

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT

FOR

BLUETOOTH TRANSCEIVER MODULE

MODEL NUMBER: BCM92070MD_REF

FCC ID: QDS-BRCM1043 IC: 4324A-BRCM1043

REPORT NUMBER: 10U13407-1

ISSUE DATE: SEPTEMBER 30, 2010

Prepared for

BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 10U13407-1 DATE: SEPTEMBER 30, 2010 FCC ID: QDS-BRCM1043 IC: 4324A-BRCM1043

Revision History

Rev.	Issue Date	Revisions	Revised By
	09/30/10	Initial Issue	T. Chan

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	ILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	6
	4.1.	MEASURING INSTRUMENT CALIBRATION	6
	4.2.	SAMPLE CALCULATION	6
	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQU	JIPMENT UNDER TEST	7
,	5.1.	DESCRIPTION OF EUT	7
,	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	7
,	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.5.	SOFTWARE AND FIRMWARE	7
	5.6.	WORST-CASE CONFIGURATION AND MODE	7
,	5.7.	WORST-CASE CONFIGURATIONS	9
,	5.8.	DESCRIPTION OF TEST SETUP	10
6.	TES	T AND MEASUREMENT EQUIPMENT	14
7.	ANT	ENNA PORT TEST RESULTS	15
	7.1.	LE (LOW ENERGY) MODULATION	15
	7.1.1		
	7.1.2 7.1.3		
	7.1.4		
	7.1.5		25
	7.1.6 7.1.7	6. OUTPUT POWER	27
	7.1.7	CONDUCTED SPURIOUS EMISSIONS	
8.	RAD	DIATED TEST RESULTS	36
	8.1.	LIMITS AND PROCEDURE	
	8.1.1		
	8.1.2		
	8.2.	RECEIVER ABOVE 1 GHz	
	8.3.	WORST-CASE BELOW 1 GHz	46
9.	AC I	POWER LINE CONDUCTED EMISSIONS	47
10	. M	IAXIMUM PERMISSIBLE EXPOSURE	51

REPORT NO: 10U13407-1	DATE: SEPTEMBER 30, 2010
FCC ID: QDS-BRCM1043	IC: 4324A-BRCM1043

11. SETUP PHOTOS......54

IC: 4324A-BRCM1043

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BROADCOM CORPORATION

190 MATHILDA PLACE

SUNNYVALE, CA 94086, USA

EUT DESCRIPTION: BLUETOOTH TRANSCEIVER MODULE

MODEL: BCM92070MD REF

SERIAL NUMBER: 70F39597A19D & 70F39597A1D7 for Conducted &

70F39597A1E4 & 70F39597A1D2 for Radiated

DATE TESTED: SEPTEMBER 16 - 29, 2010

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C **Pass**

INDUSTRY CANADA RSS-210 Issue 7 Annex 8 **Pass**

INDUSTRY CANADA RSS-GEN Issue 2 Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By: Tested By:

THU CHAN

ENGINEERING MANAGER

COMPLIANCE CERTIFICATION SERVICES

VIEN TRAN **EMC ENGINEER**

COMPLIANCE CERTIFICATION SERVICES

DATE: SEPTEMBER 30, 2010

Page 5 of 58

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: SEPTEMBER 30, 2010

IC: 4324A-BRCM1043

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth transceiver module 2.1 + EDR and V4.0 + LE modes. The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

For Low Energy (LE) mode, the transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Low Energy (LE)	2.78	1.90

For 8PSK mode, the test measurement passed within ± 0.5dBm of the original output power.

5.3. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The major change filed under this application is:

- 1. Bluetooth Low Energy functionality (BLE) is added to the Bluetooth chipset. The modified chipset is pin for pin compatible and the BT functionality, the maximum output power and frequencies of operation remain the same as the original approval.
- 2. Serial flash memory is removed.
- 3. FL1 is replaced with a 4-element discreet component BPF.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a built in antenna with a maximum gain of 1.87dBi.

5.5. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Broadcom, rev. 5.5.0.5300. The test utility software used during testing was Bluetool, rev. 3.54.164.0 and 1.3.5.3

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

Page 7 of 58

REPORT NO: 10U13407-1 FCC ID: QDS-BRCM1043 DATE: SEPTEMBER 30, 2010 IC: 4324A-BRCM1043

5.7. WORST-CASE CONFIGURATIONS

The worst-case data rate for each mode is determined to be as follows, based on preliminary tests of the chipset utilized in this radio.

