

FCC OET BULLETIN 65 SUPPLEMENT C Edition 01-01 IEEE STD 1528: 2003 IC RSS-102 ISSUE 4, March 2010 RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011

Class II Permissive Change

SAR EVALUATION REPORT

For

802.11agn WLAN PCI-E Minicard (Tested inside of HP PC, HSTNN-Q42C)

MODEL: BCM943228HM4L FCC ID: QDS-BRCM1054 IC: 4324A- BRCM1054

REPORT NUMBER: 11U13694-1B

ISSUE DATE: March 3, 2011

Prepared for

BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

DATE: March 3, 2011 IC: 4324A-BRCM1054

Revision History

Rev.	Issue Date	Revisions	Revised By
	February 28, 2011	Initial Issue	
Α	February 28, 2011	Updated report includes IC supplementary procedure.	Sunny Shih
		Changed to "RSS-102 Issue 4, March 2010, and RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011"	
В	March 3, 2011	Corrected the reference standards	Devin Chang

TABLE OF CONTENTS

1. AT	TTESTATION OF TEST RESULTS	4
2. TE	EST METHODOLOGY	6
3. FA	ACILITIES AND ACCREDITATION	6
4. C	ALIBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	8
5. EC	QUIPMENT UNDER TEST	10
6. SY	YSTEM SPECIFICATIONS	11
7. CC	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	12
8. LI	QUID PARAMETERS	13
8.1.	LIQUID CHECK RESULTS	14
9. SY	YSTEM VERIFICATION	17
9.1.	SYSTEM CHECK RESULTS	18
10.	SAR MEASUREMENT PROCEDURES	29
11.	RF OUTPUT POWER VERIFICATION	30
11.1.	. RF OUTPUT POWER FOR 2.4 GHZ BAND	30
11.2.	RF OUTPUT POWER FOR 5 GHZ BANDS	31
12.	SUMMARY OF SAR TEST RESULTS	33
12.1.	. SAR TEST RESULT FOR 2.4 GHZ	33
12.2.	SAR TEST RESULTS FOR 5 GHZ BANDS	36
13.	ATTACHMENTS	46
14.	ANTENNA LOCATIONS AND SEPARATION DISTANCES	47
14.1.	. ANTENNA-TO-USERS AND NEARBY PERSONS	47
14.2.	ANTENNA-TO-ANTENNA	48
15.	TEST SETUP PHOTOS	49
16	FIIT PHOTOS	51

1. ATTESTATION OF TEST RESULTS

Applicant name:	BROADCOM CORPORATION 190 MATHILDA PLACE						
	SUNNYVALE, CA 940						
EUT description:	802.11agn WLAN PCI	•		NN-Q42C)			
Model number:	BCM943228HM4L, Se	erial number: CNF930	2T8X				
Device category:	Portable						
Exposure category:	General Population/Ur	ncontrolled Exposure					
Date tested:	February 22 - 24, 2011	1					
FCC / IC rule porte	Frog rongo (MHz)	The Highest	SAR (W/kg)	Limit (\M//kg)			
FCC / IC rule parts	Freq. range (MHz)	1g	10g	Limit (W/kg)			
15.247 / RSS-102	2412 - 2462	0.316	0.149				
	5150 - 5250	0.100	0.033	10 - 16			
15.407 / RSS-102	5250 - 5350	0.254	0.085	1g = 1.6 10g = 2.0			
	5500 – 5700	0.439	0.141	10g – 2.0			
15.247 / RSS-102	5725 – 5850	0.419	0.135				
	Applicable Sta	andards		Test Results			
FCC OET Bulletin 65 S IEEE STD 1528:2003 RSS-102 Issue 4, Mark January 1, 2011 KDB 248227 SAR KDB 616217 D01 KDB 447498 D01 I D03	Pass						
Radiocommunications Standard 2007 (No. 1 NZS 2772.1:1999 Rad GHz incl Amendment I	Pass						

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Tested By:

Suray Shih

Down Chang

REPORT NO: 11U13694-1A

DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

Sunny Shih **Devin Chang Engineering Team Leader** Associate RF Engineer Compliance Certification Services (UL CCS) Compliance Certification Services (UL CCS) REPORT NO: 11U13694-1A FCC ID: QDS-BRCM1054

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528:2003, RSS-102 Issue 4, March 2010, and RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011, and the following specific FCC Test Procedures.

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters

Schedule 2 of Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2007 (No. 1), and NZS 2772.1:1999 Radiofrequency fields - Maximum exposure levels - 3 kHz to 300 GHz incl Amendment No. 1, 1999.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

DATE: March 3, 2011

IC: 4324A-BRCM1054

DATE: March 3, 2011

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturar	Manufacturer Type/Medal		Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	ММ	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Dielectronic Probe kit	HP	85070C	N/A	N/A		N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
E-Field Probe	SPEAG	EX3DV4	3749	11	13	2011	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Data Acquisition Electronics	SPEAG	DAE3	427	7	21	2011	
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012	
System Validation Dipole	SPEAG	*D5GHzV2	1075	9	3	2011	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A	
Simulating Liquid	SPEAG	M2450	N/A	Within 24 hrs of first test		rs of first test	
Simulating Liquid	SPAEG	M5800 (5-6GHz)	N/A	Withir	Within 24 hrs of first test		

Note:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

^{*:} Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

4.2. **MEASUREMENT UNCERTAINTY**

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Wedsdrement dhecitality for 500 Will to 5 Griz averaged over 1 grain								
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %			
Measurement System								
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50			
Axial Isotropy		Rectangular	1.732	0.7071	0.47			
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94			
Boundary Effect	0.90	Rectangular	1.732	1	0.52			
Probe Linearity		Rectangular	1.732	1	1.99			
System Detection Limits	1.00	Rectangular	1.732	1	0.58			
Readout Electronics	0.30	Normal	1	1	0.30			
Response Time	0.80	Rectangular	1.732	1	0.46			
Integration Time	2.60	Rectangular	1.732	1	1.50			
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73			
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73			
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23			
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67			
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58			
Test Sample Related								
Test Sample Positioning	2.90	Normal	1	1	2.90			
Device Holder Uncertainty	3.60		1	1	3.60			
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89			
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31			
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85			
Liquid Conductivity - measurement	1.54	Normal	1	0.64	0.99			
Liquid Permittivity - deviation from target		Rectangular	1.732	0.6	1.73			
Liquid Permittivity - measurement uncertainty	-2.79		1	0.6	-1.67			
Combined Standard Uncertainty Uc(y) =								
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 19.28 %								
Expanded Uncertainty U, Cove	rage Facto	or = 2, > 95 % Confi	dence =	1.53	dB			
24a COUL averaged even 4 mans								

