

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: BCM943227HM4L

IC CERTIFICATION #:	QDS-BRCM1053
FCC ID:	4324A-BRCM1053

APPLICANT: Broadcom Corporation 190 Mathilda Ave Sunnyvale, CA 94086

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #:

#: 2845B-3; 2845B-4, 2845B-5, 2845B-7

REPORT DATE: October 28, 2010

FINAL TEST DATES:

September 24, 29, 30, October 7, 12, 14, 18, 19, 20 and 21, 2010

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer Elliott Laboratories

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	10-28-2010	First release	

TABLE OF CONTENTS

TABLE OF CONTENTS 3 SCOPE 4 OBJECTIVE 5 STATEMENT OF COMPLIANCE 5 STATEMENT OF COMPLIANCE 5 TEST RESULTS SUMMARY 6 DIGITAL TRANSMISSION SYSTEMS (2400 - 2483 5MHz) 6 GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES 8 EQUIPMENT UNDER TEST (EUT) DETAILS 9 GENERAL 9 MODIFICATIONS 9 NOTENA SYSTEM 9 EUT INTERFACE PORTS 9 MODIFICATIONS 9 SUPPORT EQUIPMENT 9 EUT INTERFACE PORTS 10 EUT OPERATION 10 TEST STIE 10 EUT OPERATION 11 GENERAL INFORMATION 11 CONDUCTED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 13 INSTRUMENT CONTRO
OBJECTIVE 5 STATEMENT OF COMPLIANCE 5 DEVIATIONS FROM THE STANDARDS 5 TEST RESULTS SUMMARY 6 DIGITAL TRANSMISSION SYSTEMS (2400 – 2483, 5MH2) 6 GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES 8 EQUIPMENT UNCERTAINTIES 9 GENERAL 9 GENERAL 9 MODIFICATIONS 9 NODIFICATIONS 9 SUPPORT EQUIPMENT 9 BUT INTERFACE PORTS 10 EUT OPERATION 10 TEST SITE 10 EUT OPERATION 10 TEST SITE 10 EUT INTERFACE PORTS 11 GENERAL INFORMATION 11 CONDUCTED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 13 INST
STATEMENT OF COMPLIANCE 5 DEVIATIONS FROM THE STANDARDS 5 TEST RESULTS SUMMARY 6 DIGITAL TRANSMISSION SYSTEMS (2400 – 2483,5MHZ) 6 GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES 8 EQUIPMENT UNDER TEST (EUT) DETAILS 9 GENERAL 9 ANTENNA SYSTEM 9 EULOSURE 9 MODIFICATIONS 9 SUPPORT EQUIPMENT 9 EUT INTERFACE PORTS 10 EUT OPERATION 10 EUST OPERATIONS 11 CONDUCTED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 13 ANTENNAS 13 ANTENNA MAST AND EQUIPMENT TURNTABLE 13 INSTRUMENT CALIBRATION 13 INSTRUMENT CALIBRATION 14 EUT AND CABLE PLACE
STATEMENT OF COMPLIANCE 5 DEVIATIONS FROM THE STANDARDS 5 TEST RESULTS SUMMARY 6 DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ) 6 GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES 8 EQUIPMENT UNDER TEST (EUT) DETAILS 9 GENERAL 9 ANTENNA SYSTEM 9 EULOSURE 9 MODIFICATIONS 9 SUPPORT EQUIPMENT 9 EUT INTERFACE PORTS 10 EUT OPERATION 10 EUT OPERATIONS 10 EUT OPERATION 11 CONDUCTED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 12
DEVIATIONS FROM THE STANDARDS 5 TEST RESULTS SUMMARY 6 DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) 6 GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES 8 EQUIPMENT UNDER TEST (EUT) DETAILS 9 GENERAL 9 ANTENNA SYSTEM 9 ENCLOSURE 9 MODIFICATIONS 9 SUPPORT EQUIPMENT 9 EUT INTERFACE PORTS 10 EUT OPERATION 10 EUT OPERATION 10 EUT OPERATION 11 CONDUCTED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RECEIVER SYSTEM 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 12 INSTRUMENT CONTROL COMPUTER 13 INSTRUMENT CALIBRATION 13 ANTENNAS 13 ANTENNAS 13 ANTENNAS 13 INS
TEST RESULTS SUMMARY 6 DIGITAL TRANSMISSION SYSTEMS (2400 – 2483,5MHz) 6 GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES 8 EQUIPMENT UNDER TEST (EUT) DETAILS 9 GENERAL 9 ANTENNA SYSTEM 9 ENCLOSURE 9 MODIFICATIONS 9 SUPPORT EQUIPMENT 9 EUT INTERFACE PORTS 10 EUT OPERATION 10 TEST SITE 11 GENERAL INFORMATION 10 TEST SITE 11 GENERAL INFORMATION 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RADIATED EMISSIONS CONSIDERATIONS 11 RECEIVER SYSTEM 12 INSTRUMENT CONTROL COMPUTER 12 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 12 INSTRUMENT CALIBRATION 13 ANTENNAS 13 ANTENNA MAST AND EQUIPMENT TURNTABLE 13 INSTRUMENT CALIBRATION 13 INSTRUMENT CALIBRATION 14
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) 6 GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES. 8 EQUIPMENT UNDER TEST (EUT) DETAILS. 9 GENERAL 9 ANTENNA SYSTEM 9 ENCLOSURE 9 MODIFICATIONS 9 SUPPORT EQUIPMENT 9 EUT INTEFACE PORTS 10 EUT INTERFACE PORTS 10 EUT OPERATION 10 EUT OPERATION 10 EUT INTERFACE PORTS 11 GENERAL INFORMATION 11 GENERAL INFORMATION 11 RADIATED EMISSIONS CONSIDERATIONS 11 RECEIVER SYSTEM 12 INSTRUMENT CONTROL COMPUTER 12 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 12 <t< td=""></t<>
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS 7 MEASUREMENT UNCERTAINTIES 8 EQUIPMENT UNDER TEST (EUT) DETAILS 9 GENERAL 9 ANTENNA SYSTEM 9 ENCLOSURE 9 MODIFICATIONS 9 SUPPORT EQUIPMENT 9 EUT INTERFACE PORTS 10 EUT OPERATION 11 CONDUCTED EMISSIONS CONSIDERATIONS 11 RECEIVER SYSTEM 12 INSTRUMENT CONTROL COMPUTER 13 ANTENNA 13 ANTENNA MAST AND EQUIPMENT TURNTABLE 13 INSTRUMENT CALIBRATION 13 </td
EQUIPMENT UNDER TEST (EUT) DETAILS9GENERAL9ANTENNA SYSTEM9ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TEST SITE11GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11MALTAED EMISSIONS CONSIDERATIONS11MALTAED EMISSIONS CONSIDERATIONS11MEASUREMENT INSTRUMENTATION12INSTRUMENT CONTROL COMPUTER12INSTRUMENT CONTROL COMPUTER12INSTRUMENT CALIBRATION13ANTENNAS13ANTENNAS13ANTENNAS13ANTENNAS14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS15CONDUCTED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN
GENERAL9ANTENNA SYSTEM9ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TEST SITE11GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS12RECEIVER SYSTEM12INSTRUMENT INSTRUMENTATION12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13INSTRUMENT CALIBRATION13TEST PROCEDURES14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN
ANTENNA SYSTEM9ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10 TEST SITE 11GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11 MEASUREMENT INSTRUMENTATION 12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12INSTRUMENT CONTROL COMPUTER12INSTRUMENT CONTROL COMPUTER13ANTENNAS13ANTENNAS13ANTENNAS13ANTENNAS14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDT MEASUREMENTS17BANDWIDT MEASUREMENTS17BANDWIDT MEASUREMENTS17BANDWIDT MEASUREMENTS17BANDWIDT MEASUREMENTS17BANDWIDT MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN
ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TEST SITE11GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11MEASUREMENT INSTRUMENTATION12INSTRUMENT CONTROL COMPUTER12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUAS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13TEST PROCEDURES14EUT AND CABLE PLACEMENT14RADIATED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN
MODIFICATIONS.9SUPPORT EQUIPMENT.9EUT INTERFACE PORTS.10EUT OPERATION.10EUT OPERATION.10TEST SITE.11GENERAL INFORMATION.11CONDUCTED EMISSIONS CONSIDERATIONS.11RADIATED EMISSIONS CONSIDERATIONS.11MEASUREMENT INSTRUMENTATION.12RECEIVER SYSTEM.12INSTRUMENT CONTROL COMPUTER.12LINE IMPEDANCE STABILIZATION NETWORK (LISN).12FILTERS/ATTENUATORS.13ANTENNAS.13ANTENNAS.13INSTRUMENT CALIBRATION.14CONDUCTED EMISSIONS.14RADIATED EMISSIONS.14RADIATED EMISSIONS.14RADIATED EMISSIONS.14RADIATED EMISSIONS.14RADIATED EMISSIONS.15CONDUCTED EMISSIONS.17BANDWIDTH MEASUREMENTS.17BANDWIDTH MEASUREMENTS.17BANDWIDTH MEASUREMENTS.17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS.18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN.18
SUPPORT EQUIPMENT.9EUT INTERFACE PORTS.10EUT OPERATION.10TEST SITE.11GENERAL INFORMATION.11CONDUCTED EMISSIONS CONSIDERATIONS.11RADIATED EMISSIONS CONSIDERATIONS.11MEASUREMENT INSTRUMENTATION.12RECEIVER SYSTEM.12INSTRUMENT CONTROL COMPUTER.12LINE IMPEDANCE STABILIZATION NETWORK (LISN).12FIL TERS/ATTENUATORS.13ANTENNAS.13ANTENNAS.13INSTRUMENT CALIBRATION.13TEST PROCEDURES.14EUT AND CABLE PLACEMENT.14CONDUCTED EMISSIONS.14RADIATED EMISSIONS.14RADIATED EMISSIONS.15CONDUCTED EMISSIONS.15CONDUCTED EMISSIONS FROM ANTENNA PORT.17BANDWIDTH MEASUREMENTS.17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS.18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN
EUT INTERFACE PORTS10EUT OPERATION10 TEST SITE 11GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11 MEASUREMENT INSTRUMENTATION 12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNA MAST AND EQUIPMENT TURNTABLE13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.07, FCC 15.107(A), RSS GEN18
EUT OPERATION10 TEST SITE11 GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11 MEASUREMENT INSTRUMENTATION12 RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
TEST SITE11GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11 MEASUREMENT INSTRUMENTATION 12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FIL TERS/ATTENUATORS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
GENERAL INFORMATION11CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11 MEASUREMENT INSTRUMENTATION 12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
CONDUCTED EMISSIONS CONSIDERATIONS11RADIATED EMISSIONS CONSIDERATIONS11 MEASUREMENT INSTRUMENTATION 12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
RADIATED EMISSIONS CONSIDERATIONS11 MEASUREMENT INSTRUMENTATION 12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
MEASUREMENT INSTRUMENTATION12RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13TEST PROCEDURES14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
RECEIVER SYSTEM12INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNAS13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
INSTRUMENT CONTROL COMPUTER12LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNA MAST AND EQUIPMENT TURNTABLE13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
LINE IMPEDANCE STABILIZATION NETWORK (LISN)12FILTERS/ATTENUATORS13ANTENNAS13ANTENNA MAST AND EQUIPMENT TURNTABLE13INSTRUMENT CALIBRATION13TEST PROCEDURES14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
FILTERS/ATTENUATORS13ANTENNAS13ANTENNA MAST AND EQUIPMENT TURNTABLE13INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
ANTENNAS
ANTENNA MAST AND EQUIPMENT TURNTABLE
INSTRUMENT CALIBRATION13 TEST PROCEDURES 14EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
EUT AND CABLE PLACEMENT14CONDUCTED EMISSIONS14RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
RADIATED EMISSIONS14RADIATED EMISSIONS15CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
RADIATED EMISSIONS 15 CONDUCTED EMISSIONS FROM ANTENNA PORT 17 BANDWIDTH MEASUREMENTS 17 SPECIFICATION LIMITS AND SAMPLE CALCULATIONS 18 CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN 18
CONDUCTED EMISSIONS FROM ANTENNA PORT17BANDWIDTH MEASUREMENTS17SPECIFICATION LIMITS AND SAMPLE CALCULATIONS18CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
BANDWIDTH MEASUREMENTS
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN18
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS
SAMPLE CALCULATIONS - RADIATED EMISSIONS
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION
APPENDIX A TEST EQUIPMENT CALIBRATION DATA
APPENDIX B TEST DATA

SCOPE

An electromagnetic emissions test has been performed on the Broadcom Corporation model BCM943227HM4L, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Broadcom Corporation model BCM943227HM4L complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Broadcom Corporation model BCM943227HM4L and therefore apply only to the tested sample. The sample was selected and prepared by Anne Liang of Broadcom Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	g mode: 14.9MHz b mode: 8.1 MHz n20 mode: 15.8 MHz n40 mode: 36.7 MHz	>500kHz	Complies
			g mode: 17.3 dBm (0.054 Watts) EIRP = 0.132 W ^{Note 1} b mode: 18.7 dBm		
15.247 (b)	RSS 210	Output Power	(0.074 Watts) $\text{EIRP} = 0.182 \text{ W}^{\text{Note}}$	1 Watt, EIRP limited	Complies
(3)	A8.2 (4)	(multipoint systems)	n20 mode: 19.4 dBm (0.087 Watts) EIRP = $0.429W^{Note}$	to 4 Watts.	compiles
		n40 mode: 14.5 dBm (0.028 Watts) EIRP = 0.138 W ^{Note}			
			g mode: -4.1 dBm / 3kHz		
			b mode: 2.1 dBm / 3kHz		
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	n20 mode: -2.3 dBm / 3kHz	8dBm/3kHz	Complies
			n40 mode: -9.7 dBm / 3kHz		
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions more than 30dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	54.0dBµV/m @ 2485.0MHz (-0.0dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies
Note 2: Limit		because the power was	for the highest EIRP syst measured using the UNII		m power

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	The EUT has u.FL connectors	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	48.9dBµV @ 0.195MHz (-14.9dB)	Refer to page 18	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	47.7dBµV/m @ 2437.0MHz (-6.3dB)	Refer to page 19	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	g mode: 17.4 MHz b mode: 11.4 MHz n20 mode: 18.1 MHz n40 mode: 37.3 MHz	Information only	N/A

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Broadcom Corporation model BCM943227HM4L is a WLAN PCI-E Minicard, that is designed to enable WLAN connections when installed in PCs. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3Vdc, 800mA.

The sample was received on August 24, 2010 and tested on September 24, 29, 30, October 7, 12, 14, 18, 19, 20 and 21, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Broadcom	ВСМ943227Н	WLAN PCI-E	-	QDS-
	M4L	Minicard		BRCM1053

ANTENNA SYSTEM

The antenna connects to the EUT via a non-standard u.Fl antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Lenovo	4446	Laptop	-	-
Catalyst	-	Extender Board	-	-

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Folt	То	Description	Shielded or Unshielded	Length(m)
Extender Board	Laptop	-	-	-
Antenna A & B	EUT	-	-	-
AC Power	AC Mains	2Wire	Unshielded	0.8

EUT OPERATION

During testing, the EUT was configured to continuously transmit at the noted channel at the maximum output power. For 802.11b mode testing, the data rate was set to 1 Mb/s. For 802.11g mode, the data rate was set to 6 Mb/s. For 802.11n20 and 802.11n40, the data rate was set to MCS0. These data rates represent worse case, as they resulted in the highest output power.

802.11b and 802.11g operation is limited to the main chain only.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont,
Chamber 7	A2LA	. 2845B-7	CA 94538-2435
Chamber /	accreditation	2043D-7	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

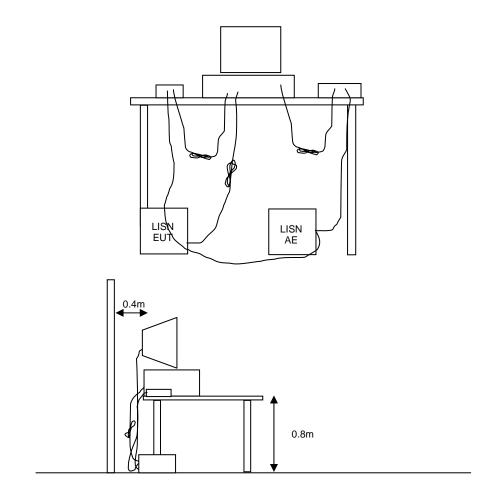
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

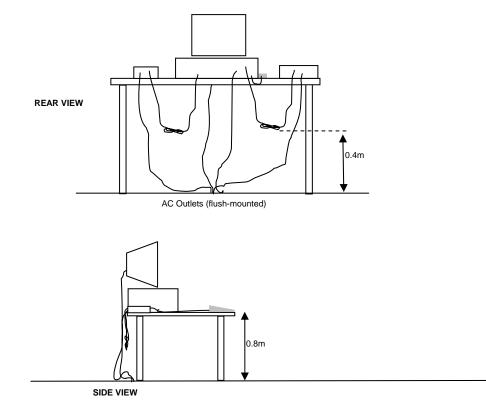

TEST PROCEDURES

EUT AND CABLE PLACEMENT

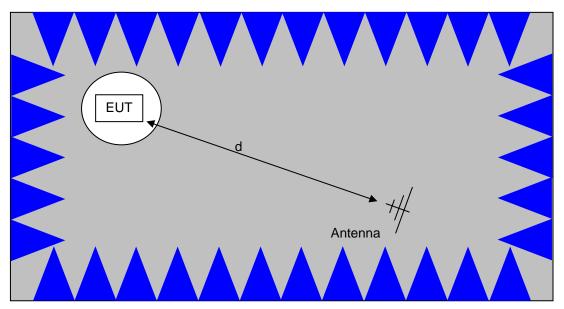
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

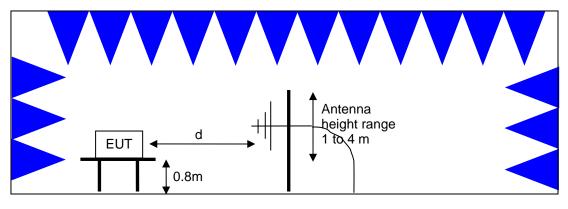

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

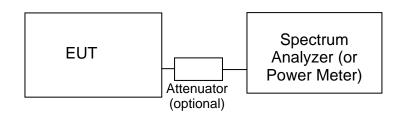
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = 1000000 \sqrt{30 P}$ microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

<u>Manufacturer</u> Radiated Emissions, [,]	<u>Description</u> 1 - 10 GHz, 24-Aug-10	Model	<u>Asset #</u>	Cal Due
EMCO Rohde & Schwarz	Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-7 GHz	3115 ESIB7	1561 1630	6/22/2012 3/31/2011
Radiated Emissions, I <u>Manufacturer</u> EMCO Rohde & Schwarz	Bandedge, 25-Aug-10 <u>Description</u> Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> 3115 ESIB7	<u>Asset #</u> 1561 1630	<u>Cal Due</u> 6/22/2012 3/31/2011
Band edge measurem <u>Manufacturer</u> EMCO	ents, 27-Aug-10 <u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Red)	<u>Model</u> 3115	<u>Asset #</u> 1142	<u>Cal Due</u> 8/2/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011
DTS Bandedge, 31-Au <u>Manufacturer</u> EMCO Rohde & Schwarz	Ig-10 <u>Description</u> Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> 3115 ESIB7	<u>Asset #</u> 487 1538	<u>Cal Due</u> 7/6/2012 10/15/2010
TX Spurious Emissio <u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1-	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/15/2010
EMCO Hewlett Packard	26.5GHz Antenna, Horn, 1-18 GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	3115 8564E (84125C)	487 1393	7/6/2012 4/14/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	11/4/2010
Radiated Emissions,	30 - 1,000 MHz & DTS Bandedge, [,]	14-Sep-10		
Manufacturer EMCO Sunol Sciences Rohde & Schwarz Com-Power Corp.	Description Antenna, Horn, 1-18 GHz Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz Preamplifier, 30-1000 MHz	<u>Model</u> 3115 JB3 ESIB7 PA-103	<u>Asset #</u> 487 1549 1630 1632	<u>Cal Due</u> 7/6/2012 6/4/2011 3/31/2011 4/23/2011
DTS Bandedges, 24-S		Medel	A #	
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 9 KHz-26.5 GHz, Non- Program	<u>Model</u> 8563E	<u>Asset #</u> 284	<u>Cal Due</u> 1/29/2011
EMCO Micro-Tronics	Antenna, Horn, 1-18GHz Band Reject Filter, 2400-2500 MHz	3115 BRM50702-02	868 1683	6/8/2012 8/10/2011
Rohde & Schwarz Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz Microwave Preamplifier, 1- 26.5GHz	ESIB7 8449B	1756 2199	3/16/2011 1/11/2011
	1000 - 26,500 MHz, 29-Sep-10		• • •	
<u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 870	<u>Cal Due</u> 6/25/2011
EMCO Micro-Tronics	Antenna, Horn, 1-18 GHz Band Reject Filter, 2400-2500 MHz	3115 BRM50702-02	1561 1683	6/22/2012 8/10/2011

		Repo	rt Date: Octol	ber 28, 2010
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 9 kHz - 40 GHz, (SA40) Purple	<u>Model</u> 8564E (84125C)	<u>Asset #</u> 1771	<u>Cal Due</u> 8/26/2011
TX Spurious Emissi				
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 785	<u>Cal Due</u> 5/26/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/10/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011
Radiated Emissions	, 30 - 1,000 MHz, 30-Sep-10			
<u>Manufacturer</u>	Description	Model	Asset #	Cal Due
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	4/29/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	5/28/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011
	ns - AC Power Ports, 30-Sep-10			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
Rohde & Schwarz Rohde & Schwarz	Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	ESH3 Z2 ESIB7	1401 1756	4/20/2011 3/16/2011
Runue & Schwarz	EIVITTESI Receiver, 20 Hz-7 GHZ	ESIDI	1750	3/10/2011
DTS RE, 01-Oct-10	-		• • • •	
Manufacturer	<u>Description</u>	Model	<u>Asset #</u>	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	4/29/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	5/28/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011
DTS Spurious, 06-O	ct-10			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/10/2011
Radiated Emissions	. 07-Oct-10			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Radiated Emissions	, 08-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/15/2010
	26.5GHz			

		перен	Duie. Ocioi	
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	<u>12/11/20</u> 11
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
	(SA40) Blue	(0.1200)		.,,
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/10/2011
Radiated Spurious, I	NTS 12-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non- Program	8563E	284	1/29/2011
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/10/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	1/11/2011
DTS Spurious 2.4GHz	z, 14-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	1683	8/10/2011
	MH7			
	MHz			
DTS n40 band edge,	18-Oct-10			
Manufacturer	18-Oct-10 <u>Description</u>	<u>Model</u>	<u>Asset #</u>	Cal Due
	18-Oct-10	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/15/2010
Manufacturer Hewlett Packard EMCO	18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-			
Manufacturer Hewlett Packard	18-Oct-10 <u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz	8449B	263	12/15/2010
Manufacturer Hewlett Packard EMCO Hewlett Packard	18-Oct-10 <u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8449B 3115	263 1142	12/15/2010 8/2/2012
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port ,	18-Oct-10 <u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10	8449B 3115 8564E (84125C)	263 1142 1393	12/15/2010 8/2/2012 4/14/2011
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u>	18-Oct-10 <u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u>	8449B 3115 8564E (84125C) <u>Model</u>	263 1142 1393 <u>Asset #</u>	12/15/2010 8/2/2012 4/14/2011 <u>Cal Due</u>
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz	18-Oct-10 <u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel	8449B 3115 8564E (84125C) <u>Model</u> NRVS	263 1142 1393 <u>Asset #</u> 1290	12/15/2010 8/2/2012 4/14/2011 <u>Cal Due</u> 10/22/2010
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u>	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz Attenuator, 20 dB, 10W, DC-18 	8449B 3115 8564E (84125C) <u>Model</u>	263 1142 1393 <u>Asset #</u>	12/15/2010 8/2/2012 4/14/2011 <u>Cal Due</u>
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz 	8449B 3115 8564E (84125C) Model NRVS ESIB7	263 1142 1393 <u>Asset #</u> 1290 1538	12/15/2010 8/2/2012 4/14/2011 Cal Due 10/22/2010 11/15/2010
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 	8449B 3115 8564E (84125C) Model NRVS ESIB7 20dB, 10W, Type N	263 1142 1393 <u>Asset #</u> 1290 1538 1795	12/15/2010 8/2/2012 4/14/2011 Cal Due 10/22/2010 11/15/2010 6/2/2011
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 1000 - 7,500 MHz, 19-Oct-10 	8449B 3115 8564E (84125C) Model NRVS ESIB7 20dB, 10W, Type N NRV-Z53	263 1142 1393 <u>Asset #</u> 1290 1538 1795 1796	12/15/2010 8/2/2012 4/14/2011 Cal Due 10/22/2010 11/15/2010 6/2/2011
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 1000 - 7,500 MHz, 19-Oct-10 <u>Description</u> Microwave Preamplifier, 1- 	8449B 3115 8564E (84125C) Model NRVS ESIB7 20dB, 10W, Type N	263 1142 1393 <u>Asset #</u> 1290 1538 1795	12/15/2010 8/2/2012 4/14/2011 Cal Due 10/22/2010 11/15/2010 6/2/2011
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 1000 - 7,500 MHz, 19-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz 	8449B 3115 8564E (84125C) Model NRVS ESIB7 20dB, 10W, Type N NRV-Z53	263 1142 1393 <u>Asset #</u> 1290 1538 1795 1796 <u>Asset #</u> 263	12/15/2010 8/2/2012 4/14/2011 Cal Due 10/22/2010 11/15/2010 6/2/2011 6/2/2011 Cal Due 12/15/2010
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz EMCO	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 1000 - 7,500 MHz, 19-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) 	8449B 3115 8564E (84125C) Model NRVS ESIB7 20dB, 10W, Type N NRV-Z53 Model 8449B 3115	263 1142 1393 <u>Asset #</u> 1290 1538 1795 1796 <u>Asset #</u>	12/15/2010 8/2/2012 4/14/2011 Cal Due 10/22/2010 11/15/2010 6/2/2011 6/2/2011 Cal Due
Manufacturer Hewlett Packard EMCO Hewlett Packard Radio Antenna Port , <u>Manufacturer</u> Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	 18-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue 19-Oct-10 <u>Description</u> Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 1000 - 7,500 MHz, 19-Oct-10 <u>Description</u> Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz 	8449B 3115 8564E (84125C) Model NRVS ESIB7 20dB, 10W, Type N NRV-Z53	263 1142 1393 <u>Asset #</u> 1290 1538 1795 1796 <u>Asset #</u> 263	12/15/2010 8/2/2012 4/14/2011 Cal Due 10/22/2010 11/15/2010 6/2/2011 6/2/2011 Cal Due 12/15/2010

Manufacturer Radiated Spurious Fr	<u>Description</u> nissions, 1000 - 26,500 MHz, 19-O	<u>Model</u> ct-10	<u>Asset #</u>	Cal Due
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Micro-Tronics	Èand Ŕeject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2011
Radio Antenna Port (Power and Spurious Emissions), 2	22-Oct-10		
Manufacturer	Description	<u>Model</u>	<u>Asset #</u>	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	ÈMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011

Appendix B Test Data

T80300 104 Pages

©Elliott

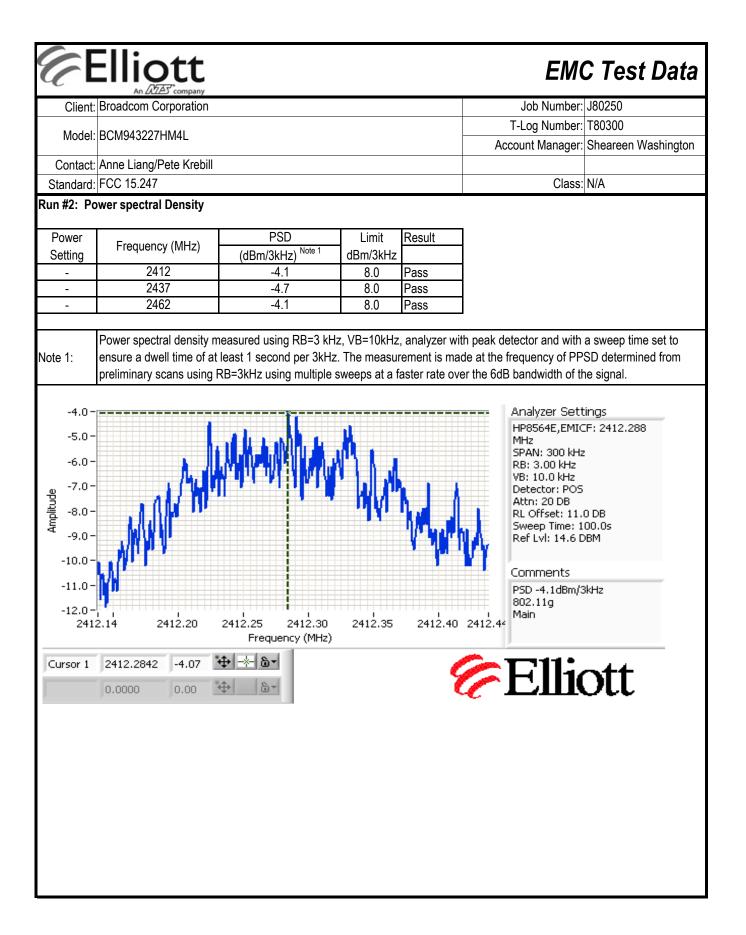
EMC Test Data

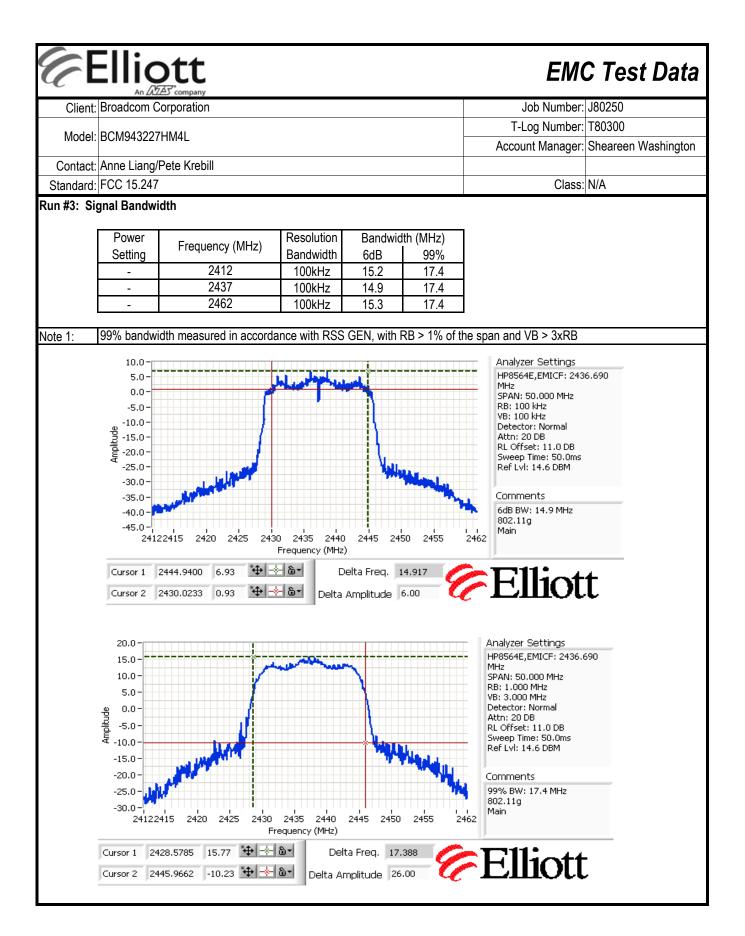
AN DALL-	5 company		
Client:	Broadcom Corporation	Job Number:	J80250
Model:	BCM943227HM4L	T-Log Number:	T80300
		Account Manager:	Sheareen Washington
Contact:	Anne Liang/Pete Krebill		-
Emissions Standard(s):	FCC 15.247	Class:	-
Immunity Standard(s):	-	Environment:	-