DATE: SEPTEMBER 30, 2010

IC: 4324A-BRCM1043

For Low Energy mode, since it is adding mode therefore full testing are performed. All final tests were made at 1 Mb/s.

For 8PSK, the spot checks were performed in band edge with high channel and harmonic with low, mid, and high channels. All tests were made at 3 Mb/s.

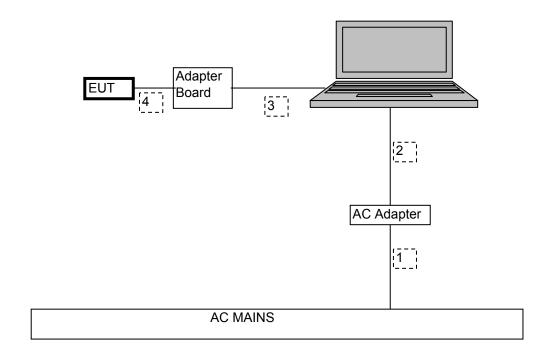
For radiated emissions below 1 GHz the worst-case configuration is determined to be the mode and channel with the highest output power.

5.8. DESCRIPTION OF TEST SETUP

NORMAL TX (Hopping Off)

SUPPORT EQUIPMENT

	PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufactur	Manufactur Model Serial Number					
	er						
Laptop	Dell	Inspiron	N/A	DoC			
AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-43S-1042	N/A			
Adapter Board	Broadcom	BCRM9USB3P3V	1260427	N/A			


I/O CABLES

	I/O CABLE LIST					
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	1	AC	Unshielded	1.8m	N/A
2	DC	1	DC	Unshielded	1.8m	Ferrite at laptop's end
3	USB	1	USB	Unshielded	1.5m	N/A
4	Interface	1	Ribbon Cable	Unshielded	0.20m	N/A

TEST SETUP

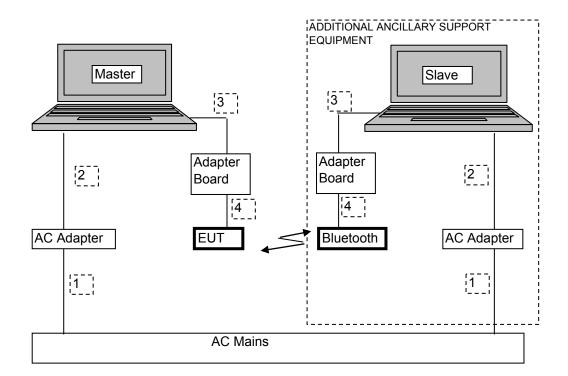
The EUT is connected to a host laptop computer via a 5Vdc adaptor board during the test. Test software exercised the radio card.

SETUP DIAGRAM FOR TEST

HOPPING ON

SUPPORT EQUIPMENT

	PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufactur	Model	Serial Number	FCC ID				
	er							
Laptop	Dell	Inspiron	N/A	DoC				
AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-43S-1042	N/A				
Adapter Board	Broadcom	BCRM9USB3P3V	1260427	N/A				
Laptop	Dell	Inspiron 0000	N/A	DoC				
AC Adapter	Dell	PA-1600-06D1	CN-0F9710-71616-56H-510D	N/A				
Adapter Board	Broadcom	BCRM9USB3P3V	1260443	N/A				


I/O CABLES

	I/O CABLE LIST					
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	2	AC	Unshielded	1.8m	N/A
2	DC	2	DC	Unshielded	1.8m	Ferrite at laptop's end
3	USB	2	USB	Unshielded	1.5m	N/A
4	Interface	2	Ribbon Cable	Unshielded	0.20m	N/A

TEST SETUP

The EUT is connected to a host laptop computer via a 5Vdc adaptor board during the test. Test software exercised the radio card.

