

FCC CFR47 PART 15 SUBPART E

CLASS II PERMISSIVE CHANGE

FOR

802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card

MODEL NUMBER: BCM94331PCIEBT4

FCC ID: QDS-BRCM1055

REPORT NUMBER: 15U22132-E1V4

ISSUE DATE: FEBRUARY 18, 2016

PREPARED FOR BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

PREPARED BY UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	12/18/15	Initial Issue	H. Mustapha
V2 1/20/16		Removed IC ID from cover page. Updated KDB 789033 version on Page 7. Updated List of Test Reduction. Trace marker tables on pages 92-97 were re- arranged. Updated section 9.4 title to indicate 3Tx. Updated section 9.5 title to indicate SISO. Updated Peak limits in tables on pages 101, 103, 105, 110 and 112	H. Mustapha
V3	1/25/16	Updated Markers on pages 94 and 95.	H. Mustapha
V4	2/18/16	Updated Output power tables in sections 5.2, 8.2, 8.3, 8.4, 8.5 and 8.6 Updated measurement equipment list in section 6	H. Mustapha

Page 2 of 125

TABLE OF CONTENTS

1. A	ATTESTATION OF TEST RESULTS	. 5
2. T	EST METHODOLOGY	. 7
3. F	ACILITIES AND ACCREDITATION	. 7
4. C	CALIBRATION AND UNCERTAINTY	. 7
4.1	. MEASURING INSTRUMENT CALIBRATION	. 7
4.2	2. SAMPLE CALCULATION	. 7
4.3	. MEASUREMENT UNCERTAINTY	. 8
5. E	EQUIPMENT UNDER TEST	. 9
5.1	. DESCRIPTION OF EUT	. 9
5.2	P. MAXIMUM OUTPUT POWER	. 9
5.1	. LIST OF TEST REDUCTION AND MODES COVERING OTHER MODES	10
5.2	2. DESCRIPTION OF AVAILABLE ANTENNAS	11
5.3	8. SOFTWARE AND FIRMWARE	11
5.4	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	11
5.5	5. WORST-CASE CONFIGURATION AND MODE	11
5.6	DESCRIPTION OF TEST SETUP	12
6. T	EST AND MEASUREMENT EQUIPMENT	14
7. N	NEASUREMENT METHODS	15
8. A	ANTENNA PORT TEST RESULTS	16
8.1	. ON TIME AND DUTY CYCLE	16
<i>8.1</i> 8	. 802.11a LEGACY 1TX MODE IN THE 5.2 GHz BAND	<i>20</i> 20
<i>8.2</i> 8	2. 802.11n HT20 CDD 3Tx MODE IN THE 5.2 GHz BAND 3.2.1. 26 dB BANDWIDTH	<i>23</i> 23
<i>8.1</i> 8	. 802.11n HT40 CDD 3Tx MODE IN THE 5.2 GHz BAND	<i>29</i> 29
<i>8.1</i> 8	. 802.11a LEGACY 1TX MODE IN THE 5.3 GHz BAND	<i>33</i> 33
<i>8.1</i> 8	. 802.11n HT20 CDD 3Tx MODE IN THE 5.3 GHz BAND	<i>36</i> 36
8.1	. 802.11n HT40 CDD 3Tx MODE IN THE 5.3 GHz BAND	42

Page 3 of 125

8.1	1. 26 dB BANDWIDTH	42
<i>8.2.</i> 8.2	802.11a LEGACY 1TX MODE IN THE 5.6 GHz BAND 1. 26 dB BANDWIDTH	46 46
<i>8.1.</i> 8.1	802.11n HT20 CDD 3Tx MODE IN THE 5.6 GHz BAND 1. 26 dB BANDWIDTH	49 49
<i>8.1.</i> 8.1	802.11n HT40 CDD 3Tx MODE IN THE 5.6 GHz BAND 1. 26 dB BANDWIDTH	56 56
<i>8.2.</i> 8.2	802.11a SISO MODE IN THE 5.8 GHz BAND 1. OUTPUT POWER	<i>63</i> 63
<i>8.3.</i> 8.3	802.11n HT20 SISO MODE IN THE 5.8 GHz BAND 1. OUTPUT POWER	65 65
<i>8.4.</i> 8.4	802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND 1. 6 dB BANDWIDTH	67 67
8.4	2. OUTPUT POWER	70
8.4	3. Maximum Power Spectral Density (PSD)	72
<i>8.5.</i> 8.5	802.11n HT40 SISO MODE IN THE 5.8 GHz BAND 1. OUTPUT POWER	<i>79</i> 79
<i>8.6.</i> 8.6	802.11n HT40 CDD 3Tx MODE IN THE 5.8 GHz BAND 1. 6 dB BANDWIDTH	81 81
8.6	2. OUTPUT POWER	83
8.6	.3. Maximum Power Spectral Density (PSD)	85
9. RA	DIATED TEST RESULTS	90
9.1.	LIMITS AND PROCEDURE	90
9.2.	TX ABOVE 1 GHz 802.11a MODE SISO IN THE 5.8 GHz BAND	91
9.3.	TX ABOVE 1 GHz 802.11n HT20 MODE SISO IN THE 5.8 GHz BAND	94
9.4.	TX ABOVE 1 GHz 802.11n HT20 MODE 3Tx IN THE 5.8 GHz BAND	97
9.5.	TX ABOVE 1 GHz 802.11n HT40 MODE SISO IN THE 5.8 GHz BAND	106
9.6.	TX ABOVE 1 GHz 802.11n HT40 MODE 3Tx IN THE 5.8 GHz BAND	107
9.7.	WORST-CASE BELOW 1 GHz	113
9.8.	WORST-CASE ABOVE 18GHz	114
10. A	C POWER LINE CONDUCTED EMISSIONS	118
11. S	ETUP PHOTOS	122

Page 4 of 125

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	BROADCOM CORPORATION
	190 MATHILDA PLACE
	SUNNYVALE, CA 94086, USA
EUT DESCRIPTION:	802.11a/g/n WLAN + Bluetooth PCI-E Custom Combination Card
MODEL:	BCM94331PCIEBT4
SERIAL NUMBER:	6C1MQF99NDTY3 (Module is installed inside host laptop. This is serial number of host laptop)
DATE TESTED:	NOVEMBER 18, 2015 ~ JANUARY 11, 2016 DECEMBER 23, 2010 FEBRUARY 17, 2016

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart E

Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Page 5 of 125

Approved & Released For UL Verification Services Inc. By:

Tested By:

Huda Mustapha

HUDA MUSTAPHA PROJECT LEAD UL Verification Services Inc.

roy zheng

ROY ZHENG EMC ENGINEER UL Verification Services Inc.