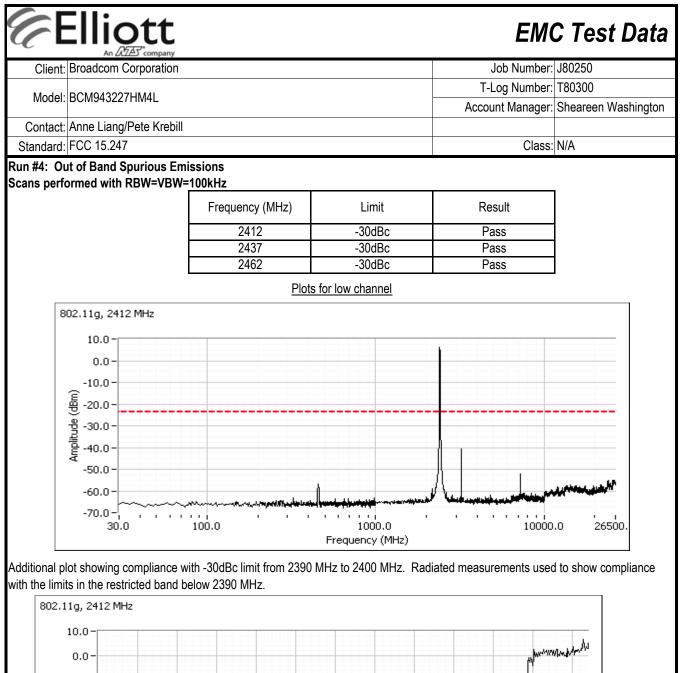
EMC Test Data

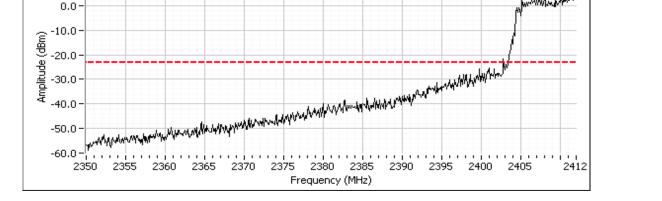
For The

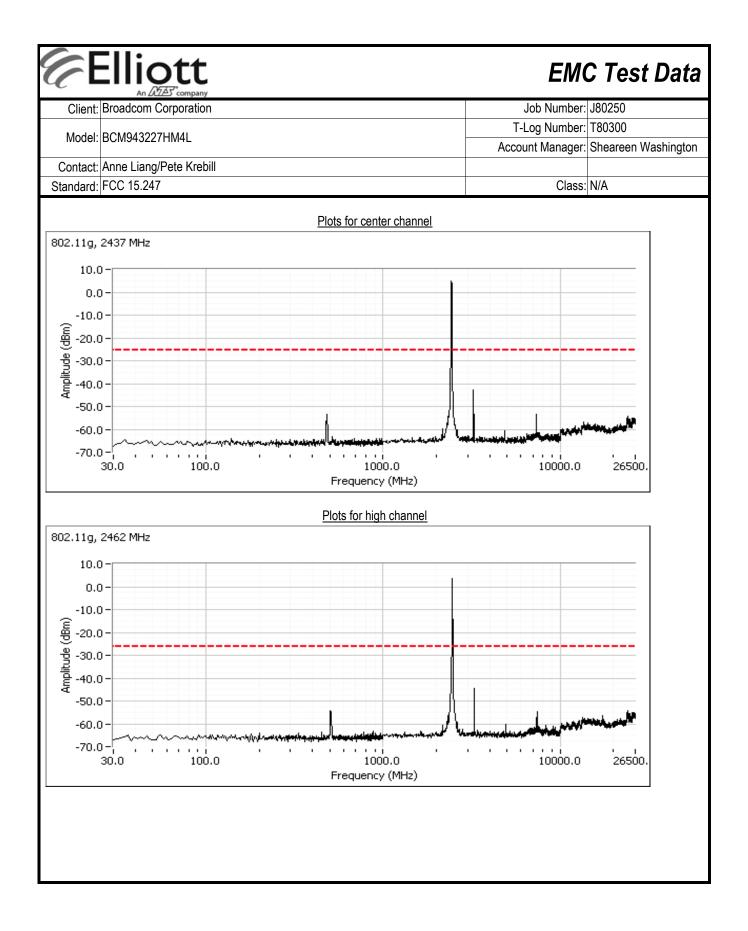
Broadcom Corporation

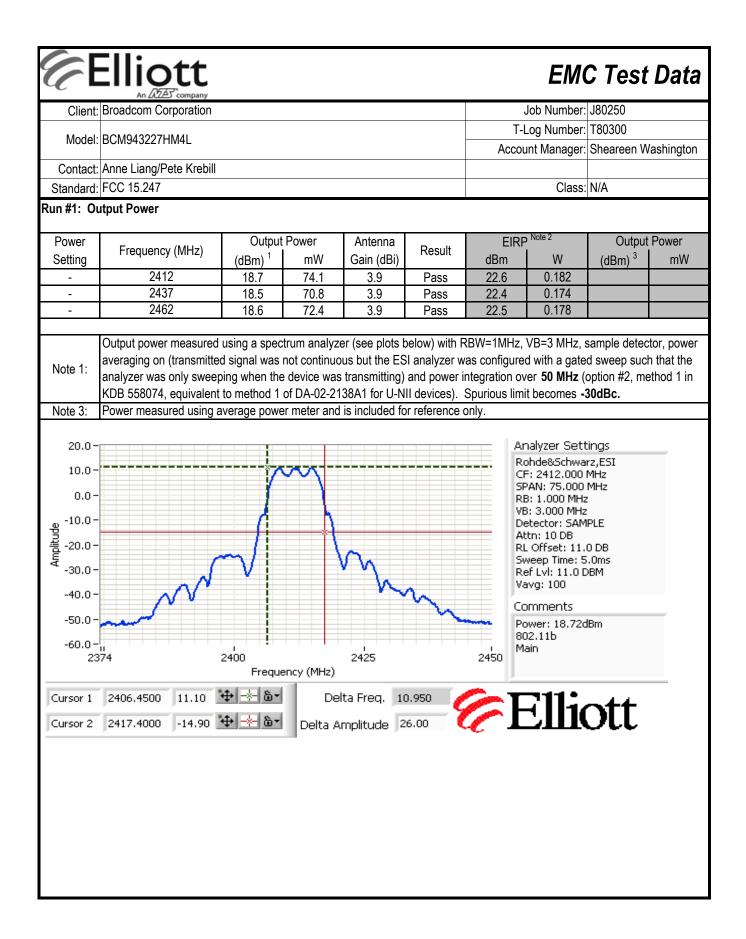

Model

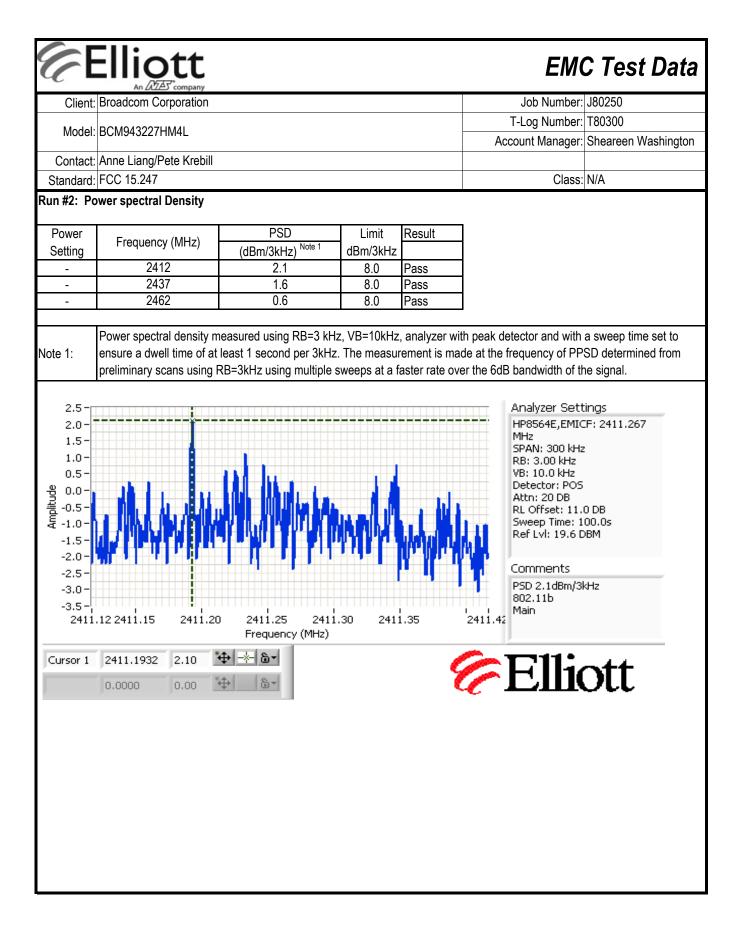

BCM943227HM4L

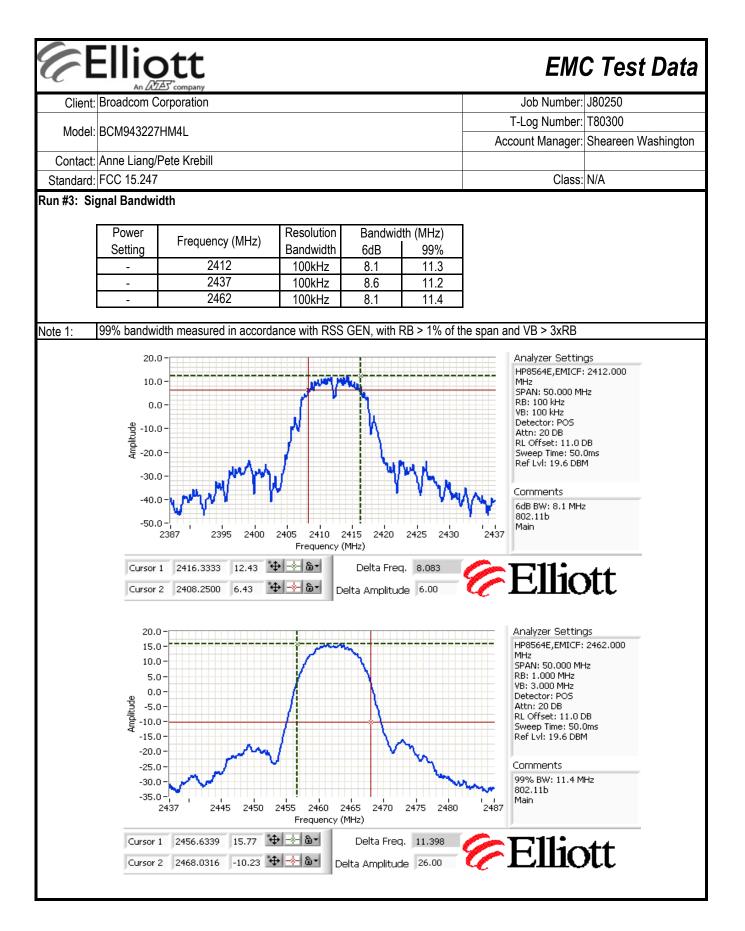

Date of Last Test: 11/4/2010

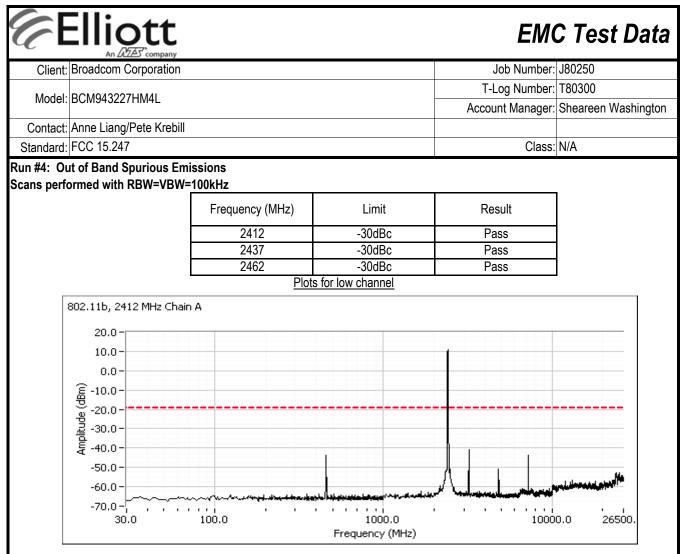

Client	: Broadcom Co	orporation			Job Number:	J80250
Model	: BCM9432271	-IM4I			T-Log Number:	
				Ace	count Manager:	Sheareen Washingto
	: Anne Liang/F : FCC 15.247	ete Krebill			Class: I	ΝΙ/Λ
Standard	FCC 15.247				Class.	N/A
	R		and FCC 15.247 (DTS) Ant Power, PSD, Bandwidth and S			;
est Spe	cific Details					
	Objective:	The objective specification	e of this test session is to perform final listed above.	qualification testing o	f the EUT with re	espect to the
	Date of Test:			nfig. Used: 1		
	est Engineer: Fest Location: F			ig Change: none JT Voltage: Powered	from host lanton	
		-		U	1 1-	
			um analyzer or power meter via a suita d to allow for the external attenuators o		easurements we	re made on a single
mbient	ements have be	een correcter : Te Re			easurements we	re made on a single
l measure mbient ummary	ements have be Conditions y of Results	een correcter : Te Re	d to allow for the external attenuators of emperature: 20.9 °C el. Humidity: 41 %	ısed.		
measure mbient ummary	ements have be	een correcter : Te Re	d to allow for the external attenuators of emperature: 20.9 °C el. Humidity: 41 % Test Performed	used.	Pass / Fail	Result / Margin
measure nbient ummary Run # 1	ements have be Conditions y of Results	een correcter : Te Re	d to allow for the external attenuators of emperature: 20.9 °C I. Humidity: 41 % Test Performed Output Power	Limit 15.247(b)	Pass / Fail Pass	Result / Margin 17.3 dBm (0.054)
measure mbient ummary Run # 1 2 3	ements have be Conditions y of Results	een correcter : Te Re	d to allow for the external attenuators of emperature: 20.9 °C el. Humidity: 41 % <u>Test Performed</u> <u>Output Power</u> <u>Power spectral Density (PSD)</u> Minimum 6dB Bandwidth	Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail	Result / Margin 17.3 dBm (0.054v -4.1 dBm/3kHz 14.9 MHz
measure mbient ummary Run # 1 2	ements have be Conditions y of Results Pwr setting -	een correcter : Te Re	d to allow for the external attenuators of emperature: 20.9 °C el. Humidity: 41 % <u>Test Performed</u> <u>Output Power</u> Power spectral Density (PSD)	Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin 17.3 dBm (0.054V -4.1 dBm/3kHz 14.9 MHz 17.4 MHz
I measure mbient ummary Run # 1 2 3	ements have be Conditions y of Results Pwr setting - -	een correcter : Te Re	d to allow for the external attenuators of emperature: 20.9 °C el. Humidity: 41 % <u>Test Performed</u> <u>Output Power</u> <u>Power spectral Density (PSD)</u> Minimum 6dB Bandwidth	Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass Pass Pass	Result / Margin 17.3 dBm (0.054V -4.1 dBm/3kHz 14.9 MHz


<u> </u>	Elliott							C Test	Data
Client	Broadcom Corporation						Job Number:		
Model	: BCM943227HM4L						og Number:		
						Accou	int Manager:	Sheareen W	ashington
	: Anne Liang/Pete Krebill						0	N1/A	
	: FCC 15.247 utput Power						Class:	N/A	
un#1. O									
Power	Frequency (MHz)	Output		Antenna	Result		RP	Output	
Setting	,	(dBm) ¹	mW	Gain (dBi)		dBm	W	(dBm) ³	mW
-	2412	14.9	30.9	3.9	Pass	18.8	0.076		
-	2437 2462	17.3	53.7	3.9	Pass	21.2	0.132		
-	2402	15.7	37.2	3.9	Pass	19.6	0.091		

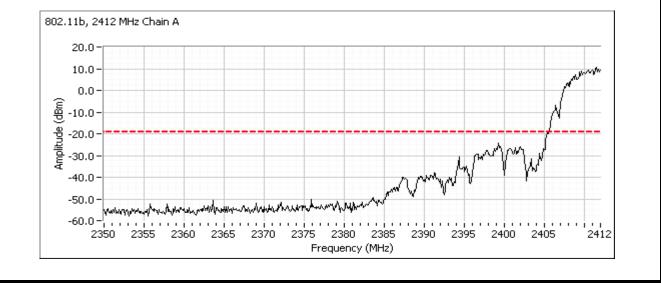


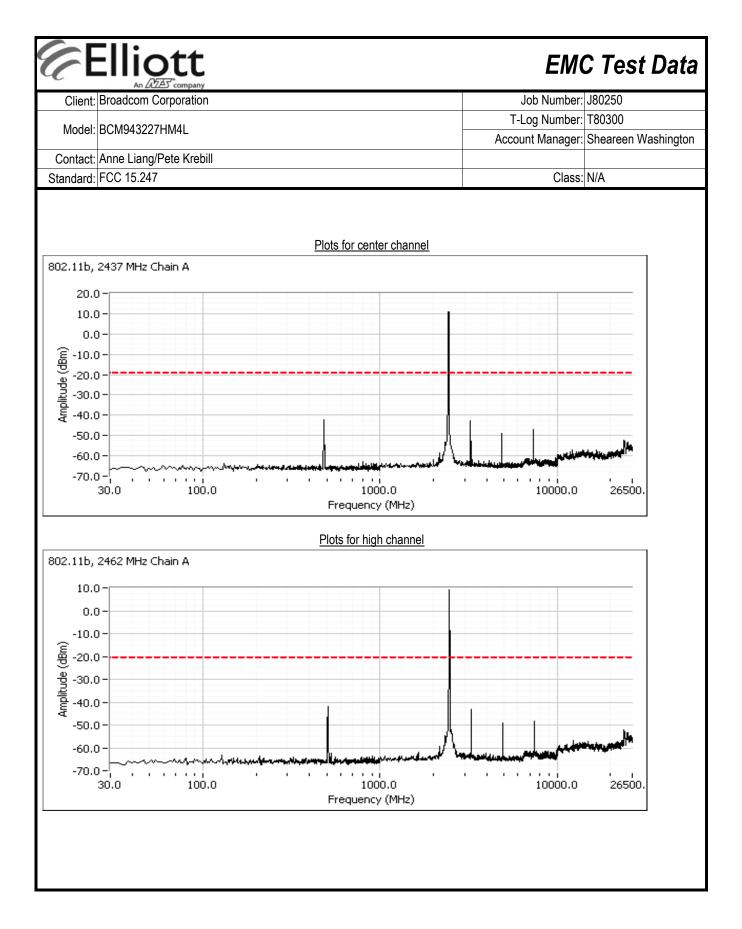




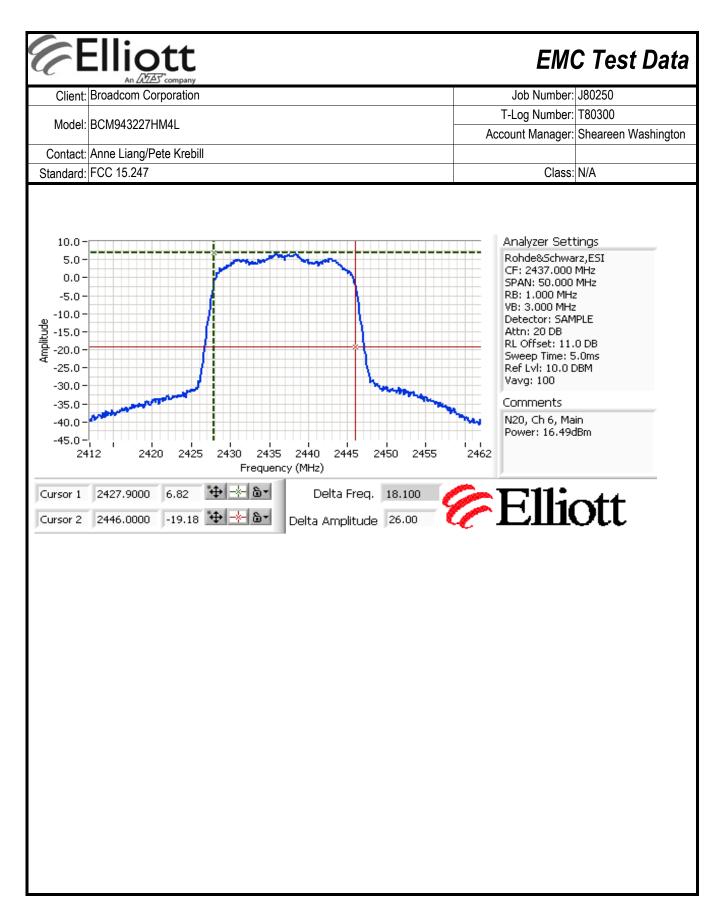


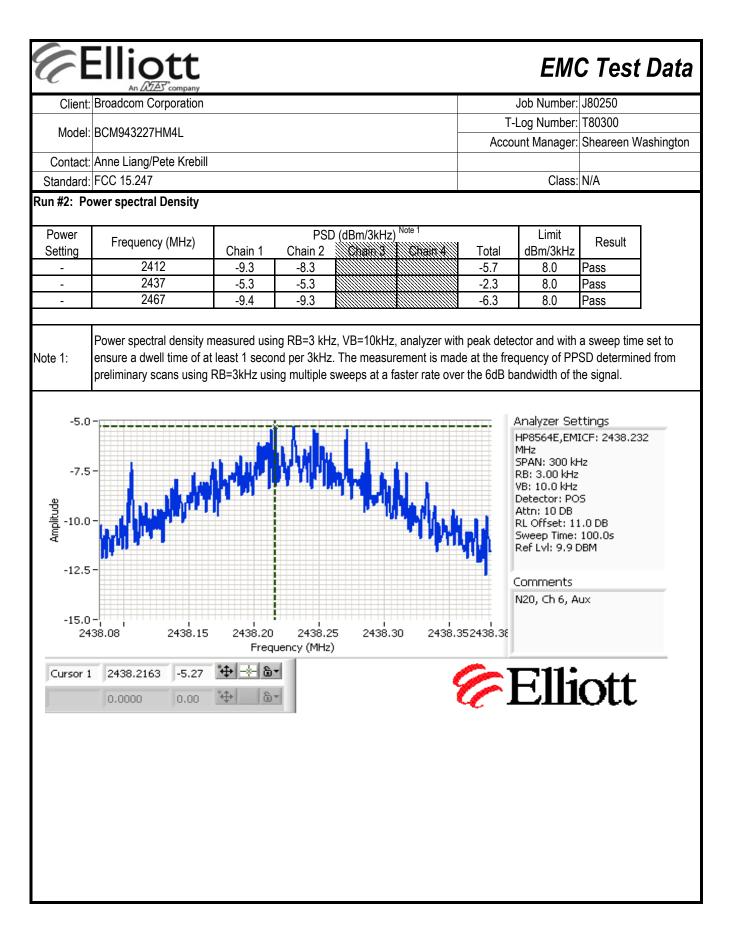
Client		2 company			Job Number:	J80250
		•			T-Log Number:	
Model	: BCM943227H	HM4L			ů.	Sheareen Washingto
	: Anne Liang/P	ete Krebill				
Standard	: FCC 15.247				Class:	N/A
	R		and FCC 15.247 (DTS) Ant Power, PSD, Bandwidth and S			5
est Spe	cific Details	5				
			e of this test session is to perform final listed above.	qualification testing o	f the EUT with re	espect to the
	Date of Test:			nfig. Used: 1		
	est Engineer: F est Location: F			ig Change: none JT Voltage: Powered	from host lantor	n
		een correcte	um analyzer or power meter via a suita d to allow for the external attenuators ເ			
l measure mbient	ements have be Conditions y of Results	een correcte : Te Re				
measure	Conditions	een correcte : Te Re	d to allow for the external attenuators u emperature: 21.4 °C I. Humidity: 39 % Test Performed	ısed.	Pass / Fail	Result / Margin
measure mbient ummar Run #	Conditions y of Results	een correcte : Te Re	d to allow for the external attenuators u emperature: 21.4 °C I. Humidity: 39 % Test Performed Output Power	used. Limit 15.247(b)	Pass / Fail Pass	Result / Margin 18.7 dBm (0.074m)
measure nbient ummar Run # 1 2	Conditions y of Results	een correcte : Te Re	d to allow for the external attenuators u emperature: 21.4 °C I. Humidity: 39 % <u>Test Performed</u> <u>Output Power</u> Power spectral Density (PSD)	Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin 18.7 dBm (0.074m 2.1 dBm/3kHz
measure mbient ummar Run # 1	Conditions y of Results	een correcte : Te Re	d to allow for the external attenuators u emperature: 21.4 °C I. Humidity: 39 % Test Performed Output Power	used. Limit 15.247(b)	Pass / Fail Pass	Result / Margin 18.7 dBm (0.074m
I measure mbient ummar Run # 1 2 3	Conditions y of Results Pwr setting	een correcte : Te Re	d to allow for the external attenuators u emperature: 21.4 °C II. Humidity: 39 % <u>Test Performed</u> <u>Output Power</u> <u>Power spectral Density (PSD)</u> Minimum 6dB Bandwidth	Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass Pass	Result / Margin 18.7 dBm (0.074m\ 2.1 dBm/3kHz 8.1 MHz

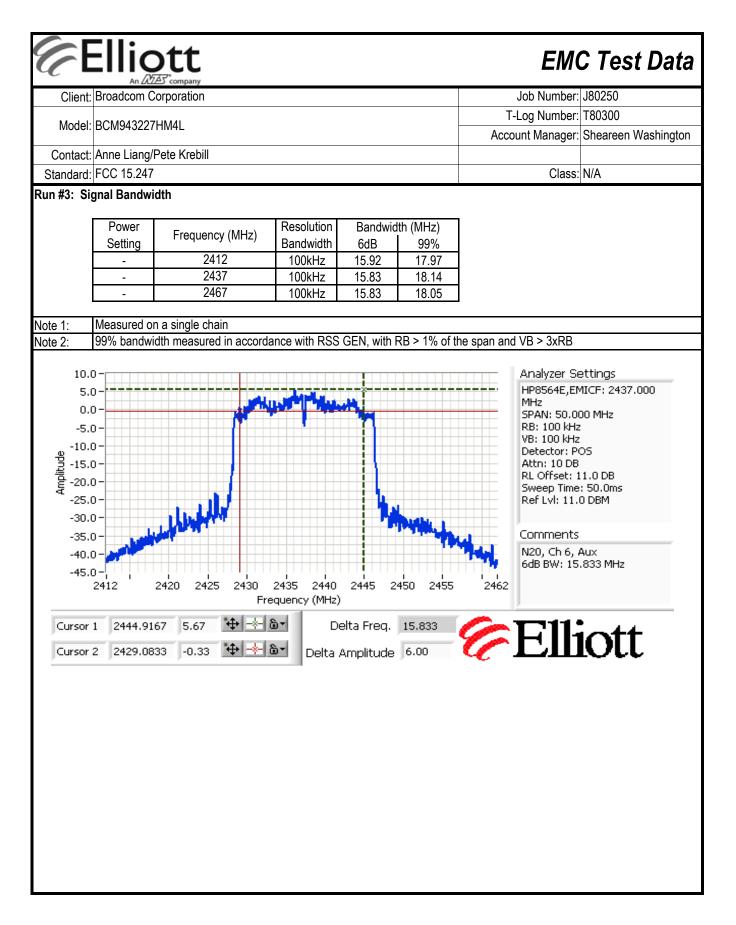


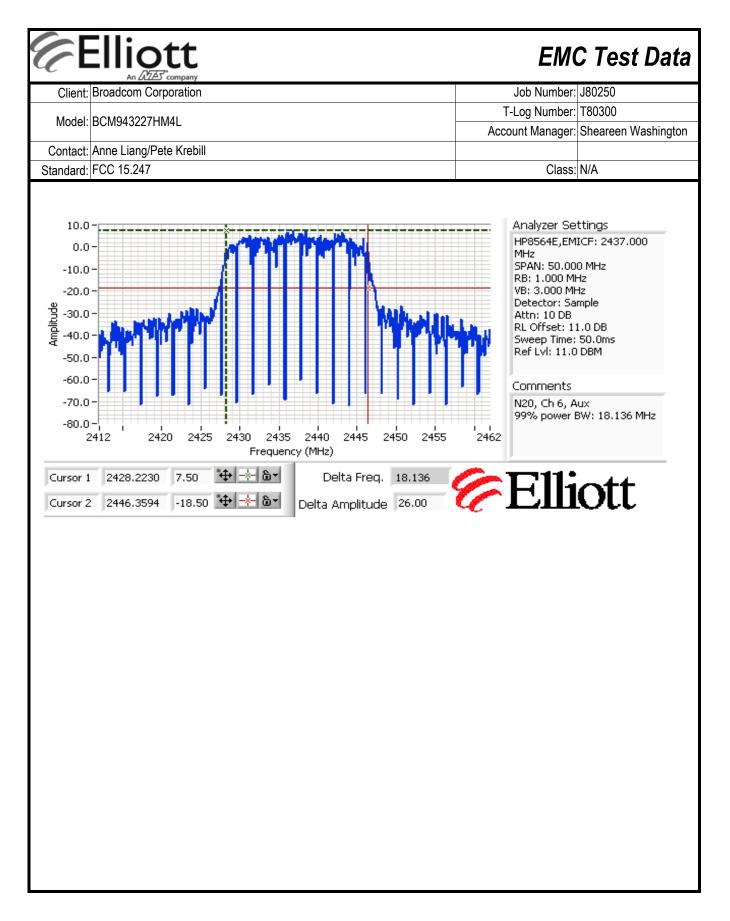


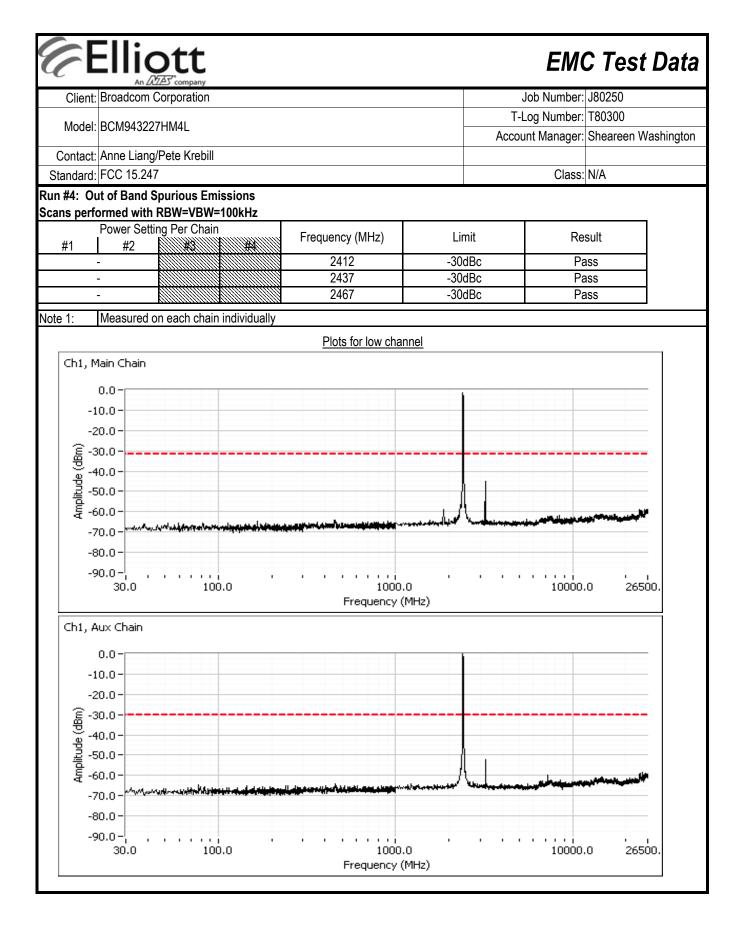
Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