SETUP DIAGRAM FOR HOPPING TEST

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	01/14/09	07/14/11	
Antenna, Horn, 18 GHz	EMCO	3115	C00872	01/29/09	07/29/11	
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	01/29/09	07/29/11	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	01/06/10	07/06/11	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	02/04/09	08/04/11	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	04/29/10	10/29/10	
Peak Power Meter	Boonton	4541	C01186	03/01/10	03/01/11	
Peak Power Sensor	Boonton	57318	0	02/24/10	02/24/11	
Peak Power Meter	Agilent / HP	E9327A	C00964	01/07/10	12/04/11	
Peak Power Sensor	Agilent / HP	E4416A	C00963	12/04/09	12/04/11	
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	01/00/00	CNR	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-	N02481	11/05/09	11/05/10	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	08/06/09	05/06/11	

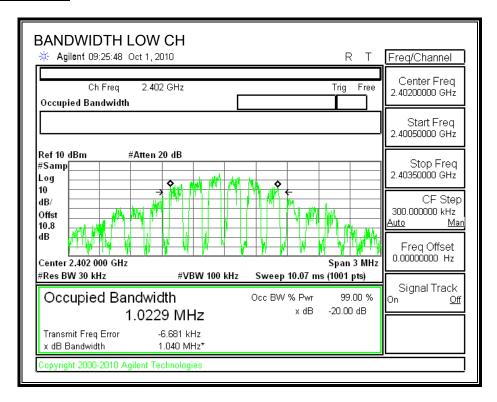
7. ANTENNA PORT TEST RESULTS

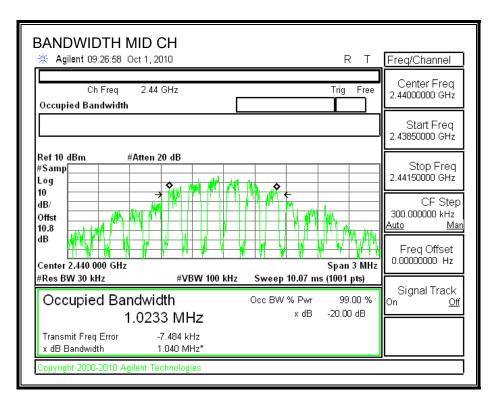
7.1. LE (LOW ENERGY) MODULATION

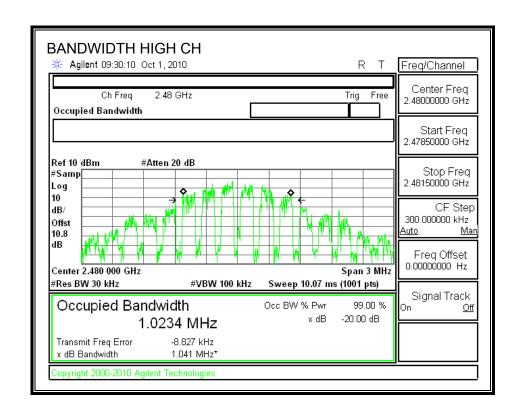
7.1.1. 99% BANDWIDTH

LIMIT

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 99% bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

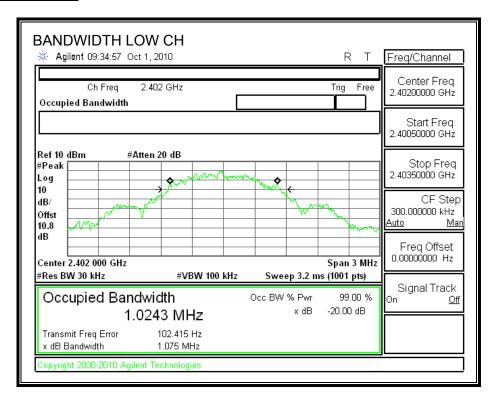
Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0229
Middle	2440	1.0233
High	2480	1.0234

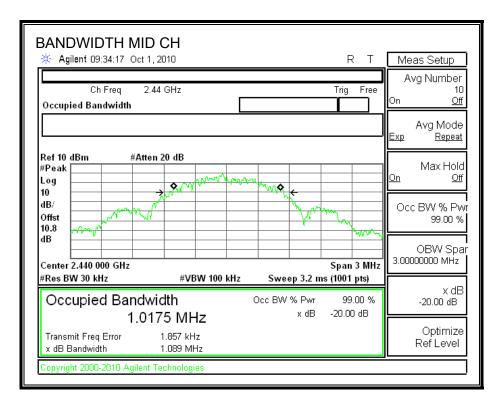
99% BANDWIDTH

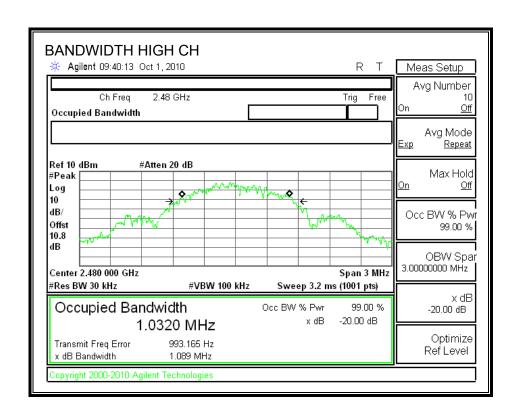
7.1.2. 20dB BANDWIDTH

LIMIT

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

Channel	Frequency	20 dB Bandwidth
	(MHz)	(MHz)
Low	2402	1.075
Middle	2440	1.089
High	2480	1.089