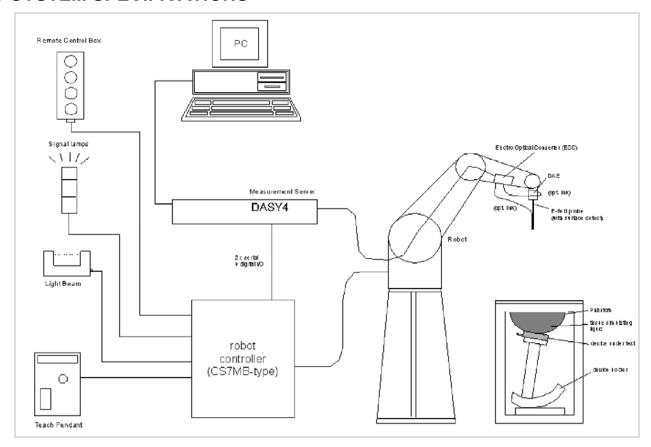
3 to 6 GHz averaged over 1 gram								
Component	error, %	Distribution	Divisor	Sensitivity	U (Xi), %			
Measurement System								
Probe Calibration (k=1) @ 5GHz	6.55		1	1	6.55			
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47			
Hemispherical Isotropy		Rectangular	1.732	0.7071	0.94			
Boundary Effect	0.90	Rectangular	1.732	1	0.52			
Probe Linearity	3.45	Rectangular	1.732	1	1.99			
System Detection Limits	1.00	Rectangular	1.732	1	0.58			
Readout Electronics	1.00	Normal	1	1	1.00			
Response Time	0.80	Rectangular	1.732	1	0.46			
Integration Time		Rectangular	1.732	1	1.50			
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73			
RF Ambient Conditions - Reflections		Rectangular	1.732	1	1.73			
Probe Positioner Mechanical Tolerance		Rectangular	1.732	1	0.23			
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67			
Extrapolation, Interpolation and Integration	3.90	Rectangular	1.732	1	2.25			
Test Sample Related								
Test Sample Positioning	1.10	Normal	1	1	1.10			
Device Holder Uncertainty	3.60	Normal	1	1	3.60			
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89			
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness)		Rectangular	1.732	1	2.31			
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85			
Liquid Conductivity - measurement	2.49		1	0.64	1.59			
Liquid Permittivity - deviation from target	10.00	Rectangular	1.732	0.6	3.46			
Liquid Permittivity - measurement uncertainty	4.55		1	0.6	2.73			
		ed Standard L		ty Uc(y), %:	10.92			
Expanded Uncertainty U, Coverage Fact				21.40	%			
Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 1.68 dB								

Measurement uncertainty for 300 MHz to 3 GHz averaged over 10 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %		
Measurement System				,	. ,		
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50		
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47		
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94		
Boundary Effect	0.90	Rectangular	1.732	1	0.52		
Probe Linearity	3.45	Rectangular	1.732	1	1.99		
System Detection Limits	1.00	Rectangular	1.732	1	0.58		
Readout Electronics	0.30	Normal	1	1	0.30		
Response Time	0.80	Rectangular	1.732	1	0.46		
Integration Time		Rectangular	1.732	1	1.50		
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73		
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73		
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23		
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67		
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58		
Test Sample Related							
Test Sample Positioning	2.90	Normal	1	1	2.90		
Device Holder Uncertainty	3.60	Normal	1	1	3.60		
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89		
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31		
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.43	1.24		
Liquid Conductivity - measurement	1.54	Normal	1	0.43	0.66		
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.49	1.41		
Liquid Permittivity - measurement uncertainty	-2.79		1	0.49	-1.37		
Combined Standard Uncertainty Uc(y), % =							
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 18.82 %							
Expanded Uncertainty U, Covera	age Factor	= 2, > 95 % Confid	dence =	1.50	dB		

3 to 6 GHz averaged over 10 gram

Measurement System	3 to 6 GHz averaged over 10 gram						
Probe Calibration (k=1) @ 5GHz	Component	error, %	Distribution	Divisor	Sensitivity	U (Xi), %	
Axial Isotropy	Measurement System						
Hemispherical Isotropy 6.90 Rectangular 1.732 0.7071 2.8	Probe Calibration (k=1) @ 5GHz	6.55	Normal	1	1	6.55	
Boundary Effect	Axial Isotropy	4.03	Rectangular	1.732	0.7071	1.64	
Probe Linearity 9.20 Rectangular 1.732 1 5.3	Hemispherical Isotropy				0.7071	2.82	
System Detection Limits	Boundary Effect	1.00	Rectangular	1.732	1	0.58	
Readout Electronics	Probe Linearity	9.20	Rectangular	1.732	1	5.31	
Response Time 0.80 Rectangular 1.732 1 0.4 Integration Time 2.60 Rectangular 1.732 1 1.5 RF Ambient Conditions - Noise 3.00 Rectangular 1.732 1 1.7 RF Ambient Conditions - Reflections 3.00 Rectangular 1.732 1 1.7 RF Ambient Conditions - Reflections 3.00 Rectangular 1.732 1 1.7 Probe Positioner Mechanical Tolerance 0.40 Rectangular 1.732 1 0.2 Probe Positioning with respect to Phantom 2.90 Rectangular 1.732 1 1.6 Extrapolation, Interpolation and Integration 3.90 Rectangular 1.732 1 2.2 Test Sample Related	System Detection Limits	1.00	Rectangular	1.732	1	0.58	
Integration Time	Readout Electronics	1.00	Normal	1	1	1.00	
RF Ambient Conditions - Noise 3.00 Rectangular 1.732 1 1.7 RF Ambient Conditions - Reflections 3.00 Rectangular 1.732 1 1.7 1.7 Probe Positioner Mechanical Tolerance 0.40 Rectangular 1.732 1 0.2 Probe Positioning with respect to Phantom 2.90 Rectangular 1.732 1 1.6 Extrapolation, Interpolation and Integration 3.90 Rectangular 1.732 1 2.2 Test Sample Related	Response Time			1.732	1	0.46	
1.732 1 1.732 1.73	Integration Time			1.732	1	1.50	
Probe Positioner Mechanical Tolerance 0.40 Rectangular 1.732 1 0.2	RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73	
Probe Positioning with respect to Phantom 2.90 Rectangular 1.732 1 1.6	RF Ambient Conditions - Reflections			1.732	1	1.73	
Extrapolation, Interpolation and Integration 3.90 Rectangular 1.732 1 2.2	Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23	
Test Sample Related 1.10 Normal 1 1.1 Device Holder Uncertainty 3.60 Normal 1 1 3.6 Output Power Variation - SAR Drift 5.00 Rectangular 1.732 1 2.8 Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) 4.00 Rectangular 1.732 1 2.3 Liquid Conductivity - deviation from target 5.00 Rectangular 1.732 0.43 1.2 Liquid Conductivity - measurement 2.49 Normal 1 0.43 1.0 Liquid Permittivity - deviation from target 10.00 Rectangular 1.732 0.49 2.8 Liquid Permittivity - measurement uncertainty 4.55 Normal 1 0.49 2.2 Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67	
Test Sample Positioning	Extrapolation, Interpolation and Integration	3.90	Rectangular	1.732	1	2.25	
Device Holder Uncertainty 3.60 Normal 1 1 3.60	Test Sample Related						
Output Power Variation - SAR Drift 5.00 Rectangular 1.732 1 2.8 Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) 4.00 Rectangular 1.732 1 2.3 Liquid Conductivity - deviation from target 5.00 Rectangular 1.732 0.43 1.2 Liquid Conductivity - measurement 2.49 Normal 1 0.43 1.0 Liquid Permittivity - deviation from target 10.00 Rectangular 1.732 0.49 2.8 Liquid Permittivity - measurement uncertainty 4.55 Normal 1 0.49 2.2 Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Test Sample Positioning	1.10	Normal	1	1	1.10	
Phantom and Tissue Parameters 4.00 Rectangular 1.732 1 2.3 Phantom Uncertainty (shape and thickness) 4.00 Rectangular 1.732 1 2.3 Liquid Conductivity - deviation from target 5.00 Rectangular 1.732 0.43 1.2 Liquid Conductivity - measurement 2.49 Normal 1 0.43 1.0 Liquid Permittivity - deviation from target 10.00 Rectangular 1.732 0.49 2.8 Liquid Permittivity - measurement uncertainty 4.55 Normal 1 0.49 2.2 Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Device Holder Uncertainty	3.60	Normal	1	1	3.60	
Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target 5.00 Rectangular 1.732 1.23 1.24 1.732 1.25 1.25 1.26 1.27 1.27 1.28 1.29 1.29 1.20	Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89	
Liquid Conductivity - deviation from target 5.00 Rectangular 1.732 0.43 1.2 Liquid Conductivity - measurement 2.49 Normal 1 0.43 1.0 Liquid Permittivity - deviation from target 10.00 Rectangular 1.732 0.49 2.8 Liquid Permittivity - measurement uncertainty 4.55 Normal 1 0.49 2.2 Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Phantom and Tissue Parameters						
Liquid Conductivity - measurement 2.49 Normal 1 0.43 1.0 Liquid Permittivity - deviation from target 10.00 Rectangular 1.732 0.49 2.8 Liquid Permittivity - measurement uncertainty 4.55 Normal 1 0.49 2.2 Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31	
Liquid Permittivity - deviation from target 10.00 Rectangular 1.732 0.49 2.8 Liquid Permittivity - measurement uncertainty 4.55 Normal 1 0.49 2.2 Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.43	1.24	
Liquid Permittivity - measurement uncertainty 4.55 Normal 1 0.49 2.2 Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Liquid Conductivity - measurement	2.49	Normal	1	0.43	1.07	
Combined Standard Uncertainty Uc(y), %: 11.9 Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Liquid Permittivity - deviation from target	10.00	Rectangular	1.732	0.49	2.83	
Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 23.94 %	Liquid Permittivity - measurement uncertainty			1		2.23	
Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 1.86 dB							
	Expanded Uncertainty U, Coverage Fact	or = 1.96 ,	> 95 % Confid	dence =	1.86	dB	


