /.3	-34.1	0.0	0.0	31.7	24.U	-42.3	n	A	
<u>ніся сі</u> 4.960	3.0	36.5	32.8	5.9	-34.8	0.0	0.0	40.4	74.0	-33.6	v	Р	
4.960	3.0	24.9	32.8	5.9	-34.8	0.0	0.0	28.7	74.0 54.0	-25.3	v V	A	
4.900 7.440	3.0	35.3	35.6	7.3	-34.1	0.0	0.0	44.2	54.0 74.0	-29.8	v V	P	
7.440	3.0	22.8	35.6	7.3	-34.1	0.0	0.0	31.7	54.0	-22.3	v	A	
4.960	3.0	40.7	32.8	5.9	-34.8	0.0	0.0	44.6	74.0	-29.4	ч Н	P	
4.960	3.0	30.0	32.8	5.9	-34.8	0.0	0.0	33.8	54.0	-20.2	H	Â	
	3.0	35.3	35.6	7.3	-34.1	0.0	0.0	44.2	74.0	-29.8	H	P	
7.440		22.8	35.6	7.3	-34.1	0.0	0.0	31.7	54.0	-22.3	H	Â	
7 .440 7 .440	3.0												

Page 93 of 107

8.2. RECEIVER ABOVE 1 GHz

8.2.1. WORST-CASE MODE

	~		7 Measurem												
Complia	nce Ce	rtification	Services, Fr	emont (3m Ch	amber									
Compan	v:		Broadcom												
Project			11U13681												
Date:			2/24/2011												
Fest En	gineer:		David Garcia												
Configu	ation:		EUT, Laptop H	PC											
Mode:			BT Rx												
fest Eq	uipmen	<u>t:</u>													
Н	orn 1-	18GHz	Pre-ar	mplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	Ho	orn > 180	Hz		Limit
T60; S	/N: 2238	3@3m	T34 H/	P 8449B		-				-				-	RX RSS 210 📮
							I								
	uency Cat able 2	2807700	12' c	able 2	28076	500	20' ca	ble 22	807500		HPF	Re	eject Filte		<u>Measurements</u>
21.00	nble 228	07700				_	20' cab	1. 2200	7500						W=VBW=1MHz
3 6	ible 228	0//00	12' ca	able 228	07600	-	ZU Cab	ie ZZOU	⁷⁷⁵⁰⁰ -			-			ge <u>Measurements</u> 1MHz; VBW=10Hz
J		_					1			1 ,					10112, VDW-10112
		D 1.D													
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB		Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
GHz .036	(m) 3.0	dBuV 48.5	dBuV 35.2	dB/m 24.6	dB 2.4	dB -38.2	dB 0.0	dB 0.0	dBuV/m 37.3	dBuV/m 24.0	dBuV/m 74	dBuV/m 54	dB -36.7	dB -30.0	(V/H) H
GHz 036 .141	(m) 3.0 3.0	dBuV 48.5 48.9	dBuV 35.2 33.5	dB/m 24.6 24.9	dB 2.4 2.5	dB -38.2 -38.1	dB 0.0 0.0	dB 0.0 0.0	dBuV/m 37.3 38.3	dBuV/m 24.0 22.9	dBuV/m 74 74	dBuV/m 54 54	dB -36.7 -35.7	dB -30.0 -31.1	(V/H) H H
GHz .036 .141 .230	(m) 3.0 3.0 3.0	dBuV 48.5 48.9 46.7	dBuV 35.2 33.5 33.1	dB/m 24.6 24.9 25.2	dB 2.4 2.5 2.6	dB -38.2 -38.1 -37.9	dB 0.0 0.0 0.0	dB 0.0 0.0 0.0	dBuV/m 37.3 38.3 36.6	dBuV/m 24.0 22.9 23.0	dBuV/m 74 74 74	dBuV/m 54 54 54	dB -36.7 -35.7 -37.4	dB -30.0 -31.1 -31.0	(V/H) H H H
GHz 1.036 1.141 1.230 1.295	(m) 3.0 3.0 3.0 3.0 3.0	dBuV 48.5 48.9 46.7 48.3	dBuV 35.2 33.5 33.1 35.3	dB/m 24.6 24.9 25.2 25.5	dB 2.4 2.5 2.6 2.7	dB -38.2 -38.1 -37.9 -37.9	dB 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0	dBuV/m 37.3 38.3 36.6 38.6	dBuV/m 24.0 22.9 23.0 25.6	dBuV/m 74 74 74 74 74	dBuV/m 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4	dB -30.0 -31.1 -31.0 -28.4	(V/H) H H H H