20 dB BANDWIDTH

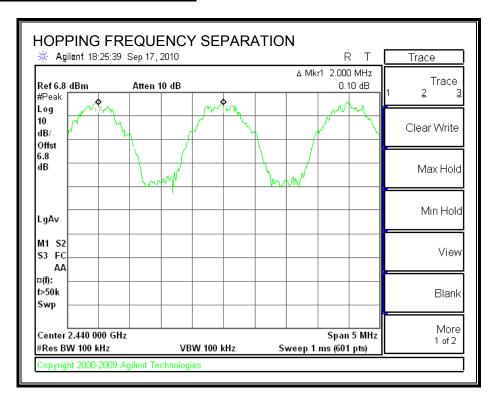
7.1.3. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

IC: 4324A-BRCM1043

DATE: SEPTEMBER 30, 2010

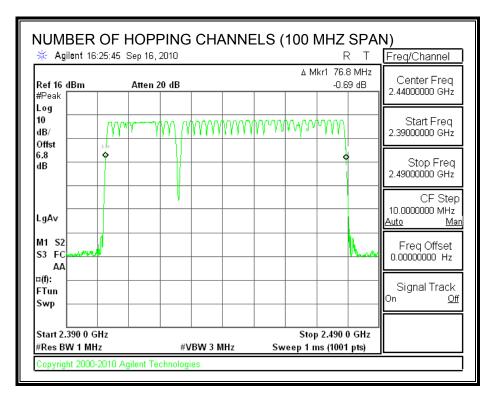
7.1.4. NUMBER OF HOPPING CHANNELS

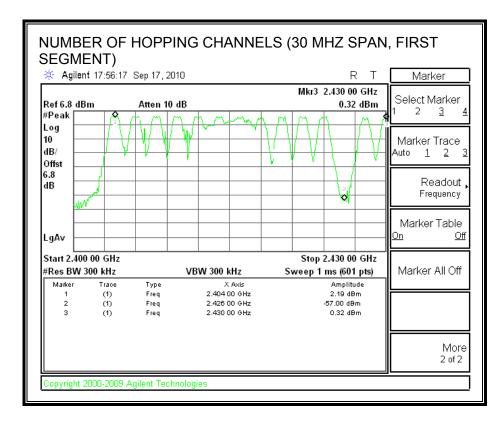
LIMIT

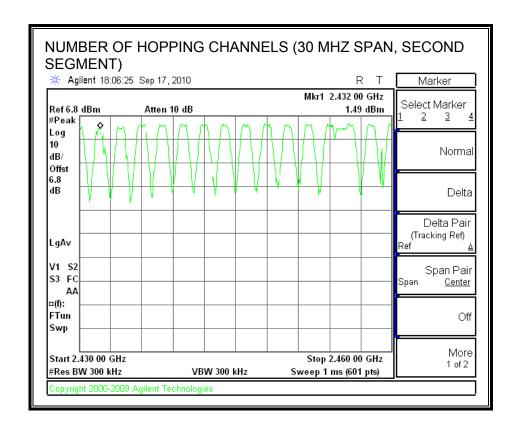
FCC §15.247 (a) (1) (iii)

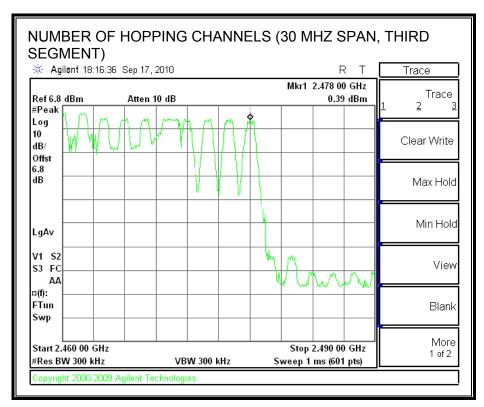
IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS


Please see advertising channels for 2402, 2428, and 2480MHz explanation in separated document.