FRANK IBRAHIM PROGRAM MANAGER UL Verification Services Inc.

Page 6 of 125

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033 D02 v01, KDB 662911 D01 v02r01 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street		
Chamber A	Chamber D		
🖂 Chamber B	🗌 Chamber E		
Chamber C	Chamber F		
	🗌 Chamber G		
	Chamber H		

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

Page 7 of 125

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 8 of 125

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 802.11a/g/n 3x3 MIMO WLAN + BT Combo PCI-E Mini Card.

The radio module is manufactured by Broadcom

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Power, Chain 0	Power, Chain 1	Power, Chain 2	Output Power	Output Power (mW)
		(dBm)	(dBm)	(dBm)	(dBm)	
5.8 GHz band, 1TX						
5745-5825	802.11a Legacy	N/A	N/A	14.97	14.97	31.41
5745-5825	802.11n HT20	N/A	N/A	14.93	14.93	31.12
5755-5795	802.11n HT40	N/A	N/A	12.41	12.41	17.42
5.8 GHz band, 3TX						
5745-5825	802.11n HT20 CDD	14.49	14.15	14.91	19.30	85.09
5755-5795	802.11n HT40 CDD	14.55	14.33	14.90	19.37	86.52

Page 9 of 125

5.1. LIST OF TEST REDUCTION AND MODES COVERING OTHER MODES

List of test reduction

Antenna Port Testing					
Band	Mode	Covered by			
5 GHz bands	802.11a Legacy 1TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11a CDD 2TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11a CDD 3TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11n HT40 1TX	802.11n HT40 CDD 3TX			
5 GHz bands	802.11n HT40 CDD 2TX	802.11n HT40 CDD 3TX			

Radiated Testing					
Band	Mode	Covered by			
5 GHz bands	802.11a Legacy 1TX (Harmonics)	802.11n HT20 CDD 3TX (Harmonics)			
5 GHz bands	802.11a CDD 2TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11a CDD 3TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11n HT20 CDD 2TX	802.11n HT20 CDD 3TX			
5 GHz bands	802.11n HT40 1TX (Harmonics)	802.11n HT40 CDD 3TX (Harmonics)			

Page 10 of 125

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes three 802.11 agn antennas, with a maximum gain as below table;

К90	Antenna Gain			Antenna Gain
	Ant 1 Ant 2 Ant 3			Combined
GHz	dBi	dBi	dBi	dBi
5.8	7.25	6.22	5.92	11.27

5.3. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom, rev. 7.21.94 The test utility software used during testing was BCM Internal, rev. 7.21.RC94.130

5.4. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The purpose of this C2PC is to upgrade the device described under section 5.1 of this report to the new rules per KDB 789033 D02 v01.

For UNII-1, UNII-2 and UNII-2C bands, other than the 26dB BW, we have reviewed the original test report (report no. 10U13492-3) and are hereby attesting that all the current technical requirements are still met and all applicable test procedures remain the same. Therefore, the original test report is still applicable and no additional testing is done.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an integral module installed inside a host Laptop PC.

Worst-Case data rates, as provided by the client, were as follows:

For 5.8GHz Band: All final tests in the 802.11a Mode (SISO Legacy) were made at 6 Mb/s All final tests in the 802.11n Mode (20 MHz CDD/SDM) were made at MCS0 All final tests in the 802.11n Mode (40 MHz CDD/SDM) were made at MCS0

Worst-case mode and channel used for 30-1000 MHz radiated emissions was the mode and channel with the highest output power.

For Radiated Band Edge measurements, preliminary testing showed that the worst case was Horizontal polarization, so final measurements were performed with Horizontal polarization.

For all modes with single chain, a preliminary investigation was performed on the three chains and Chain 2 (J2) was found to be worst-case.

Page 11 of 125

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Description Manufacturer Model Serial Number FCC ID						
Laptop	Apple	A1278	C1MQF99NDTY3	QDS-BRCM1055			
AC Adapter	Delta Electronics	ADP-85EB T	N/A	N/A			

I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC	1	DC	Unshielded	1.8 m	

TEST SETUP

The EUT is installed in the host laptop computer during the tests. Test software exercised the radio card.

Page 12 of 125

SETUP DIAGRAM

Page 13 of 125

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List					
Description	Manufacturer	Model	T No.	Cal Date	Cal Due
Radiated Software	UL	ULEMC	V	Ver 9.5, June 6, 2015	
Conducted Software	UL	ULEMC	V	'er 9.5, May 17	2012
Horn Antenna 1-18GHz	ETS	3117	136	01/15/15	01/15/16
Horn Antenna 18-26GHz	ARA	SWH-28	98	12/17/14	12/17/15
Horn Antenna 26.5- 40GHz	ARA	MWH-2640/B	90	07/28/15	07/28/16
Preamp 10kHz-1000MHz	HP	8447D	10	01/16/15	01/16/16
Preamp 1-8GHz	Miteq	AMF-4D-01000800-30-29P	782	10/22/15	10/22/16
Preamp 1-26.5GHz	Agilent	8449B	404	04/13/15	04/13/16
Amplifier, 26-40GHz	Miteq	NSP4000-SP2	88	04/07/15	04/07/16
Spectrum Analyzer 3kHz - 44GHz	Agilent	N9030A	907	05/15/15	05/15/16
3GHz HPF	Micro-Tronics	HPM17543	485	01/16/15	01/16/16
5GHz LPF	Micro-Tronics	LPS17541	482	01/16/15	01/16/16
6GHz HPF	Micro-Tronics	HPS17542	483	01/16/15	01/16/16
EMI Test Receiver	Rohde & Schwarz	ECSI 7	1124	09/30/15	09/30/16
Power Meter	Agilent	N1911A	T1268	06/07/15	06/07/16
Power Sensor	Agilent	N1921A	1223	06/07/15	02/06/16
Power Sensor	Agilent	N1921A	1224	07/06/15	03/06/16
LISN for Conducted Emission	FCC	50/250-25-2	24	01/16/15	01/16/16

Page 14 of 125

7. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 789033 D02 v01, Section B.