GHz 1036 141 230 295 1.795	(m) 3.0 3.0 3.0 3.0 3.0	dBuV 48.5 48.9 46.7 48.3 50.5	dBuV 35.2 33.5 33.1 35.3 33.0	dB/m 24.6 24.9 25.2 25.5 27.1	dB 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.9 -37.2	dB 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0	dBuV/m 37 3 38 3 36.6 38.6 43.7	dBuV/m 24.0 22.9 23.0 25.6 26.2	<u>dBuV/m</u> 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3	dB -30.0 -31.1 -31.0 -28.4 -27.8	(V/H) H H H H H
GHz 1.036 1.141 1.230 1.295 1.795 2.491	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 48.5 48.9 46.7 48.3 50.5 45.5	dBuV 35.2 33.5 33.1 35.3 33.0 34.1	dB/m 24.6 24.9 25.2 25.5 27.1 28.3	dB 2.4 2.5 2.6 2.7 3.2 3.9	dB -38.2 -38.1 -37.9 -37.9 -37.2 -36.3	dB 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 37.3 38.3 36.6 38.6 43.7 41.5	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1	dBuV/m 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3 -32.5	dB -30.0 -31.1 -31.0 -28.4 -27.8 -23.9	(V/H) H H H H H H
GHz 036 141 230 295 795 2491 036	(m) 3.0 3.0 3.0 3.0 3.0	dBuV 48.5 48.9 46.7 48.3 50.5	dBuV 35.2 33.5 33.1 35.3 33.0	dB/m 24.6 24.9 25.2 25.5 27.1	dB 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.9 -37.2	dB 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0	dBuV/m 37 3 38 3 36.6 38.6 43.7	dBuV/m 24.0 22.9 23.0 25.6 26.2	<u>dBuV/m</u> 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3	dB -30.0 -31.1 -31.0 -28.4 -27.8	(V/H) H H H H H
GHz 1.036 1.141 1.230 1.295 1.795 2.491 1.036 1.141	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 485 489 46.7 483 505 455 50.6	dBuV 352 33.5 33.1 35.3 33.0 34.1 38.5	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.6	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4	dB -38.2 -38.1 -37.9 -37.9 -37.2 -36.3 -38.2	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 373 383 366 386 437 415 394	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3	dBuV/m 74 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3 -32.5 -34.6	dB -30.0 -31.1 -31.0 -28.4 -27.8 -23.9 -26.7	(V/H) H H H H H V
GHz 036 141 230 295 795 2491 036 141 230	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 48.5 48.9 46.7 48.3 50.5 45.5 50.6 48.1	dBuV 352 335 33.1 353 33.0 34.1 385 362	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.6 24.9	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5	dB -38.2 -38.1 -37.9 -37.9 -37.2 -36.3 -38.2 -38.1	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4B 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 373 383 366 386 43.7 41.5 39.4 37.5	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3 25.6	dBuV/m 74 74 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3 -32.5 -34.6 -36.5	dB -30.0 -31.1 -28.4 -27.8 -23.9 -26.7 -28.4	(V/H) H H H H V V