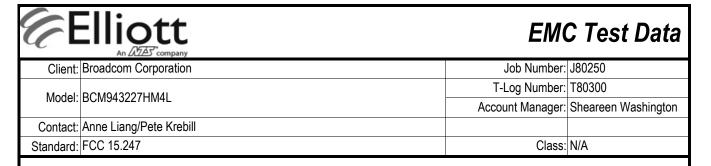


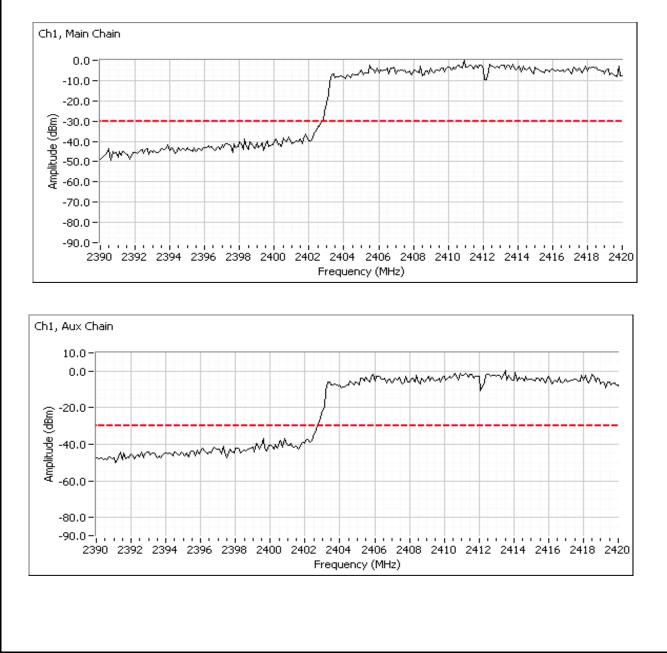


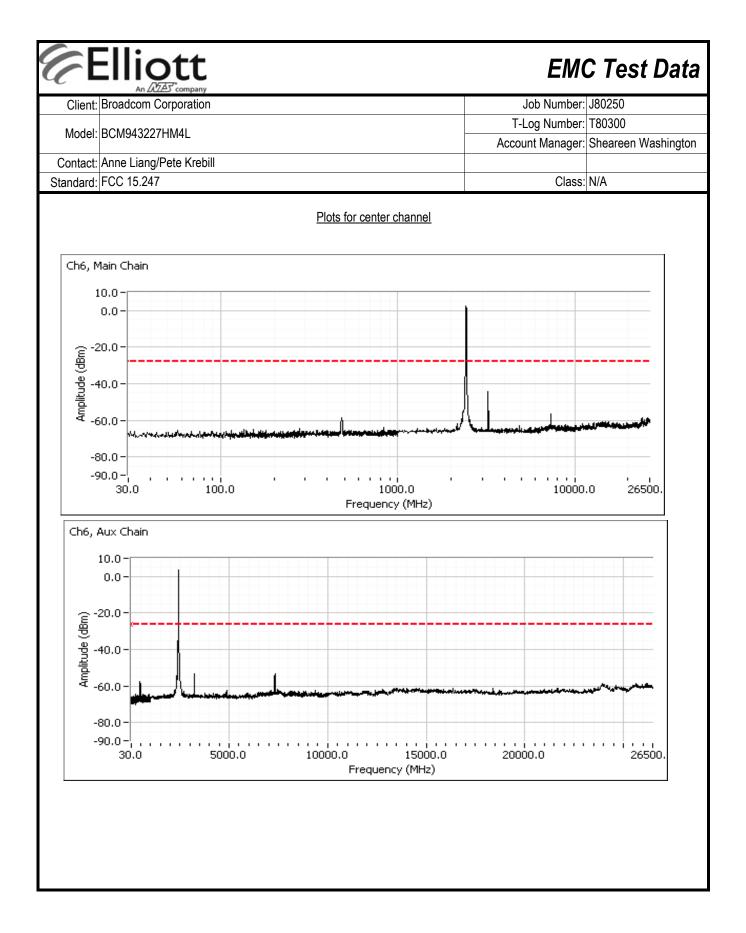

		ら company				
Client	: Broadcom Co	orporation			Job Number:	
Mode	: BCM943227H	HM4L			T-Log Number:	T80300 Sheareen Washingtor
Contact	t: Anne Liang/P	Pete Krebill		AC	count manager.	Sneareen wasningto
	: FCC 15.247				Class:	N/A
	R		nd FCC 15.247 (DTS) Au MIMO and Smart Ant ower, PSD, Bandwidth and	enna Systems		S
est Spe	cific Details	6	of this test session is to perform fina			espect to the
		specification I		,		
	Date of Test: 1	10/21/2010	(Config. Used: 1		
	est Engineer: N			nfig Change: None		
	est Location: I			Unit Voltage 120V/60	Hz	
	as connected t	to the spectru	m analyzer or nower meter via a su	itable attenuator ΔII m	easurements wa	ere made on a single
hain.			m analyzer or power meter via a su I to allow for the external attenuators		neasurements we	ere made on a single
he EUT w hain. Ill measure		een corrected : Ter Rel			easurements w	ere made on a single
he EUT w nain. Il measure .mbient	ements have be Conditions	een corrected : Ter Rel	l to allow for the external attenuators mperature: 20.5 °C		easurements we	
ne EUT w nain. I measure mbient ummar Run # hain A +	ements have be Conditions y of Results	een corrected : Tel Rel	l to allow for the external attenuators mperature: 20.5 °C . Humidity: 39 % Test Performed	s used.	Pass / Fail	Result / Margin
ne EUT w nain. I measure mbient ummar Run # hain A + 1	ements have be Conditions y of Results Pwr setting B -	een corrected : Tel Rel	I to allow for the external attenuators mperature: 20.5 °C . Humidity: 39 % Test Performed Output Power	s used. Limit 15.247(b)	Pass / Fail	Result / Margin 19.4 dBm (0.087V
e EUT w ain. I measurd mbient ummar Run # <u>nain A +</u> 1 2	ements have be Conditions y of Results Pwr setting B -	een corrected : Tel Rel	I to allow for the external attenuators mperature: 20.5 °C . Humidity: 39 % Test Performed Output Power Power spectral Density (PSD)	s used. Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin 19.4 dBm (0.087V -2.3 dBm/3kHz
ne EUT w nain. I measure mbient ummar Run # hain A + 1 2 3	ements have be Conditions y of Results Pwr setting B -	een corrected : Tel Rel	I to allow for the external attenuators mperature: 20.5 °C . Humidity: 39 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth	s used. Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass Pass Pass Pass	Result / Margin 19.4 dBm (0.087V -2.3 dBm/3kHz 15.83 MHz
ne EUT w nain. Il measure .mbient ummar Run # <u>hain A +</u> 1 2	ements have be Conditions y of Results Pwr setting B -	een corrected : Tel Rel	I to allow for the external attenuators mperature: 20.5 °C . Humidity: 39 % Test Performed Output Power Power spectral Density (PSD)	s used. Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin 19.4 dBm (0.087V -2.3 dBm/3kHz

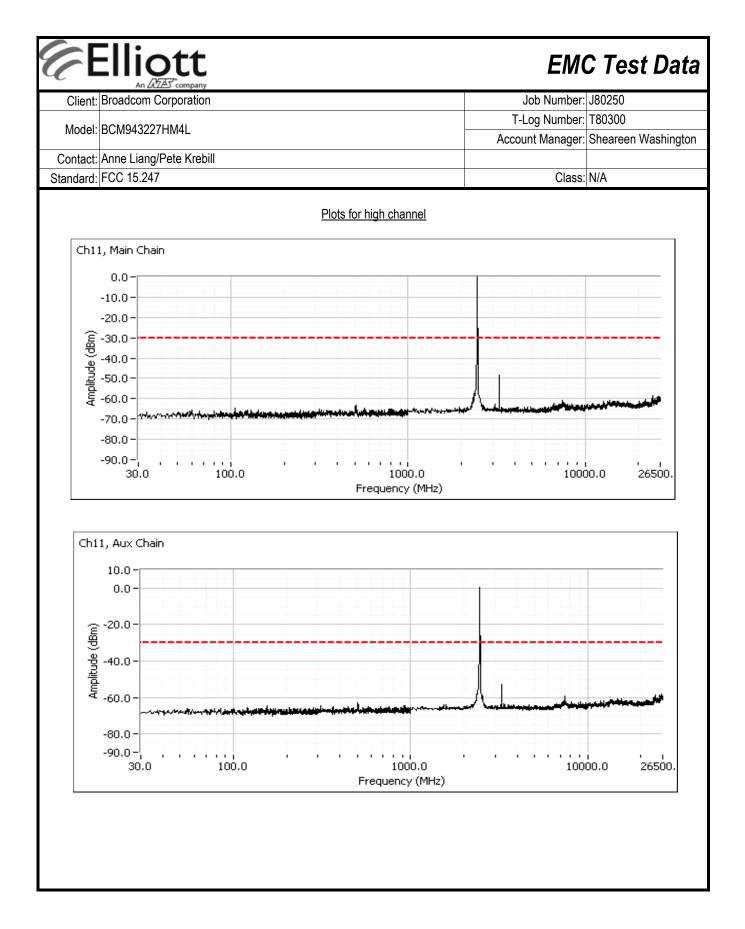

No deviations were made from the requirements of the standard.


Client	Elliott An DE Company						lob Number:	J80250	
Mada	DOM0420271 IM41					T-L	og Number:	T80300	
Wode	: BCM943227HM4L					Accou	nt Manager:	Sheareen W	ashington
	: Anne Liang/Pete Krebill								
	: FCC 15.247						Class:	N/A	
	utput Power - Chain A + Ope ansmitted signal on chain	erating Mode:							
	2412 MHz	Chain 1	Chain 2	()(Chain)(I)	Chain 4	Total Acros	s All Chains	Lir	nit
Power Sett		-	-						
Output Pov	ver (dBm) Note 1	12.8	12.8			15.8 dBm	0.038 W	29.1 dBm	0.811 W
Antenna Ga eirp (dBm)	ain (dBi) ^{Note 2}	3.9 16.7	3.9 16.7			6.9 dBi 22.7 dBm	0.187 W	Pa	SS
апр (автт)		10.7	10.7			ZZ.7 UDIII	0.107 W		
Downer Cott	2437 MHz	Chain 1	Chain 2	Chans 3	Khain X	Total Acros	s All Chains	Lir	nit
Power Sett Output Pov	•	- 16.5	- 16.3			19.4 dBm	0.087 W	29.1 dBm	0.811 W
Antenna G		3.9	3.9			6.9 dBi	0.007 W		
eirp (dBm)	Note 2	20.4	20.2			26.3 dBm	0.429 W	Pa	SS
,			-						
Davida 10 a 44	2462 MHz	Chain 1	Chain 2	Chaid 3	Chain 4	Total Acros	s All Chains	Lir	nit
Power Sett Output Pov	-	- 12.9	- 12.9			15.9 dBm	0.039 W	29.1 dBm	0.811 W
	ain (dBi) ^{Note 2}	3.9	3.9			6.9 dBi	0.039 W		
eirp (dBm)	Note 2	16.8	16.8			22.8 dBm	0.191 W	Pa	SS
Note 1: Note 2:	Output power measured averaging on (transmitte analyzer was only swee KDB 558074, equivalent As there is coherency be product of the total powe	ed signal was ping when the t to method 1 etween chains	not continue e device was of DA-02-21 s the effective	bus but the ES s transmitting) 138A1 for U-N ve antenna ga	I analyzer w and power i II devices).	as configured ntegration ov Spurious limi	d with a gate er 50 MHz (o t becomes -3	d sweep such option #2, me 30dBc.	n that the thod 1 in

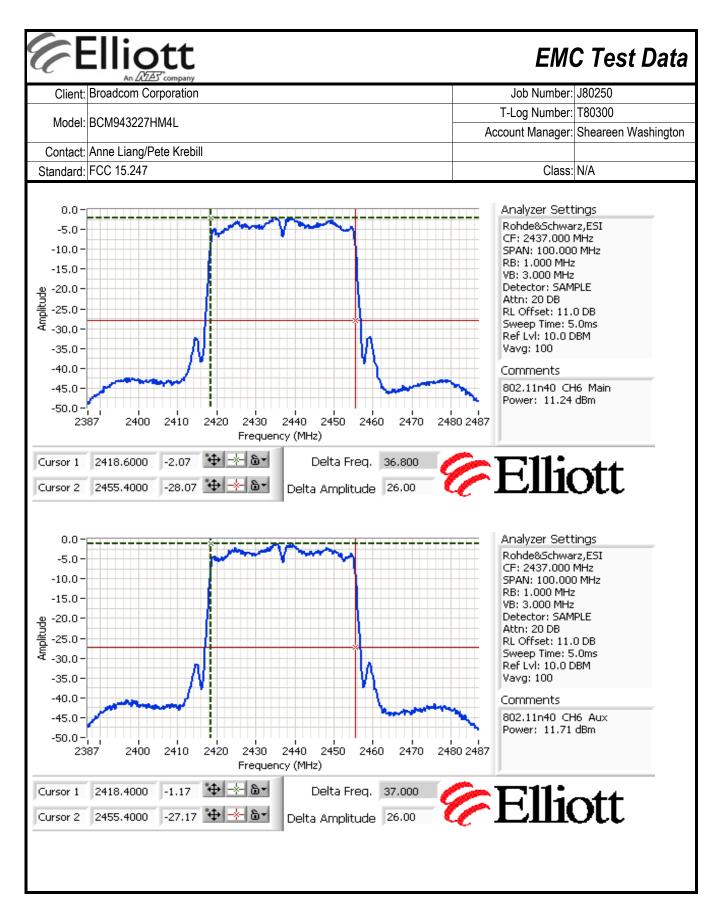


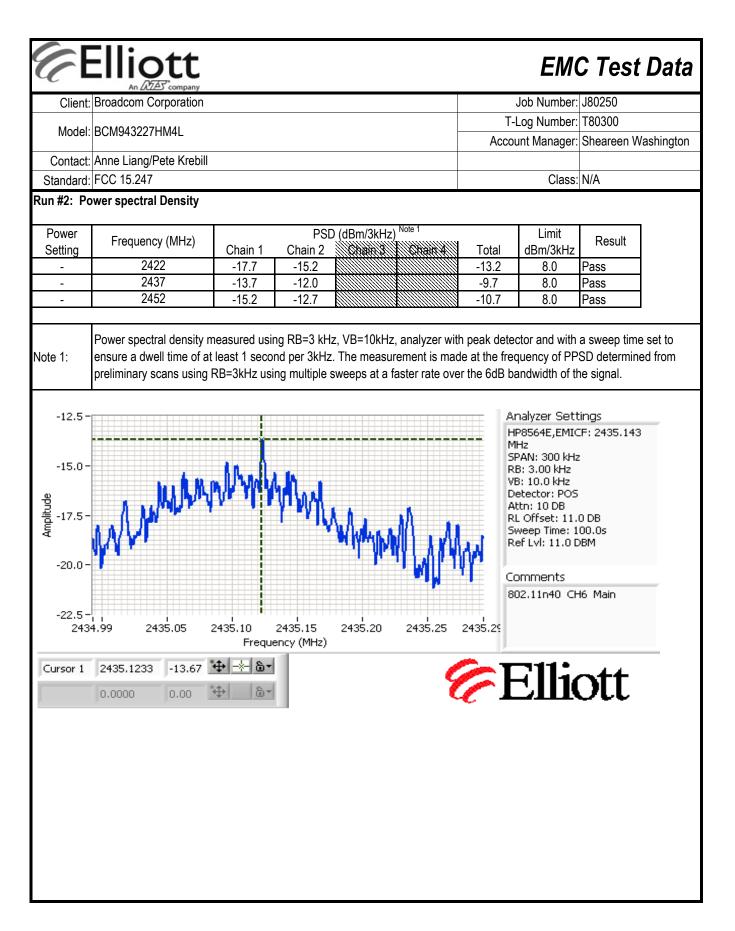


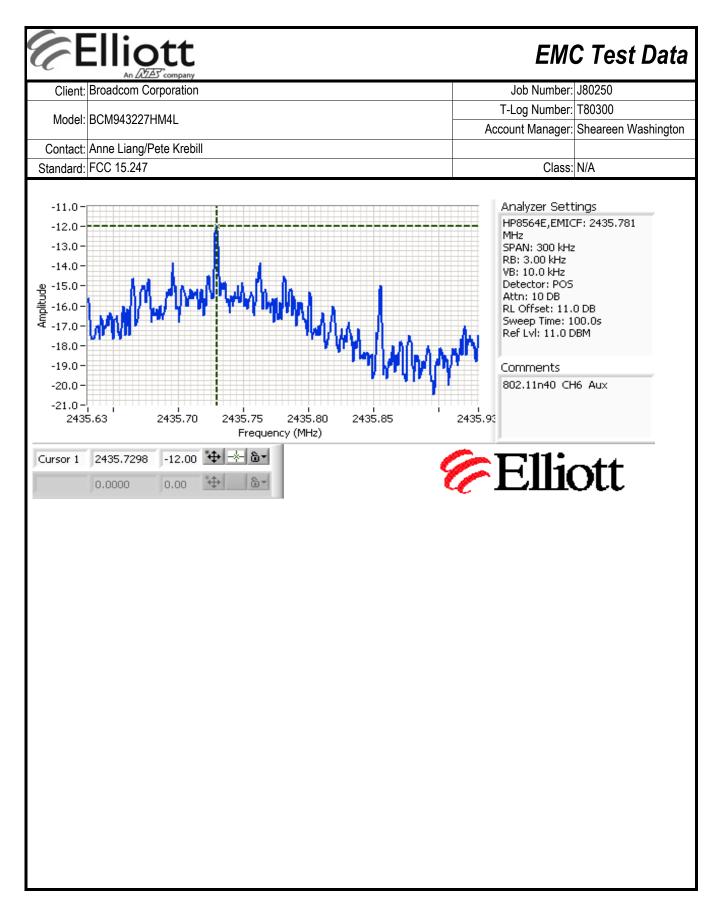


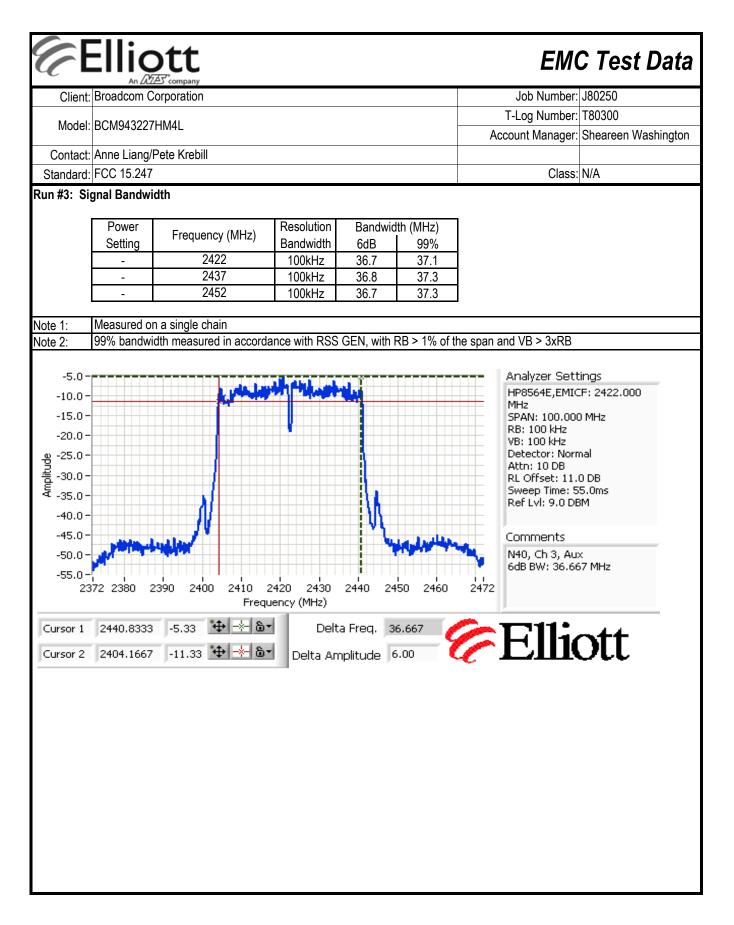


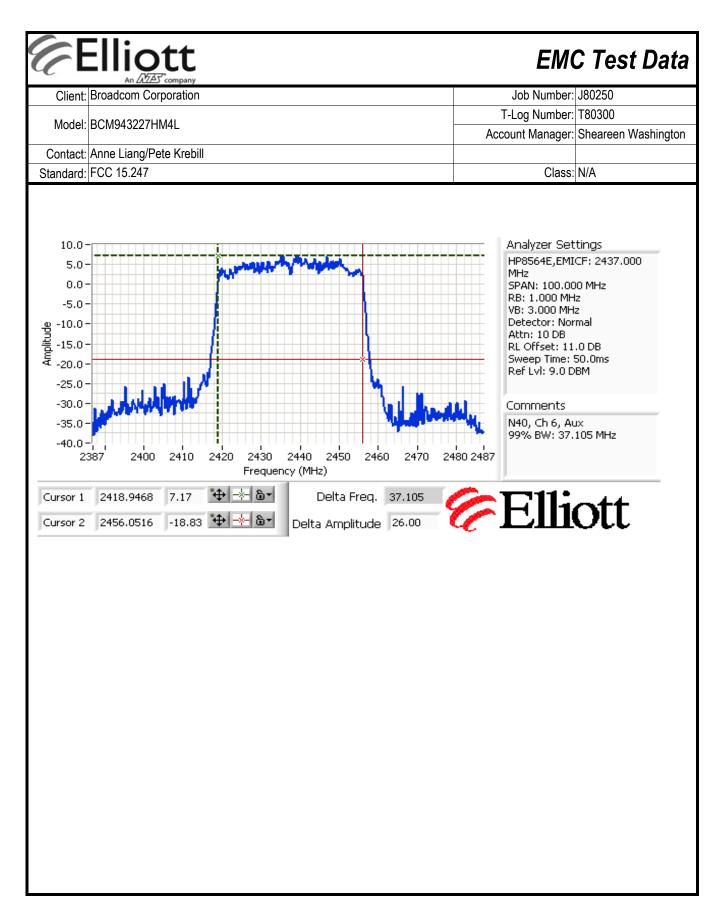
Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

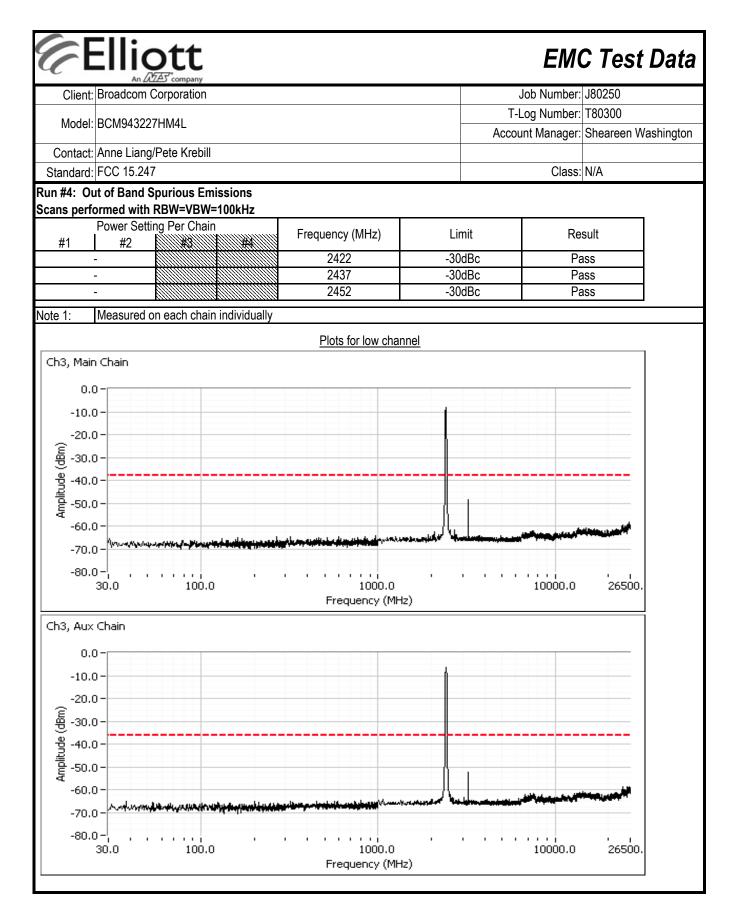


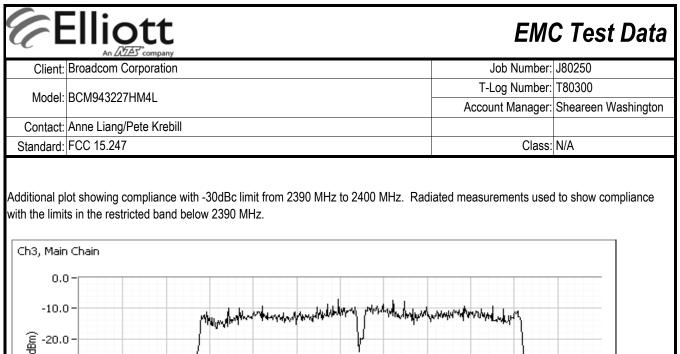


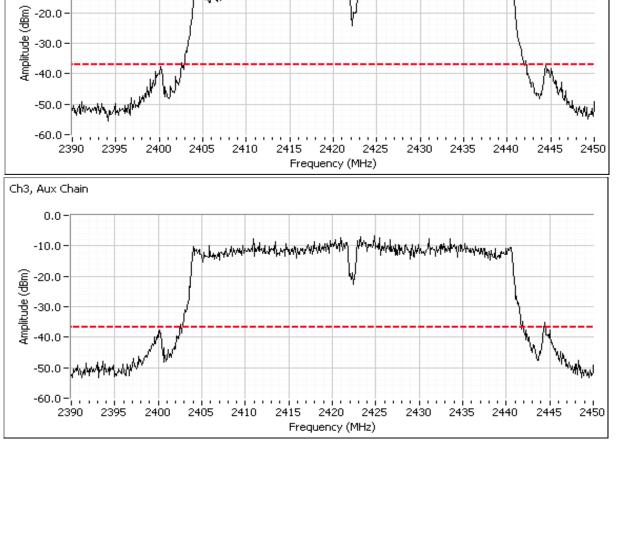


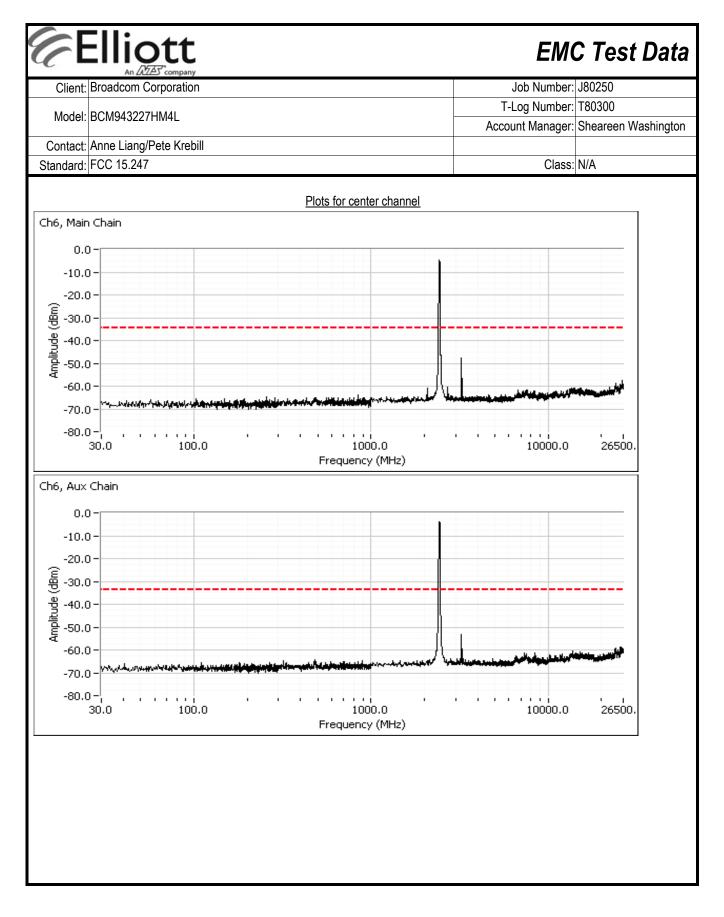

	Ellic Broadcom Co	ornoration			Job Number:	180250
Client		orporation			T-Log Number:	
Model	: BCM943227H	HM4L		Ac	-	Sheareen Washingto
Contact	: Anne Liang/F	Pete Krebill				
Standard	: FCC 15.247				Class:	N/A
	R	SS 210 a	and FCC 15.247 (DTS) Ar	itenna Port Mea	asurement	S
			MIMO and Smart Ante	•		
		ſ	Power, PSD, Bandwidth and S	Spurious Emissio	ns	
est Spe	cific Details	S				
-			e of this test session is to perform fina listed above.	l qualification testing o	of the EUT with r	espect to the
	Date of Test:	10/21/2010	C	onfig. Used: 1		
Te	est Engineer: I	Rafael Varela		nfig Change: none		
Т	est Location: I	Fremont Cha	mber #5 Host	Unit Voltage 120V/60I	Hz	
onoral '	Tact Config	uration				
ne EUT w	Test Config as connected t		um analyzer or power meter via a sui	able attenuator. All m	easurements we	ere made on a single
he EUT w nain.	as connected t	to the spectro	um analyzer or power meter via a sui d to allow for the external attenuators		easurements we	ere made on a single
he EUT w nain. Il measure	as connected t	to the spectro			easurements we	ere made on a single
ne EUT w nain. I measure	as connected t ements have b	to the spectro een correcte :: Te	d to allow for the external attenuators emperature: 20.5 °C		easurements we	ere made on a single
ne EUT w nain. Il measure	as connected t ements have b	to the spectro een correcte :: Te	d to allow for the external attenuators		easurements we	ere made on a single
ne EUT w lain. I measure mbient	as connected t ements have b	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C		easurements w	ere made on a single
e EUT w ain. measure mbient ummary Run #	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C		easurements we	ere made on a single Result / Margin
e EUT w ain. measure mbient ummary Run # nain A + 1	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C I. Humidity: 39 % Test Performed	used. Limit	Pass / Fail	Result / Margin
e EUT w ain. measure mbient ummary Run # <u>ain A + 1</u>	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C el. Humidity: 39 % Test Performed Output Power	used. Limit 15.247(b)	Pass / Fail	Result / Margin
e EUT w ain. measure mbient ummary Run # iain A + 1 2	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C el. Humidity: 39 % Test Performed Output Power Power spectral Density (PSD)	used. Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin 14.5 dBm (0.028\ -9.7 dBm/3kHz
e EUT w ain. measure mbient ummary Run # 1 1 2 3	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C el. Humidity: 39 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth	used. Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass Pass Pass Pass	Result / Margin 14.5 dBm (0.028V -9.7 dBm/3kHz 36.7 MHz
e EUT w ain. measure mbient ummary Run # iain A + 1 2	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C el. Humidity: 39 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth	used. Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass Pass	Result / Margin 14.5 dBm (0.028V -9.7 dBm/3kHz 36.7 MHz 37.3 MHz
e EUT w ain. measure mbient ummary Run # <u>1</u> 2 3	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C el. Humidity: 39 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth	used. Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass Pass Pass Pass	Result / Margin 14.5 dBm (0.028V -9.7 dBm/3kHz 36.7 MHz 37.3 MHz
he EUT w nain. Il measure umbient Run # hain A + 1 2 3 3	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectro een correcte :: Te Re	d to allow for the external attenuators emperature: 20.5 °C el. Humidity: 39 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth	used. Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.5 dBm (0.028V -9.7 dBm/3kHz 36.7 MHz 37.3 MHz All emissions belo
ne EUT w nain. Il measure ummary Run # hain A + 1 2 3 3 4	as connected f ements have be Conditions y of Results [Pwr setting]	to the spectri een correcte :: Te Re Avg Pwr	d to allow for the external attenuators emperature: 20.5 °C el. Humidity: 39 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth Spurious emissions	used. Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.5 dBm (0.028V -9.7 dBm/3kHz 36.7 MHz 37.3 MHz All emissions belo