5. EQUIPMENT UNDER TEST

The EUT is an Broadcom 802.11agn WLAN PCI-E Minicard. (Tested inside of HP PC, HSTNN-Q42C)						
Normal operation:	Lap-held (with display ope	n at 90° to the keyboard)				
Antennas tested:	Installed inside of HP PC,	HSTNN-Q42C				
	<u>Manufacturer</u>	Antenna name				
	Quanta Computer Inc.	Tx1(Main) Antenna: DQ643139000				
		Tx2(Aux/BT) Antenna: DQ643139000				
Antenna-to-antenna/user separation distances:	See Section 14 for details of antenna locations and separation distances					
Antenna-to-Antenna distances:	O cm from Tx2-to-Blue (Tx2 antenna and Blue) 5 cm from Tx1-to-Tx	etooth are sharing a common antenna)				
Simultaneous transmission:		multaneously with Bluetooth BRCM1051; IC ID: 4324A-BRCM1051				
Assessment for SAR evaluation for Simultaneous transmission:	WiFi and BT KDB 447498 - The Bluetooth's output power is ≤ 60/f(GHz) mW, which stand-alone SAR evaluation is not required. Thus, simultaneous transmission SAR evaluation is not required for WiFi and Bluetooth antenna pair.					

DATE: March 3, 2011

IC: 4324A-BRCM1054

6. SYSTEM SPECIFICATIONS

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- · DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

REPORT NO: 11U13694-1A FCC ID: QDS-BRCM1054

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	45	50	83	835		900		1800 - 1900		50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

DATE: March 3, 2011

IC: 4324A-BRCM1054

REPORT NO: 11U13694-1A DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

8. LIQUID PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ead	Body		
raiget Frequency (wiriz)	ε_{r}	σ (S/m)	ϵ_{r}	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

⁽ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz) In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz - 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MHz)	Body	Reference	
1 (IVII 12)	rel. permitivity	conductivity	Neierence
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

⁽ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. LIQUID CHECK RESULTS

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
02/22/11	02/22/11 Body 5200		49.2405	Relative Permittivity (ε_r):	49.24	49.02	0.45	10
02/22/11	02/22/11 Body 5200	e"	18.1641	Conductivity (σ):	5.25	5.29	-0.81	5
02/22/11	02/22/11 Body 5500	e'	48.6537	Relative Permittivity (ε_r):	48.65	48.61	0.08	10
02/22/11		e"	18.6123	Conductivity (σ):	5.69	5.64	0.84	5
02/22/11	02/22/11 Pody 5900		48.0854	Relative Permittivity (ε_r):	48.09	48.20	-0.24	10
	e"	19.0671	Conductivity (σ):	6.15	6.00	2.49	5	

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 38%

February 22, 2011 09:44 AM

February 22, 2011	09:44 AM	
Frequency	e'	e"
4600000000.	50.4440	17.0790
4650000000.	50.3485	17.1578
4700000000.	50.2488	17.2746
4750000000.	50.1569	17.3512
4800000000.	50.0539	17.4598
4850000000.	49.9523	17.5385
4900000000.	49.8537	17.6462
4950000000.	49.7551	17.7164
5000000000.	49.6592	17.8239
5050000000.	49.5503	17.8843
5100000000.	49.4515	18.0022
5150000000.	49.3527	18.0537
5200000000.	49.2405	18.1641
5250000000.	49.1523	18.2168
5300000000.	49.0339	18.3137
5350000000.	48.9571	18.3820
5400000000.	48.8425	18.4649
5450000000.	48.7652	18.5418
5500000000.	48.6537	18.6123
5550000000.	48.5641	18.6893
5600000000.	48.4729	18.7643
5650000000.	48.3706	18.8325
5700000000.	48.2777	18.9136
5750000000.	48.1770	18.9779
5800000000.	48.0854	19.0671
5850000000.	48.0005	19.1244
5900000000.	47.8886	19.2100
5950000000.	47.8110	19.2790

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

DATE: March 3, 2011

IC: 4324A-BRCM1054

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
02/23/11	2/23/11 Body 5200		51.2509	Relative Permittivity (ε_r):	51.25	49.02	4.55	10
02/23/11	02/23/11 Body 5200	e"	18.1730	Conductivity (σ):	5.25	5.29	-0.76	5
02/23/11	02/23/11 Body 5500	e'	50.7148	Relative Permittivity (ε_r):	50.71	48.61	4.32	10
02/23/11		e"	18.6324	Conductivity (σ):	5.70	5.64	0.95	5
02/23/11 Body 5800		e'	50.1077	Relative Permittivity (ε_r):	50.11	48.20	3.96	10
02/23/11 Body 5800	e"	19.0088	Conductivity (σ):	6.13	6.00	2.17	5	