GHz 036 141 230 295 795 2491 036 141 230 295 795 795	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 48.5 48.9 46.7 48.3 50.5 45.5 50.6 48.1 50.2 48.5 49.1	dBuV 352 335 331 353 330 341 385 362 345 345 348 350	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.6 24.9 25.2 25.5 27.1	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.9 -37.2 -36.3 -38.2 -38.1 -37.9 -37.9 -37.9 -37.2	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dBuV/m 37.3 38.3 36.6 38.6 43.7 41.5 39.4 37.5 40.1 38.8 42.3	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3 25.6 24.4 25.1 28.2	dBuV/m 74 74 74 74 74 74 74 74 74 74 74 74 74	dBuV/m 54	dB -36.7 -35.7 -35.4 -30.3 -32.5 -34.6 -36.5 -33.9 -35.2 -31.7	dB -30.0 -31.1 -31.0 -28.4 -27.8 -23.9 -26.7 -28.4 -29.6 -28.9 -25.8	(V/H) H H H V V V V V V V V V
	(m) 30 30 30 30 30 30 30 30 30 30	dBuV 48.5 48.9 46.7 48.3 50.5 45.5 50.6 48.1 50.2 48.5	dBuV 35.2 33.5 33.1 35.3 33.0 34.1 38.5 36.2 34.5 34.8	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.6 24.9 25.2 25.5	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5 2.6 2.7	dB -38.2 -38.1 -37.9 -37.9 -37.2 -36.3 -38.2 -38.1 -37.9 -37.9 -37.9	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 373 383 366 386 437 415 394 375 40.1 388	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3 25.6 24.4 25.1	dBuV/m 74 74 74 74 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3 -32.5 -34.6 -36.5 -33.9 -35.2	dB -30.0 -31.1 -31.0 -28.4 -27.8 -23.9 -26.7 -28.4 -29.6 -28.9	(V/H) H H H H V V V V V V
GHz 1.036 1.141 1.230 1.295 1.795 2.491 1.036 1.141 1.230 1.295 1.795	(m) 30 30 30 30 30 30 30 30 30 30 30 30 30	dBuV 48.5 48.9 46.7 48.3 50.5 45.5 50.6 48.1 50.2 48.5 49.1	dBuV 352 335 331 353 330 341 385 362 345 345 348 350	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.6 24.9 25.2 25.5 27.1	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.9 -37.2 -36.3 -38.2 -38.1 -37.9 -37.9 -37.9 -37.2	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dBuV/m 37.3 38.3 36.6 38.6 43.7 41.5 39.4 37.5 40.1 38.8 42.3	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3 25.6 24.4 25.1 28.2	dBuV/m 74 74 74 74 74 74 74 74 74 74 74 74 74	dBuV/m 54	dB -36.7 -35.7 -35.4 -30.3 -32.5 -34.6 -36.5 -33.9 -35.2 -31.7	dB -30.0 -31.1 -31.0 -28.4 -27.8 -23.9 -26.7 -28.4 -29.6 -28.9 -25.8	(V/H) H H H V V V V V V V V V V V
GHz 1036 1.141 1.230 1.295 1.795 2.491 1.036 1.141 1.230 1.295 1.795 2.491	(m) 30 30 30 30 30 30 30 30 30 30	dBuV 48.5 48.9 46.7 48.3 50.5 50.6 50.6 48.1 50.6 48.1 48.5 48.1 48.1	dBuV 352 335 331 353 330 341 385 362 345 345 348 350	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.9 25.2 25.5 27.1 28.3	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.9 -37.2 -36.3 -38.2 -38.1 -37.9 -37.9 -37.9 -37.2	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dBuV/m 37.3 38.3 36.6 38.6 43.7 41.5 39.4 37.5 40.1 38.8 42.3	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3 25.6 24.4 25.1 28.2	dBuV/m 74 74 74 74 74 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -30.3 -32.5 -34.6 -36.5 -33.9 -35.2 -31.7 -29.9	dB -30.0 -31.1 -31.0 -28.4 -27.8 -23.9 -26.7 -28.4 -29.6 -28.9 -25.8	(V/H) H H H V V V V V V V V V V V
