

FCC OET BULLETIN 65 SUPPLEMENT C CLASS II PERMISSIVE CHANGE IC RSS-102 ISSUE 3

SAR EVALUATION REPORT

FOR

802.11g/Draft 802.11n WLAN PCI-E Minicard (Tested inside of HP Tablet PC, HSTNN-I77C)

MODEL: BCM943225HM

FCC ID: QDS-BRCM1045 IC: 4324A-BRCM1045

REPORT NUMBER: 09U12887-2B

ISSUE DATE: November 30, 2009

Prepared for

BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 771-1000 FAX: (510) 661-0888

DATE: November 30, 2009

IC: 4324A-BRCM1045

Revision History

Rev.	Issue Date	Revisions	Revised By
	November 2, 2009	Initial Issue	
Α	November 3, 2009	Revised host model name.	A. Zaffar
В	November 30, 2009	 Updated Section 10 OUTPUT POWER VERIFICATION 	Sunny Shih
		 Added antenna-to-person's separation distance in section 11 SUMMARY OF TEST RESULTS 	

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY	6
4.1. MEASURING INSTRUMENT CALIBRATION	6
4.2. MEASUREMENT UNCERTAINTY	7
5. EQUIPMENT UNDER TEST	8
6. SYSTEM SPECIFICATIONS	9
7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8. LIQUID PARAMETERS CHECK	11
8.1. LIQUID CHECK RESULTS	12
9. SYSTEM PERFORMANCE	14
9.1. SYSTEM PERFORMANCE CHECK RESULTS	15
10. OUTPUT POWER VERIFICATION	16
11. SUMMARY OF TEST RESULTS	17
11.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND	17
12. Enhanced Energy Coupling (KDB 447498)	18
13. SAR TEST PLOTS	19
14. ATTACHMENTS	20
15. TEST SETUP PHOTO	21
16 HOST DEVICE BHOTO	24

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BROADCOM CORPORATION

190 MATHILDA PLACE SUNNYVALE, CA 94086

SUNNI VALE, CA 94000

EUT DESCRIPTION: 802.11g/Draft 802.11n WLAN PCI-E Minicard

(Tested inside of HP Notebook PC, HSTNN-I77C)

MODEL NUMBER: BCM943225HM

DEVICE CATEGORY: Portable

EXPOSURE CATEGORY: General Population/Uncontrolled Exposure

DATE TESTED: October 29-30, 2009

MAX SAR VALUE:

FCC / IC	Frequency Range	The Highest	Limit (mW/g)
Rule Parts	[MHz]	SAR Values (1g_mW/g)	
15.247 / RSS-102	2400 – 2483.5	0.716 (Secondary Landscape)	1.6

APPLICABLE STANDARDS:

	STANDARD					
		RESULTS				
FCC	FCC OET BULLETIN 65 SUPPLEMENT C					
0	KDB 248227 SAR measurement procedures for 802.11 a/b/g transmitters	Pass				
0	KDB 447498 Mobile and Portable Device RF Exposure Procedures and Equipment	F a 5 5				
Auth	Authorization Policies					
	RSS-102 ISSUE 3	Pass				

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Sunay Shih

Tested By:

SUNNY SHIH

ENGINEERING SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

CHAO YEN LIN EMC ENGINEER

Chargen Lin

COMPLIANCE CERTIFICATION SERVICES

Page 4 of 24

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 802.11abg Transmitters, KDB 447498 Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies and IC RSS 102 Issue 3 and Schedule 2 of Radiocommunications (Electromagnetic Radiation - Human Exposure) Standard 2003 incl Amendment No 1, 2007 and NZS 2772.1:1999 Radiofrequency fields - Maximum exposure levels - 3 kHz to 300 GHz incl Amendment No. 1, 1999.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

DATE: November 30, 2009

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial Number		Cal.	Due date
Name of Equipment	Manulacturei	турелиюцеі	Serial Number	ММ	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Electronic Probe kit	HP	85070C	N/A	N/A		N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	14	2009
Signal Generator	Agilent	8753ES-6	MY40001647	11	14	2009
E-Field Probe	SPEAG	EX3DV4	3686	3	23	2010
Thermometer	ERTCO	639-1S	1718	5	1	2010
Data Acquisition Electronics	SPEAG	DAE3 V1	500	9	15	2010
System Validation Dipole	SPEAG	D2450V2	748	4	14	2010
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010
Power Meter	Giga-tronics	8651A	8651404	1	11	2010
Power Sensor	Giga-tronics	80701A	1834588	1 11 2010		2010
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5		N/A	
Simulating Liquid	ccs	M2450	N/A	With	Within 24 hrs of first te	