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 37%

February 23, 2011 08:40 AM

1 Columny 25, 2011 C		
Frequency	e'	e"
4600000000.	52.3698	17.1801
4650000000.	52.2916	17.2543
4700000000.	52.2091	17.3568
4750000000.	52.1037	17.4270
4800000000.	52.0405	17.5436
4850000000.	51.9215	17.5895
490000000.	51.8385	17.7167
4950000000.	51.7509	17.7621
5000000000.	51.6326	17.8756
5050000000.	51.5774	17.9408
5100000000.	51.4338	18.0221
5150000000.	51.3786	18.1047
5200000000.	51.2509	18.1730
5250000000.	51.1698	18.2513
5300000000.	51.0935	18.3266
5350000000.	50.9646	18.3814
5400000000.	50.9161	18.4841
5450000000.	50.7725	18.5067
5500000000.	50.7148	18.6324
5550000000.	50.6125	18.6413
5600000000.	50.5035	18.7746
5650000000.	50.4578	18.7883
5700000000.	50.2973	18.8922
5750000000.	50.2808	18.9401
5800000000.	50.1077	19.0088
5850000000.	50.0757	19.0833
5900000000.	49.9476	19.1545
5950000000.	49.8699	19.2057
6000000000.	49.7506	19.2997

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
02/24/11 Body 2450	e'	51.2281	Relative Permittivity (ε_r):	51.23	52.70	-2.79	5	
	e"	14.5342	Conductivity (σ):	1.98	1.95	1.54	5	

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

February 24, 2011 03:08 PM

Frequency	e'	e"
2410000000.	51.3613	14.3804
2415000000.	51.3458	14.3986
2420000000.	51.3271	14.4217
2425000000.	51.3124	14.4400
2430000000.	51.2942	14.4604
2435000000.	51.2759	14.4812
2440000000.	51.2605	14.4973
2445000000.	51.2468	14.5153
2450000000.	51.2281	14.5342
2455000000.	51.2060	14.5534
2460000000.	51.1904	14.5700
2465000000.	51.1718	14.5882
2470000000.	51.1529	14.6079
2475000000.	51.1348	14.6288
2480000000.	51.1158	14.6451
2485000000.	51.0978	14.6644

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

REPORT NO: 11U13694-1A DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #		Cal. Freq.	SAR Avg (mW/g)		
validation dipole	Cai. Certificate #	date	(GHz)	Tissue:	Head	Body
D2450V2	D2450V2-706 Apr10	4/19/10	2.4	SAR _{1g} :	51.6	52.4
D2450V2	D2430V2-700_April0	4/ 19/ 10	2.4	SAR _{10g} :	24.4	24.5
	D5GHzV2-1075_Sep09	9/3/09	5.2	SAR _{1g} :		79.0
			5.2	SAR _{10g} :		22.0
*D5GHzV2			5.5	SAR _{1g} :		85.4
D3G112V2			5.5	SAR _{10g} :		23.5
			5.8	SAR _{1g} :		73.2
			5.0	SAR _{10g} :		20.1

Note:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

^{*:} Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

9.1. SYSTEM CHECK RESULTS

Measured by: David Lee

System	Date Tested	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance	
validation dipole	Dale Testeu	Tissue:	Body	raigei	Delia (%)	(%)	
D5GHzV2 (5.2GHz)	02/22/11	SAR _{1g} :	77.3	79.0	-2.15	±10	
DOGI IZVZ (3.2GI IZ)	02/22/11	SAR _{10g} :	22.2	22.0	0.91	±10	
D5GHzV2 (5.5GHz)	02/22/11	SAR _{1g} :	85.3	85.4	-0.12	±10	
DOGHZVZ (5.5GHZ)	02/22/11	SAR _{10g} :	24.1	23.5	2.55	± 10	
D5GHzV2 (5.8GHz)	02/22/11	SAR _{1g} :	71.6	73.2	-2.19	±10	
DOGHZVZ (3.0GHZ)		SAR _{10g} :	20.3	20.1	1.00	± 10	
D5GHzV2 (5.2GHz)	02/23/11	SAR _{1g} :	74.5	79.0	-5.70	±10	
DOG 1272 (3.201 12)	02/23/11	SAR _{10g} :	21.4	22.0	-2.73	10	
D5GHzV2 (5.5GHz)	02/23/11	SAR _{1g} :	79.2	85.4	-7.26	±10	
DOG 1272 (3.301 12)	02/23/11	SAR _{10g} :	22.5	23.5	-4.26	10	
D5GHzV2 (5.8GHz)	02/23/11	SAR _{1g} :	67.6	73.2	-7.65	±10	
DOGI IZVZ (3.001 IZ)	02/23/11	SAR _{10g} :	19.3	20.1	-3.98	Ξ0	
D0 450) /0	00/04/44	SAR _{1g} :	50.1	52.4	-4.39	. 40	
D2450V2	02/24/11	SAR _{10g} :	23.0	24.5	-6.12	±10	

REPORT NO: 11U13694-1A DATE: March 3, 2011 IC: 4324A-BRCM1054

Date/Time: 2/22/2011 11:44:10 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; $\sigma = 5.25 \text{ mho/m}$; $\epsilon_r = 49.2$; $\rho = 1000 \text{ kg/m}^3$

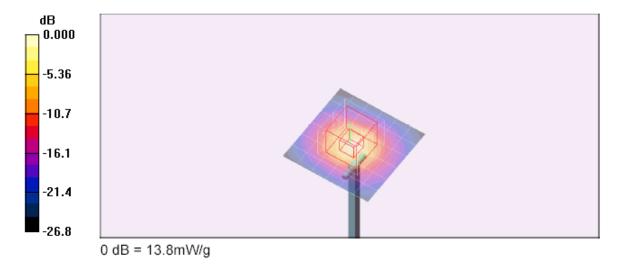
Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.2GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.8 mW/g


5.2GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm

Reference Value = 55.6 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 7.73 mW/g; SAR(10 g) = 2.22 mW/g

DATE: March 3, 2011 IC: 4324A-BRCM1054

Date/Time: 2/22/2011 12:11:23 PM

Test Laboratory: Compliance Certification Services (UL CCS)

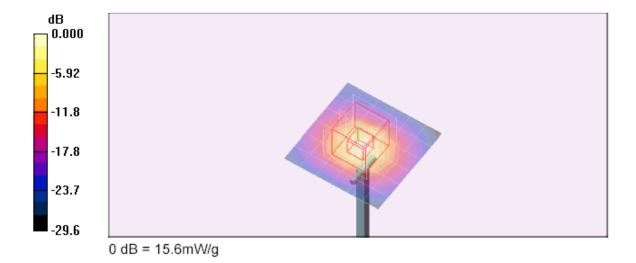
System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; $\sigma = 5.69 \text{ mho/m}$; $\varepsilon_r = 48.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.5GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.4 mW/g