GHz 1036 141 230 295 2491 036 141 230 295 2491 230 295 2491 2491	(m) 30 30 30 30 30 30 30 30 30 30	dBuV 48.5 48.9 46.7 48.3 50.5 50.6 50.6 48.1 50.6 48.1 48.5 48.1 48.1	dBuV 352 335 331 353 330 341 385 362 345 345 345 339 ent Frequency	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.9 25.2 25.5 27.1 28.3	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.2 -36.3 -36.3 -38.2 -36.3	dB 00 00 00 00 00 00 00 00 00 00 00 00 00	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dBuV/m 37.3 38.3 36.6 38.6 43.7 41.5 39.4 37.5 40.1 38.8 42.3	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3 25.6 24.4 25.1 28.2 29.9	dBuV/m 74 74 74 74 74 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3 -32.5 -34.6 -36.5 -33.9 -35.2 -31.7 -29.9 	dB -30.0 -31.1 -31.0 -28.4 -27.8 -28.4 -29.6 -28.4 -29.9 -25.8 -24.1	(V/H) H H H H V V V V V V
GHz 036 141 230 295 491 036 141 230 295 795 2491 2491	(m) 30 30 30 30 30 30 30 30 30 30	dBuV 48.5 48.9 46.3 48.3 50.5 50.6 48.1 50.6 48.1 50.2 48.5 49.1 48.1 48.1	dBuV 35.2 33.5 33.1 35.3 33.0 34.1 38.5 36.2 34.5 34.5 35.0 33.9 ent Frequenc:	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.9 25.2 25.5 27.1 28.3	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.9 -37.2 -36.3 -36.3 -38.2 -36.3	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dBuV/m 37.3 38.8 36.6 38.6 38.6 38.6 38.6 39.4 37.5 40.1 38.8 42.3 44.1	dBuV/m 24.0 22.9 23.0 25.6 26.2 30.1 27.3 25.6 24.4 25.6 24.4 25.1 28.2 29.9	dBuV/m 74 74 74 74 74 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -36.5 -34.6 -36.5 -33.9 -35.2 -31.7 -29.9 	dB -30.0 -31.1 -31.0 -28.4 -27.8 -28.4 -29.6 -26.7 -28.4 -29.6 -28.9 -25.8 -24.1 -25.8 -24.1	(V/H) H H H V V V V V V V
GHz 1036 141 230 295 2491 036 141 230 295 2491 230 295 2491 2491	(m) 30 30 30 30 30 30 30 30 30 30	dBuV 48.5 48.9 46.7 48.3 50.5 50.6 48.1 50.2 48.1 49.1 48.1 48.1 Measurem Distance to	dBuV 35.2 33.5 33.1 35.3 33.0 34.1 38.5 36.2 34.5 36.2 34.5 35.0 33.9 ent Frequency Antenna eeading	dB/m 24.6 24.9 25.2 25.5 27.1 28.3 24.9 25.2 25.5 27.1 28.3	dB 2.4 2.5 2.6 2.7 3.2 3.9 2.4 2.5 2.6 2.7 3.2	dB -38.2 -38.1 -37.9 -37.2 -36.3 -38.1 -37.2 -36.3 -37.2 -36.3 -37.2 -36.3 -37.2 -36.3 D Corr	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dB 0.0 <	dBuV/m 37.3 38.3 36.6 38.6 43.7 41.5 39.4 37.5 40.1 38.8 42.3 44.1	dBuV/m 24.0 22.9 23.9 25.6 26.2 26.2 27.3 25.6 24.4 25.1 28.2 29.9 29.9 29.9 29.9 20.0 27.0	dBuV/m 74 74 74 74 74 74 74 74 74 74 74 74 74	dBuV/m 54 54 54 54 54 54 54 54 54 54 54 54 54	dB -36.7 -35.7 -37.4 -35.4 -30.3 -32.5 -34.6 -36.5 -33.9 -35.2 -31.7 -29.9 	dB -30.0 -31.1 -31.0 -28.4 -27.8 -28.4 -26.7 -28.4 -26.7 -28.4 -26.7 -28.4 -26.9 -25.8 -24.1 -25.8 -24.1 	(V/H) H H H V V V V V V