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Ur	nc.(±%)
Oncertainty component	101. (±70)	Trobe Dist.	DIV.	Or (1g)	Or (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval) Notesfor table			K=2			22.87	20.98

Notesfor table

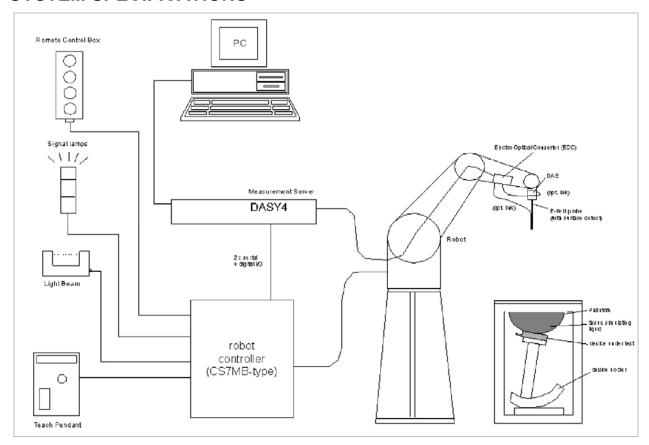
- 1. Tol. tolerance in influence quaitity
- 2. N Nomal
- 3. R Rectangular
- 4. Div. Divisor used to obtain standard uncertainty
- 5. Ci is te sensitivity coefficient

5. EQUIPMENT UNDER TEST

802.11g/Draft 802.11n WLAN PCI-E Minicard (Tested inside of HP Tablet PC, HSTNN-I77C)

Normal operation: • Laptop - Lap-held,

• Tablet - Edge (underarm) & lap-held


Antenna tested: <u>Manufactured</u> <u>Model Number</u>

WNC 6036B0063702 (Main)

6036B0063602 (Aux)

Power supply: Power supplied through laptop computer (host device)

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)									
(% by weight)	45	50	83	35	91	15	19	00	24	50	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Во	ody
raiget i requeitey (Will2)	ϵ_{r}	σ (S/m)	ϵ_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

DATE: November 30, 2009

8.1. LIQUID CHECK RESULTS

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Chaoyen Lin

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
0.450	e'	53.03	Relative Permittivity (ε_r):	53.032	52.7	0.63	± 5
2450	e"	14.21	Conductivity (σ):	1.937	1.95	-0.69	± 5

Liquid Temperature: 23 deg. C October 29, 2009 8:13 AM Frequency e" 2400000000 53.12801 13.96142 2405000000 53.11591 14.03482 2410000000 53.10131 14.10002 2415000000 14.14352 53.09771 2420000000 53.08381 14.16972 2425000000 53.07921 14.18792 2430000000 53.08491 14.18122 2435000000 53.06911 14.18732 2440000000 53.06471 14.20182 2445000000 53.03571 14.22952 2450000000 53.03181 14.20862 2455000000 52.96281 14.18522 2460000000 52.92671 14.15712 2465000000 14.11992 52.86291 52.84751 2470000000 14.07232 2475000000 52.83241 14.04812 2480000000 52.84021 14.05522 2485000000 14.07432 52.83341 2490000000 14.13162 52.83581 2495000000 14.20542 52.83771 2500000000 52.83281 14.30832

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

DATE: November 30, 2009

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Chaoyen Lin

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
2450	e'	51.67	Relative Permittivity (ε_r):	51.674	52.7	-1.95	± 5
2450	e"	13.95	Conductivity (σ):	1.901	1.95	-2.49	± 5

		, , , , , , , , , , , , , , , , , , ,	l
Liquid Temperat October 30, 200	•		
Frequency	9 0.2 1 AW e'	e"	
2400000000	51.77011	13.70352	
2405000000	51.75801	13.77692	
2410000000	51.74341	13.84212	
2415000000	51.73981	13.88562	
2420000000	51.72591	13.91182	
2425000000	51.72131	13.93002	
2430000000	51.72701	13.92332	
2435000000	51.71121	13.92942	
2440000000	51.70681	13.94392	
2445000000	51.67781	13.97162	
2450000000	51.67391	13.95072	
2455000000	51.60491	13.92732	
2460000000	51.56881	13.89922	
2465000000	51.50501	13.86202	
2470000000	51.48961	13.81442	
2475000000	51.47451	13.79022	
2480000000	51.48231	13.79732	
2485000000	51.47551	13.81642	
2490000000	51.47791	13.87372	
2495000000	51.47981	13.94752	
2500000000	51.47491	14.05042	