NUMBER OF HOPPING CHANNELS

7.1.5. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

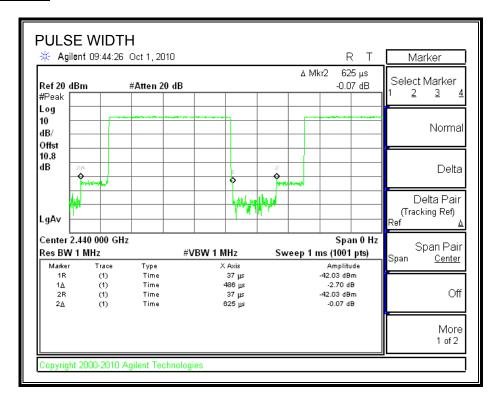
IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

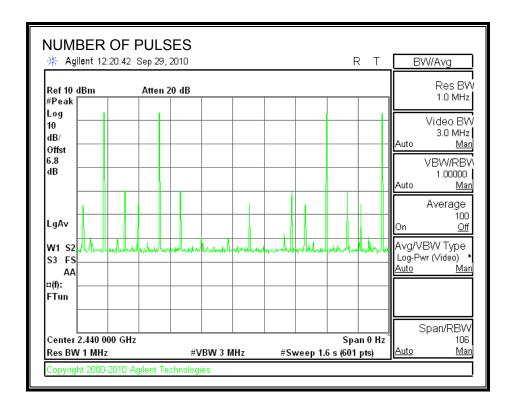
DATE: SEPTEMBER 30, 2010

IC: 4324A-BRCM1043

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 1.60 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 1.60 second period (40 channels * 0.4 s) is equal to 10 * (# of pulses in 1.60 s) * pulse width.


RESULTS

Pulse Width (msec)	Number of Pulses in 1.60 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
0.486	4	0.019	0.4	0.381

PULSE WIDTH

NUMBER OF PULSES IN 1.60 SECOND OBSERVATION PERIOD

Page 26 of 58

7.1.6. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

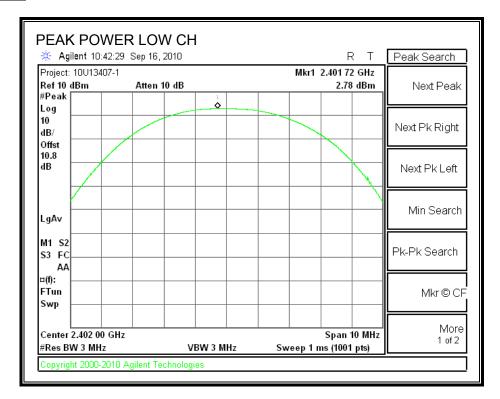
The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

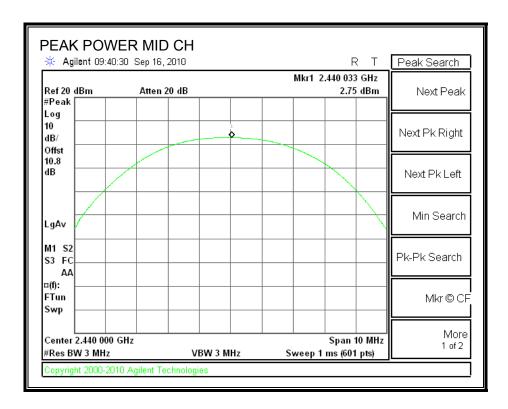
Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

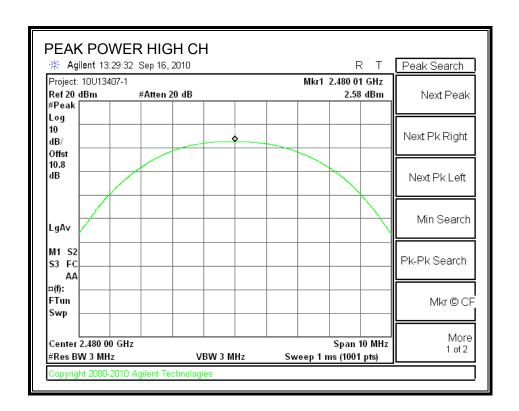
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS


LE MODE


Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	2.78	30	-27.22
Middle	2440	2.75	30	-27.25
High	2480	2.58	30	-27.42