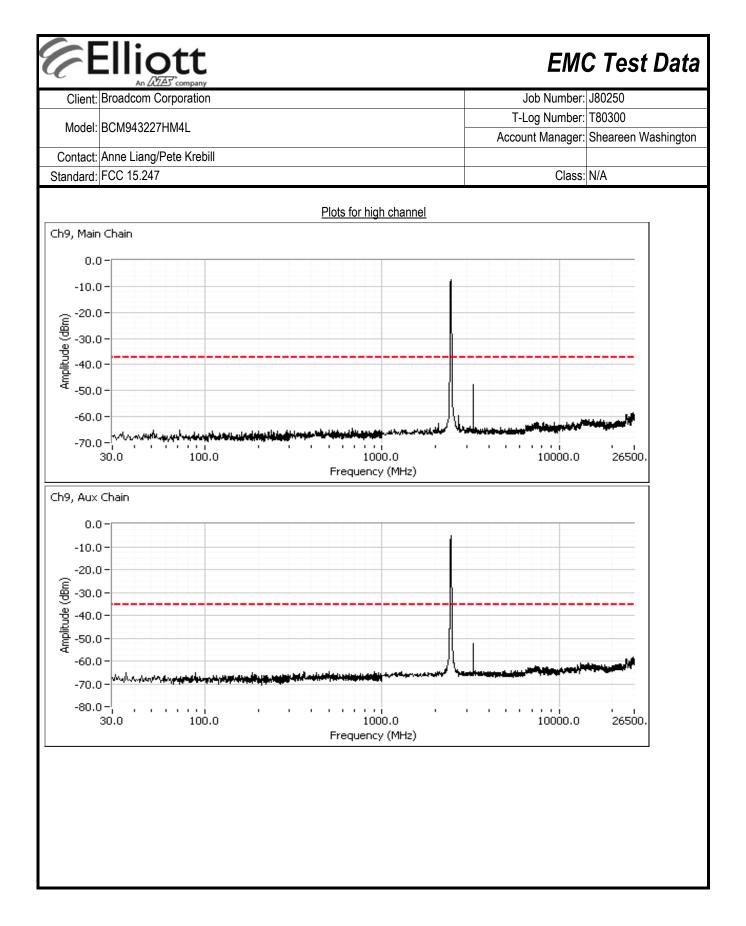

Client: Broa Model: BCM	dcom Corporation						EMO	C Test	Data
	042007110441						lob Number:	J80250	
						T-L	og Number:	T80300	
Contact: Anne	1943227 MIVI4L					Account Manager		Sheareen Washingtor	
	e Liang/Pete Krebill								
Standard: FCC	15.247						Class:	N/A	
-	Power - Chain A + Oper ted signal on chain is	ating Mode:							
242	2 MHz	Chain 1	Chain 2	//Elaksd3///		Total Acros		Lir	nit
Power Setting		-	-			TOTAL ACTOS		LII	
Output Power (dE		8.46	9.41			12.0 dBm	0.016 W	29.1 dBm	0.811 W
Antenna Gain (dE	Bi) Note 2	3.9	3.9			6.9 dBi		Pa	SS
eirp (dBm) ^{Note 2}		12.36	13.31			18.9 dBm	0.077 W		
2/13	7 MHz	Chain 1	Chain 2		(11)8112124(1)				
Power Setting	7 101112	-	-		//////////////////////////////////////	Total Acros	s All Chains	Lir	nit
Output Power (dE	3m) ^{Note 1}	11.24	11.71			14.5 dBm	0.028 W	29.1 dBm	0.811 W
Antenna Gain (dE		3.9	3.9			6.9 dBi			
eirp (dBm) ^{Note 2}	/	15.14	15.61			21.4 dBm	0.138 W	Pa	SS
	2 MHz	Chain 1	Chain 2	Chan3	Cibain 4	Total Acros	s All Chains	Lir	nit
Power Setting	Note 1	-	-			40 7 JD	0.000 \\	00.4 ID	0.044.14
Output Power (dE	500	10.18 3.9	11.09 3.9			13.7 dBm 6.9 dBi	0.023 W	29.1 dBm	0.811 W
Antenna Gain (dE eirp (dBm) ^{Note 2}	51)	14.08	14.99			20.6 dBm	0.114 W	Pa	SS
		14.00	14.99			20.0 UDIII	0.114 11		
Note 1: avera analy KDB	but power measured aging on (transmitted yzer was only sweep 558074, equivalent here is coherency be uct of the total powe	d signal was ing when the to method 1 tween chains	not continuo e device was of DA-02-21 s the effective	bus but the ES transmitting) 38A1 for U-N re antenna ga	I analyzer w and power i III devices).	as configured ntegration ov Spurious limi	d with a gate er 47 MHz (o t becomes -3	d sweep such option #2, me 30dBc.	n that the ethod 1 in











EMC Test Data

 An M223* company

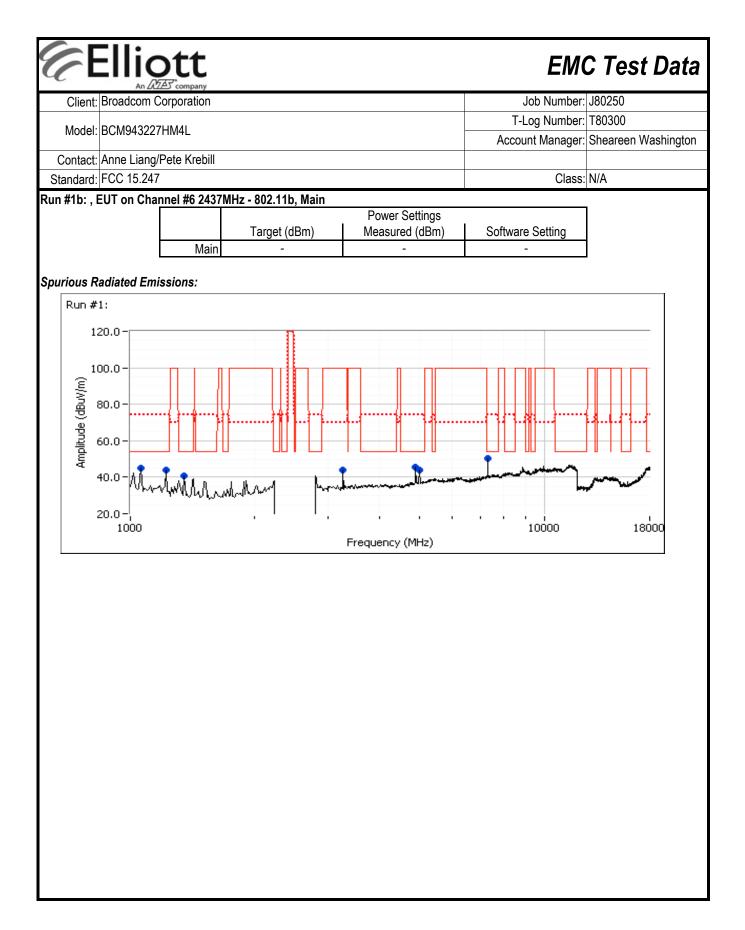
 Client:
 Broadcom Corporation
 Job Number:
 J80250

 Model:
 BCM943227HM4L
 T-Log Number:
 T80300

 Contact:
 Anne Liang/Pete Krebill
 Account Manager:
 Sheareen Washington

 Standard:
 FCC 15.247
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

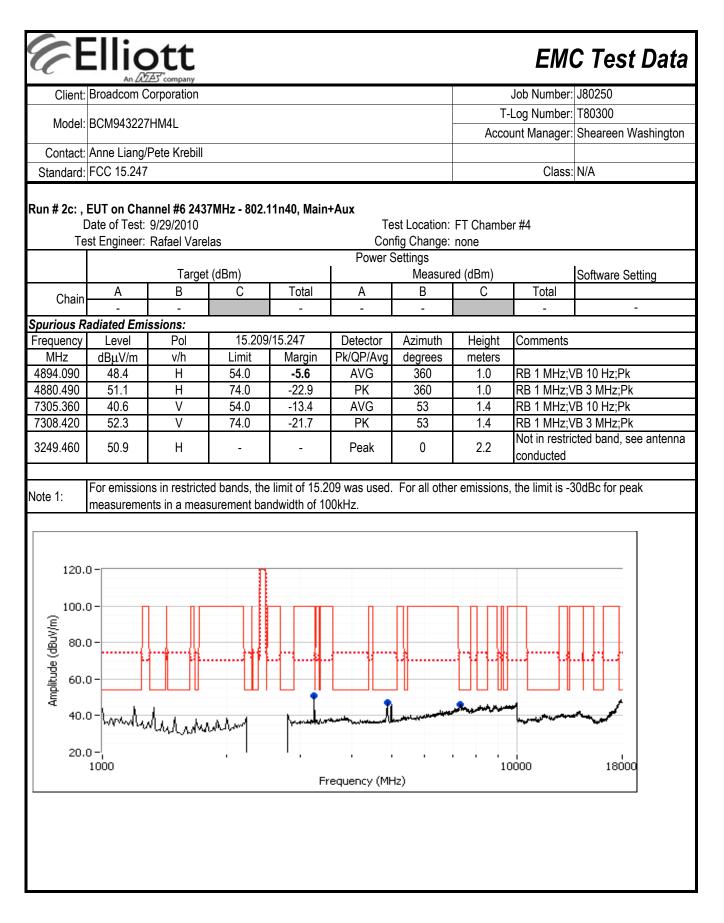

Summary of Results

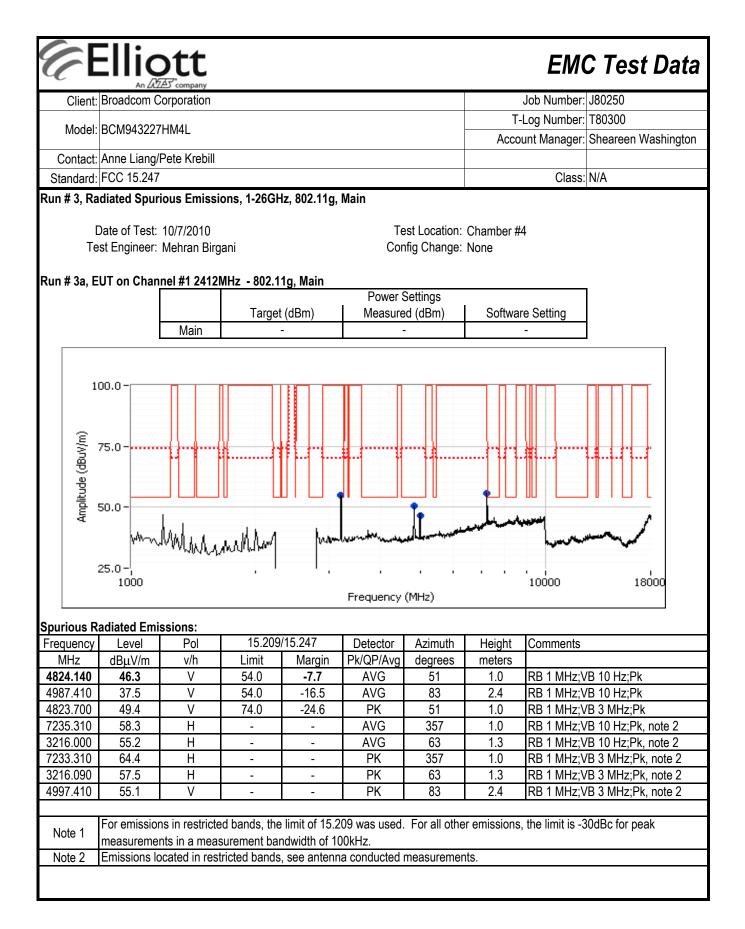
Elliott

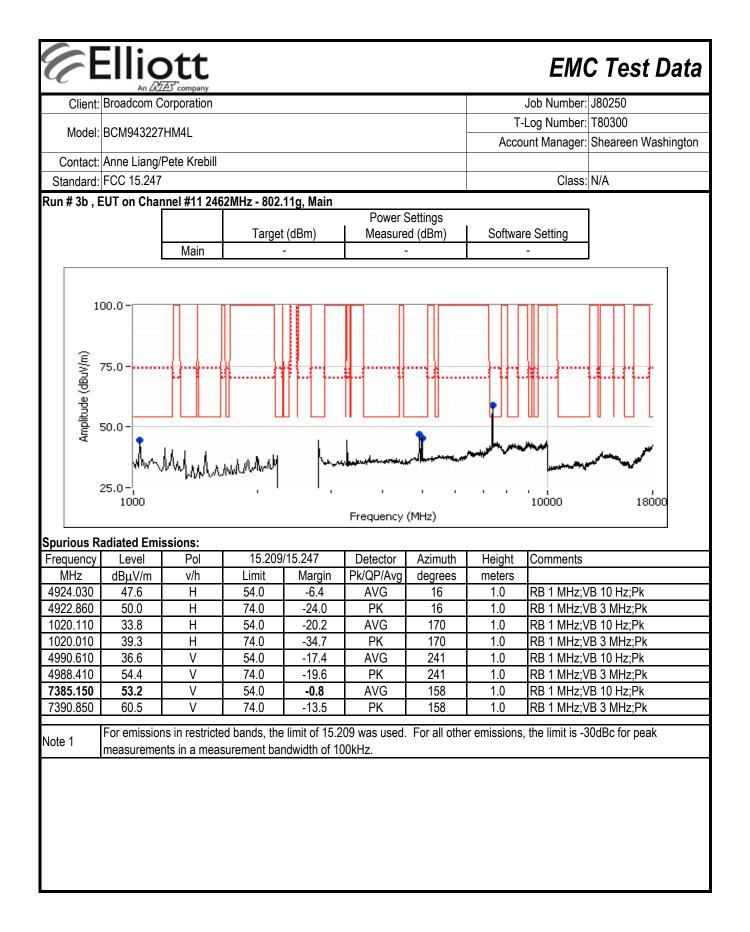
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
		#1					44.7dBµV/m @
		2412MHz	-	-			4823.9MHz (-9.3dB
Run #1	802.11b	#6			Radiated Emissions,	FCC 15.209 / 15.247	53.2dBµV/m @
NUII #1	Main	2437MHz	-	-	1 - 26 GHz	FGG 15.2097 15.247	7311.7MHz (-0.8dE
		#11					52.2dBµV/m @
		2462MHz	-	-			7386.7MHz (-1.8dB
	802.11g	#6					53.4dBµV/m @
	Main	2437MHz	-	-			7311.9MHz (-0.6dE
Run # 2	802.11n20	#6	_		Radiated Emissions,	FCC 15.209 / 15.247	50.8dBµV/m @
$1 \times 11 \pi^2$	Main+Aux	2437MHz	_	_	1 - 26 GHz	1 00 13.2037 13.247	7309.0MHz (-3.2dE
	802.11n40	#6	_				48.4dBµV/m @
	Main+Aux	2437MHz	_	_			4894.1MHz (-5.6dE
		#1	_	_			46.3dBµV/m @
Run # 3	802.11g	2412MHz	_	_	Radiated Emissions,	FCC 15.209 / 15.247	4824.1MHz (-7.7dE
	Main	#11	_	_	1 - 26 GHz	1 00 10.2007 10.247	53.2dBµV/m @
		2462MHz	_	_			7385.2MHz (-0.8dE
		#1	_	_			53.3dBµV/m @
Run #4	802.11n20	2412MHz			Radiated Emissions,	FCC 15.209 / 15.247	4823.1MHz (-0.7dE
	Main+Aux	#11	-	-	1 - 26 GHz		53.2dBµV/m @
		2462MHz					4925.2MHz (-0.8dE
		#3	-	-			40.3dBµV/m @
Run # 5	802.11n40	2422MHz			Radiated Emissions,	FCC 15.209 / 15.247	4843.1MHz (-13.7dl
	Main+Aux	#9	-	-	1 - 26 GHz		37.7dBµV/m @
	L	2452MHz					4903.0MHz (-16.3dl
eceiver S	ourious Emi	ssions					
		#6, Main	-	-			47.5dBµV/m @
	Receive	,					2437.0MHz (-6.5dE
Run #6	Main, Aux,	#6, Aux	-	-	Radiated Emissions,	RSS 210	47.7dBµV/m @
	Main+Aux				1 - 7.5 GHz		2437.0MHz (-6.3dE
		#6,	-	-			46.9dBµV/m @
		Main+Aux					2437.0MHz (-7.1dB

-				EMO	C Test Data
Client:	Broadcom Corporation			Job Number:	J80250
Model·	BCM943227HM4L			T-Log Number:	
				Account Manager:	Sheareen Washington
	Anne Liang/Pete Krebill FCC 15.247			Class:	N1/A
ieneral 1	Fest Configuration	d above.		on testing of the EUT with r	espect to the
or radiated	s installed into a test fixture suc I emissions testing the measure				
mbient	Conditions:				
		Rel. Humidity: Temperature:	15 - 55 % 18 - 25 °C		
	tions were made to the EUT du	uring testing			
eviation					
eviation	is From The Standard				
eviation	is From The Standard				
eviation	is From The Standard				
eviation	is From The Standard				
eviation	is From The Standard				
eviation	is From The Standard				
eviation	is From The Standard				
eviation	is From The Standard				

Client: Broadcom Corporation Job Number: 180300 Modei: BCM943227HM4L T-Log Number: 180300 Standard: FCC 15.247 Class: N/A Run #1, Rodiated Spurious Emissions, 1-26GHz, 802.11b, Main Date of Test: 9/24/2010 Test Location: FT #5 Test Enginee:: Surdard: Config Change: - Run #1, Rodiated Spurious Emissions, 1-26GHz, 802.11b, Main Power Settings Main - - Spurious Radiated Emissions: Foregramma (dBm) Software Setting Main - - Spurious Radiated Emissions: Frequency Level Frequency Level Pol 15.209 / 15.247 Main - - - Surdaus Radiated Emissions: Frequency Level Pol Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Mitz dBguVim vh Limit Margin PK/QP/Argi degrees meters 4223.201 44.7 H 54.0 - 3.0 Go 2.1 R 11 MHz/VB 3 MHz/Pk	Client		D tt							
Model: BCM94322/HM4L Account Manager: Sheareen Washing Contact: Anne Liang/Pete Krebill Image: Sheareen Washing Standard: FCC 15.247 Class: N/A Run #1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Main Test Location: FT #5 Test Engineer: Suresh K Config Change: - Run #1a, EUT on Channel #1 2412MHz - 802.11b, Main Power Settings Software Setting Main - - - Spurious Radiated Emissions: Frequency Level Poi 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1	Oliciti.	Broadcom C	orporation							
Contact: Anne Liang/Pete Krebill Class: N/A Standard: FCC 15.247 Class: N/A Run #1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Main Date of Test: 9/24/2010 Test Location: FT #5 Test Engineer: Surgets Config Change: - - - Run #1a, EUT on Channel #1 2412MHz - 802.11b, Main Power Settings Software Setting Main - - - - Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz; VB 10 Hz; Pk 4823.930 44.7 V 54.0 -9.3 AVG 27 1.1 RB 1 MHz; VB 3 MHz; Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz; VB 3 MHz; Pk	Model:	BCM943227	HM4L							
Standard: FCC 15.247 Class: N/A Run #1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Main Date of Test: 9/24/2010 Test Location: FT #5 Config Change: - Run #1a, EUT on Channel #1 2412MHz - 802.11b, Main Power Settings Main - Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz; VB 10 Hz; Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz; VB 3 MHz; Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz; VB 3 MHz; Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz; VB 3 MHz; Pk	0	A			Account Manager: Sheareen Washing					
Run #1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Main Date of Test: 9/24/2010 Test Engineer: Suresh K Config Change: - Run #1a, EUT on Channel #1 2412MHz - 802.11b, Main Power Settings Target (dBm) Measured (dBm) Software Setting Main - Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 3 MHz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1		-	Pete Kredili						Class	N1/A
Test Location: FT #5 Test Engineer: Suresh K Config Change: - Run #1a, EUT on Channel #1 2412MHz - 802.11b, Main Power Settings Target (dBm) Measured (dBm) Software Setting Main - Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.920 44.7 V 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.920 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 3 MHz;Pk 4824.130<					- 000 446	M = !			Class.	N/A
Test Engineer: Suresh K Config Change: - Run #1a, EUT on Channel #1 2412MHz - 802.11b, Main Power Settings Software Setting Main - - Spurious Radiated Emissions: Measured (dBm) Software Setting Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.				ns, 1-26GH	z, 802.11D, I		est Location.	FT #5		
Run #1a, EUT on Channel #1 2412MHz - 802.11b, Main Power Settings Target (dBm) Measured (dBm) Software Setting Main - - - Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 3 MHz;Pk										
Target (dBm) Measured (dBm) Software Setting Main - - Spurious Radiated Emissions: - - Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 3 MHz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357		-		IHz - 802.11	b, Main					
Main - - - Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V					(ID)				0	
Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG				Target	(dBm)			Softwar	e Setting	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.040 48.1 V </td <td></td> <td>l</td> <td>Main</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td>		l	Main		-	-			-	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG	Spurious R	adiated Emis	ssions:							
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4823.920 44.7 H 54.0 -9.3 AVG 27 1.1 RB 1 MHz;VB 10 Hz;Pk 4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 3 MHz;Pk				15.209	/ 15.247	Detector	Azimuth	Height	Comments	
4823.810 49.6 H 74.0 -24.4 PK 27 1.1 RB 1 MHz;VB 3 MHz;Pk 4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk		dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees			
4823.930 44.7 V 54.0 -9.3 AVG 360 2.1 RB 1 MHz;VB 10 Hz;Pk 4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.2040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk	4823.920	44.7		54.0	-9.3			1.1		,
4824.130 49.0 V 74.0 -25.0 PK 360 2.1 RB 1 MHz;VB 3 MHz;Pk 7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk										,
7257.500 36.0 H 54.0 -18.0 AVG 357 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the										
7256.940 47.3 H 74.0 -26.7 PK 357 1.0 RB 1 MHz;VB 3 MHz;Pk 7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk Hote 1:										
7256.200 36.1 V 54.0 -17.9 AVG 0 1.0 RB 1 MHz;VB 10 Hz;Pk 7256.040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk Jote 1:										
7256.040 48.1 V 74.0 -25.9 PK 0 1.0 RB 1 MHz;VB 3 MHz;Pk Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the										
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the										
Note 1:	7250.040	40.1	V	74.0	-20.9	Ph	U	1.0	RB I MHZ;V	B 3 MHZ;PK
Noto 1:		For emissior	is in restricte	d bands, the	limit of 15.2	09 was used.	For all othe	r emissions.	the limit was	set 30dB below the
	Note 1:									

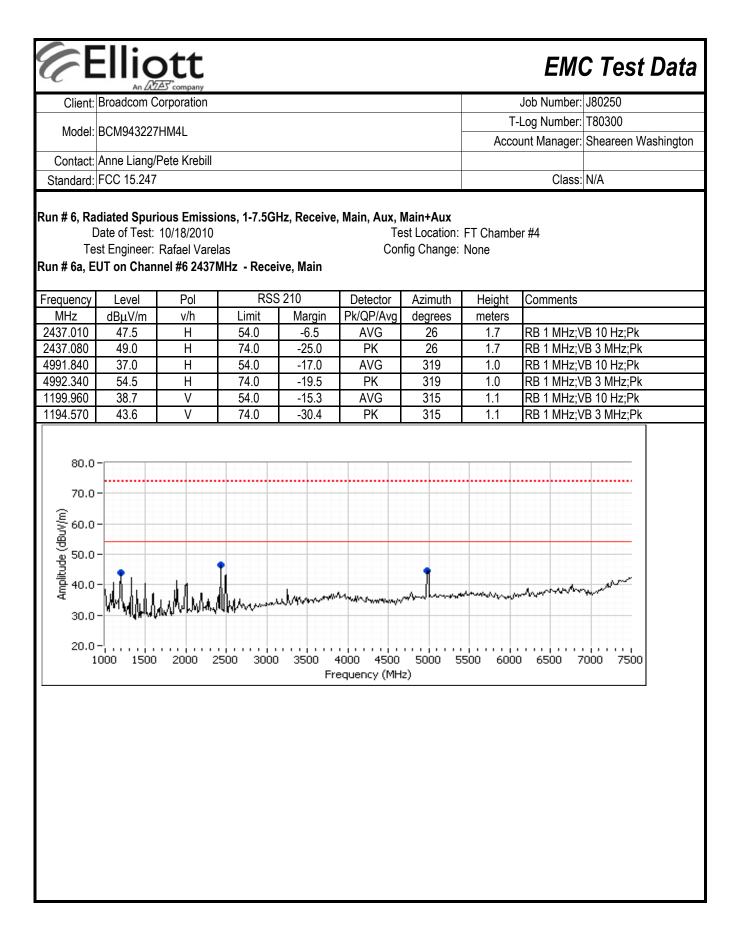


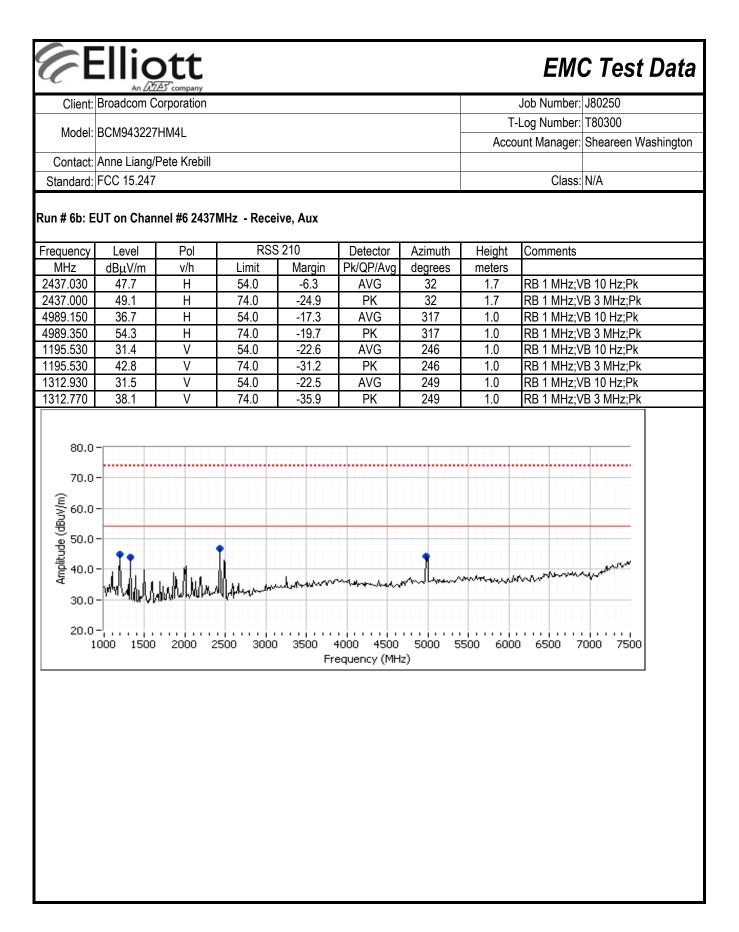

Client:	Broadcom Co	orporation						Job Number: J80250
Model:	BCM9432271	HM4L				-		Log Number: T80300
O a seta at	Anna Liona/F	Data Krahill					Acco	unt Manager: Sheareen Washingto
	Anne Liang/F FCC 15.247	Pete Kredili						Class: N/A
Stanuaru.	100 13.247							
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7311.730	53.2	V	54.0	-0.8	AVG	3	1.5	RB 1 MHz;VB 10 Hz;Pk
7312.230	58.5	V	74.0	-15.5	PK	3	1.5	RB 1 MHz;VB 3 MHz;Pk
1873.970	42.8	Н	54.0	-11.2	AVG	37	1.3	RB 1 MHz;VB 10 Hz;Pk
1874.100	48.1	Н	74.0	-25.9	PK	37	1.3	RB 1 MHz;VB 3 MHz;Pk
873.920	42.3	V	54.0	-11.7	AVG	15	2.0	RB 1 MHz;VB 10 Hz;Pk
873.940	48.0	V	74.0	-26.0	PK	15	2.0	RB 1 MHz;VB 3 MHz;Pk
310.100	48.8	Н	54.0	-5.2	AVG	359	1.0	RB 1 MHz;VB 10 Hz;Pk
310.300	55.6	Н	74.0	-18.4	PK	359	1.0	RB 1 MHz;VB 3 MHz;Pk
060.000	33.8	Н	54.0	-20.2	AVG	192	1.0	RB 1 MHz;VB 10 Hz;Pk
060.240	38.7	H	74.0	-35.3	PK	192	1.0	RB 1 MHz;VB 3 MHz;Pk
219.990	30.4	V V	54.0	-23.6	AVG	166	1.0	RB 1 MHz;VB 10 Hz;Pk
219.860	40.7 26.5	V	74.0	-33.3	PK	166	<u>1.0</u> 1.3	RB 1 MHz;VB 3 MHz;Pk
359.800 359.690	26.5 38.2	V	54.0 74.0	-27.5 -35.8	AVG PK	352 352	1.3	RB 1 MHz;VB 10 Hz;Pk RB 1 MHz;VB 3 MHz;Pk
3281.210	30.2 31.0	H	74.0 54.0	-35.0	AVG	352 86	1.3	RB 1 MHz;VB 10 Hz;Pk Note2
3281.150	42.2	<u>н</u> Н	74.0	-23.0	PK	86	1.3	RB 1 MHz;VB 3 MHz;Pk Notez
ote 1:	For emission measuremen					For all othe	r emissions	, the limit is -30dBc for peak
ote 2:					209 was used			
							ound the ca	ard and its antennas 20-50cm from t
ote 3:					ns in this frequ			