5.5GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 57.0 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 8.53 mW/g; SAR(10 g) = 2.41 mW/gMaximum value of SAR (measured) = 15.6 mW/g

DATE: March 3, 2011 IC: 4324A-BRCM1054

Date/Time: 2/22/2011 12:37:43 PM

Test Laboratory: Compliance Certification Services (UL CCS)

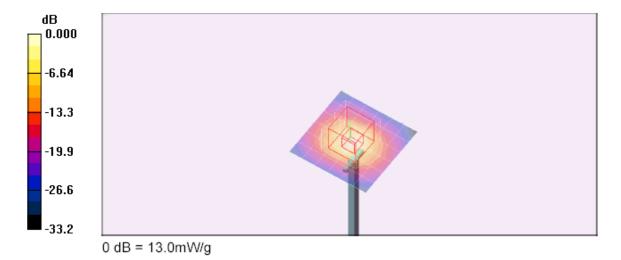
System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 6.15$ mho/m; $\epsilon_r = 48.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.8GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.0 mW/g

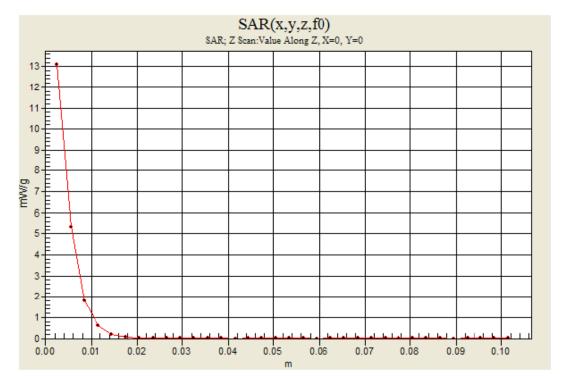
5.8GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 50.4 V/m; Power Drift = 0.005 dB Peak SAR (extrapolated) = 29.2 W/kg SAR(1 g) = 7.16 mW/g; SAR(10 g) = 2.03 mW/g

DATE: March 3, 2011

IC: 4324A-BRCM1054

Date/Time: 2/22/2011 1:01:48 PM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz; Duty Cycle: 1:1

5.8GHz, d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 13.1 mW/g

Date/Time: 2/23/2011 10:40:08 AM

Test Laboratory: Compliance Certification Services (UL CCS)

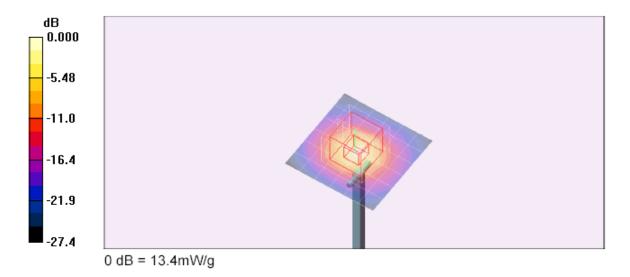
System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.26 mho/m; ϵ_r = 51.3; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.2GHz, **d=10mm**, **Pin=100mW/Area Scan (7x7x1)**: Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.1 mW/g

5.2GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm
Reference Value = 53.7 V/m; Power Drift = 0.110 dB
Peak SAR (extrapolated) = 26.3 W/kg
SAR(1 g) = 7.45 mW/g; SAR(10 g) = 2.14 mW/g
Maximum value of SAR (measured) = 13.4 mW/g

DATE: March 3, 2011 IC: 4324A-BRCM1054

Date/Time: 2/23/2011 9:08:16 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; $\sigma = 5.7$ mho/m; $\varepsilon_{c} = 50.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.5GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.3 mW/g

5.5GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 54.9 V/m; Power Drift = 0.063 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 7.92 mW/g; SAR(10 g) = 2.25 mW/g Maximum value of SAR (measured) = 14.4 mW/g

mW/g
14.3

11.4

8.59

5.73

2.88

0.022

DATE: March 3, 2011 IC: 4324A-BRCM1054

Date/Time: 2/23/2011 9:42:28 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.13 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³

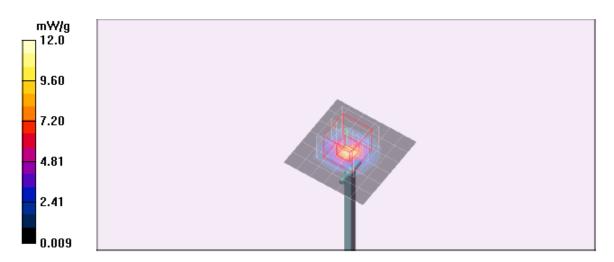
Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.8GHz, **d=10mm**, **Pin=100mW/Area Scan (7x7x1)**: Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.0 mW/g


5.8GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

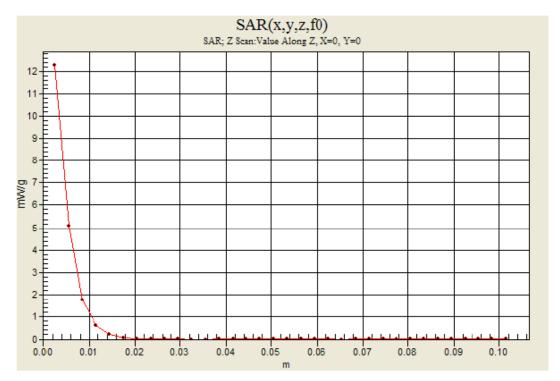
dy=4mm, dz=2.5mm

Reference Value = 48.6 V/m; Power Drift = 0.174 dB

Peak SAR (extrapolated) = 25.3 W/kg

SAR(1 g) = 6.76 mW/g; SAR(10 g) = 1.93 mW/g Maximum value of SAR (measured) = 12.2 mW/g

Date/Time: 2/23/2011 10:06:49 AM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz; Duty Cycle: 1:1

5.8GHz, d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 12.3 mW/g

Date/Time: 2/24/2011 3:16:23 PM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\epsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$

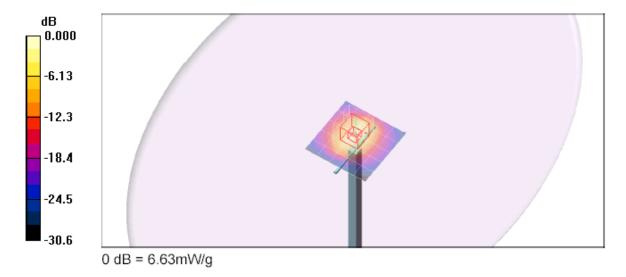
Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 5.95 mW/g

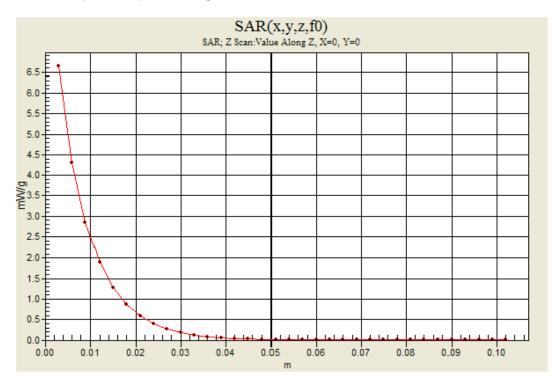
d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.8 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 10.4 W/kg

SAR(1 g) = 5.01 mW/g; SAR(10 g) = 2.3 mW/g Maximum value of SAR (measured) = 6.63 mW/g

Date/Time: 2/24/2011 3:31:10 PM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.64 mW/g

REPORT NO: 11U13694-1A FCC ID: QDS-BRCM1054

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

DATE: March 3, 2011

IC: 4324A-BRCM1054

REPORT NO: 11U13694-1A DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

11. RF OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, wl_tools, which enable a operator to control the frequency and output power of the module.