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

9. SYSTEM PERFORMANCE

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV4-SN: 3686 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

450 to 2450 MHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

9.1. SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 748

Date: October 29, 2009

Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Chaoyen Lin

Medium	CW Signal (MHz)	Forward power (mW)	Meas (Normalize		Target	Delta (%)	Tolerance (%)
Rody	2450	250	1g SAR:	54.6	51.2	6.64	±10
Body	2450 250	10g SAR:	25.7	23.7	8.44	±10	

Date: October 30, 2009

Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Chaoyen Lin

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Rody	2450	250	1g SAR:	53.7	51.2	4.88	±10
Body	2450 250	250	10g SAR:	25.3	23.7	6.75	±10

10. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, wl_tools, which enable a user to control the frequency and output power of the module.

RF Conducted Output Power Measurement Results:

Please refer to Broadcom's Operational Description document for Average Power information (confidential exhibit) as documented in 4/1/2009 original filing.

Before SAR evaluation, CCS has verified the RF conducted average power which is in a agreement with previous reported average output power.

11. SUMMARY OF TEST RESULTS

11.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND

1) Laptop Mode: Lap-held with the display open at 90° to the keyboard

Note: WLAN main and aux antennas are more than 24 cm from phantom for laptop mode, so SAR test is not required

2) Tablet Mode 1: Edge - Primary Landscape

Note: WLAN main and aux antennas are more than 22 cm from phantom for laptop mode, so SAR test is not required

3) Tablet Mode 2: Edge - Secondary Landscape (0.4 cm between Main/Aux antennas and person's body)

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11b	6	2437 (M)	Main	0.716	1.6
802.11g	6	2437 (M)	(M) Aux 0.635		1.6

4) Tablet Mode 3: Edge – Primary Portrait (9.0 cm between Main antenna and person's body)

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11b	6	2437 (M)	Main	0.189	1.6

5) Tablet Mode 4: Edge – Secondary Portrait (8.8 cm between Aux antenna and person's body)

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11g	6	2437 (M)	Aux	0.121	1.6

6) Tablet Mode 5: Bottom Face - Lap-held (2.3 cm between Main/Aux antennas and person's body)

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11b	6	2437 (M)	Main	0.115	1.6
802.11g	6	2437 (M)	Aux	0.053	1.0

Notes:

- 1. 802.11b doesn't operate for Aux antenna. Thus, 802.11g is performed for Aux antenna instead.
- 2. The modes with highest output power channel were chosen for the testing.

12. Enhanced Energy Coupling (KDB 447498)

According to KDB 447498, the test configuration with the highest 1-g SAR must be used to determine if additional SAR evaluation is required due to enhanced energy coupling at increased separation distances.

From the test results below, additional 1-g SAR evaluation is not required.

2.4GHz	Antenna-to-person distance (cm)	Peak SAR (mW/g)	E-field (V/m)	Lower than Initial (%)
Initial	0 (secondary portrait)	1.02	20.88	
1	0.5	0.64	16.50	62.4%
2	1	0.26	10.48	25.2%

13. SAR TEST PLOTS

WORST-CASE SAR PLOT for 2.4 GHz Band

Date/Time: 10/29/2009 10:18:46 AM

Test Laboratory: Compliance Certification Services

Secondary Landscape

DUT: HP; Type: NA; Serial: NA

Communication System: 802.11bgn; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.92 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

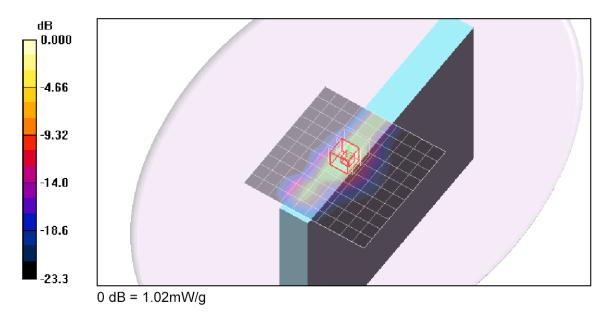
DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld, 802.11b M-ch Main Ant/Area Scan (11x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.797 mW/g

Lapheld, 802.11b M-ch Main Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm,


dv=5mm, dz=3mm

Reference Value = 12.4 V/m; Power Drift = 1.66 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.716 mW/g; SAR(10 g) = 0.298 mW/g

Maximum value of SAR (measured) = 1.02 mW/g

14. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Validation Plots	4
2	SAR Test Plots	7
3	Certificate of E-Field Probe - EX3DV4 SN 3686	10
4	Certificate of System Validation Dipole D2450V2	6

DATE: November 30, 2009