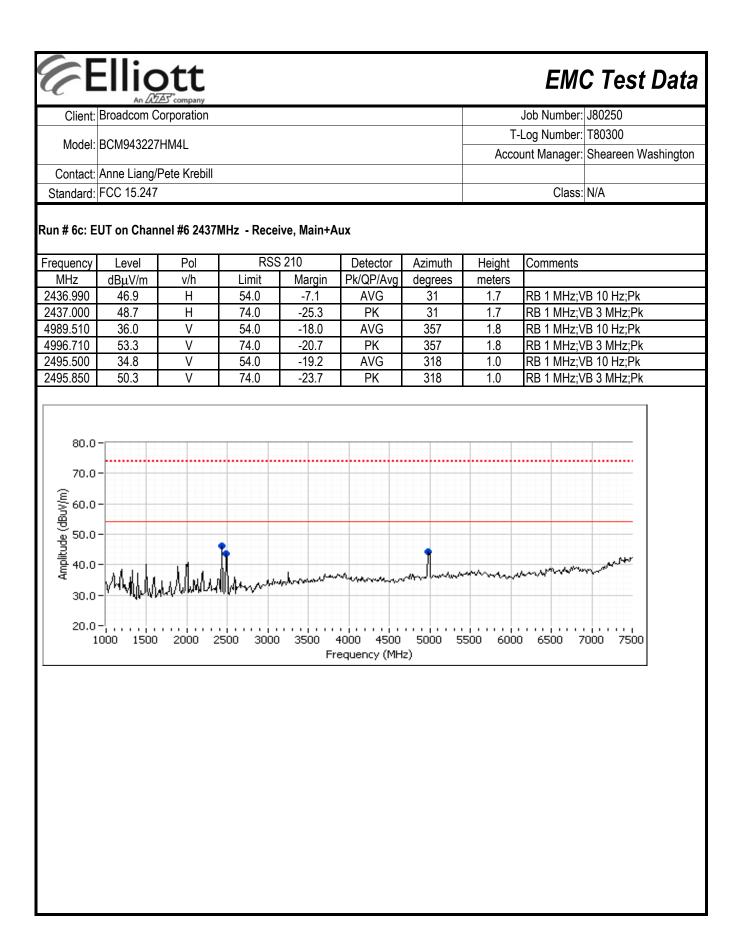

Client [.]	Broadcom C	company orporation						Job Number:	J80250
							T-	-Log Number:	
Model:	BCM943227	HM4L						-	Sheareen Washingtor
Contact:	Anne Liang/I	Pete Krebill					0	0	
	FCC 15.247						Class:	N/A	
	UT on Char		2MHz - 802.				L		
					Power				
			Target	t (dBm)	Measure	d (dBm)	Softwa	re Setting	
		Main		-	-			-	
nurious D	adiated Emi	ssions							
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7386.710	52.2	V	54.0	-1.8	AVG	164	1.6	RB 1 MHz;\	/B 10 Hz;Pk
7387.120	58.0	V	74.0		4.0				
			74.0	164	1.6	RB 1 MHz;\			
	36.6	Н	54.0	-16.0 -17.4	PK AVG	37	1.0	RB 1 MHz;\	/B 10 Hz;Pk
4923.990	36.6 46.0	H H	54.0 74.0	-17.4 -28.0	AVG PK	37 37	1.0 1.0	RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960	36.6 46.0 41.4	H H V	54.0 74.0 54.0	-17.4 -28.0 -12.6	AVG PK AVG	37 37 8	1.0 1.0 1.4	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	′B 10 Hz;Pk ′B 3 MHz;Pk ′B 10 Hz;Pk
4923.990 4923.960 4924.350	36.6 46.0 41.4 48.0	H H V V	54.0 74.0 54.0 74.0	-17.4 -28.0 -12.6 -26.0	AVG PK AVG PK	37 37 8 8	1.0 1.0 1.4 1.4	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	'B 10 Hz;Pk 'B 3 MHz;Pk 'B 10 Hz;Pk 'B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800	36.6 46.0 41.4 48.0 48.2	H H V V H	54.0 74.0 54.0 74.0 54.0	-17.4 -28.0 -12.6 -26.0 -5.8	AVG PK AVG PK AVG	37 37 8	1.0 1.0 1.4 1.4 1.1	RB 1 MHz;\/ RB 1 MHz;\/	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
4923.870 4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0	H H V V	54.0 74.0 54.0 74.0	-17.4 -28.0 -12.6 -26.0	AVG PK AVG PK	37 37 8 8 0	1.0 1.0 1.4 1.4	RB 1 MHz;\/ RB 1 MHz;\/	'B 10 Hz;Pk 'B 3 MHz;Pk 'B 10 Hz;Pk 'B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
4923.990 4923.960 4924.350 7386.800	36.6 46.0 41.4 48.0 48.2 55.1	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
4923.990 4923.960 4924.350 7386.800 7387.060	36.6 46.0 41.4 48.0 48.2 55.1 For emission	H H V V H H s in restricte	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-17.4 -28.0 -12.6 -26.0 -5.8 -18.9	AVG PK AVG PK AVG PK 209 was used.	37 37 8 8 0 0	1.0 1.0 1.4 1.4 1.1 1.1	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk

(CE	Ellic	D tt						EMO	C Test Data
Client:	Broadcom C							Job Number:	J80250
	DOLIO (000						T-I	Log Number:	T80300
Model:	BCM943227	HM4L						-	Sheareen Washington
Contact:	Anne Liang/I	Pete Krebill							
	FCC 15.247							Class:	N/A
	diated Spuri	ous Emissi							
] Te	Date of Test: st Engineer: UT on Chan i	9/29/2010 Rafael Varel	as	-	Te		FT Chambe none	r #4	
					Power S	Settings			
			Target	: (dBm)	Measure	ed (dBm)	Softwar	e Setting	
	l	Main		-	-			-	
Spurious R	adiated Emis	ssions:							
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7311.920	53.4	V	54.0	-0.6	AVG	265	2.0	RB 1 MHz;V	
7315.980	60.6	V	74.0	-13.4	PK	265	2.0	,	/B 3 MHz;Pk
4874.120	49.6	V	54.0	-4.4	AVG	272	1.1	RB 1 MHz;V	,
4875.460	52.6	V	74.0	-21.4	PK	272	1.1		/B 3 MHz;Pk
1333.330	30.6	V	54.0	-23.4	AVG	47	1.4	RB 1 MHz;V	
1349.400	37.2	V	74.0	-36.8	PK	47	1.4		/B 3 MHz;Pk
1199.940	42.2	V V	54.0 74.0	-11.8	AVG PK	314 314	1.3 1.3	RB 1 MHz;V	
1198.670 4978.890	47.4 34.5	V	54.0	-26.6 -19.5	AVG	314	1.5	RB 1 MHZ,V RB 1 MHZ;V	/B 3 MHz;Pk
4978.890	49.8	V	74.0	-19.5	PK	331	1.5		/B 3 MHz;Pk
3249.460	48.0	V H	70.0	-24.2	Peak	24	1.3		D 5 WI 12,1 K
Note 1: Note 2:	measuremer Scans made	nts in a meas between 18	urement bar - 26GHz wit	ndwidth of 10 h the measu)0kHz.	na moved ar	ound the ca		BodBc for peak ennas 20-50cm from the
120.0 (W/\ngp) #00.0 (W/\ngp) #00.0 40.0 40.0)-)-)-)-	Unna		Freq	uency (MHz)		10000		13000

Œ		btt						EMO	C Test Data	
Client:	Broadcom Co	orporation						Job Number:	J80250	
Madal	BCM9432271						T-	Log Number:	T80300	
woder.	DUN943ZZ71					-	Account Manager: Sheareen Washingt			
Contact:	Anne Liang/F	Pete Krebill								
Standard:	FCC 15.247							Class:	N/A	
D	EUT on Char ate of Test: st Engineer: 3	10/12/2010		11n20, Mair	Te	st Location: fig Change:		er #5		
		Target	(dBm)		Power S	Settings Measure	d (dBm)		Software Setting	
Chair	А	B	C	Total	Α	В	C	Total		
Chain	-	-		-	-	-		- ·		
	= 18 dBm. C				1 1					
Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters			
7309.000 4873.330	50.8 48.4	V	54.0 54.0	-3.2 -5.6	AVG AVG	360 285	<u>1.7</u> 2.3	RB 1 MHz;V		
4875.800	40.4	V	54.0 54.0	-5.0	AVG	205	2.3	RB 1 MHz;V RB 1 MHz;V		
7314.270	63.3	V	74.0	-10.7	PK	360	1.7		/B 3 MHz;Pk	
1040.000	43.1	H	54.0	-10.9	AVG	137	1.0	RB 1 MHz;V	,	
4874.460	61.4	V	74.0	-12.6	PK	285	2.3		/B 3 MHz;Pk	
4873.460	61.2	V	74.0	-12.8	PK	293	2.2	,	/B 3 MHz;Pk	
4981.580	39.7	V	54.0	-14.3	AVG	89	1.0	RB 1 MHz;V		
4979.180	56.4	V	74.0	-17.6	PK	89	1.0	RB 1 MHz;V	/B 3 MHz;Pk	
3249.330	50.9	Н	74.0	-19.1	PK	120	1.4		/B 3 MHz;Pk	
1906.760	26.9	V	54.0	-27.1	AVG	334	1.3	RB 1 MHz;V	,	
1039.930	46.2	Н	74.0	-27.8	PK	137	1.0		/B 3 MHz;Pk	
1908.310	38.1	V	74.0	-35.9	PK	334	1.3	,	/B 3 MHz;Pk	
3249.200	48.2	Н	54.0	-51.8	AVG	120	1.4	RB 1 MHz;V	'B 10 Hz;Pk	
1 (m//mblitude (dBu//m)	<pre>41: 1000 -180 20.000.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000</pre>		-					·	18000	




Client:	An AZ	D tt							C Test Data
-	Broadcom C	orporation						Job Number:	J80250
Madal	001012027				T-	Log Number:	T80300		
Model:	BCM943227	HIVI4L					Acco	unt Manager:	Sheareen Washington
	Anne Liang/	Pete Krebill						Olaas	N1/A
Standard:	FCC 15.247							Class:	N/A
Run # 4, Ra	idiated Spuri	ous Emissi	ons, 1-26Gł	lz, 802.11n2	20, Main+Aux				
[Date of Test:	10/14/2010			Те	st Location:	Ch#3		
Te	est Engineer:	Suresh Kon	dapalli		Con	ifig Change:	None		
Run # 4a: .	EUT on Cha	nnel #1 241	2MHz - 802. ⁻	11n20. Main	+Aux				
,				- ,	Power S	Settings			
		Target	t (dBm)		FUWERS	Measure	ed (dBm)		Software Setting
	A	B	C	Total	A	B	C C	Total	contrario conting
Chain	-	-	-	-	-	-	-	-	
Sourious R	adiated Emis	ssions							
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4823.070	53.3	Н	54.0	-0.7	AVG	45	1.0	RB 1 MHz;V	′B 10 Hz;Pk
4823.000	53.1	Н	54.0	-0.9	AVG	85	1.0	RB 1 MHz;V	
4822.850	50.1	V	54.0	-3.9	AVG	26	1.0	RB 1 MHz;V	/B 10 Hz;Pk
7238.670	48.3	Н	54.0	-5.7	AVG	348	1.0	RB 1 MHz;V	′B 10 Hz;Pk
7235.610	48.0	V	54.0	-6.0	AVG	0	1.0	RB 1 MHz;V	′B 10 Hz;Pk
4818.400	65.3	Н	74.0	-8.7	PK	45	1.0	RB 1 MHz;V	′B 3 MHz;Pk
4823.330	64.6	Н	74.0	-9.4	PK	85	1.0		/B 3 MHz;Pk
4823.910	62.2	V	74.0	-11.8	PK	26	1.0		/B 3 MHz;Pk
7243.600	60.5	Н	74.0	-13.5	PK	348	1.0		/B 3 MHz;Pk
7235.740	60.5	V	74.0	-13.5	PK	0	1.0		/B 3 MHz;Pk
2010 500	29.5	H	54.0	-24.5	AVG	2	1.0	RB 1 MHz;V	
3249.520	41.3	V H	74.0	-28.7	PK	110	1.0		/B 3 MHz;Pk
3249.520 3250.010 3247.910	41.2	н	74.0	-32.8	PK	2	1.0	RB 1 MHz;V RB 1 MHz;V	'B 3 MHz;Pk


Elliott **EMC** Test Data Client: Broadcom Corporation Job Number: J80250 T-Log Number: T80300 Model: BCM943227HM4L Account Manager: Sheareen Washington Contact: Anne Liang/Pete Krebill Standard: FCC 15.247 Class: N/A Run # 4b: , EUT on Channel #11 2462MHz - 802.11n20, Main+Aux Power Settings Target (dBm) Measured (dBm) Software Setting Chain A С А В С В Total Total ------Spurious Radiated Emissions: 15.209/15.247 Height Frequency Level Pol Detector Azimuth Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4925.180 53.2 V 54.0 -0.8 AVG 91 1.0 RB 1 MHz;VB 10 Hz;Pk 50.1 V 54.0 -3.9 AVG 2 1.9 RB 1 MHz;VB 10 Hz;Pk 7386.350 7383.470 47.4 Η 54.0 -6.6 AVG 120 RB 1 MHz;VB 10 Hz;Pk 1.5 4925.030 66.7 V 74.0 -7.3 ΡK 91 1.0 RB 1 MHz;VB 3 MHz;Pk 7386.540 62.5 V 74.0 -11.5 ΡK 2 1.9 RB 1 MHz;VB 3 MHz;Pk -15.0 7380.930 59.0 Н 74.0 PK 120 1.5 RB 1 MHz;VB 3 MHz;Pk 3282.500 48.9 Η 74.0 -21.1 ΡK 52 1.0 RB 1 MHz;VB 3 MHz;Pk 3282.660 46.5 V 74.0 -23.5 ΡK 155 1.0 RB 1 MHz;VB 3 MHz;Pk 52 3282.700 46.8 Η 54.0 -53.2 AVG 1.0 RB 1 MHz;VB 10 Hz;Pk 3282.660 V 54.0 AVG 155 1.0 43.1 -56.9 RB 1 MHz;VB 10 Hz;Pk For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak Note 1 measurements in a measurement bandwidth of 100kHz.

EMC Test Data										
	Client: Broadcom Corporation Job Number: J80250									
Olient.	Dioddoolli O	orporation						Log Number:		
Model:	BCM943227	HM4L						-	Sheareen Washington	
Contact:	Anne Liang/F	Poto Krohill					ACCO	unt manager:	Sneareen wasnington	
								Class:	N/A	
	Standard: FCC 15.247 Class: N/A Class: N/A Run # 5, Radiated Spurious Emissions, 1-26GHz, 802.11n40, Main+Aux									
Date of Test: 10/19/2010Test Location: FT5Test Engineer: Rafael VarelasConfig Change: None										
Run # 5a: ,	EUT on Char	nnel #3 2422	2MHz - 802.1	11n40, Main	+Aux Power S	ottingo				
		Target	(dBm)		Powers	Measure	d (dRm)		Software Setting	
	А	B	С	Total	A	B	C	Total	Soliware Selling	
Chain	-	-	, v	-	-	-		-		
I								-		
	adiated Emis				_			1		
Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
4843.140	40.3	Н	54.0	-13.7	AVG	302	1.0	RB 1 MHz;V		
4845.210	51.5	Н	74.0	-22.5	PK	302	1.0		B 3 MHz;Pk	
4994.290	35.0	V	54.0	-19.0	AVG	360	1.0	RB 1 MHz;V		
4997.060	50.7	V	74.0	-23.3	PK	360	1.0		'B 3 MHz;Pk	
7270.240	38.4	V	54.0	-15.6	AVG	236	1.7	RB 1 MHz;V		
7269.700	49.9	V	74.0	-24.1	PK	236	1.7		'B 3 MHz;Pk	
3229.330	50.8	Н	-	-	Peak	115	1.3	Note 2		
Note 1 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz. Note 2 Emissions located in restricted bands, see antenna conducted measurements.										
125.0 100.0 100.0 80.0 40.0 25.0 1000 Frequency (MHz)										

		≙5 company							C Test Data
Client:	Broadcom C	orporation						Job Number:	J80250
Madal	BCM943227						T-	Log Number:	T80300
							Accou	unt Manager:	Sheareen Washington
	Anne Liang/F	Pete Krebill							
Standard:	FCC 15.247							Class:	N/A
tun # 5b: ,	EUT on Cha	nnel #11 24	52MHz - 802	2.11n40, Mai	n+Aux				
					Power	Settings			
		Target	(dBm)			Measure	ed (dBm)		Software Setting
Chain	А	В	С	Total	А	В	С	Total	
Unain	-	-		-	-	-		-	
ourious P	adiated Emis	scions							
requency		Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	0011110110	
903.030	37.7	V	54.0	-16.3	AVG	27	1.6	RB 1 MHz;\	/B 10 Hz;Pk
904.670	50.8	V	74.0	-23.2	PK	27	1.6		/B 3 MHz;Pk
269.430	51.9	Н	-	-	PK	133	1.0	RB 1 MHz;\	/B 3 MHz;Pk, note 2
990.750	35.7	V	54.0	-18.3	AVG	360	1.0	RB 1 MHz;\	/B 10 Hz;Pk
994.250	52.5	V	74.0	-21.5	PK	360	1.0	RB 1 MHz;\	/B 3 MHz;Pk
ote 1	For emission measuremer					For all othe	r emissions,	the limit is -3	0dBc for peak
ote 2	Emissions lo	cated in rest	tricted bands	, see antenr	a conducted	measuremer	nts.		
120. 100. (W/ (m/ 80. 80. 60. 40. 20.	0- 0- 0- 0-	Mr. Ann			requency (Mł				18000
					гециенсу (мг	12)			

EMC Test Data

 An ZZZS company

 Client:
 Broadcom Corporation
 Job Number:
 J80250

 Model:
 BCM943227HM4L
 T-Log Number:
 T80300

 Contact:
 Anne Liang/Pete Krebill
 Account Manager:
 Sheareen Washington

 Standard:
 FCC 15.247
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results

Elliott

•							
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Run # 1	802.11g	#1 2412MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	52.5dBµV/m @ 2390.0MHz (-1.5dB)
Rull#1	Main	#11 2462MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	52.9dBµV/m @ 2483.6MHz (-1.1dB)
Run # 2	802.11g	#2 2412MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	53.7dBµV/m @ 2390.1MHz (-0.3dB)
Rull # 2	Main #10		Restricted Band Edge at 2483.5 MHz	15.209	52.3dBµV/m @ 2483.6MHz (-1.7dB)		
Run # 3	802.11b	#1 2412MHz	-	-	Restricted Band Edge at 2400 MHz	15.209	49.4dBµV/m @ 2390.0MHz (-4.6dB)
ruil#3	Main	#11 2462MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	49.5dBµV/m @ 2483.6MHz (-4.5dB)

Test Specific Details

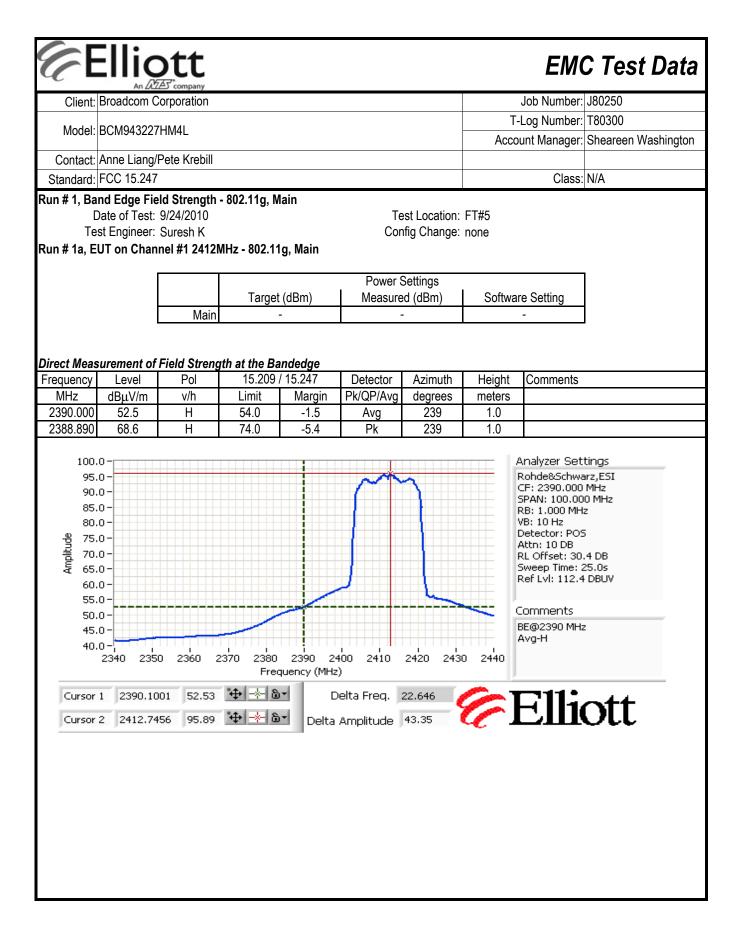
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

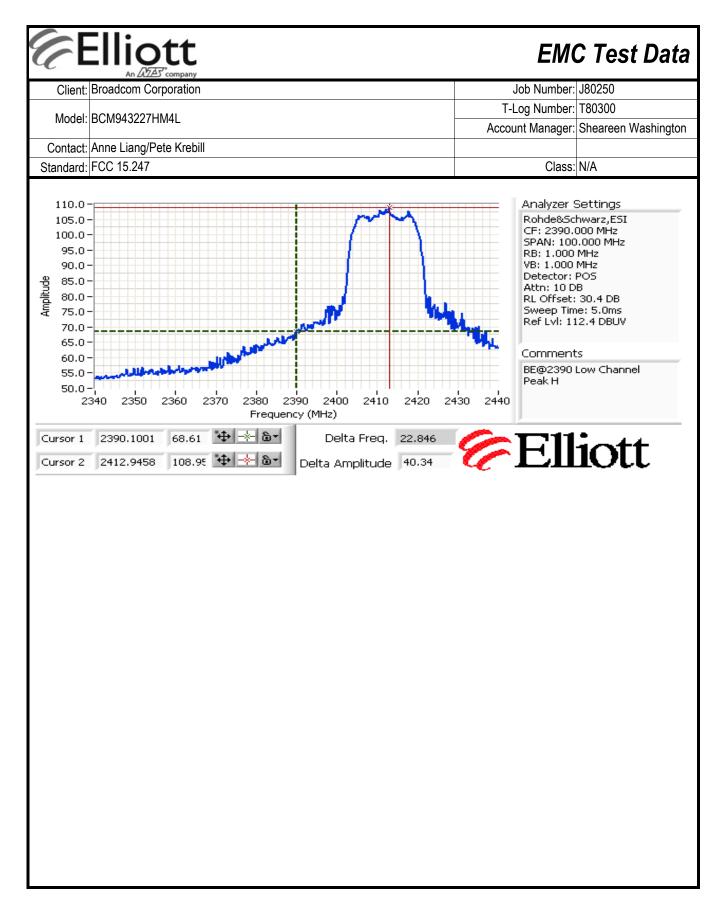
General Test Configuration

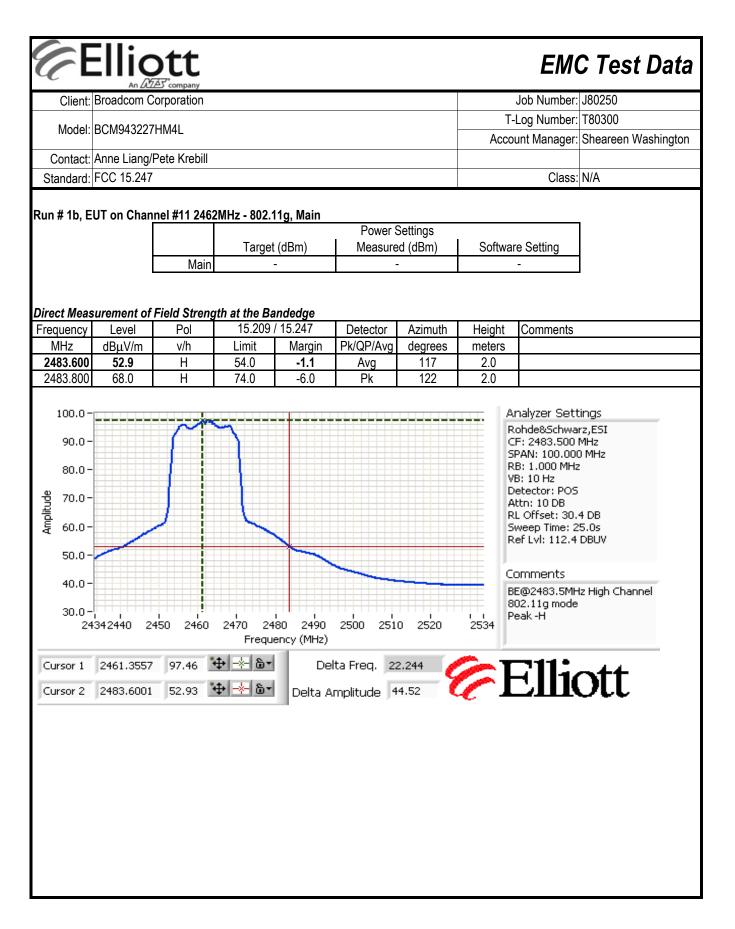
The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

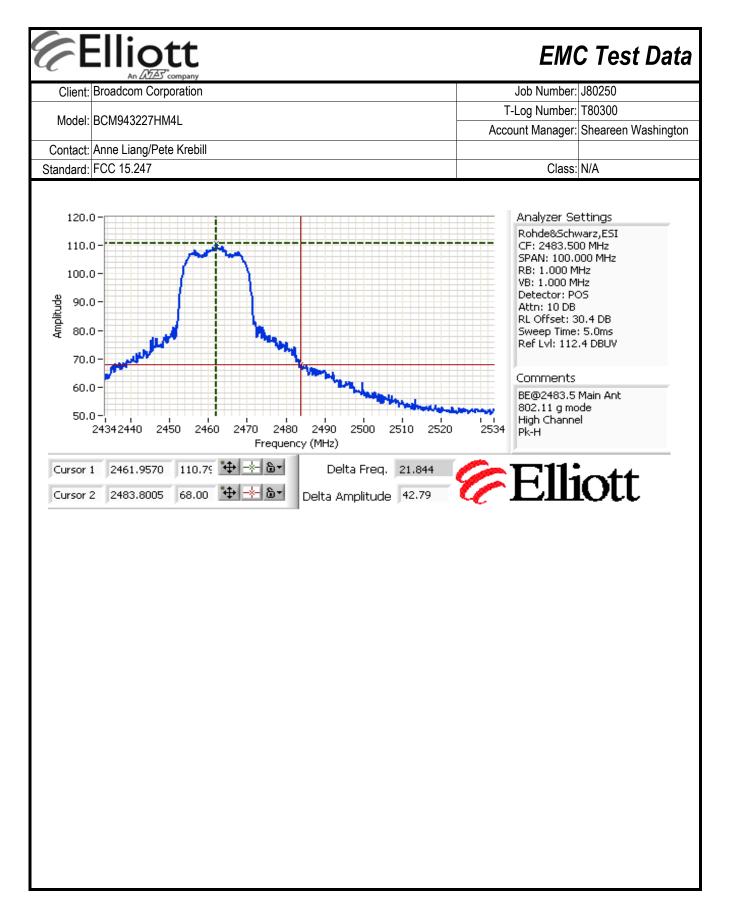
Ambient Conditions:

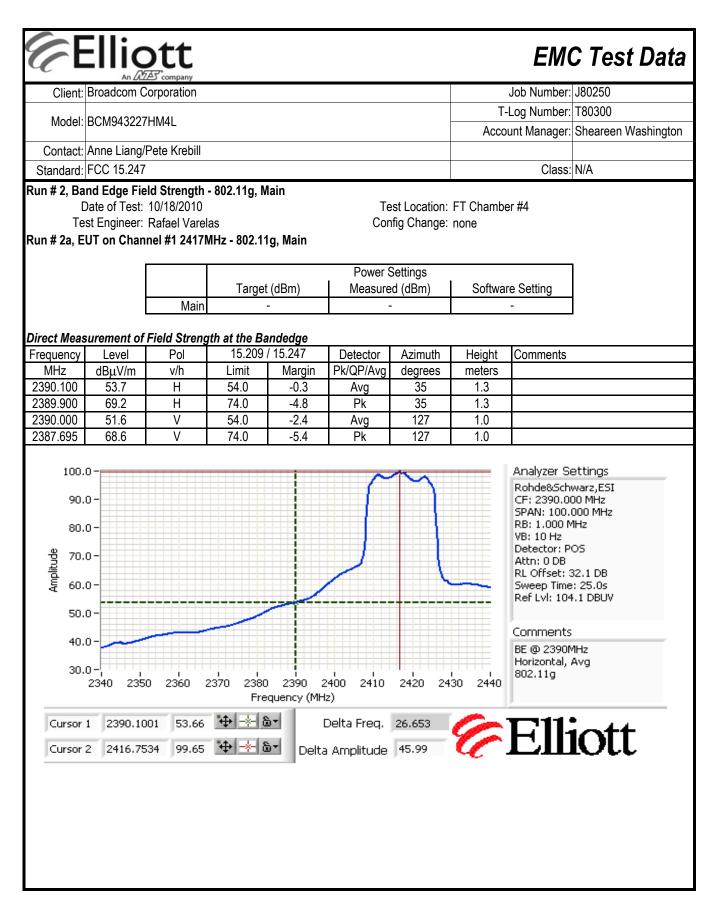
Rel. Humidity:	15 - 55 %
Temperature:	18 - 25 °C

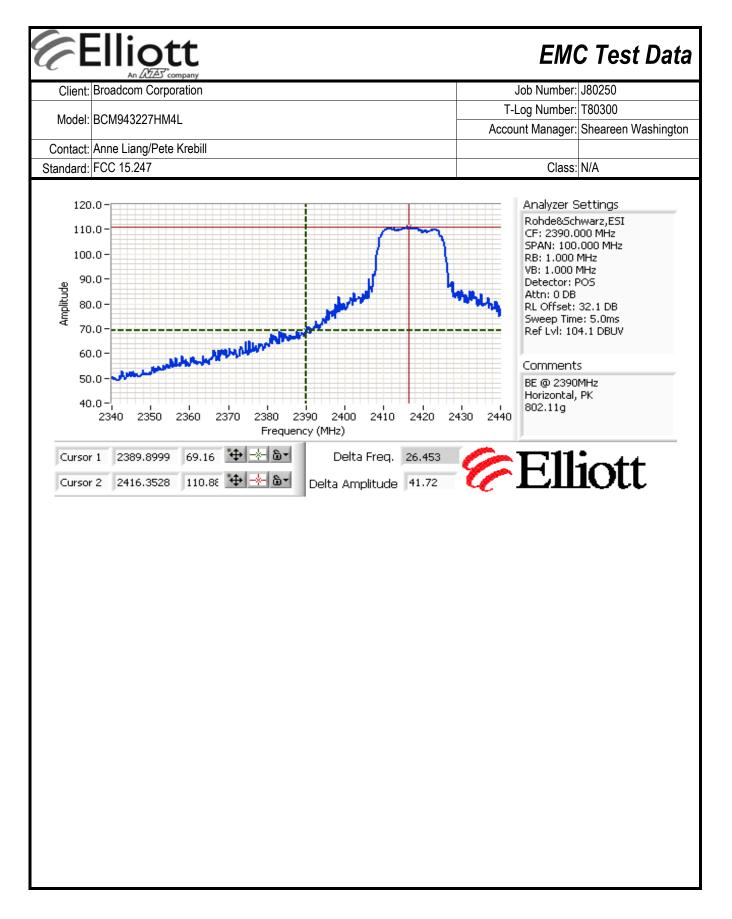

Modifications Made During Testing

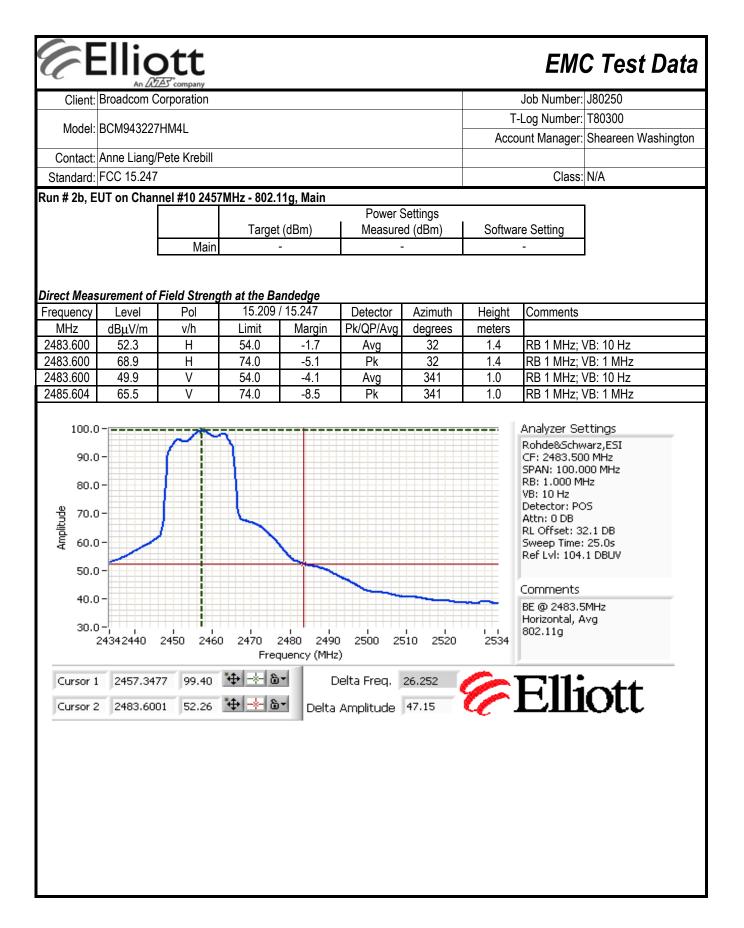

No modifications were made to the EUT during testing

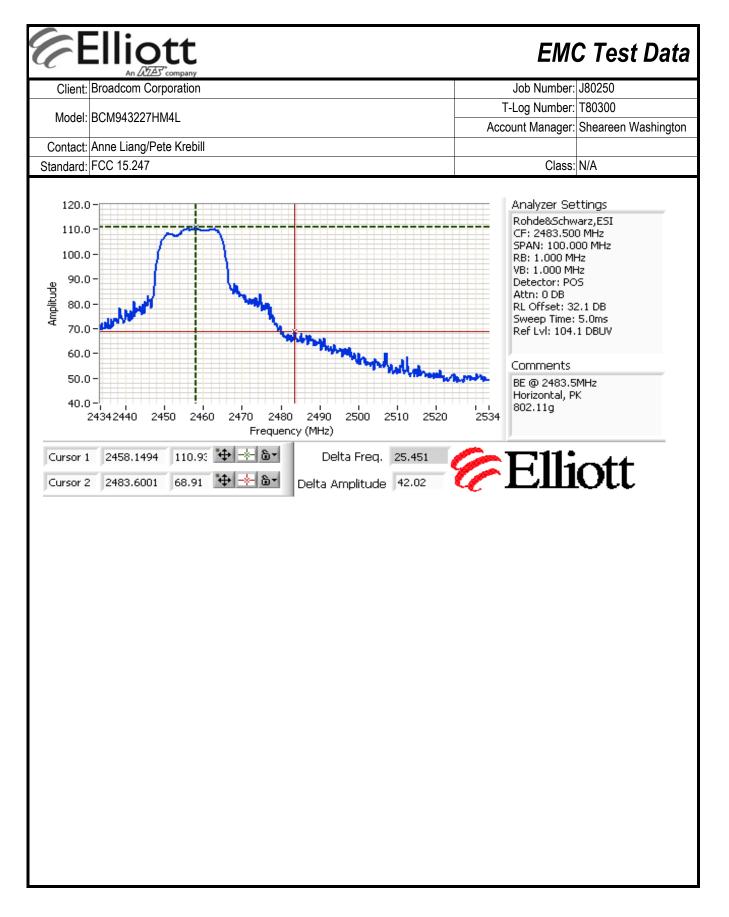

Deviations From The Standard

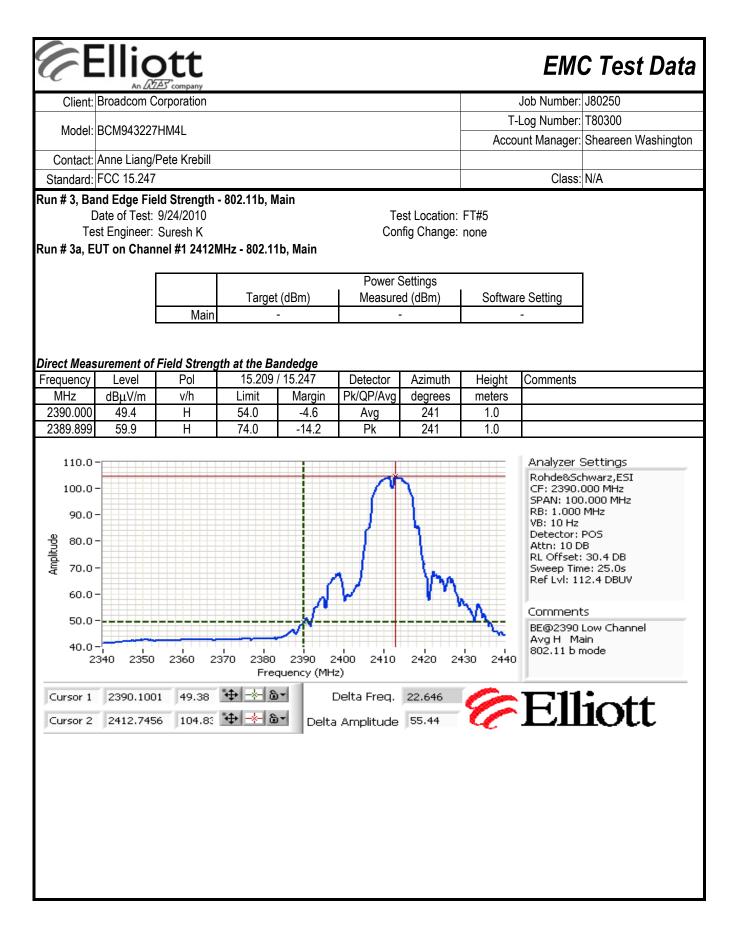

No deviations were made from the requirements of the standard.