6 dB Emission BW: KDB 789033 D02 v01, Section C.2.

Conducted Output Power: KDB 789033 D02 v01, Section E.3.b (Method PM-G), and KDB 662911 D01 v02r01.

Power Spectral Density: KDB 789033 D02 v01, Section F, and KDB 662911 D01 v02r01.

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v01, Sections G.2, G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v01, Sections G.2, G.3, G.4, and G.5.

Page 15 of 125

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 1TX	2.063	2.080	0.992	99.18%	0.00	0.010
802.11n HT20 1TX	1.918	1.948	0.985	98.46%	0.00	0.010
802.11n HT20 CDD	1.918	1.936	0.991	99.07%	0.00	0.010
802.11n HT40 1TX	0.944	0.961	0.982	98.19%	0.00	0.010
802.11n HT40 CDD	0.9435	0.9590	0.984	98.38%	0.00	0.010

Page 16 of 125

DUTY CYCLE PLOTS

Page 17 of 125

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4701J 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 18 of 125

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4701J 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 19 of 125

8.1. 802.11a LEGACY 1TX MODE IN THE 5.2 GHz BAND

8.1.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	26.2
Mid	5200	26.25
High	5240	26.28

Page 20 of 125

26 dB BANDWIDTH

Page 21 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 22 of 125

8.2. 802.11n HT20 CDD 3Tx MODE IN THE 5.2 GHz BAND

8.2.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5180	25.935	26.480	26.400
Mid	5200	26.490	26.320	26.560
High	5240	26.360	26.403	26.240

Page 23 of 125

Page 24 of 125

Page 25 of 125

Page 26 of 125

Page 27 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 28 of 125

8.1. 802.11n HT40 CDD 3Tx MODE IN THE 5.2 GHz BAND

8.1.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5190	40.260	39.420	39.720
High	5230	40.382	39.660	39.600

Page 29 of 125

Page 30 of 125

Page 31 of 125

Page 32 of 125

8.1. 802.11a LEGACY 1TX MODE IN THE 5.3 GHz BAND

8.1.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	26.4
Mid	5300	26.56
High	5320	26.36

Page 33 of 125

26 dB BANDWIDTH

Page 34 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 35 of 125

8.1. 802.11n HT20 CDD 3Tx MODE IN THE 5.3 GHz BAND

8.1.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5260	26.900	27.000	26.400
Mid	5300	25.974	26.930	26.244
High	5320	26.560	26.600	26.480

Page 36 of 125

Page 37 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 38 of 125

Page 39 of 125

Page 40 of 125

Page 41 of 125

8.1. 802.11n HT40 CDD 3Tx MODE IN THE 5.3 GHz BAND

8.1.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5270	40.600	40.000	39.660
High	5310	40.600	39.900	39.600

Page 42 of 125

Page 43 of 125

Page 44 of 125

Page 45 of 125

8.2. 802.11a LEGACY 1TX MODE IN THE 5.6 GHz BAND

8.2.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	26.16
Mid	5580	26.29
High	5700	26.36

Page 46 of 125

26 dB BANDWIDTH

Page 47 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 48 of 125

8.1. 802.11n HT20 CDD 3Tx MODE IN THE 5.6 GHz BAND

8.1.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5500	26.440	26.400	26.440
Mid	5580	26.600	25.935	26.160
High	5700	26.810	25.935	25.623

Page 49 of 125

Page 50 of 125

Page 51 of 125

Page 52 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 53 of 125

Page 54 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 55 of 125

8.1. 802.11n HT40 CDD 3Tx MODE IN THE 5.6 GHz BAND

8.1.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5510	40.199	39.540	39.720
Mid	5550	40.199	39.480	39.900
High	5670	40.321	39.660	39.840

Page 56 of 125

Page 57 of 125

Agilent 23:10	0:43 Jan -	4,2016				L	Measure
2v3.9(121615), ⊖f 10 dBm 'eak	,45211, Co Atter	nducted B 110 dB		▲ Mkr:	1 40.3 -0.9	21 MHz 57 dB	Meas Of
g							Channel Powe
3.8 3.8	- marine		and the second second	when when			Occupied B
38.7 3m 'Avg	1 R 4				H ANN		AC
. S2 3 FS						waathaa fa	Multi Carrie Powe
(f): Tun /p							Power Sta CCD
enter 5.670 00 es BW 620 kH;	IØ GHz	#VBW 1.8	MHz #Sv	/eep 100 m	Span 0 15 (100)1 MHz 1 pts)	Mor 1 of

Page 58 of 125

Page 59 of 125

Agilent 23:11:	22 Jan 4,2	016				L	Measure
2v3.9(121615),4 ∍f 10 dBm 'eak	5211, Condu Atten 10	cted B dB		▲ Mk	r1 39.6 -1.10	6 MHz 00 dB	Meas Of
g) }/		Martin Company	APR SHOP AN	longituden and the state			Channel Power
3.8	1R						Occupied Bl
32.9 3m 'Avg	Ž				M	Al and had	ACF
. S2 3 FS AA							Multi Carriei Powei
(f):							Power Sta CCDF
nter 5.670 00 es BW 620 kHz	GHz	#VBW 1.8	MHz #	Sweep 100 n	Span 60 ns (1001	0 MHz pts)	More 1 of 2