Page 94 of 107

8.3. WORST-CASE BELOW 1 GHz

8.3.1. WORST-CASE MODE

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

	-	ency Meas ication Sei			t 5m Cha	amber							
Test Engr Date: Project #: Company Test Targ Mode Ope	: 2t:	David Gaz 02/24/11 11U13681 Broadcon FCC Clas Tx Worst	1 15 B										
	f Dist Baad	Measurema Distance to	o Antenn		Amp D Corr Filter	Preamp G Distance (Filter Inse	Correct	to 3 meters		Margin	Margin vs.	Limit	
	Read AF	Analyzer F Antenna F	·····••		Filter Corr.	Filter Inse Calculated							
	CL	Cable Loss			Limit	Field Stre							
f	Dist	Read	AF	CL	Amp	D Corr	Pad	Согт.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
117.484	3.0	53.7	13.0	0.9	28.1	0.0	0.0	39.5	43.5	- 4.0	V	Р	
125.524	3.0	50.7	14.1	0.9	28.0	0.0	0.0	37.7	43.5	- 5.8	V	Р	
	3.0	50.8	13.9	0.9	28.0	0.0	0.0	37.7	43.5	-5.8	V	P	
		52.7	12.9	1.0 1.1	27.9 27.4	0.0 0.0	0.0	38.7 38.2	43.5 43.5	-4.8 -5.3	V V	P P	
144.125	3.0	50.0					0.0	58.2	4.1.5	-5.5	. U .	P :	
144.125 194.647	3.0	52.9	11.6					¢		·			
144.125 194.647 305.651	3.0 3.0	47.7	13.6	1.5	27.4	0.0	0.0	35.3	46.0	- 10.7	v	Р	
144.125 194.647 305.651 312.012	3.0 3.0 3.0	47.7 46.5	13.6 13.7	1.5 1.5	27.4 27.5	0.0 0.0	0.0	35.3 34.2	46.0 46.0	-10.7 -11.8	V V	P P	
144.125 194.647 305.651 312.012 449.057	3.0 3.0	47.7 46.5 44.8	13.6 13.7 15.9	1.5 1.5 1.9	27.4 27.5 28.3	0.0 0.0 0.0	0.0 0.0	35.3 34.2 34.3	46.0 46.0 46.0	-10.7 -11.8 -11.7	v	P P P	
144.125 194.647 305.651 312.012 449.057 831.753	3.0 3.0 3.0 3.0	47.7 46.5	13.6 13.7	1.5 1.5	27.4 27.5	0.0 0.0	0.0	35.3 34.2	46.0 46.0	-10.7 -11.8	V V V	P P	
144,125 194,647 305,651 312,012 449,057 831,753 895,836	3.0 3.0 3.0 3.0 3.0 3.0	47.7 46.5 44.8 37.3	13.6 13.7 15.9 21.3	1.5 1.5 1.9 2.6	27.4 27.5 28.3 28.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0	35.3 34.2 34.3 33.0	46.0 46.0 46.0 46.0	-10.7 -11.8 -11.7 -13.0	V V V V	P P P P	
144.125 194.647 305.651 312.012 449.057 831.753 895.836 970.839	3.0 3.0 3.0 3.0 3.0 3.0 3.0	47.7 46.5 44.8 37.3 36.3	13.6 13.7 15.9 21.3 22.0	1.5 1.5 1.9 2.6 2.7	27.4 27.5 28.3 28.1 27.9	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	35.3 34.2 34.3 33.0 33.2	46.0 46.0 46.0 46.0 46.0	-10.7 -11.8 -11.7 -13.0 -12.8 -22.9 -8.8	V V V V V	P P P P P	
144.125 194.647 305.651 312.012 449.057 831.753 895.836 970.839 312.012 346.573	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	47.7 46.5 44.8 37.3 36.3 33.4 49.4 49.4	13.6 13.7 15.9 21.3 22.0 22.5 13.7 14.2	1.5 1.5 1.9 2.6 2.7 2.9	27.4 27.5 28.3 28.1 27.9 27.7 27.5 27.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	35.3 34.2 34.3 33.0 33.2 31.1 37.2 37.5	46.0 46.0 46.0 46.0 46.0 54.0	-10.7 -11.8 -11.7 -13.0 -12.8 -22.9 -8.8 -8.5	V V V V V H H	P	