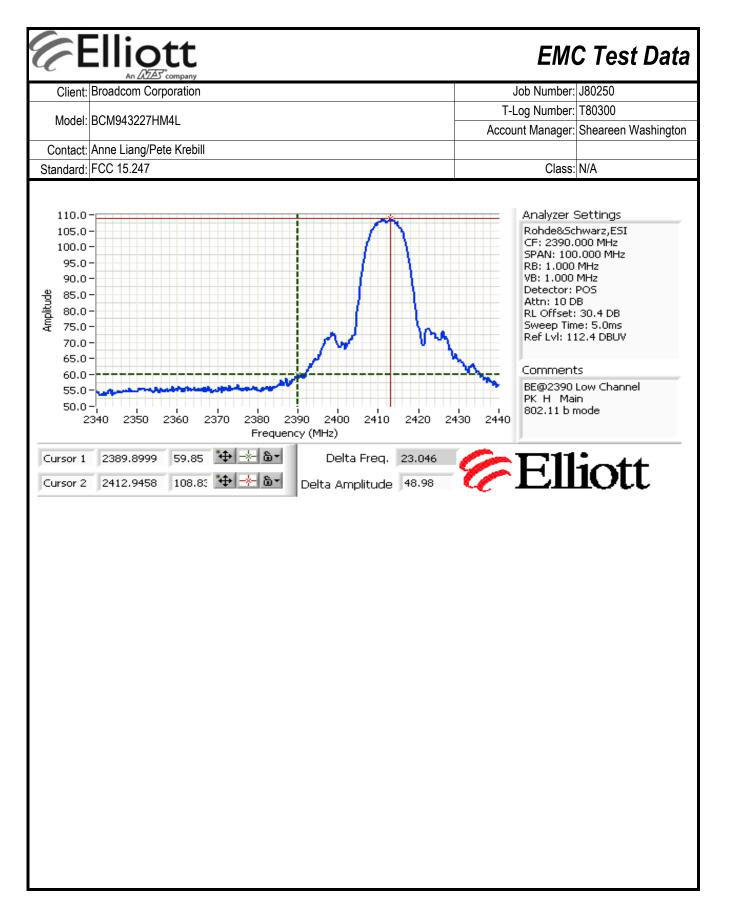

Note: Preliminary testing showed that horizontal polarity was the worse case for all modes and channels for bandedge measurements

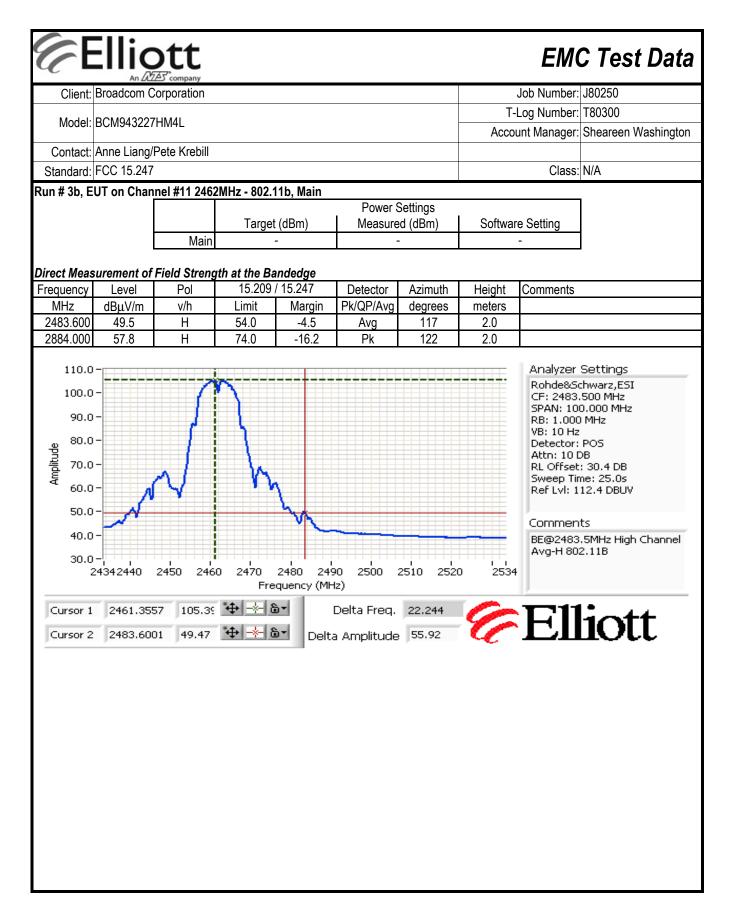


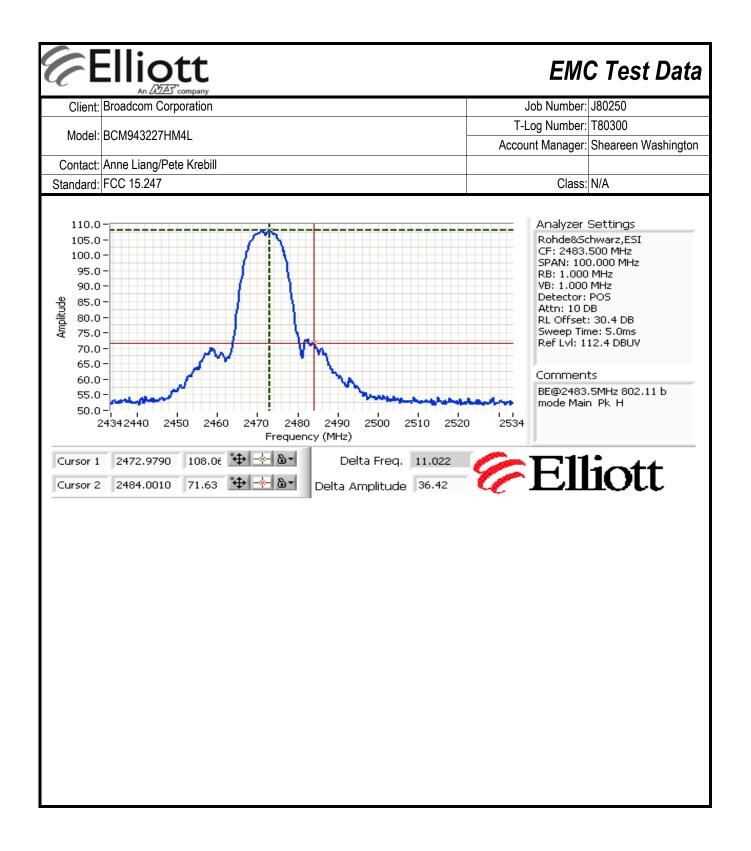












EMC Test Data

CElliott Job Number: J80250 Client: Broadcom Corporation T-Log Number: T80300 Model: BCM943227HM4L Account Manager: Sheareen Washington Contact: Anne Liang/Pete Krebill Standard: FCC 15.247 Class: N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Run # 1	n40	#3 2422MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	52.1dBµV/m @ 2380.7MHz (-1.9dB)
Kull# I	Main+Aux	#9 2452Hz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	53.5dBµV/m @ 2493.6MHz (-0.5dB)
Run # 2	n40	#4 2427MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	53.4dBµV/m @ 2388.7MHz (-0.6dB)
Rull # 2	Main+Aux	#8 2447MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	53.6dBµV/m @ 2485.2MHz (-0.4dB)
Run # 3	n40	#5 2432MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	53.6dBµV/m @ 2389.5MHz (-0.4dB)
rtuii # 3	Main+Aux	#7 2442MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	53.9dBµV/m @ 2485.0MHz (-0.1dB)
Run # 4	n40	#6	-	-	Restricted Band Edge at 2390 MHz	15.209	53.7dBµV/m @ 2390.1MHz (-0.3dB)
Main+Aux	2437MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	52.4dBµV/m @ 2484.8MHz (-1.6dB)	
	#1 2412MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	53.9dBµV/m @ 2390.0MHz (-0.1dB)	
		#2 2417MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	53.6dBµV/m @ 2390.0MHz (-0.4dB)
		#3 2422MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	54.0dBµV/m @ 2390.0MHz (-0.0dB)
		#4 2427MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	53.7dBµV/m @ 2390.0MHz (-0.3dB)
Run # 5	n20 Main+Aux	#5 2432MHz	-	-	Restricted Band Edge at 2390 MHz	15.209	54.0dBµV/m @ 2388.6MHz (-0.0dB)
		#8 2447MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	53.7dBµV/m @ 2485.0MHz (-0.3dB)
		#9 2452MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	54.0dBµV/m @ 2483.6MHz (-0.0dB)
		#10 2457MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	53.5dBµV/m @ 2483.6MHz (-0.5dB)
		#11 2462MHz	-	-	Restricted Band Edge at 2483.5 MHz	15.209	73.7dBµV/m @ 2483.7MHz (-0.3dB)

C E	Elliott	EMC Test Data			
Client:	Broadcom Corporation	Job Number:	J80250		
Model:	DCM042227LIN44	T-Log Number:	T80300		
	BCM943227HM4L	Account Manager:	Sheareen Washington		
Contact:	Anne Liang/Pete Krebill				
Standard:	FCC 15.247	Class:	N/A		

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only.

Test Specific Details

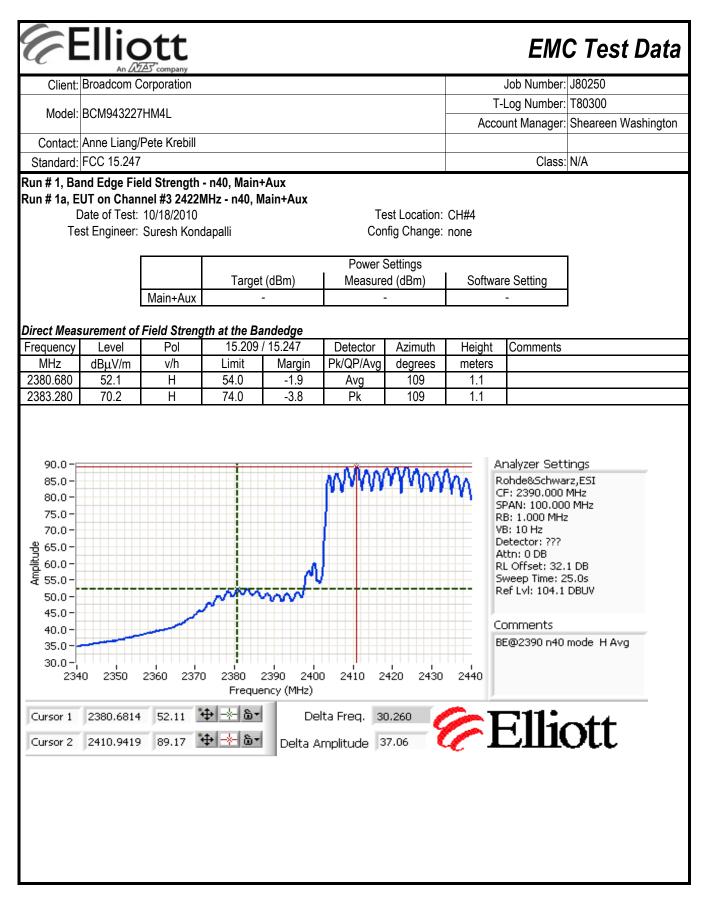
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

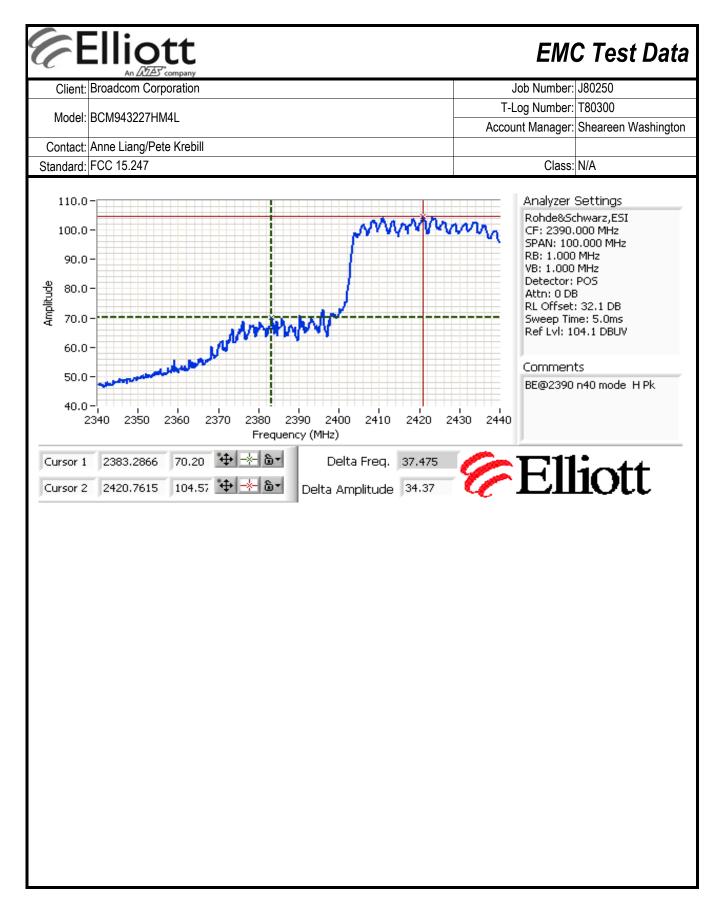
General Test Configuration

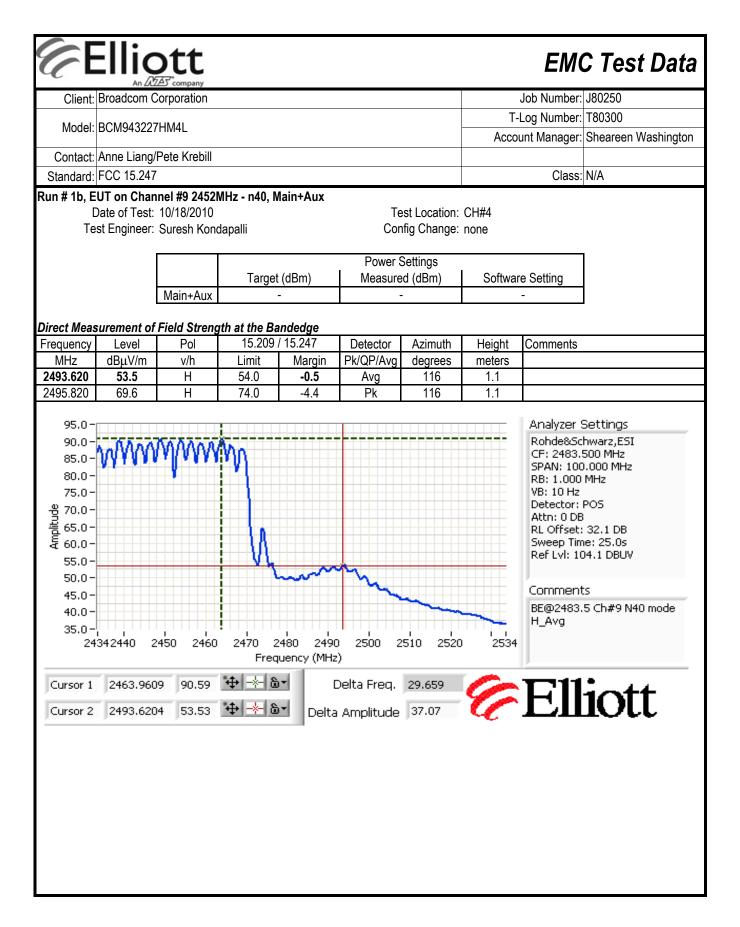
The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

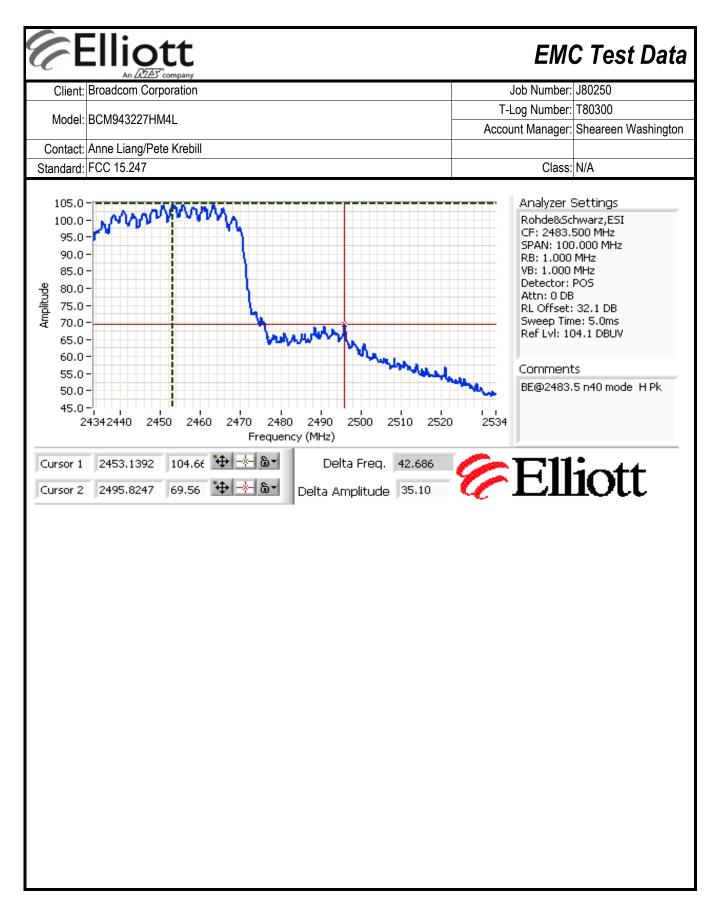
Ambient Conditions:

Rel. Humidity:	15 - 55 %
Temperature:	18 - 25 °C

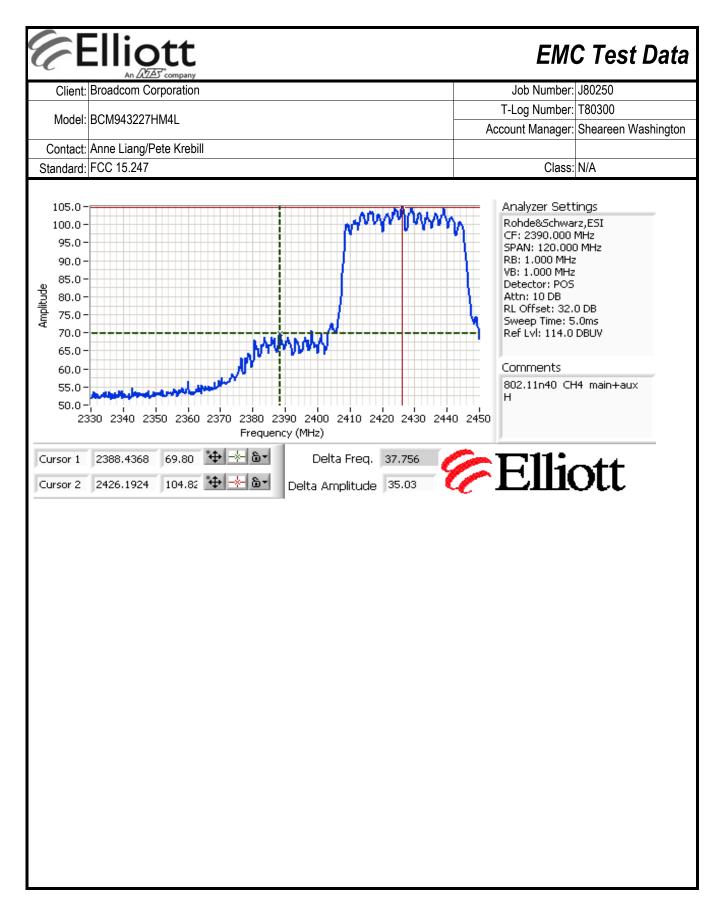

Modifications Made During Testing

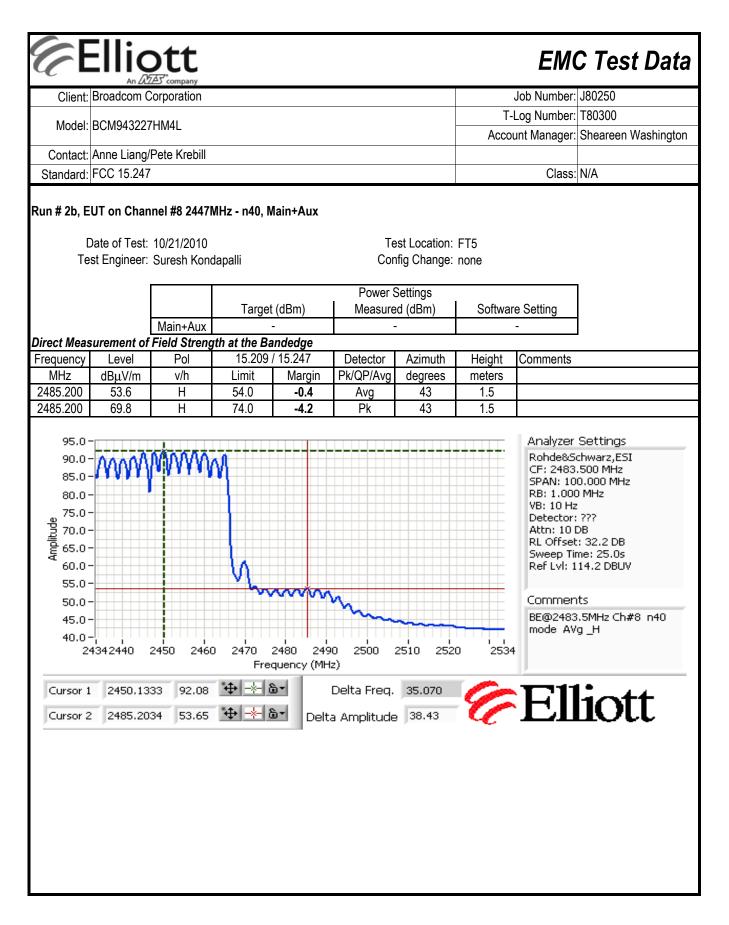

No modifications were made to the EUT during testing

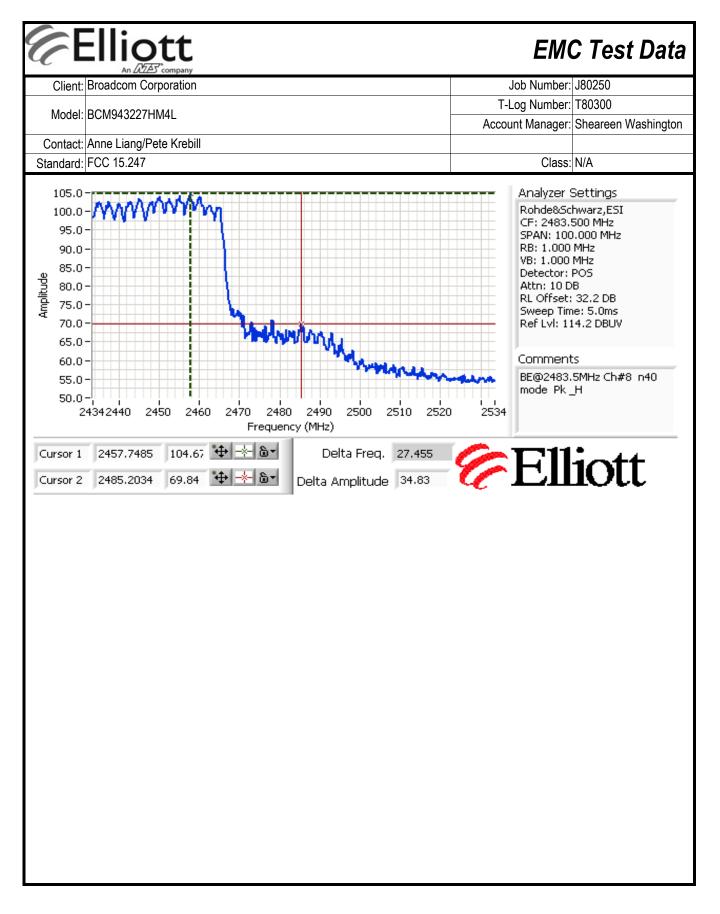

Deviations From The Standard

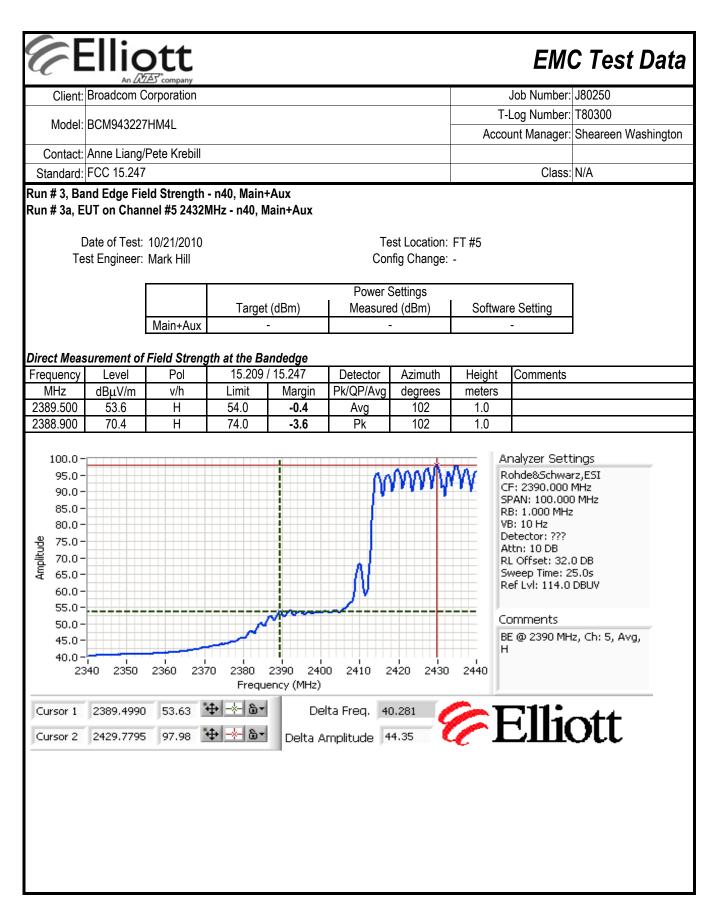

No deviations were made from the requirements of the standard.