Page 60 of 125

Page 61 of 125

Agilent 23:12:0	2 Jan 4,201	.6				L	Measure
Pv3.9(121615),45 ≥f 10 dBm Peak	211, Conduct Atten 10 d	ed B IB		▲ Mk	r1 39.8 1.7	84 MHz 31 dB	Meas Of
)g) 3/	Here & Aleriana	mul man	pertindential and the	WWWWWWWWWWWWWW			Channel Powe
3.8					ł.		Occupied B
32.7 3m PAvg					Ĭ.		AC
L S2 3 FS AA							Multi Carrie Powe
(f): Tun VP							Power Sta CCD
enter 5.670 00 G Res BW 620 kHz	Hz	#VBW 1.8 M	1Hz #	Sweep 100 m	Span 6 1s (100)	0 MHz 1 pts)	Mor 1 of

Page 62 of 125

8.2. 802.11a SISO MODE IN THE 5.8 GHz BAND

8.2.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 63 of 125

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
		for Power	
	(MHz)	(dBi)	(dBm)
Low	5745	5.92	30.00
153	5765	5.92	30.00
High	5825	5.92	30.00

Output Power Results

Channel	Frequency	Chain 2	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	14.92	14.92	30.00	-15.08
153	5765	14.90	14.90	30.00	-15.10
High	5825	14.97	14.97	30.00	-15.03

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 64 of 125

8.3. 802.11n HT20 SISO MODE IN THE 5.8 GHz BAND

8.3.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 65 of 125

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
		for Power	
	(MHz)	(dBi)	(dBm)
Low	5745	5.93	30.00
153	5765	5.93	30.00
High	5825	5.93	30.00

Output Power Results

Channel	Frequency	Chain 2	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	14.92	14.92	30.00	-15.08
153	5765	14.92	14.92	30.00	-15.08
High	5825	14.93	14.93	30.00	-15.07

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 66 of 125

8.4. 802.11n HT20 CDD 3Tx MODE IN THE 5.8 GHz BAND

8.4.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency		Minimum Limit
		6 dB BW	
	(MHz)	(MHz)	(MHz)
Low	5745	17.67	0.5
Middle	5785	17.75	0.5
High	5825	17.58	0.5

Page 67 of 125

6 dB BANDWIDTH

Page 68 of 125

Page 69 of 125

8.4.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
7.25	6.22	5.92	6.50

RESULTS

Page 70 of 125

Antenna Gain and Limit

Channel	Frequency	Directional	Power	
		Gain	Limit	
	(MHz)	(dBi)	(dBm)	
Low	5745	6.50	29.50	
Mid	5785	6.50	29.50	
High	5825	6.50	29.50	

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	12.60	11.80	12.70	17.16	29.50	-12.34
Mid	5785	14.30	14.12	14.90	19.22	29.50	-10.28
High	5825	14.49	14.15	14.91	19.30	29.50	-10.20

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 71 of 125

8.4.3. Maximum Power Spectral Density (PSD)

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
7.25	6.22	5.92	11.25

Page 72 of 125
RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	11.25	24.75
Mid	5785	11.25	24.75
High	5825	11.25	24.75

Duty Cycle CF (dB) 0.00

Included in Calculations of Corr'd PSD

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	2.65	2.70	3.34	7.68	24.75	-17.07
Mid	5785	2.39	2.60	3.45	7.61	24.75	-17.14
High	5825	2.59	2.31	3.36	7.55	24.75	-17.20

Page 73 of 125

Page 74 of 125

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4701J 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 75 of 125

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4701J 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 76 of 125

Page 77 of 125

Page 78 of 125

8.5. 802.11n HT40 SISO MODE IN THE 5.8 GHz BAND

8.5.1. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 79 of 125

RESULTS

Antenna Gain and Limit

Channel	Frequency	cy Directional Powe	
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5755	5.92	30.00
High	5795	5.92	30.00

Output Power Results

Channel	Frequency	Chain 2	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	12.41	12.41	30.00	-17.59

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 80 of 125

8.6. 802.11n HT40 CDD 3Tx MODE IN THE 5.8 GHz BAND

8.6.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency		Minimum Limit
		6 dB BW	
	(MHz)	(MHz)	(MHz)
Low	5755	35.60	0.5
High	5795	36.40	0.5

Page 81 of 125

6 dB BANDWIDTH

Page 82 of 125

8.6.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Uncorrelated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
7.25	6.22	5.92	6.50

Page 83 of 125

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5755	6.50	29.50

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	10.50	10.40	10.60	15.27	29.50	-14.23
High	5795	14.55	14.33	14.90	19.37	29.50	-10.13

Note: the power readings above were measured with gated method, and the measurement was taken only during the ON time. No duty cycle correction was necessary.

Page 84 of 125

8.6.3. Maximum Power Spectral Density (PSD)

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Chain 2	Correlated Chains
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
7.25	6.22	5.92	11.25

Page 85 of 125

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	(MHz) 5755	(dBi) 11.25	(dBm) 24.75

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd PSD
--------------------	------	--

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	0.90	0.82	1.06	5.70	24.75	-19.05
Hiah	5795	0.78	0.87	1.13	5.70	24.75	-19.05

Page 86 of 125

Page 87 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 88 of 125

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4701J 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 89 of 125

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4701J 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

Page 90 of 125

9.2. TX ABOVE 1 GHz 802.11a MODE SISO IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, CH149)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
6	5.665	7.72	RMS	34.9	7.3	49.92	54	-4.08	-	-	178	394	Н
2	5.714	22.25	Pk	35	7.3	64.55	-	-	74	-9.45	178	394	Н
1	5.715	18.84	Pk	35	7.3	61.14	-	-	74	-12.86	178	394	Н
5	5.715	7.04	RMS	35	7.3	49.34	54	-4.66	-	-	178	394	Н
4	5.724	35.29	Pk	35	7.4	77.69	-	-	78.2	51	178	394	Н
3	5.725	31.51	Pk	35	7.4	73.91	-	-	78.2	-4.29	178	394	Н
7	5.725	16.96	RMS	35	7.4	59.36	-	-	-	-	178	394	Н
8	5.725	17.2	RMS	35	7.4	59.6	-	-	-	-	178	394	Н