144.125 194.647 305.651 312.012 449.057 831.753 895.836 970.839 312.012 346.573 381.134	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	47.7 46.5 44.8 37.3 36.3 33.4 49.4 49.4 49.4 47.0	13.6 13.7 15.9 21.3 22.0 22.5 13.7 14.2 14.7	1.5 1.5 1.9 2.6 2.7 2.9 1.5 1.6 1.7	27.4 27.5 28.3 28.1 27.9 27.7 27.5 27.7 27.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35.3 34.2 34.3 33.0 33.2 31.1 37.2 37.5 35.5	46.0 46.0 46.0 46.0 54.0 54.0 46.0 46.0 46.0	-10.7 -11.8 -11.7 -13.0 -12.8 -22.9 -8.8 -8.5 -10.5	V V V V H H H	P P	
144.125 194.647 305.651 312.012 449.057 831.753 895.836 970.839 312.012 346.573 381.134 479.899	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	47.7 46.5 44.8 37.3 36.3 33.4 49.4 49.4 49.4 47.0 44.4	13.6 13.7 15.9 21.3 22.0 22.5 13.7 14.2 14.7 16.5	1.5 1.5 1.9 2.6 2.7 2.9 1.5 1.6 1.7 1.9	27.4 27.5 28.3 28.1 27.9 27.7 27.5 27.7 27.9 28.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35.3 34.2 34.3 33.0 33.2 31.1 37.2 37.5 35.5 34.3	46.0 46.0 46.0 46.0 54.0 54.0 46.0 46.0 46.0 46.0	-10.7 -11.8 -11.7 -13.0 -12.8 -22.9 -8.8 -8.5 -10.5 -11.7	V V V V H H H H	P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P	
144.125 194.647 305.651 312.012 449.057 831.753 895.836 970.839 312.012 346.573 381.134 479.899 543.861	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	47.7 46.5 44.8 37.3 36.3 33.4 49.4 49.4 49.4 47.0 44.4 42.5	13.6 13.7 15.9 21.3 22.0 22.5 13.7 14.2 14.7 16.5 17.6	1.5 1.5 1.9 2.6 2.7 2.9 1.5 1.6 1.7 1.9 2.1	27.4 27.5 28.3 28.1 27.9 27.7 27.5 27.7 27.9 28.5 28.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35.3 34.2 34.3 33.0 33.2 31.1 37.2 37.5 35.5 34.3 33.5	46.0 46.0 46.0 46.0 54.0 46.0 46.0 46.0 46.0 46.0 46.0	-10.7 -11.8 -11.7 -13.0 -12.8 -22.9 -8.8 -8.5 -10.5 -11.7 -12.5	V V V V H H H H H	P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P	
128.524 144.125 194.647 305.651 312.012 449.057 831.753 895.836 970.839 312.012 346.573 381.134 479.899 543.861 554.782	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	47.7 46.5 44.8 37.3 36.3 33.4 49.4 49.4 49.4 47.0 44.4	13.6 13.7 15.9 21.3 22.0 22.5 13.7 14.2 14.7 16.5	1.5 1.5 1.9 2.6 2.7 2.9 1.5 1.6 1.7 1.9	27.4 27.5 28.3 28.1 27.9 27.7 27.5 27.7 27.9 28.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35.3 34.2 34.3 33.0 33.2 31.1 37.2 37.5 35.5 34.3	46.0 46.0 46.0 46.0 54.0 54.0 46.0 46.0 46.0 46.0	-10.7 -11.8 -11.7 -13.0 -12.8 -22.9 -8.8 -8.5 -10.5 -11.7	V V V V H H H H	P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P	