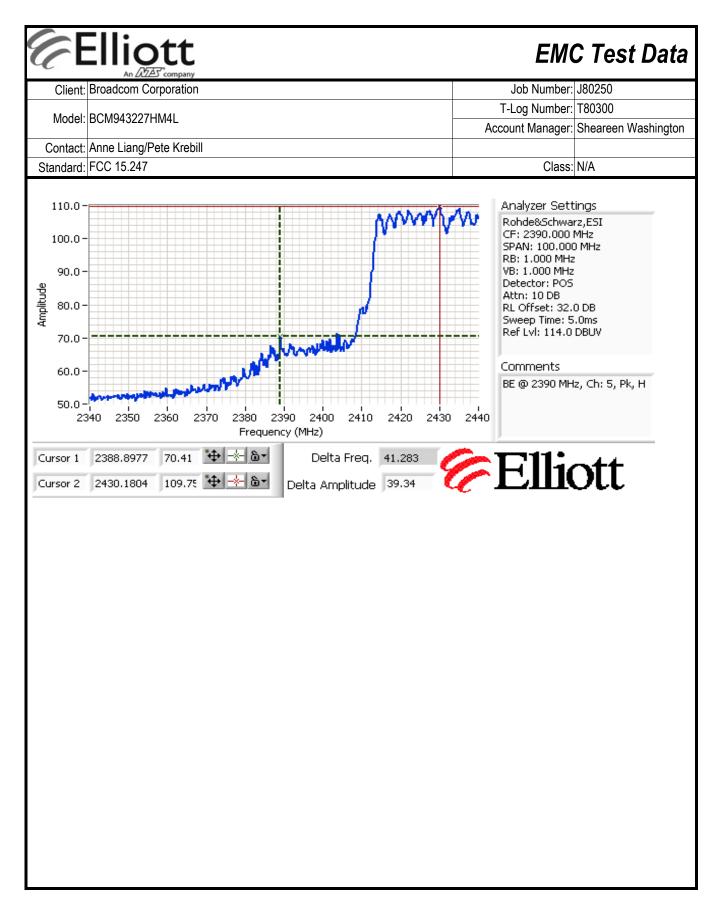

Note: Preliminary testing showed that horizontal polarity was the worse case for all modes and channels for bandedge measurements