11.1. RF OUTPUT POWER FOR 2.4 GHZ BAND

2.4 GHz Band							
Mode	Ch. #	Freq. (MHz)	Avg RF Output Pwr (dBm)				
Wiode	011.#	i req. (ivii iz)	Main (TX1)	Aux (TX2)			
	1	2412	19.0				
802.11b	6	2437	19.2				
	11	2462	16.5				
	1	2412		19.1			
802.11g	6	2437		19.1			
	11	2462		16.6			
	1	2412	13.0	13.1			
802.11n HT20	6	2437	13.0	13.1			
	11	2462	13.5	13.6			
	3	2422	11.6	11.6			
802.11n HT40	6	2437	14.0	14.2			
	9	2450	10.6	10.5			

11.2. RF OUTPUT POWER FOR 5 GHZ BANDS

5.2 GHz Band					
Mode	Ch. #	Freq. (MHz)	Avg RF Output Pwr (dBm)		
ivioue	CII. #	rieq. (IVIDZ)	Main (TX1)	Aux (TX2)	
	36	5180	13.1		
	40	5200	13.4		
802.11a	48	5240	13.7		
002.114	36	5180		13.1	
	40	5200		13.4	
	48	5240		13.7	
	36	5180	10.5	10.0	
802.11n HT20	40	5200	10.4	10.1	
	48	5240	9.8	10.1	
802.11n HT40	38	5190	9.9	9.6	
002.111111140	46	5230	10.4	10.2	
5.3 GHz Band					
Mode	Ch. #	Freq. (MHz)	Avg RF Output Pwr (dBm)		
ivioue	CII. #	rieq. (IVII IZ)	Main (TX1)	Aux (TX2)	
	52	5260	17.7		
	60	5300	15.7		
802.11a	64	5320	14.1		
002.114	52	5260		17.7	
[60	5300		15.7	
	64	5320		14.1	
	52	5260	13.0	12.7	
802.11n HT20	60	5300	15.2	15.4	
	64	5320	14.2	14.4	
802.11n HT40	54	5270	16.3	17.2	
802.1111 11140	62	5310	11.7	11.9	

RF OUTPUT POWER FOR 5 GHZ BANDS (Continued)

5.5 GHz Band							
Mode	Ch. #	Freq. (MHz)	Avg RF Output Pwr (dBm)				
Mode	OH. #	i req. (ivii iz)	Main (TX1)	Aux (TX2)			
	100	5500	16.9				
	120	5600	17.5				
802.11a	140	5700	18.2				
002.11a	100	5500		16.9			
	120	5600		17.5			
	140	5700		18.2			
_	100	5500	16.2	16.3			
802.11n HT20	120	5600	16.1	16.2			
	140	5700	16.2	16.3			
	102	5510	13.7	14.0			
802.11n HT40	118	5590	18.0	17.8			
	134	5670	18.2	18.1			
5.8 GHz Band							
Mode	Ch. #	Freq. (MHz)	Avg RF Output Pwr (dBm)				
Mode	CII. #	rieq. (IVII IZ)	Main (TX1)	Aux (TX2)			
	149	5745	17.0				
	157	5785	17.6				
802.11a	165	5825	17.5				
002.11a	149	5745		17.0			
	157	5785		17.6			
	165	5825		17.5			
	149	5745	17.1	17.0			
802.11n HT20	157	5785	17.6	17.5			
	165	5825	17.6	17.5			
802.11n HT40	151	5755	18.0	18.2			
002.111111140	159	5795	18.9	19.1			

REPORT NO: 11U13694-1A FCC ID: QDS-BRCM1054

DATE: March 3, 2011 IC: 4324A-BRCM1054

12. SUMMARY OF SAR TEST RESULTS

12.1. SAR TEST RESULT FOR 2.4 GHZ

Lap-held (w/ display open at 90° to the keyboard)

Band	Mode	Channel	f (MHz)	Antenna	Avg Pwr (dBm)	Results (mW/g)	
				Port		1g-SAR	10g-SAR
2.4 GHz	902 11h Logogy	1	2412	Main	19.0		
		6	2437	Main	19.2	0.316	0.149
		11	2462	Main	16.5		
	002.110 Legacy	1	2412	Aux	19.1		10g-SAR
		6	2437	Aux	19.1	0.285	0.143
		11	2462	Aux	16.6		

Nearby Person (w/ 1.5 cm separation distance, from back of display-to-phantom)

Band	Mode	Channel	f (MHz)	Antenna	Avg Pwr (dBm)	Results (mW/g)	
				Port		1g-SAR	10g-SAR
2.4 GHz	000 11h Lagage	1	2412	Main	19.0		
		6	2437	Main	19.2	0.010	0.0051
		11	2462	Main	16.5		
	602.11b Legacy	1	2412	Aux	19.1		
		6	2437	Aux	19.1	0.015	0.00836
		11	2462	Aux	16.6		

REPORT NO: 11U13694-1A DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

WORST-CASE SAR TEST LPOTS FOR 2.4 GHZ

2.4 GHz band

Date/Time: 2/24/2011 3:59:59 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_2.4 GHz

DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.96 \text{ mho/m}$; $\epsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

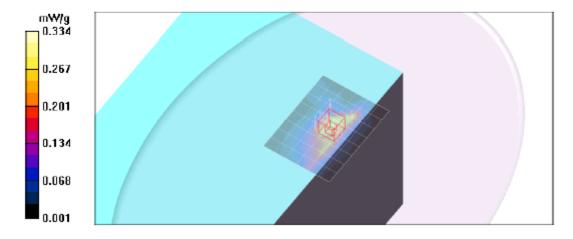
DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Main Ant/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.334 mW/g

802.11b M-ch Main Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 13.0 V/m; Power Drift = -0.171 dB

Peak SAR (extrapolated) = 0.715 W/kg

SAR(1 g) = 0.316 mW/g; SAR(10 g) = 0.149 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.423 mW/g