Pk - Peak detector RMS - RMS detection

Page 91 of 125

RESTRICTED BANDEDGE (LOW CHANNEL, CH153)

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.683	19.74	Pk	34.9	7.4	62.04	-	-	74	-11.96	175	365	Н
8	5.683	7.7	RMS	34.9	7.4	50	54	-4	-	-	175	365	Н
1	5.715	16.97	Pk	35	7.3	59.27	-	-	74	-14.73	175	365	Н
5	5.715	6.57	RMS	35	7.3	48.87	54	-5.13	-	-	175	365	Н
3	5.725	19.81	Pk	35	7.4	62.21	-	-	78.2	-15.99	175	365	Н

Pk - Peak detector RMS - RMS detection

Page 92 of 125

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	Correcte d Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	27.49	Pk	35.4	7.5	70.39	-	-	78.2	-7.81	179	390	Н
4	5.852	30.33	Pk	35.4	7.4	73.13	-	-	78.2	-5.07	179	390	Н
1	5.86	17.03	Pk	35.4	7.5	59.93	-	-	74	-14.07	179	390	Н
5	5.86	6.03	RMS	35.4	7.5	48.93	54	-5.07	-	-	179	390	Н
2	5.861	19.52	Pk	35.4	7.5	62.42	-	-	74	-11.58	179	390	Н
6	5.86	6.69	RMS	35.4	7.5	49.59	54	-4.41	-	-	179	390	Н

Pk - Peak detector

RMS - RMS detection

Page 93 of 125

9.3. TX ABOVE 1 GHz 802.11n HT20 MODE SISO IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, CH149)

Trace Markers

Marker	Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.715	19.92	Pk	35	7.3	62.22	-	-	74	-11.78	173	398	Н
6	5.66	7.05	RMS	34.9	7.3	49.25	54	-4.75	-	-	173	398	Н
2	5.715	20.68	Pk	35	7.3	62.98	-	-	74	-11.02	173	398	Н
5	5.715	6.52	RMS	35	7.3	48.82	54	-5.18	-	-	173	398	Н
4	5.724	34.96	Pk	35	7.4	77.36	-	-	78.2	84	173	398	Н
3	5.725	32.31	Pk	35	7.4	74.71	-	-	78.2	-3.49	173	398	Н

Pk - Peak detector RMS - RMS detection

Page 94 of 125

RESTRICTED BANDEDGE (LOW CHANNEL, CH153)

Trace Markers

Marker	Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.715	15.91	Pk	35	7.3	58.21	-	-	74	-15.79	190	402	Н
6	5.647	6.88	RMS	34.8	7.3	48.98	54	-5.02	-	-	190	402	Н
2	5.715	19.27	Pk	35	7.3	61.57	-	-	74	-12.43	190	402	Н
5	5.715	5.81	RMS	35	7.3	48.11	54	-5.89	-	-	190	402	Н
3	5.725	18.44	Pk	35	7.4	60.84	-	-	78.2	-17.36	190	402	H

Pk - Peak detector RMS - RMS detection

Page 95 of 125

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Bypass (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	5.85	27.81	Pk	35.4	7.5	70.71	-	-	78.2	-7.49	184	372	Н
2	5.861	19.17	Pk	35.4	7.5	62.07	-	-	74	-11.93	184	372	Н
6	5.86	5.7	RMS	35.4	7.5	48.6	54	-5.4	-	-	184	372	Н

Pk - Peak detector RMS - RMS detection

Page 96 of 125

9.4. TX ABOVE 1 GHz 802.11n HT20 MODE 3Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, CH149)

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Bypass (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.715	20.38	Pk	34.7	7.8	0	62.88	-	-	74	-11.12	317	384	Н
6	5.715	7.03	RMS	34.7	7.8	0	49.53	54	-4.47	-	-	317	384	Н
4	5.725	34.55	Pk	34.7	7.8	0	77.05	-		78.2	-1.15	317	384	Н

Pk - Peak detector RMS - RMS detection

Page 97 of 125

RESTRICTED BANDEDGE (LOW CHANNEL, CH153)

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Bypass (dB)	DC Corr (dB)	Correcte d Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.627	19.93	Pk	34.5	7.8	0	62.23	-	-	74	-11.77	317	361	Н
6	5.658	7.67	RMS	34.6	7.7	0	49.97	54	-4.03	-	-	317	361	Н
1	5.715	16.93	Pk	34.7	7.8	0	59.43	-	-	74	-14.57	317	361	Н
5	5.715	6.01	RMS	34.7	7.8	0	48.51	54	-5.49	-	-	317	361	Н
3	5.725	20.98	Pk	34.7	7.8	0	63.48	-	-	78.2	-14.72	317	361	Н
4	5.725	24.15	Pk	34.7	7.8	0	66.65	-	-	78.2	-11.55	317	361	Н

Pk - Peak detector RMS - RMS detection

Page 98 of 125

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Bypass (dB)	DC Corr (dB)	Correcte d Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	26.5	Pk	35.1	7.9	0	69.5	-	-	78.2	-8.7	159	384	Н
4	5.853	32.91	Pk	35.1	7.9	0	75.91	-	-	78.2	-2.29	159	384	Н
1	5.86	17.23	Pk	35.1	7.9	0	60.23	-	-	74	-13.77	159	384	Н
5	5.86	6.68	RMS	35.1	7.9	0	49.68	54	-4.32	-	-	159	384	Н
2	5.863	23.58	Pk	35.1	7.9	0	66.58	-	-	74	-7.42	159	384	H
6	5.863	8.66	RMS	35.1	7.9	0	51.66	54	-2.34	-	-	159	384	H