Page 95 of 107

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

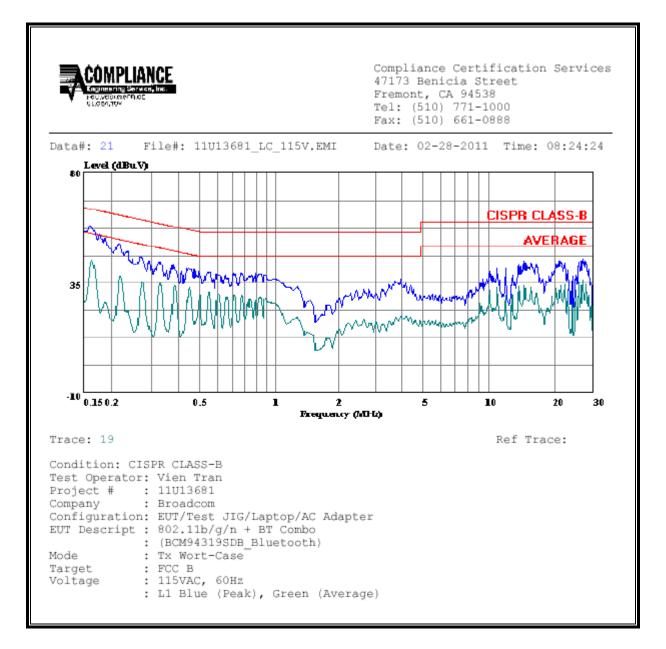
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

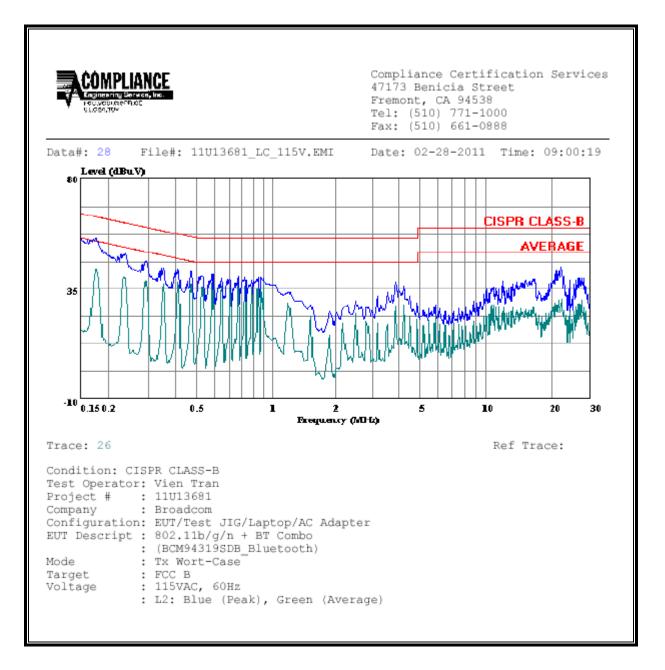
Page 96 of 107


9.1. WORST-CASE MODE

<u>6 WORST EMISSIONS</u>

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.			Closs	Limit	FCC_B	Marg	(in	Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2		
0.16	58.49		44.36	0.00	65.46	55.46	-6.97	-11.10	L1		
0.22	50.60		38.07	0.00	62.86	52.86	-12.26	-14.79	L1		
26.70	45.11		36.33	0.00	60.00	50.00	-14.89	-13.67	L1		
0.18	55.82		43.55	0.00	64.67	54.67	-8.85	-11.12	L2		
0.23	48.74		39.30	0.00	62.31	52.31	-13.57	-13.01	L2		
2.95	44.28		30.61	0.00	56.00	46.00	-11.72	-15.39	L2		
6 Worst I	 Data 										

Page 97 of 107


LINE 1 RESULTS

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 98 of 107

LINE 2 RESULTS

Page 99 of 107

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	l/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/F 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

	(V/m)	(A/m)	(mW/cm ²)	(minutes)
30–300 300–1500 1500–100.000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 100 of 107

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 101 of 107

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP = (P1 * G1) + (P2 * G2) + ... + (Pn * Pn)

where

Px = Power of transmitter xGx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2 From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	1.75	3.90	0.01	0.001

Page 102 of 107