Z-axis Plot

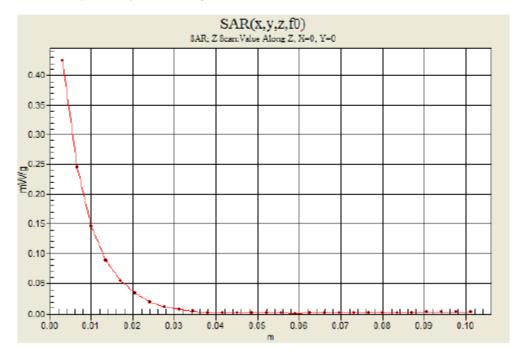
Date/Time: 2/24/2011 4:20:24 PM

DATE: March 3, 2011

IC: 4324A-BRCM1054

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_2.4 GHz


DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

802.11b M-ch Main Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.425 mW/g

12.2. SAR TEST RESULTS FOR 5 GHZ BANDS

Lap-held (w/ display open at 90° to the keyboard)

Lap-neid (W/ display open at 90° to the keyboard)							
Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)	
						1g-SAR	10g-SAR
5.2 GHz		36	5180	Main	13.1		
		40	5200	Main	13.4	0.047	0.012
	802.11a Legacy	48	5240	Main	13.7	0.025	0.00714
	602. ITa Legacy	36	5180	Aux	13.1		
		40	5200	Aux	13.4	0.095	0.031
		48	5240	Aux	13.7	0.100	0.033
			f (MHz)	Antenna		Results (mW/g)	
Band	Mode	Channel		Port	Avg Pwr (dBm)	1g-SAR	10g-SAR
		52	5260	Main	17.7	0.056	0.019
		60	5300	Main	15.7	0.030	0.00382
		64	5320	Main	14.1	0.012	0.00362
5.3 GHz	802.11a Legacy					0.254	0.005
		52	5260	Aux	17.7	0.254	0.085
		60	5300	Aux	15.7	0.164	0.052
		64	5320	Aux	14.1	D 11 () 11 ()	
Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)	
Daria						1g-SAR	10g-SAR
		100	5500	Main	16.9		
	802.11a Legacy	120	5600	Main	17.5	0.210	0.069
		140	5700	Main	18.2	0.415	0.137
		100	5500	Aux	16.9		
5.5 GHz		120	5600	Aux	17.5	0.336	0.103
		140	5700	Aux	18.2	0.439	0.141
	802.11n HT40	102	5510	Main/Aux	13.7 / 14.0		
		118	5590	Main/Aux	18.0 / 17.8		
		134	5670	Main/Aux	18.2 / 18.1	0.407	0.128
	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)	
Band						1g-SAR	10g-SAR
		149	5745	Main	17.0	19 0/ 11 (109 07 11 0
5.8 GHz	802.11a Legacy	157	5785	Main	17.6	0.242	0.073
		165	5825	Main	17.5	0.242	0.073
		149	5745		17.0		
			5785	Aux		0.277	0.120
		157 165		Aux	17.6 17.5	0.377	0.120
	802.11n HT40		5825 5755	Aux Main/Aux			
		151	5755 5705	Main/Aux	18.0 / 18.2	0.440	0.405
		159	5795	Main/Aux	18.9 / 19.1	0.419	0.135

Nearby Person (w/ 1.5 cm separation distance, from back of display-to-phantom)

Nearby Person (w/ 1.5 cm separation distance, from back of display-to-phantom)								
Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)		
						1g-SAR	10g-SAR	
5.2 GHz		36	5180	Main	13.1			
	802.11a Legacy	40	5200	Main	13.4	0.00378	0.00104	
		48	5240	Main	13.7	0.00575	0.00184	
		36	5180	Aux	13.1			
		40	5200	Aux	13.4	0.00203	0.000421	
		48	5240	Aux	13.7	0.00161	0.000185	
Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)		
Dand	Wode	Chamic				1g-SAR	10g-SAR	
		52	5260	Main	17.7	0.00403	0.00109	
		60	5300	Main	15.7	0.012	0.00355	
5.3 GHz	802.11a Legacy	64	5320	Main	14.1			
J.J GI 12		52	5260	Aux	17.7	0.00247	0.000543	
		60	5300	Aux	15.7	0.00377	0.000772	
		64	5320	Aux	14.1			
Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)		
Dariu						1g-SAR	10g-SAR	
	802.11a Legacy	100	5500	Main	16.9			
		120	5600	Main	17.5	0.025	0.00675	
		140	5700	Main	18.2	0.020	0.0075	
		100	5500	Aux	16.9			
5.5 GHz		120	5600	Aux	17.5	0.0071	0.00217	
		140	5700	Aux	18.2	0.00288	0.000587	
	802.11n HT40	102	5510	Main/Aux	13.7 / 14.0			
		118	5590	Main/Aux	18.0 / 17.8			
		134	5670	Main/Aux	18.2 / 18.1	0.012	0.00364	
Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)		
Dariu						1g-SAR	10g-SAR	
5.8 GHz	802.11a Legacy	149	5745	Main	17.0			
		157	5785	Main	17.6	0.00234	0.000406	
		165	5825	Main	17.5			
		149	5745	Aux	17.0			
		157	5785	Aux	17.6	0.000734	0.0000669	
		165	5825	Aux	17.5			
	802.11n HT40	151	5755	Main/Aux	18.0 / 18.2			
		159	5795	Main/Aux	18.9 / 19.1	0.012	0.00266	

REPORT NO: 11U13694-1A DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

WORST-CASE SAR PLOTS FOR 5 GHZ BANDS

5.2 GHz Band

Date/Time: 2/22/2011 7:22:25 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_5.2 GHz

DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11abgn; Frequency: 5240 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5240 MHz; $\sigma = 5.31 \text{ mho/m}$; $\epsilon_r = 49.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

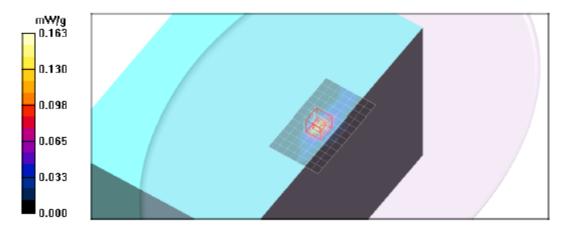
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_Ch 48_Aux Ant/Area Scan (8x13x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.163 mW/g

802.11a_Ch 48_Aux Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2.5mm


Reference Value = 6.00 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 0.306 W/kg

SAR(1 g) = 0.100 mW/g; SAR(10 g) = 0.033 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

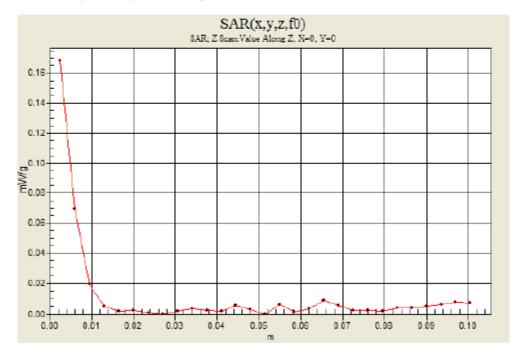
Maximum value of SAR (measured) = 0.168 mW/g

Z-axis Plot

Date/Time: 2/22/2011 7:46:00 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_5.2 GHz


DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11abgn; Frequency: 5240 MHz; Duty Cycle: 1:1