Pk - Peak detector RMS - RMS detection

Page 99 of 125

HARMONICS AND SPURIOUS EMISSIONS

Page 100 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

DATA

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.095	51.74	PK-U	27.6	-35.6	43.74	-	-	74	-30.26	-	-	84	146	Н
	* 1.096	32.64	ADR	27.6	-35.6	24.64	54	-29.64	-	-	-	-	84	146	Н
2	* 3.794	42.15	PK-U	33.3	-32.9	42.55	-	-	74	-31.45	-	-	356	383	Н
	* 3.792	30.42	ADR	33.3	-32.9	30.82	54	-23.18	-	-	-	-	356	383	Н
6	* 5.458	48.54	PK-U	34.5	-20.1	62.94	-	-	74	-11.06	-	-	217	103	V
	* 5.459	36.26	ADR	34.5	-20.3	50.46	54	-30.16	-	-	-	-	217	103	V
4	2.069	45.31	PK-U	32	-34.7	42.61	-	-	-	-	68.2	-25.59	9	217	V
5	2.394	51.29	PK-U	32	-34.5	48.79	-	-	-	-	68.2	-19.41	9	200	V
3	5.858	43.33	PK-U	35.4	-20.7	58.03	-	-	-	-	68.2	-10.17	7	373	Н

* - indicates frequency in CFR15.205 Restricted Band PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 101 of 125

Page 102 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.089	55.03	PK-U	27.6	-35.6	47.03	-	-	74	-26.97	-	-	90	309	Н
	* 1.089	32.75	ADR	27.6	-35.6	24.75	54	-29.25	-	-	-	-	90	309	Н
5	* 2.703	43.14	PK-U	32.6	-33.9	41.84	-	-	74	-32.16	-	-	194	112	V
	* 2.702	30.7	ADR	32.6	-33.9	29.4	54	-24.6	-	-	-	-	194	112	V
6	* 5.425	52.41	PK-U	34.5	-20.2	66.71	-	-	74	-7.29	-	-	120	267	V
	* 5.43	39.62	ADR	34.5	-20.4	53.72	54	28	-	-	-	-	120	267	V
4	2.397	44.03	PK-U	32	-34.5	41.53	-	-	-	-	68.2	-26.67	90	201	V
2	3.175	41.89	PK-U	32.4	-33.2	41.09	-	-	-	-	68.2	-27.11	90	203	H
3	5.461	48.9	PK-U	34.5	-20.5	62.9	-	-	-	-	68.2	-5.3	348	191	Н

* - indicates frequency in CFR15.205 Restricted Band PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 103 of 125

Page 104 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

DATA

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.044	55.41	PK-U	27.4	-35.8	47.01	-	-	74	-26.99	-	-	86	319	Н
	* 1.041	33.48	ADR	27.4	-35.8	25.08	54	-28.92	-	-	-	-	86	319	Н
2	* 1.219	48.64	PK-U	28.7	-35.8	41.54	-	-	74	-32.46	-	-	56	247	Н
	* 1.22	37.27	ADR	28.7	-35.8	30.17	54	-23.83	-	-	-	-	56	247	Н
4	* 1.279	46.4	PK-U	29.2	-35.8	39.8	-	-	74	-34.2	-	-	28	200	V
	* 1.278	31.9	ADR	29.2	-35.8	25.3	54	-28.7	-	-	-	-	28	200	V
5	2.396	45.35	PK-U	32	-34.5	42.85	-	-	-	-	68.2	-25.35	28	200	V
6	5.487	47.59	PK-U	34.5	-20.5	61.59	-	-	-	-	68.2	-6.61	28	102	V
3	5.552	48.43	PK-U	34.6	-20.9	62.13	-	-	-	-	68.2	-6.07	28	200	H

* - indicates frequency in CFR15.205 Restricted Band PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

Page 105 of 125

9.5. TX ABOVE 1 GHz 802.11n HT40 MODE SISO IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Bypass (dB)	Correcte d Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.714	27.04	Pk	34.7	7.8	69.54	-	-	74	-4.46	118	371	Н
4	5.714	27.04	Pk	34.7	7.8	69.54	-	-	74	-4.46	118	371	Н
1	5.715	24.16	Pk	34.7	7.8	66.66	-	-	74	-7.34	118	371	Н
5	5.715	10.74	RMS	34.7	7.8	53.24	54	76	-	-	118	371	Н
6	5.715	11.25	RMS	34.7	7.8	53.75	54	25	-	-	118	371	Н
3	5.725	27.64	Pk	34.7	7.8	70.14	-	-	78.2	-8.06	118	371	Н

Pk - Peak detector RMS - RMS detection

Page 106 of 125

9.6. TX ABOVE 1 GHz 802.11n HT40 MODE 3Tx IN THE 5.8 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBm)	Det	AF T136 (dB/m)	Bypass (dB)	Conversi on Factor (dB)	Correcte d Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.713	-81.32	Pk	34.7	7.8	11.8	-27.02	-27	02	336	371	Н
1	5.725	-86.8	Pk	34.7	7.8	11.8	-32.5	-17	-15.5	336	371	Н

Pk - Peak detector

Page 107 of 125

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers

Marker	Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Bypass (dB)	Correcte d Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	5.85	19.95	Pk	35.1	7.9	62.95	-	-	78.2	-15.25	157	388	Н
1	5.86	17.23	Pk	35.1	7.9	60.23	-	-	74	-13.77	157	388	Н
5	5.86	6.14	RMS	35.1	7.9	49.14	54	-4.86	-	-	157	388	Н
2	5.863	23.35	Pk	35.1	7.9	66.35	-	-	74	-7.65	157	388	Н
4	5.863	23.35	Pk	35.1	7.9	66.35	-	-	74	-7.65	157	388	Н
6	5.863	7.66	RMS	35.1	7.9	50.66	54	-3.34	-	-	157	388	H