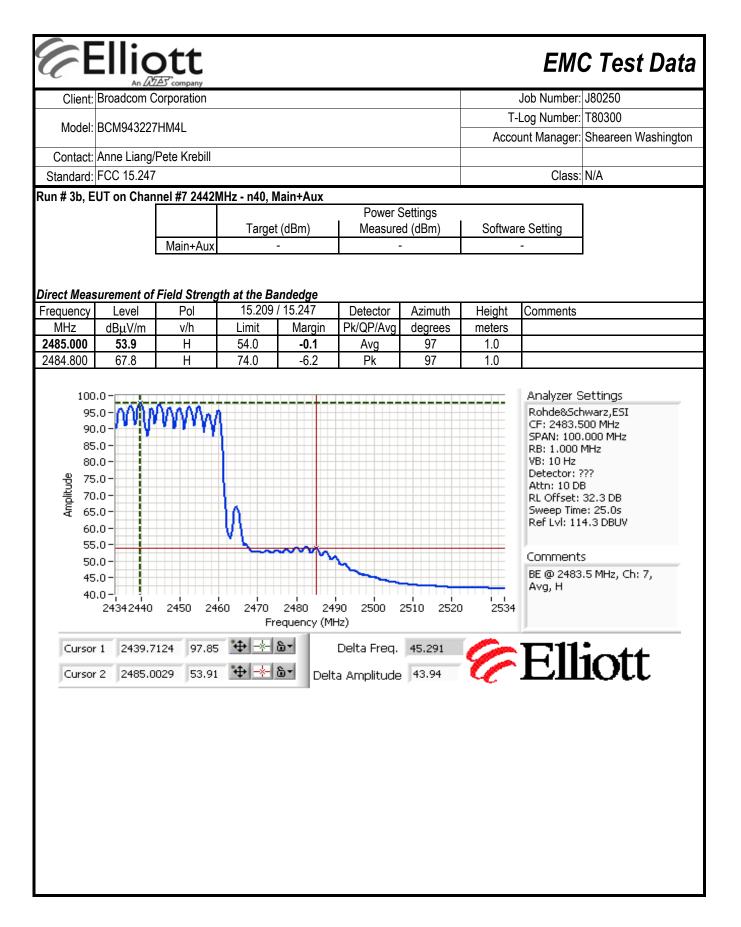


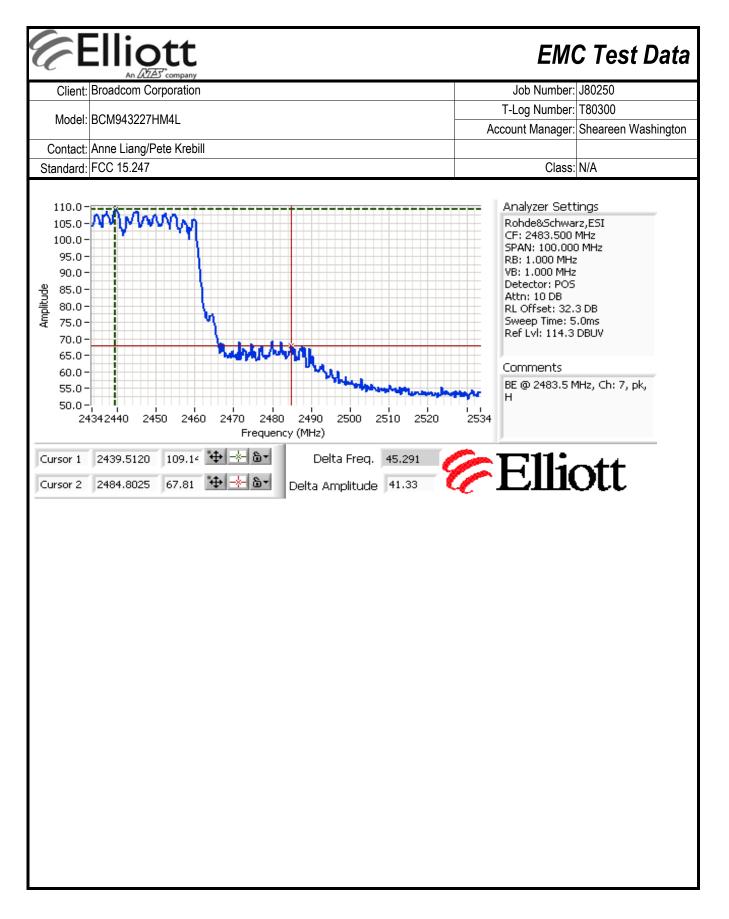


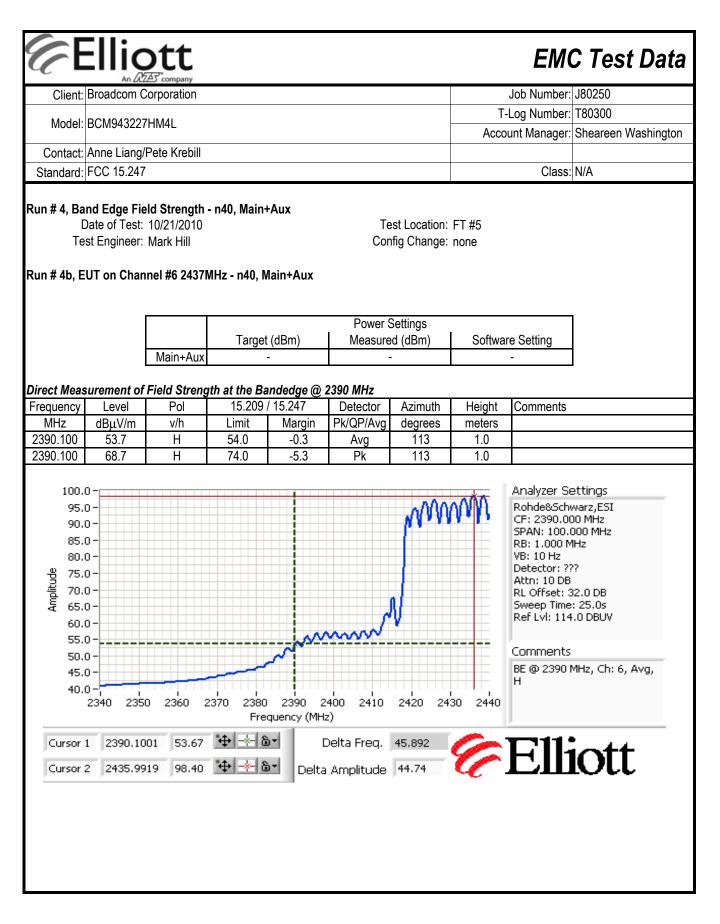


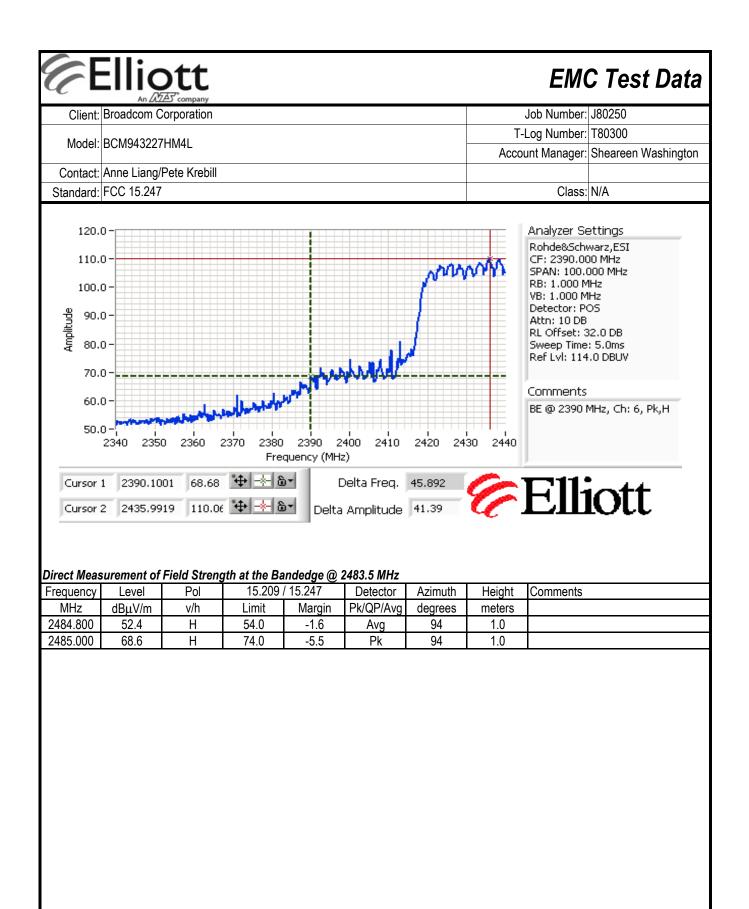


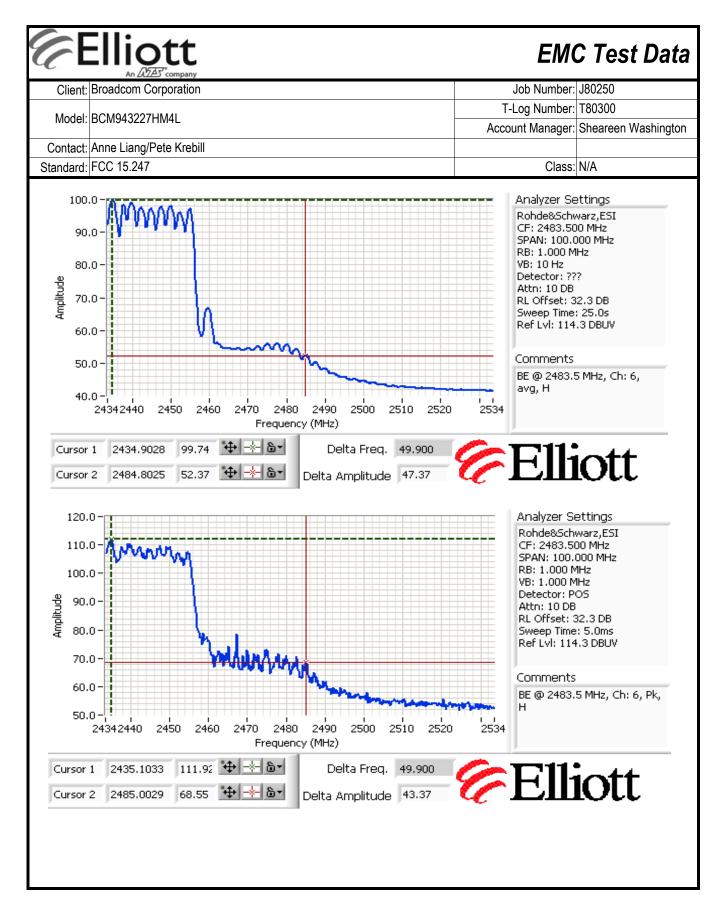


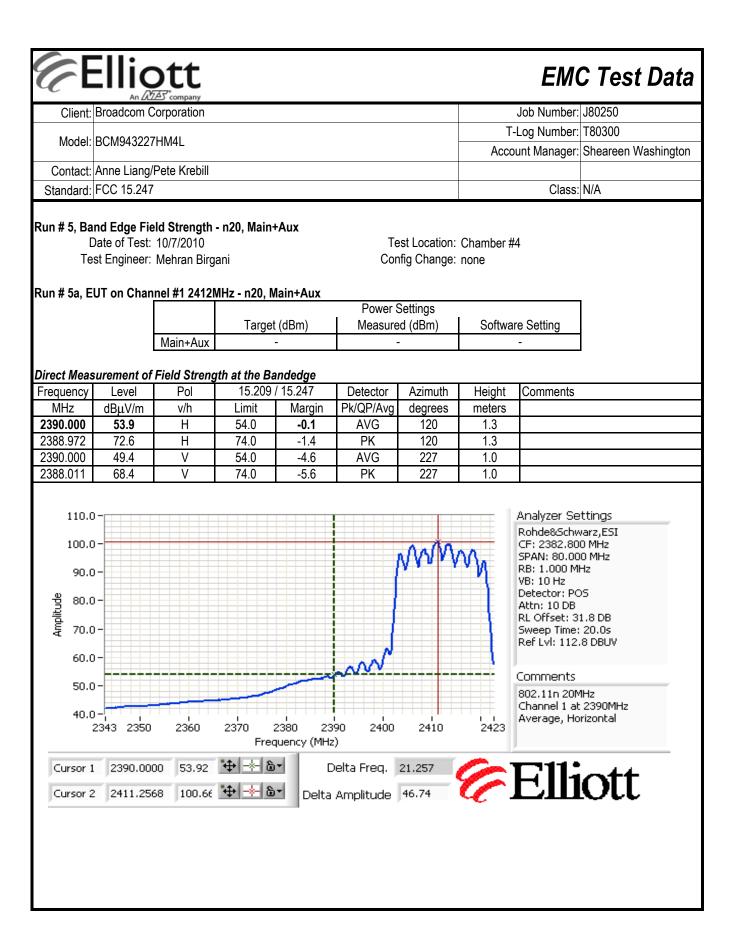


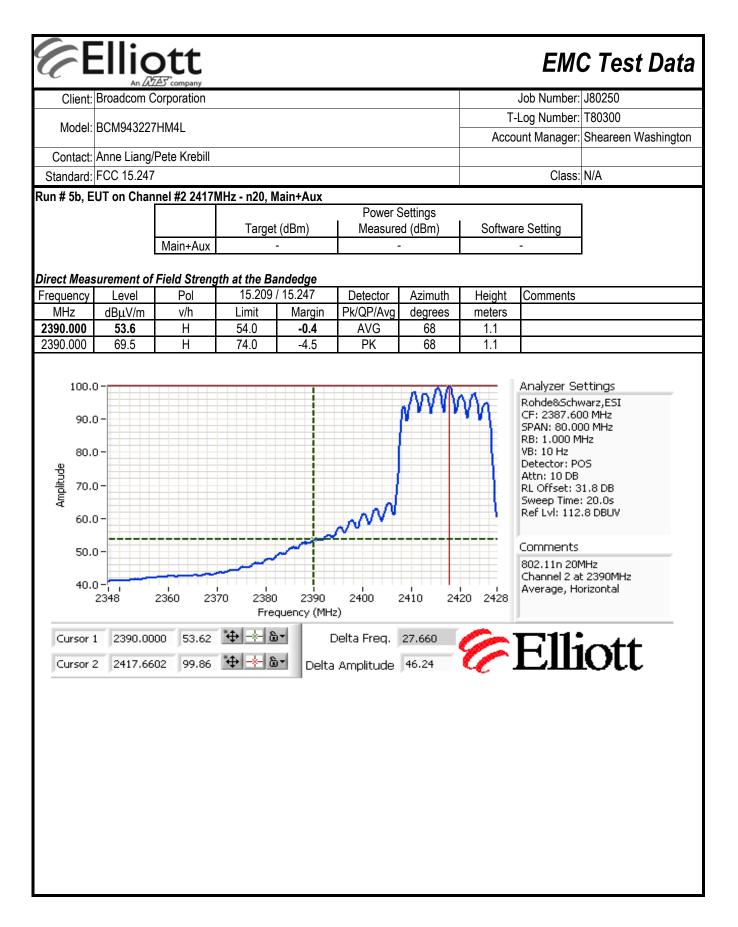


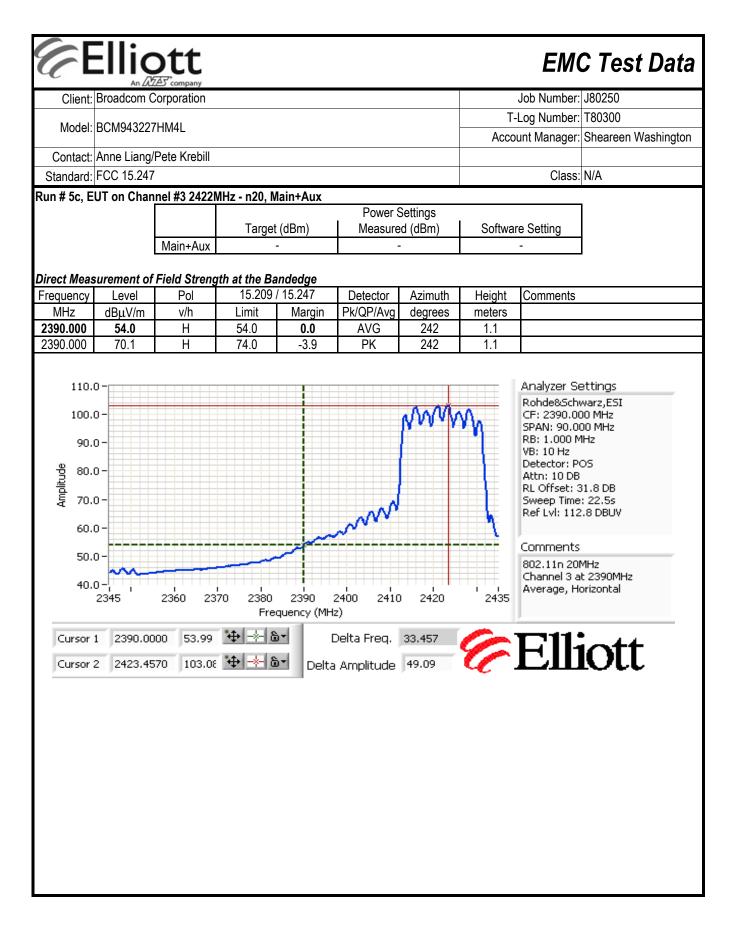


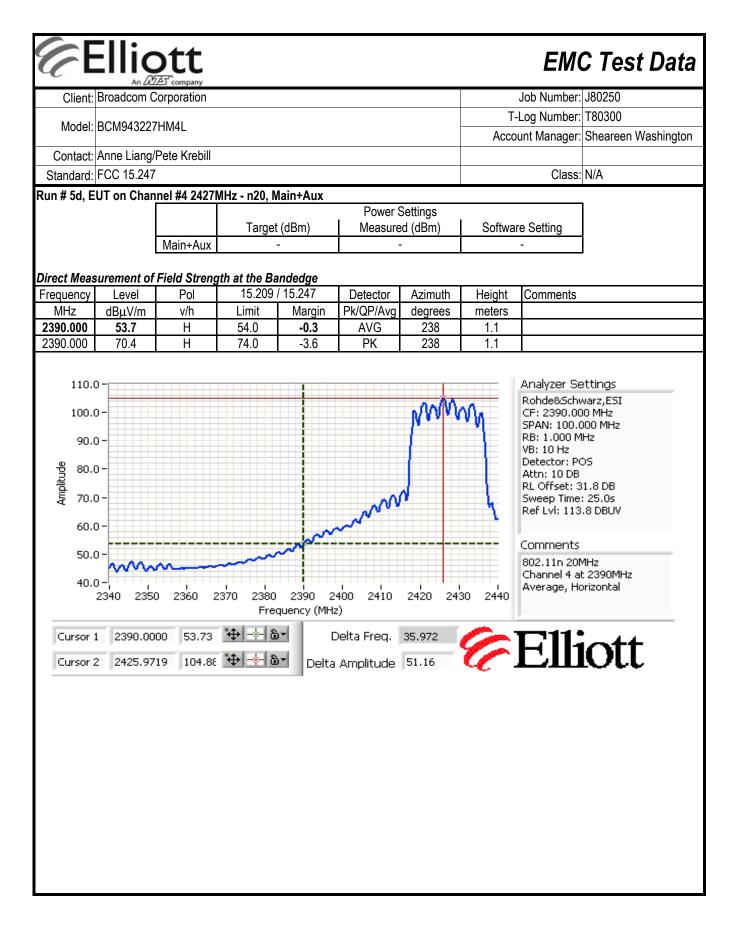


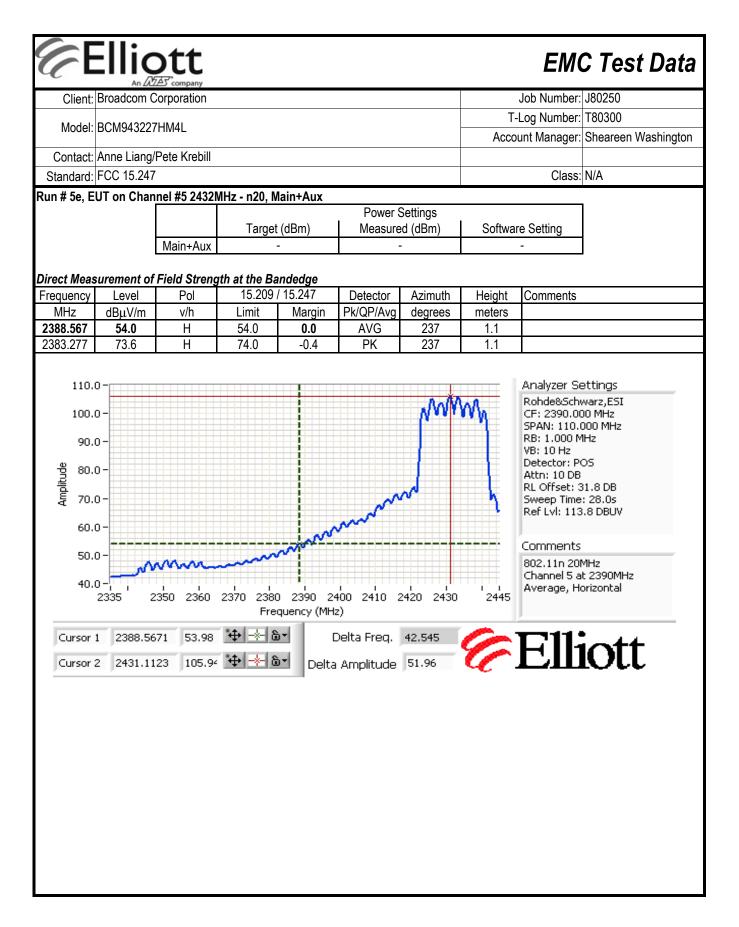


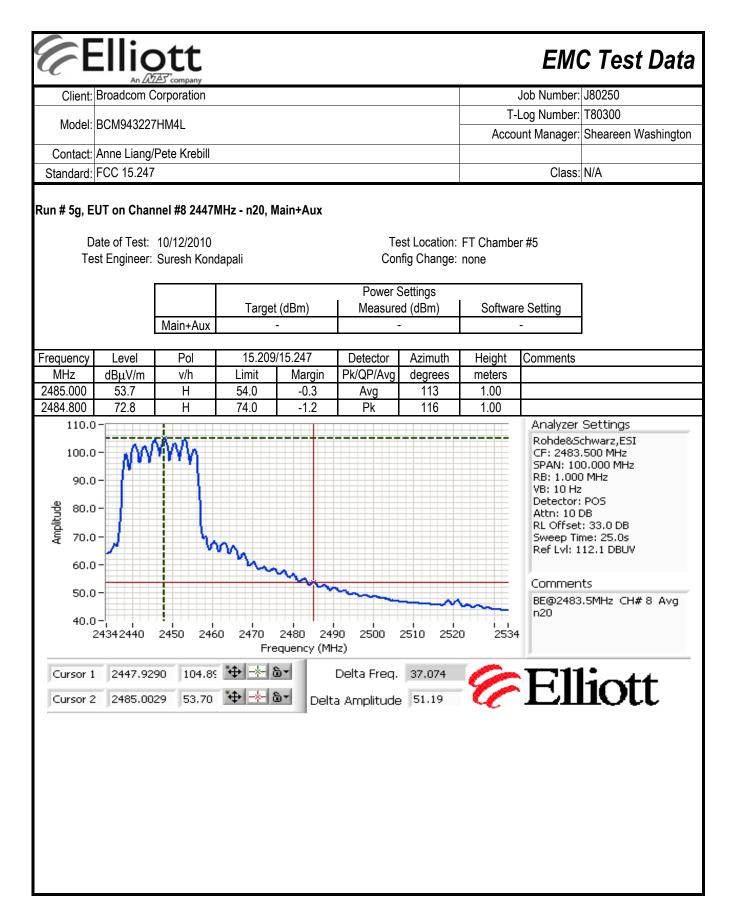


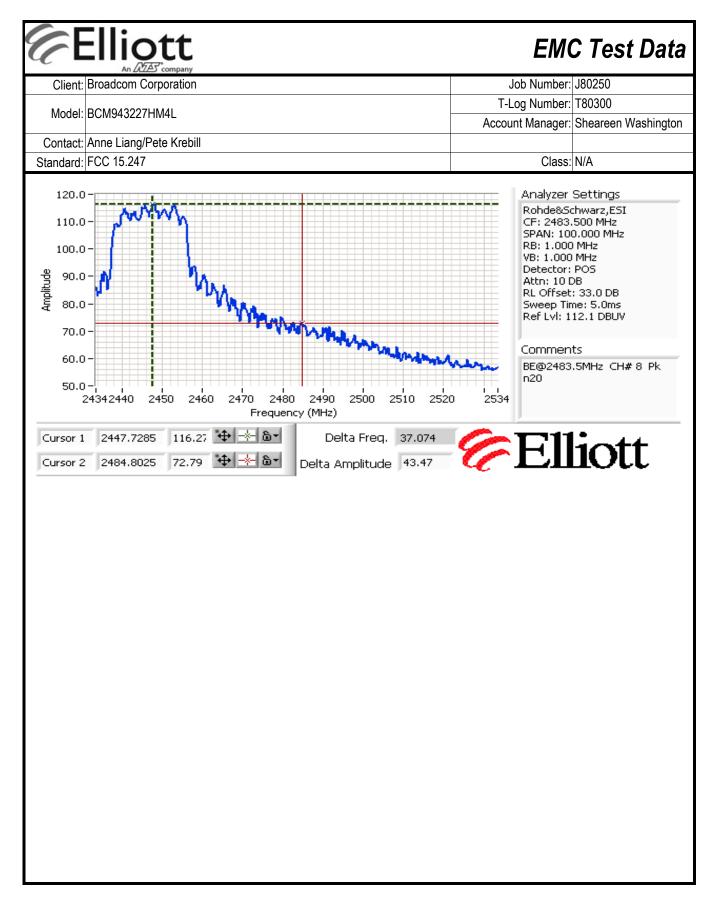


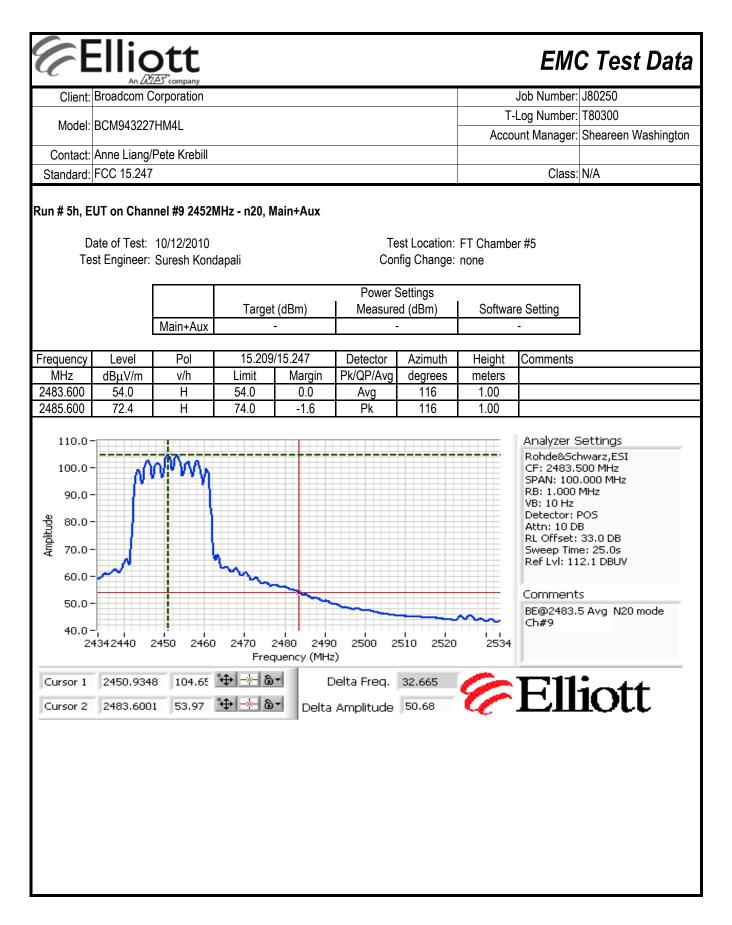


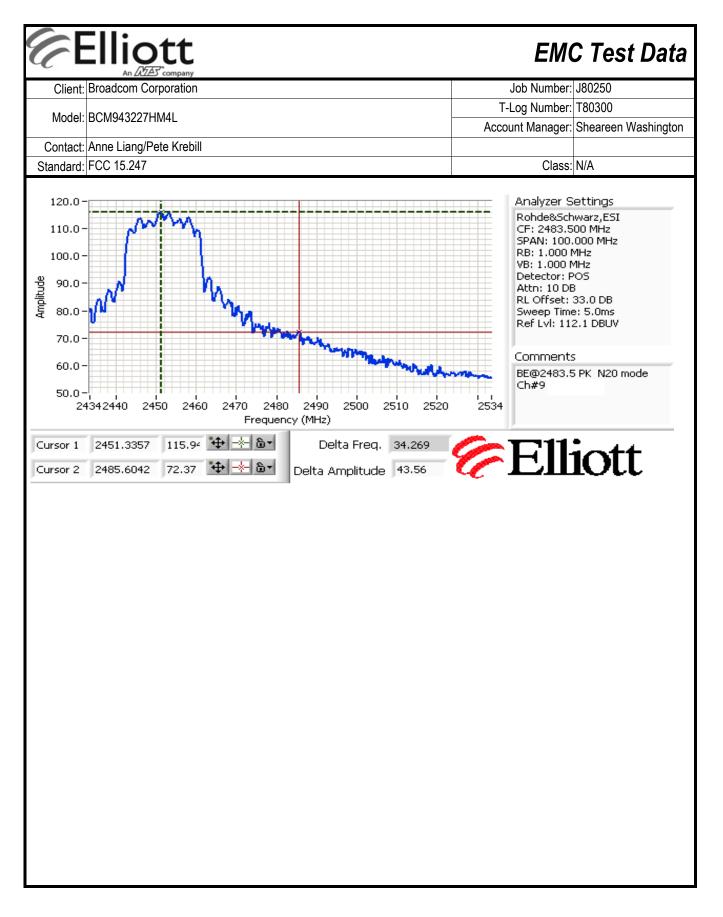


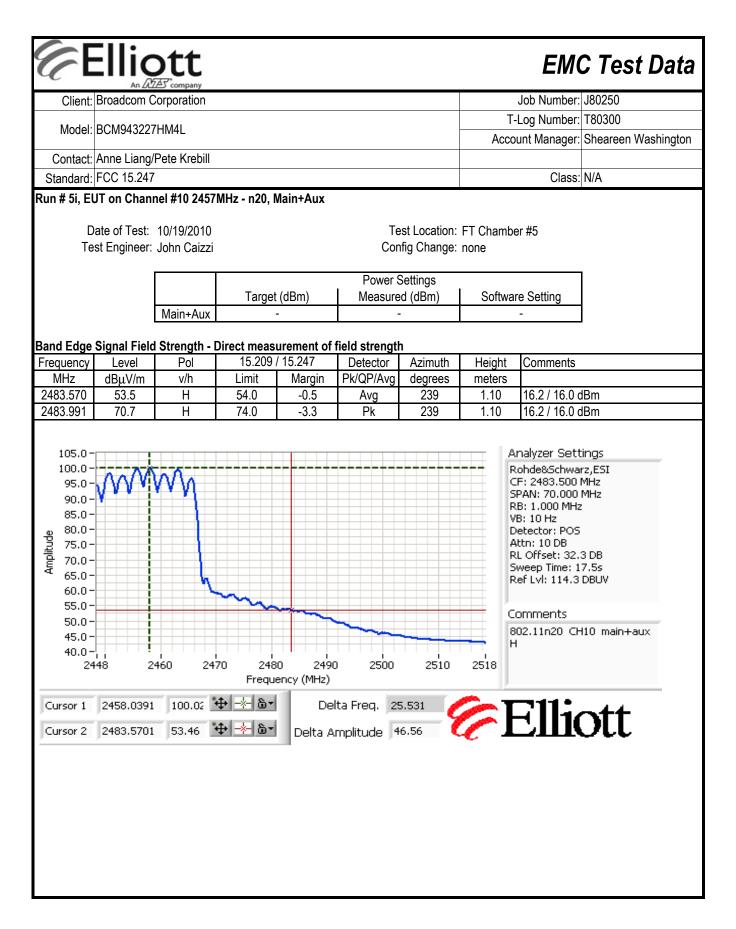


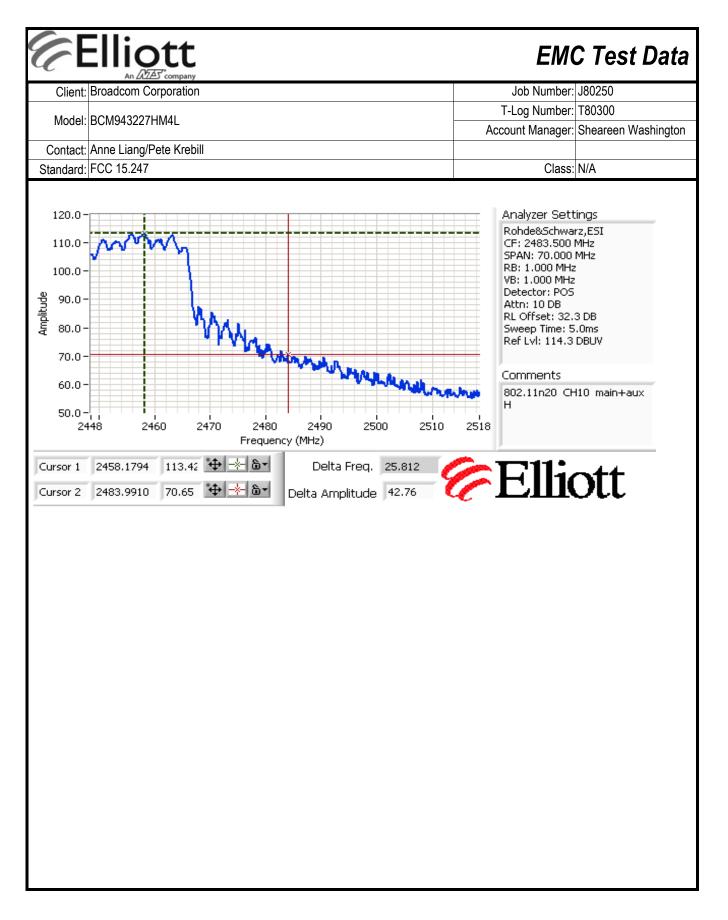












Client	An /12	A company						EM Job Number:	C Test Data
Client: Broadcom Corporation								Log Number:	
Model:	BCM943227	YHM4L					Acco	unt Manager:	Sheareen Washington
	Anne Liang/								
	FCC 15.247							Class:	N/A
Run # 5J, El	JI on Chanr	nei #11 2462	MHz - n20, N	iain+Aux	Power S	Settinas]
			Target	(dBm)	Measure		Softwar	re Setting	
		Main+Aux	-		-			-]
Direct Meas	urement of	Field Strend	yth at the Ba	ndedge					
Frequency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.735 2483.595	73.7 53.5	H H	74.0 54.0	-0.3 -0.5	PK AVG	235 235	1.0 1.0		
95.0 90.0 85.0 80.0 75.0 70.0 65.0 55.0) -) -) -) -) -) -	160 247	Frec	2490 Juency (MH:		2510	A	RB: 1.000 M VB: 1.000 M Detector: PC Attn: 10 DB RL Offset: 3 Sweep Time Ref Lvl: 113 Comments 802.11n 20f Channel 11 Peak, Horizo	Hz DS 11.8 DB : 5.0ms .8 DBUV MHz at 2483.5MHz
Cursor 1	2461.15	01 112.38		- 0	Delta Freq.	22.585		C11	iott
Cursor 2	2 2483.73	54 73.69	⊕ -*- ô	Delta	Amplitude	38.69	C.	ĽШ	OU

EMC Test Data

	An ZAZZED company		
Client:	Broadcom Corporation	Job Number:	J80250
Model: BCM943227HM4L	DCM0/3227UM/I	T-Log Number:	Т80300
wouer.	DCINI943227 FINI4L	Account Manager:	Sheareen Washington
Contact:	Anne Liang/Pete Krebill		
Standard:	FCC 15.247	Class:	-

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/30/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #5 Config. Used: 1 Config Change: none Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature:	21.4 °C
Rel. Humidity:	39 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1 - Baseline	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Eval	37.1dBµV/m @ 144.01MHz (-6.4dB)
3	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Pass	41.7dBµV/m @ 322.93MHz (-4.3dB)

Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the device operating at max power on Main at 2437MHz, 802.11b mode.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

		ott						EMO	C Test Data	
Client:	Broadcom Corporation							Job Number: J80250		
Madal	DOMONDO						T-	Log Number:	T80300	
wodel:	BCM943227	TIVI4L					Acco	unt Manager:	Sheareen Washingto	
Contact:	Anne Liang/	Pete Krebi							.	
	FCC 15.247							Class:	-	
ın #1: Pr	eliminary Ra I extender bo	adiated En								
	F	quency Ra			istance	Limit Di	istance	Extrapolat	ion Factor	
) - 1000 MI			3		3	0.		
9 35.0	h A	4Λ.					1. March	LA LL		
(m/) mg/ 45.0 45.0 40.0 35.0 35.0 25.0 20.0 15.0	-	V LA		100.0	Alexand Marth		()// "UN	YA MUKANA		
20.0 20.0 15.0 3 eliminary	 30.0 <u>/ peak readir</u>		red during p	100.0 F re-scan	requency (M	Hz)				
20.0 20.0 15.0 3 eliminary equency	- 30.0 / peak readir Level	Pol	r <mark>ed during p</mark> FC	100.0 F re-scan C B	requency (M Detector	Hz) Azimuth	Height	Comments	iooo.c	
25.0 20.0 15.0 3 eliminary equency MHz	/ peak readir	Pol v/h	ed during p FC Limit	100.0 F re-scan C B Margin	requency (M Detector Pk/QP/Avg	Hz) Azimuth degrees	meters	Comments	iooo.c	
25.0 20.0 15.0 3 eliminary equency MHz 41.480	- 30.0 / peak readir Level dBμV/m 35.3	Pol v/h V	ed during p FC Limit 40.0	100.0 F re-scan C B Margin -4.7	Trequency (M Detector Pk/QP/Avg Peak	Hz) Azimuth degrees 13	meters 1.0	Comments	iooo.c	
25.0 20.0 15.0 3 eliminary equency MHz 41.480 44.005	- 30.0 / peak readir Level dBμV/m 35.3 37.5	Pol v/h V H	red during p FC Limit 40.0 43.5	100.0 F re-scan C B Margin -4.7 -6.0	Detector Pk/QP/Avg Peak Peak	Hz) Azimuth degrees 13 197	meters 1.0 2.0	Comments	iooo.c	
20.0 15.0 20.0 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	- 30.0 / peak readir Level dBμV/m 35.3 37.5 36.5	Pol v/h V H H	red during p FC Limit 40.0 43.5 46.0	100.0 F re-scan C B Margin -4.7 -6.0 -9.5	Detector Pk/QP/Avg Peak Peak Peak	Hz) Azimuth degrees 13 197 80	meters 1.0 2.0 1.5	Comments	iooo.c	
20.0 15.0 3 eliminary equency MHz 41.480 44.005 230.491 240.008	 peak readir Level dBμV/m 35.3 37.5 36.5 36.9 	Pol v/h V H	red during p FC Limit 40.0 43.5	100.0 F re-scan C B Margin -4.7 -6.0 -9.5 -9.1	Detector Pk/QP/Avg Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178	meters 1.0 2.0 1.5 1.0	Comments	iooo.c	
20.0 15.0 3 eliminary equency MHz 41.480 44.005 30.491 240.008 287.070	- 30.0 / peak readir Level dBμV/m 35.3 37.5 36.5	Pol v/h V H H H	red during p FC Limit 40.0 43.5 46.0 46.0	100.0 Fe-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3	Detector Pk/QP/Avg Peak Peak Peak	Hz) Azimuth degrees 13 197 80	meters 1.0 2.0 1.5	Comments	iooo.c	
20.0 20.0 15.0 3 eliminary equency MHz 41.480 44.005 30.491 240.008 87.070 15.040	- - - - - - - - - - - - - -	Pol v/h H H H V	red during p FC Limit 40.0 43.5 46.0 46.0 46.0	100.0 F re-scan C B Margin -4.7 -6.0 -9.5 -9.1	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207	meters 1.0 2.0 1.5 1.0 1.5	Comments	iooo.c	
20.0 15.0 15.0 20.0 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	 peak readir Level dBμV/m 35.3 37.5 36.5 36.9 32.7 37.5 40.0 quasi-peak 	Pol v/h H H H V H H readings (red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 includes ma	100.0 re-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation of	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5		' iooo.c	
20.0 15.0 15.0 20.0 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	- - - - - - - - - - - - - -	Pol v/h H H H H readings (red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 5 FC	100.0 re-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation of C B	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 1.0	Comments	' iooo.c	
20.0 20.0 15.0 3 eliminary equency MHz 41.480 144.005 230.491 240.008 287.070 415.040 498.481 aximized equency MHz	 peak readir Level dBμV/m 35.3 37.5 36.5 36.9 32.7 37.5 40.0 quasi-peak Level dBμV/m 	Pol v/h V H H V H H readings (Pol v/h	red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 5C Limit	100.0 re-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation of C B Margin	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152 Ace cables) Azimuth degrees	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 Height meters	Comments	i iooo.c	
20.0 20.0 15.0 3 eliminary equency MHz 41.480 44.005 230.491 240.008 287.070 15.040 198.481 287.070 15.040 198.481 287.070 198.481 287.070 198.481 287.070 198.481 287.070 198.481 287.070 198.481 298.481 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	- - - - - - - - - - - - - -	Pol v/h V H H V H H readings (Pol v/h H	red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 5 C Limit 43.5	100.0 Fe-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation of C B Margin -6.4	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152 Azimuth degrees 202	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 Height meters 2.0	Comments QP (1.00s)		
20.0 20.0 15.0 3 eliminary equency MHz 41.480 44.005 230.491 240.008 287.070 15.040 98.481 287.070 15.040 98.481 240.008 287.070 144.005 240.008	- - - - - - - - - - - - - -	Pol v/h V H H V H H readings (Pol v/h H H	red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 5C Limit 43.5 46.0	100.0 re-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation o C B Margin -6.4 -9.1	Trequency (M Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152 Azimuth degrees 202 178	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 2.0 1.5 2.0 1.5	Comments QP (1.00s) QP (1.00s)	' iooo.c	
eliminary equency MHz 41.480 44.005 230.491 240.008 237.070 15.040 198.481 equency MHz 44.005 240.008 15.040	 	Pol v/h V H H V H H readings (Pol v/h H H H H	red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 includes ma FC Limit 43.5 46.0 46.0 46.0	100.0 re-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation o C B Margin -6.4 -9.1 -9.6	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152 ace cables) Azimuth degrees 202 178 155	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5	Comments QP (1.00s) QP (1.00s) QP (1.00s)	' iooo.c	
20.0 20.0 15.0 20.0 15.0 20.0	γ peak readir Level dBµV/m 35.3 37.5 36.5 36.9 32.7 37.5 36.9 32.7 37.5 40.0 quasi-peak (Level dBµV/m 37.1 36.9 36.4 32.9 32.9	Pol V/h V H H H H readings (Pol V/h H H H H H	red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 includes ma FC Limit 43.5 46.0 46.0 46.0 46.0	100.0 re-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation of C B Margin -6.4 -9.1 -9.1 -9.6 -13.1	Trequency (M Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152 Azimuth degrees 202 178 155 151	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 2.0 1.5 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.9	Comments QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	' iooo.c	
20.0 20.0 15.0 3 requency MHz 41.480 144.005 230.491 240.008 287.070 415.040 498.481 aximized requency	 	Pol v/h V H H V H H readings (Pol v/h H H H H	red during p FC Limit 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 includes ma FC Limit 43.5 46.0 46.0 46.0	100.0 re-scan C B Margin -4.7 -6.0 -9.5 -9.1 -13.3 -8.5 -6.0 mipulation o C B Margin -6.4 -9.1 -9.6	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Hz) Azimuth degrees 13 197 80 178 207 160 152 ace cables) Azimuth degrees 202 178 155	meters 1.0 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 2.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5	Comments QP (1.00s) QP (1.00s) QP (1.00s)		

Elliott EMC Test Data Client: Broadcom Corporation Job Number: J80250 T-Log Number: T80300 Model: BCM943227HM4L Account Manager: Sheareen Washington Contact: Anne Liang/Pete Krebill Standard: FCC 15.247 Class: Run #2: Preliminary Radiated Emissions, 30 - 1000 MHz 802.11b, main antenna, 19dBm Frequency Range Test Distance Limit Distance **Extrapolation Factor** 30 - 1000 MHz 3 3 0.0 60.055.0 50.0 Amplitude (dBuv/m) 40.0 db 40.0 35.0 30.0 c 25.0 20.0 15.0 ⁻¹ 100.0 1000.0 30.0 Frequency (MHz) Preliminary peak readings captured during pre-scan Frequency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 41.018 35.0 V 40.0 -5.0 Peak 34 1.0 99.895 Η 1.9 201 3.0 45.4 43.5 Peak 144.005 56.4 Н 43.5 12.9 Peak 201 2.0 199.386 Н 43.5 -2.1 59 41.4 Peak 1.5 230.722 37.1 ٧ 46.0 -8.9 Peak 31 2.0 298.970 38.4 Н 46.0 -7.6 Peak 177 1.0 Η -3.4 322.926 42.6 46.0 Peak 163 1.0 369.218 39.6 Η 46.0 -6.4 Peak 165 1.0 46.0 -7.4 1.0 398.391 38.6 Н Peak 165 -9.1 ٧ 46.0 256 498.151 36.9 Peak 1.0 V 697.700 36.2 46.0 -9.8 Peak 356 1.0 895.439 34.7 V 46.0 -11.3 Peak 60 2.0 V -13.1 996.741 40.9 54.0 Peak 340 1.0

Elliott

EMC Test Data

Client:									
	Broadcom Corporation						Job Number		
Madal	BCM943227						T-Log Number		T80300
Model.							Acco	unt Manager:	Sheareen Washington
Contact:	Anne Liang/	Pete Krebi							
Standard:	FCC 15.247							Class:	-
Run #2: Co	ontinued								
Preliminary	quasi-peak	readings	(no manipul	lation of EU	T interface ca	ables)			
Frequency	Level	Pol		СВ	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
41.018	30.8	V	40.0	-9.2	QP	35	1.0	QP (1.00s)	
199.386	38.5	Н	43.5	-5.0	QP	68	1.5	QP (1.00s)	
322.926	41.7	Н	46.0	-4.3	QP	163	1.0	QP (1.00s)	
369.218	36.4	Н	46.0	-9.6	QP	155	1.0	QP (1.00s)	
398.391	38.1	Н	46.0	-7.9	QP	160	1.0	QP (1.00s)	
99.895	45.3	Н	43.5	1.8	QP	191	3.0	Note 1	
144.005	55.6	Н	43.5	12.1	QP	189	2.0	Note 1	
	· ·		-	•	of EUT interfa	,			
Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments	
				1					
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
MHz 144.005	55.6	Н	43.5	12.1	QP	189	2.0	Note 1	
MHz 144.005 99.895	55.6 45.3	H H	43.5 43.5	12.1 1.8	QP QP	189 191	2.0 3.0	Note 1 Note 1	
MHz 144.005 99.895 322.926	55.6 45.3 41.7	H H H	43.5 43.5 46.0	12.1 1.8 -4.3	QP QP QP	189 191 163	2.0 3.0 1.0	Note 1 Note 1 QP (1.00s)	
MHz 144.005 99.895 322.926 199.386	55.6 45.3 41.7 38.5	H H H H	43.5 43.5 46.0 43.5	12.1 1.8 -4.3 -5.0	QP QP QP QP	189 191 163 68	2.0 3.0 1.0 1.5	Note 1 Note 1 QP (1.00s) QP (1.00s)	
MHz 144.005 99.895 322.926 199.386 398.391	55.6 45.3 41.7 38.5 38.1	Image: state	43.5 43.5 46.0 43.5 46.0	12.1 1.8 -4.3 -5.0 -7.9	QP QP QP QP QP QP	189 191 163 68 160	2.0 3.0 1.0 1.5 1.0	Note 1 Note 1 QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 144.005 99.895 322.926 199.386 398.391 41.018	55.6 45.3 41.7 38.5 38.1 30.8	I I I I I I I I	43.5 43.5 46.0 43.5 46.0 40.0	12.1 1.8 -4.3 -5.0 -7.9 -9.2	QP QP QP QP QP QP	189 191 163 68 160 35	2.0 3.0 1.0 1.5 1.0 1.0	Note 1 Note 1 QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 144.005 99.895 322.926 199.386 398.391	55.6 45.3 41.7 38.5 38.1	Image: state	43.5 43.5 46.0 43.5 46.0	12.1 1.8 -4.3 -5.0 -7.9	QP QP QP QP QP QP	189 191 163 68 160	2.0 3.0 1.0 1.5 1.0	Note 1 Note 1 QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 144.005 99.895 322.926 199.386 398.391 41.018	55.6 45.3 41.7 38.5 38.1 30.8 36.4	H H H H V H	43.5 43.5 46.0 43.5 46.0 40.0 40.0 46.0	12.1 1.8 -4.3 -5.0 -7.9 -9.2 -9.6	QP QP QP QP QP QP	189 191 163 68 160 35 155	2.0 3.0 1.0 1.5 1.0 1.0 1.0	Note 1 Note 1 QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	

Elliott

EMC Test Data

	An ZAZZO company		
Client:	Broadcom Corporation	Job Number:	J80250
Modol:	BCM943227HM4L	T-Log Number:	Т80300
wouer.		Account Manager:	Sheareen Washington
Contact:	Anne Liang/Pete Krebill		
Standard:	FCC 15.247	Class:	-

Run #4: Preliminary Radiated Emissions, 30 - 1000 MHz, re-check on 10/1. 802.11b, main antenna

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Preliminary quasi-peak readings (no manipulation of EUT interface cables)

		U						
Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
143.997	56.0	Н	43.5	12.5	QP	220	2.08	Channel 6, Note 2
99.879	46.1	Н	43.5	2.6	QP	221	2.89	Channel 6, Note 2
143.994	56.3	Н	43.5	12.8	QP	226	2.07	Channel 1, Note 2
99.882	46.2	Н	43.5	2.7	QP	218	2.88	Channel 1, Note 2

Note 2 This shows that the emissions over limit in Runs 2 & 3 did not come fom the radio, but are related to the test fixture. A note referring to this data was inserted into the tables for Runs 2 & 3.

Elliott

EMC Test Data

	An (ATA) company		
Client:	Broadcom Corporation	Job Number:	J80250
Madal	BCM943227HM4L	T-Log Number:	T80300
MOUEI.	BCM943227 HM4L	Account Manager:	Sheareen Washington
Contact:	Anne Liang/Pete Krebill		
Standard:	FCC 15.247	Class:	N/A

Maximum Permissible Exposure

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/26/2010 Test Engineer: Mark Hill

General Test Configuration

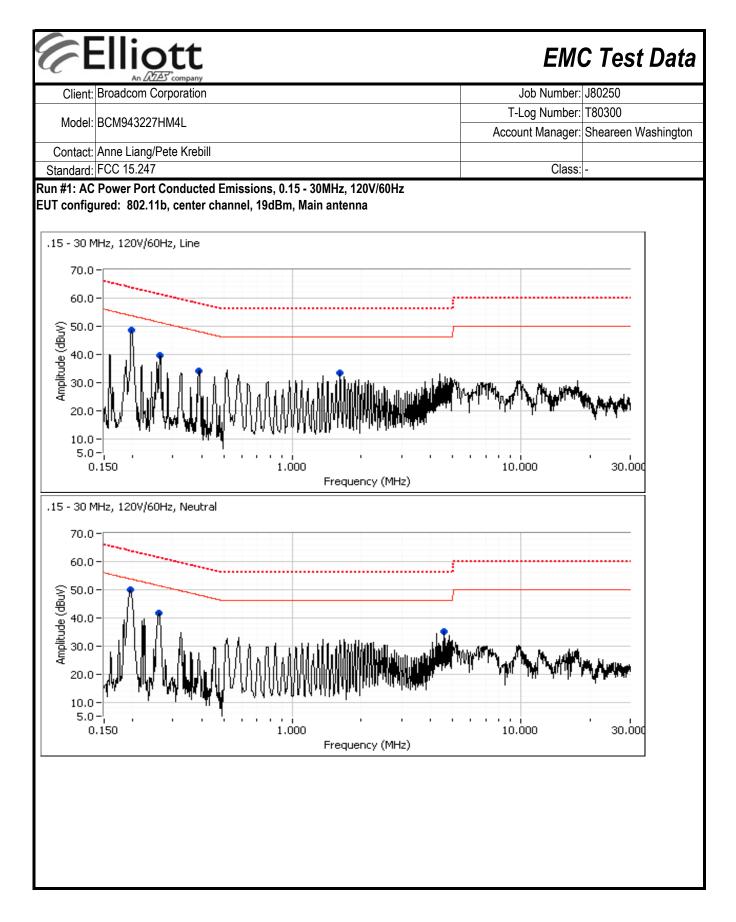
Calculation uses the free space transmission formula:

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

Device complies with Power Density requirements at 20cm separation:	V DC
Maximum Power Density at 20cm (mW/cm^2):	0.085

Modifications Made During Testing


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Broadcom Corporation							
BCM9432	27HM4I					T-Log Number:	Т80300
						Account Manager:	Sheareen Washington
		rebill					
FCC 15.2	47					Class:	N/A
General 3.9dBi (si	ngle chai	n modes), 6	i.9 dBi (MIM	IO modes)			
FI	Т	Cable	Ant	Power		Power Density (S)	MPE Limit
					at 20 cm		
	_						mW/cm^2
							1.000
							1.000
15.7	37.2	0	3.9	15.7	91.20	0.018	1.000
FI	IT	Cable	Ant	Power		Power Density (S)	MPE Limit
					FIRP		at 20 cm
	-						mW/cm^2
							1.000
							1.000
18.6	72.4	0	3.9	18.6	177.83	0.035	1.000
	IT	Cabla	Ant	Dowor		Dowor Donoity (S)	MPE Limit
					FIRD		at 20 cm
							mW/cm^2
							1.000
						0.085	1.000
15.9	38.9	0	6.9	15.9	190.55	0.038	1.000
	-						
							MPE Limit
							at 20 cm
dBm 12.0	mW*	dB	dBi	dBm	mW 77.62	mW/cm^2 0.015	mW/cm^2 1.000
12.0	15.8 28.2	0	6.9 6.9	12.0 14.5	138.04	0.015	1.000
14.5	////	0	6.9	14.5	114.82	0.027	1.000
	Broadcom BCM9432 Anne Liar FCC 15.2 General 3.9dBi (si EU Pov dBm 14.9 17.3 15.7 EU Pov dBm 18.7 18.5 18.6 EU Pov dBm 15.8 19.4 15.9	BCM943227HM4L Anne Liang/Pete K FCC 15.247 General 3.9dBi (single chai EUT Power dBm mW* 14.9 30.9 17.3 53.7 15.7 37.2 EUT Power dBm mW* 18.7 74.1 18.5 70.8 18.6 72.4 EUT Power dBm mW* 15.8 38.0 19.4 87.1 15.9 38.9	Broadcom Corporation BCM943227HM4L Anne Liang/Pete Krebill FCC 15.247 General 3.9dBi (single chain modes), 6 EUT Cable Power Loss dBm mW* dB 14.9 30.9 0 17.3 53.7 0 15.7 37.2 0 EUT Cable Power Loss dBm mW* dB 18.7 74.1 0 18.5 70.8 0 18.6 72.4 0 EUT Cable Loss dBm mW* dB 15.8 38.0 0 15.9 38.9 0 EUT Cable Power Loss dBm mW* dB 15.8 38.0 0 19.4 87.1 0 15.9 38.9 0	Broadcom Corporation BCM943227HM4L Anne Liang/Pete Krebill FCC 15.247 General 3.9dBi (single chain modes), 6.9 dBi (MIW EUT Cable Power Loss dBm mW* dB dBi 14.9 30.9 0 17.3 53.7 0 15.7 37.2 0 15.7 37.2 0 Ant Power Loss Gain dB dBi 18.7 74.1 0 18.5 70.8 0 18.6 72.4 0 3.9 18.6 72.4 0 3.9 18.6 72.4 0 38.0 0 6.9 19.4 87.1 0 6.9 19.4 87.1 0 6.9 15.9 38.9 0 6.9 15.9 38.9	Broadcom Corporation BCM943227HM4L Anne Liang/Pete Krebill FCC 15.247 General 3.9dBi (single chain modes), 6.9 dBi (MIMO modes) EUT Cable Power Loss Gain at Ant dBm mW* dB dBi 14.9 30.9 17.3 53.7 0 3.9 17.3 53.7 0 3.9 15.7 37.2 0 3.9 15.7 37.2 0 3.9 15.7 37.2 0 3.9 15.7 37.2 0 3.9 18.5 70.8 18.5 70.8 18.6 72.4 0 3.9 18.6 72.4 0 3.9 18.6 72.4 0 3.9 18.6 72.4 0 <	Broadcom Corporation BCM943227HM4L Anne Liang/Pete Krebill FCC 15.247 General 3.9dBi (single chain modes), 6.9 dBi (MIMO modes) EUT Cable Power Loss Gain at Ant Bm mW* dB dBi dBm mW* 14.9 30.9 0 3.9 17.3 53.7 0 3.9 15.7 37.2 0 3.9 15.7 37.2 0 3.9 15.7 37.2 0 3.9 15.7 37.2 0 3.9 18.7 74.1 0 3.9 18.5 70.8 0 3.9 18.6 72.4 0 3.9 18.6 72.4 0 3.9 15.8 186.21 19.4 <td< td=""><td>Broadcom Corporation Job Number: BCM943227HM4L T-Log Number: Anne Liang/Pete Krebill Account Manager: FCC 15.247 Class: General 3.9dBi (single chain modes), 6.9 dBi (MIMO modes) EUT Cable Ant Power Power Density (S) at 20 cm dBm mW* dB dBi dBm mW mW/cm^22 14.9 30.9 0 3.9 14.9 75.86 0.015 17.3 53.7 0 3.9 15.7 91.20 0.018 EUT Cable Ant Power EIRP at 20 cm dBm mW* dB dBi dBm mW mW/cm^22 15.7 37.2 0 3.9 15.7 91.20 0.018 EUT Cable Ant Power Power Density (S) at 20 cm mW/cm^22 18.5 70.8 0 3.9 18.5 173.78 0.035 18.6 72.4 0 3.9</td></td<>	Broadcom Corporation Job Number: BCM943227HM4L T-Log Number: Anne Liang/Pete Krebill Account Manager: FCC 15.247 Class: General 3.9dBi (single chain modes), 6.9 dBi (MIMO modes) EUT Cable Ant Power Power Density (S) at 20 cm dBm mW* dB dBi dBm mW mW/cm^22 14.9 30.9 0 3.9 14.9 75.86 0.015 17.3 53.7 0 3.9 15.7 91.20 0.018 EUT Cable Ant Power EIRP at 20 cm dBm mW* dB dBi dBm mW mW/cm^22 15.7 37.2 0 3.9 15.7 91.20 0.018 EUT Cable Ant Power Power Density (S) at 20 cm mW/cm^22 18.5 70.8 0 3.9 18.5 173.78 0.035 18.6 72.4 0 3.9

(7 E	Ellic	ott				EM	C Test Data
Client:	Broadcom C	orporation		Job Number:	J80250		
Model:	BCM943227	HM4I	T-	-Log Number:	Т80300		
			Account Manage		r: Sheareen Washington		
	Anne Liang/l FCC 15.247	Pete Krebill		Class:			
				cted Emissions ont Facility, Semi-Anech	noic Chamb	per)	
Test Spec	cific Detail	S					
	Objective:	The objective of this test sessio specification listed above.	n is to	perform final qualificatior	n testing of t	he EUT with r	respect to the
-	Date of Test:		Config. Used:				
	•	Rafael Varelas FT Chamber #5		Config Change: Host Unit Voltage			
				riost offic voltage	120 1700112		
General T	est Config	guration					
	ne and 80cm	from the LISN. Tempera Rel. Hun					
Summary	of Result	S					
Ru	n #	Test Performed		Limit	Result	Margin	
	1	CE, AC Power,120V/60Hz	Z	RSS 210 / 15.207	Pass	48.9dBµV (2) 0.195MHz (-14.9dB)
No modificat Deviation	tions were ma s From Th	During Testing ade to the EUT during testing e Standard e from the requirements of the st	tandarı	d.			

Client:	Broadcom (Corporation					Job Number:	J80250
Model	BCM94322				T-Log Number:	T80300		
MOUEI.	DOIVI34JZZ	/ 1 11014∟			Account Manager:	Sheareen Washingto		
	Anne Liang							
	FCC 15.247	7			Class:	-		
Run #1: Co	ntinued							
Preliminary	v peak readi	ngs capture	d during pre	-scan (peak	readings v	s. average limit)	
Frequency	Level	AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.196	48.5	Line 1	53.7	-5.2	Peak			
0.261	39.6	Line 1	51.3	-11.7	Peak			
0.389	34.0	Line 1	48.0	-14.0	Peak			
1.618	33.2	Line 1	46.0	-12.8	Peak			
0.195	50.0	Neutral	53.8	-3.8	Peak			
0.260	41.5	Neutral	51.4	-9.9	Peak			
4.595	35.0	Neutral	46.0	-11.0	Peak			
Final quasi	-peak and a	verage readi	nas					
Frequency	Level	AC	Class B		Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.195	48.9	Neutral	63.8	-14.9	QP	QP (1.00s)		
0.196	48.7	Line 1	63.8	-15.1	QP	QP (1.00s)		
1.618	28.6	Line 1	46.0	-17.4	AVG	AVG (0.10s)		
0.195	35.8	Neutral	53.8	-18.0	AVG	AVG (0.10s)		
4.595	27.5	Neutral	46.0	-18.5	AVG	AVG (0.10s)		
0.196	34.7	Line 1	53.8	-19.1	AVG	AVG (0.10s)		
0.259	40.7	Neutral	61.5	-20.8	QP	QP (1.00s)		
0.259	30.1	Neutral	51.5	-21.4	AVG	AVG (0.10s)		
0.261	39.4	Line 1	61.4	-22.0	QP	QP (1.00s)		
0.261	28.3	Line 1	51.4	-23.1	AVG	AVG (0.10s)		
4.595	32.3	Neutral	56.0	-23.7	QP	QP (1.00s)		
1.618	31.1	Line 1	56.0	-24.9	QP	QP (1.00s)		