802.11a_Ch 48_Aux Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.168 mW/g

REPORT NO: 11U13694-1A FCC ID: QDS-BRCM1054

DATE: March 3, 2011 IC: 4324A-BRCM1054

5.3 GHz Band

Date/Time: 2/22/2011 7:52:13 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_5.3 GHz

DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11abgn; Frequency: 5260 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5260 MHz; $\sigma = 5.34 \text{ mho/m}$; $\epsilon_r = 49.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.88, 3.88, 3.88); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

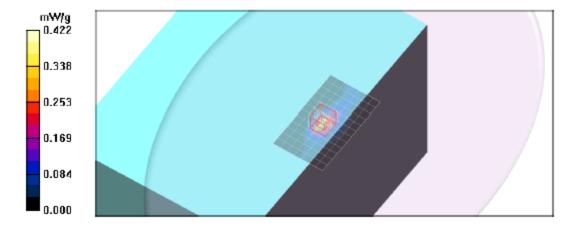
802.11a_Ch 52_Aux Ant/Area Scan (8x13x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.422 mW/g

802.11a_Ch 52_Aux Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2.5mm


Reference Value = 9.74 V/m; Power Drift = -0.187 dB

Peak SAR (extrapolated) = 0.771 W/kg

SAR(1 g) = 0.254 mW/g; SAR(10 g) = 0.085 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

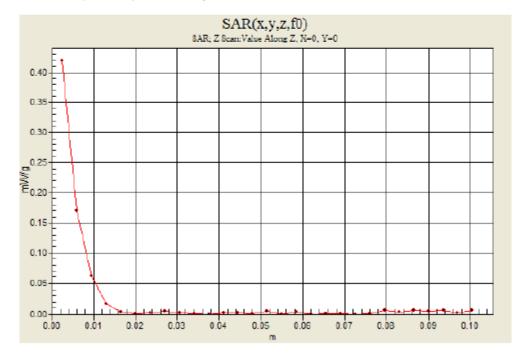
Maximum value of SAR (measured) = 0.424 mW/g

Z-axis Plot

Date/Time: 2/22/2011 8:15:41 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_5.3 GHz


DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11abgn; Frequency: 5260 MHz; Duty Cycle: 1:1

802.11a_Ch 52_Aux Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.420 mW/g

REPORT NO: 11U13694-1A FCC ID: QDS-BRCM1054

5.5 GHz Band

Date/Time: 2/22/2011 2:46:26 PM

DATE: March 3, 2011

IC: 4324A-BRCM1054

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_5.5 GHz

DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

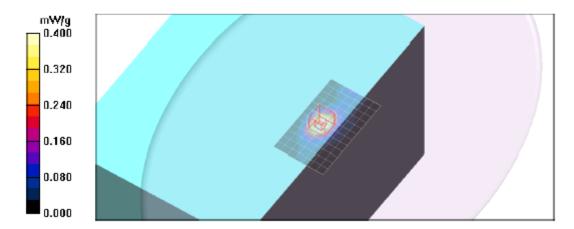
Communication System: 802.11abgn; Frequency: 5700 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5700 MHz; $\sigma = 6$ mho/m; $\varepsilon_r = 48.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.36, 3.36, 3.36); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


802.11a_Ch 140_Aux Ant/Area Scan (8x13x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.653 mW/g

802.11a_Ch 140_Aux Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 11.5 V/m; Power Drift = 0.227 dB

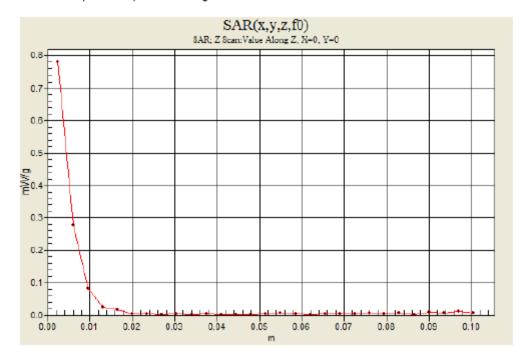
Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.439 mW/g; SAR(10 g) = 0.141 mW/g Maximum value of SAR (measured) = 0.766 mW/g

REPORT NO: 11U13694-1A DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

Z-axis Plot

Date/Time: 2/22/2011 3:10:05 PM


Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld_5.5 GHz

DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11abgn; Frequency: 5700 MHz; Duty Cycle: 1:1

802.11a_Ch 140_Aux Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm Maximum value of SAR (measured) = 0.779 mW/g

REPORT NO: 11U13694-1A FCC ID: QDS-BRCM1054

5.8 GHz Band

Date/Time: 2/22/2011 5:19:01 PM

DATE: March 3, 2011

IC: 4324A-BRCM1054

Test Laboratory: Compliance Certification Services (UL CCS)

Lapheld 5.8 GHz

DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11abgn; Frequency: 5795 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5795 MHz; $\sigma = 6.14 \text{ mho/m}$; $\epsilon_r = 48.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11n HT40_Ch 159_Main/Aux Ant/Area Scan (8x17x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.694 mW/g

802.11n HT40_Ch 159_Main/Aux Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm

Reference Value = 11.6 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 1.48 W/kg

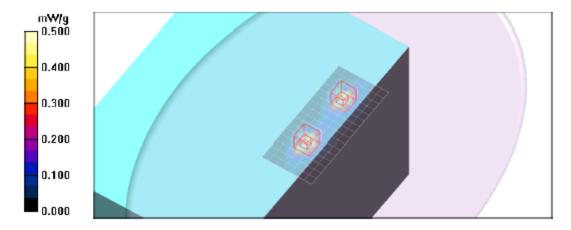
SAR(1 g) = 0.419 mW/g; SAR(10 g) = 0.135 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.707 mW/g

802.11n HT40_Ch 159_Main/Aux Ant/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm


Reference Value = 11.6 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.132 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

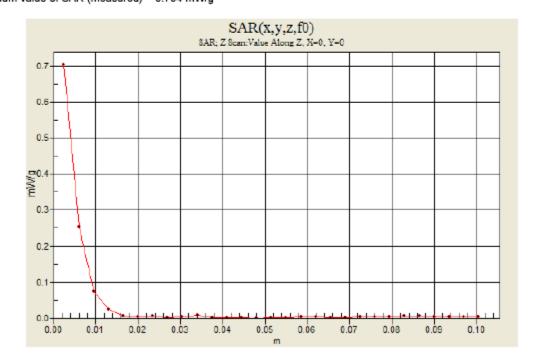
Maximum value of SAR (measured) = 0.683 mW/g

REPORT NO: 11U13694-1A DATE: March 3, 2011 FCC ID: QDS-BRCM1054 IC: 4324A-BRCM1054

Z-axis Plot

Date/Time: 2/22/2011 6:03:15 PM

Test Laboratory: Compliance Certification Services (UL CCS)


Lapheld_5.8 GHz

DUT: Broadcom; Type: BCM943228HM4L; Serial: N/A

Communication System: 802.11abgn; Frequency: 5795 MHz; Duty Cycle: 1:1

802.11n HT40_Ch 159_Main/Aux Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.704 mW/g