Pk - Peak detector RMS - RMS detection

Page 108 of 125
HARMONICS AND SPURIOUS EMISSIONS

Page 109 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

DATA

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.047	53.94	PK-U	27.4	-35.7	45.64	-	-	74	-28.36	-	-	98	289	Н
	* 1.048	32.65	ADR	27.5	-35.7	24.45	54	-29.55	-	-	-	-	98	289	Н
2	* 2.39	50.29	PK-U	32	-34.4	47.89	-	-	74	-26.11	-	-	98	358	Н
	* 2.39	30.83	ADR	32	-34.4	28.43	54	-25.57	-	-	-	-	98	358	Н
5	* 3.986	47.46	PK-U	33.3	-31.7	49.06	-	-	74	-24.94	-	-	80	297	V
	* 3.986	30.53	ADR	33.3	-31.7	32.13	54	-21.87	-	-	-	-	80	297	V
3	* 5.41	47.47	PK-U	34.5	-19.8	62.17	-	-	74	-11.83	-	-	19	175	Н
	* 5.409	35.38	ADR	34.5	-20	49.88	54	-4.12	-	-	-	-	19	175	Н
6	* 5.421	50.17	PK-U	34.5	-19.9	64.77	-	-	74	-9.23	-	-	110	101	V
	* 5.418	37.81	ADR	34.5	-20.3	52.01	54	-1.99	-	-	-	-	110	101	V
4	2.118	44.79	PK-U	31.7	-35	41.49	-	-	-	-	68.2	-26.71	98	200	V

* - indicates frequency in CFR15.205 Restricted Band Pk - Peak detector Radiated Emissions

Page 110 of 125

Page 111 of 125

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

DATA

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.014	51.98	PK-U	27.3	-36	43.28	-	-	74	-30.72	-	-	113	357	Н
	* 1.013	31.55	ADR	27.3	-36	22.85	54	-31.15	-	-	-	-	113	357	Н
2	* 1.22	48.1	PK-U	28.7	-35.8	41	-	-	74	-33	-	-	26	345	Н
	* 1.221	35.6	ADR	28.7	-35.8	28.5	54	-25.5	-	-	-	-	26	345	Н
3	* 1.385	45.34	PK-U	29.4	-34.8	39.94	-	-	74	-34.06	-	-	16	241	Н
	* 1.385	33.16	ADR	29.4	-34.8	27.76	54	-26.24	-	-	-	-	16	241	Н
4	* 1.159	49.58	PK-U	28.1	-35.4	42.28	-	-	74	-31.72	-	-	137	243	V
	* 1.16	32.58	ADR	28.1	-35.4	25.28	54	-28.72	-	-	-	-	137	243	V
5	2.395	50.45	PK-U	32	-34.5	47.95	-	-	-	-	68.2	-20.25	173	182	V
6	5.469	53.43	PK-U	34.5	-20.2	67.73	-	-	-	-	68.2	47	126	295	V
7	5.522	50.29	PK-U	34.6	-20.5	64.39	-	-	-	-	68.2	-3.81	14	400	Н

* - indicates frequency in CFR15.205 Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average

Page 112 of 125

9.7. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T477 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	* 123.415	34.93	Pk	17.8	-30.4	22.33	43.52	-21.19	0-360	199	Н
4	* 131.235	33.09	Pk	17.6	-30.3	20.39	43.52	-23.13	0-360	101	V
2	49.21	48.33	Pk	12.1	-31	29.43	40	-10.57	0-360	101	V
1	102.845	49.87	Pk	15	-30.5	34.37	43.52	-9.15	0-360	199	Н
5	143.56	34.07	Pk	16.7	-30.3	20.47	43.52	-23.05	0-360	101	V
6	763.6	35.47	Pk	24.8	-28.3	31.97	46.02	-14.05	0-360	199	V

* - indicates frequency in CFR15.205Restricted Band

Pk - Peak detector

Page 113 of 125

9.8. WORST-CASE ABOVE 18GHz

SPURIOUS EMISSIONS 18 – 26GHz

15 UL EMC	24 Nov 2015 11:21:51
	RF Emissions
J5	Order Number:15U22132 Client:Broadcom Configuration:EUT Mode:18-266Hz worst cose Tested bu: Shulieu Nauwen
15	
75 Peak Limit (dBuV/m)	
j5	
5 Avg Limit (dBuV/m)	
45	
1	2
15	and the stand
25	
5	
18	26
	Frequency (GHz)
Ronge (BHz) RBW/VBW Ref/Attn Det/4 1:18-25 1H(-3dB)/3M 97/8 PEAK/-	fivo Tup Sweep Pts \$5ups/Node Label Ronge (Gfz) RBU/NBU Ref/Attn Det/Avg Tup Sweep Pts #Sups/Node Label - 1690wsec(Auta) 1282 HNDH Horizontal
L	
18-26GHz.TST 30915 14 Aug 2014	Rev 9.5 16 N

Page 114 of 125

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	T89 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	18.406	41.03	Pk	32.4	-25.1	-9.5	38.83	54	-15.16	74	-35.16
2	20.425	41.93	Pk	32.6	-25.2	-9.5	39.83	54	-14.16	74	-34.16
3	23.962	43.73	Pk	33.3	-24.2	-9.5	43.33	54	-10.66	74	-30.66
4	18.853	41.37	Pk	32.4	-25.1	-9.5	39.16	54	-14.83	74	-34.83
5	22.35	41.53	Pk	33	-24.7	-9.5	40.33	54	-13.66	74	-33.66
6	25.134	44.4	Pk	33.8	-24.7	-9.5	44	54	-10	74	-30
7	25.434	44	Pk	33.8	-24.3	-9.5	44	54	-10	74	-30

Pk - Peak detector

Page 115 of 125

SPURIOUS EMISSIONS 26 – 40GHz

Limit (dBuU/m)	F Emissions rder Number: (502132 lient:Broadcom onfiguration:EUT ode:26-40642 worst cose ested by / SN:Lieu Nguyen 2 -2 -2 -3 -2 -2
Limit (dBuU/m)	rder Number: 15U2132 Ient: Braadoon onfiguration: EUT ode: 26-496Hz worst case seted by / 5N: Lieu Nguyen
ak Limit (dBuU/m) Limit (dBuU/m)	2 Read the many the harmony the main of the stand the second stand the second stand the second stand stand the second stand st
Limit (dBuU/m)	2 Road a complete and a complete a complete a complete
Limit (dBuV/m)	2 Read a constrained by marking the mark of the second s
Limit (dBuU/m)	Beauty and a stand of the second stand of the
Limit (dBuV/m)	Beauty has many the many low many har the start of the st
Rad me subject on the subject of the	Beach have no well for any for the form of the former of t
An an instruction of the second of the secon	-2- Reallingeneral Harrowski Martinger and Martinger and State and States and Harrowski Andrewski and States Andrew
An in such a support of the support of the second of the s	Brook hay many At month of the month of the second state of the se
normality accel for white a collection and accelerate for the second s	
	40
Frequency (GHz)	10
ge (GHz) RBW/UBW Ref/Attn Det/Avg Typ Sweep Pts #Swps/Made Label Range (GHt	z) RBW/VBW Ref/Attn Det/Avg Typ Sweep Pts #Swps/Mode Label
8 1M(-3dB)/3M 97/8 PERK/ - 282neec(Auto) 1883 MAXH Horizontol	
Hz.TST 30915 14 Aug 2014	Rev 9.5 16 M

Page 116 of 125

ASUL EMC									24 No	v 2015	11:32:54
						RF Er	nission	5			
95						Order I Client Config Mode:21	Number:15U :Broadcom uration:EU 5-40GHz wo	22132 T rst case			
85						lested	by / SN:L	ieu Nguyen			
75 Peak Li	nit (dBuV/m)										
55											
Avg Limi	t (dBuV/m)										
15											6
went day man	1 million more days and	western when we where	www.Brower	adalowy philosophilosophil	Amundurwite	where a stand from the day and the second	to have no a like no a the star	nd-AND			
35	hand all and a second second	en den verbener bene	www.en.ww	alstronget windowisedi	เพ็งแลงสมจากเหล	n frank an fan fan fan fan fan fan fan fan fan	trativeren bezenten				
25	l/vbal/adda.comedda.co.com	tun diri di	weiten	alydrograf ^{enn} deferfyrdd		ubuyan shahiya da kaka bayan da	enterner, vilder advitered for				
25	lvhd almanned kyrana	tan alpha for the second s	~~. [#] ~~~	phylosopel ^{ann} olycolycolycoly	Anna an	hanna sherika kurin kurin da	(*********){{~*******				
25	(yhd/naphurineidhayusina)	1	,	ahthay d ^{on} ing to the second s		sheen shedan kadan kasar di	(*************************************				
25 15 26	(yhd/naphusronoddayaustrad	8	wethow	abyla	Frequence	unarialination and an and a second	(*************************************				40
25	RSW/UBU Ref/Attn	Det/Ang Typ	Sweep	phyl _{esep} d ^a nderdrydd Pts # Sups/Mode	Frequency	ц _{ина} ници, мар мар мар у (GHz) 2.25-60 (Яtz) (М	RBM/VBM Ref. -3460/281 97.	AddAdd Attn Det/Avg Typ 76 FEW/ -	Sweep 282weer (Huto)	Pts 4Saps/Node 1803 W004	
8000 (Btz) 26-406Hz.TS1	RBW/BW Ref/Attn 38915 14 Aug 26	Det/Avg Type	Sweep	Pts #Sups/Made	Frequency	<u>у</u> (GHz) 2:28-е ⁶ (Яtz) IN(Phinosoft (1997)	/Ath Det/Rog Typ /8 PEsk/ - *	Swep 282asec (Auto)	Pts (Supo/Node 1683 Hatti	40 Label Vertical Rev 9.5 16 M
25 26 Renge (Hz) 26-406Hz.TST	RBW/BN Ref/ettn 38915 14 Aug 26	Det/Avg Typ	Sweep	phyl _{and} Mederel H	Frequency Later	y (GHz) 2:25-49 (Яtz) IN(Peterosystylysetter RESU/USU Ref -3:481/(31 97	/Attn Det/Rog Typ /8 PEak/ -	Sweep 282usee (Ruto)	Pta 1Saps/Node 1883 Walit	40 Label Vertical Rev 9.5 16 M
Range (9Hz)	RBWVBU Ref/Attn 38915 14 Aug 26	Det/Avg Typ	Sweep	ybyły wydrafodd a ddana ywana yw Pras tisypani kata ywana yw Pras tisypani kata ywana yw	Frequency Label	y (GHz) 2:25-45 (9tz) IN	Pharousyl June 1994	/Attn Det/Avg Typ /Rttn Det/Avg Typ	Swep 202xeec (Auto)	Рта 45ар а/Лоса 1983 Жин	40 Label Vertical Rev 9.5 16 M

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	T90 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	26.474	46	Pk	35.5	-30.5	-9.5	41.5	54	-12.5	74	-32.5
2	33.311	48.13	Pk	37	-32.8	-9.5	42.83	54	-11.1	74	-31.16
3	38.407	50.5	Pk	37.1	-32.1	-9.5	46	54	-8	74	-28
4	29.776	47	Pk	36.1	-32.6	-9.5	41	54	-13	74	-33
5	31.4	47.87	Pk	36.1	-32.8	-9.5	41.66	54	-12.33	74	-32.33
6	38.835	49.7	Pk	36.8	-32	-9.5	45	54	-9	74	-29

Pk - Peak detector

Page 117 of 125

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 "	56 to 46 "			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

RESULTS

Page 118 of 125

1

<u>6 WORST EMISSIONS</u>

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)														
Freq.		Reading		Closs	Limit	EN_B	Marg	Remark							
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2						
0.17	58.99		44.66	0.00	64.77	54.77	-5.78	-10.11	L1						
0.23	53.31		40.82	0.00	62.31	52.31	-9.00	-11.49	L1						
0.29	49.37		39.80	0.00	60.50	50.50	-11.13	-10.70	L1						
0.17	58.41		44.41	0.00	64.77	54.77	-6.36	-10.36	L2						
0.23	52.82		41.82	0.00	62.38	52.38	-9.56	-10.56	L2						
0.29	49.57		41.22	0.00	60.50	50.50	-10.93	-9.28	L2						
6 Worst I	 Data 														

Page 119 of 125

LINE 1 RESULTS

Page 120 of 125

LINE 2 RESULTS

Page 121 of 125