DATE: SEPTEMBER 30, 2010

IC: 4324A-BRCM1043

LE MODE

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

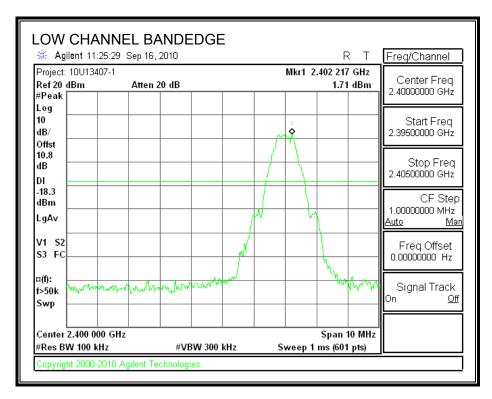
Limit = -20 dBc

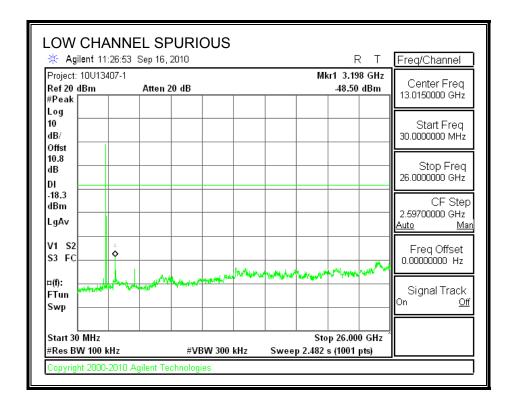
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

DATE: SEPTEMBER 30, 2010

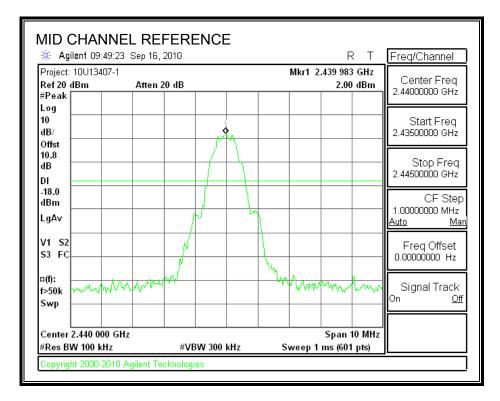
IC: 4324A-BRCM1043

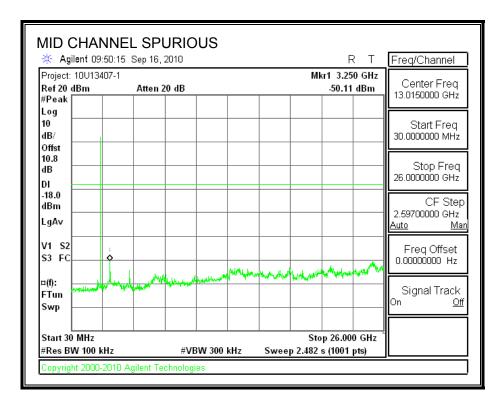

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

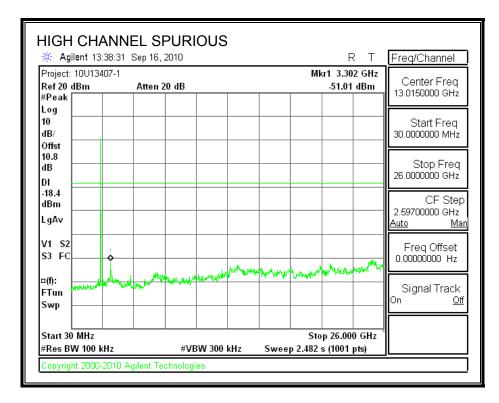
RESULTS

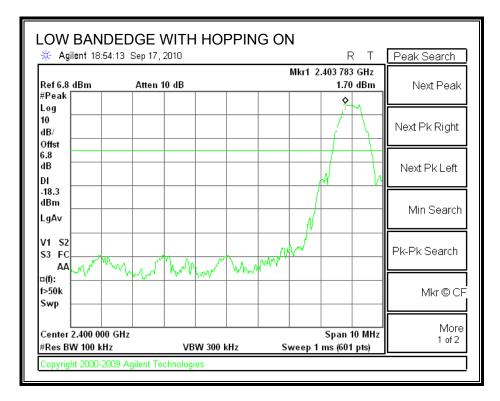
LE MODE

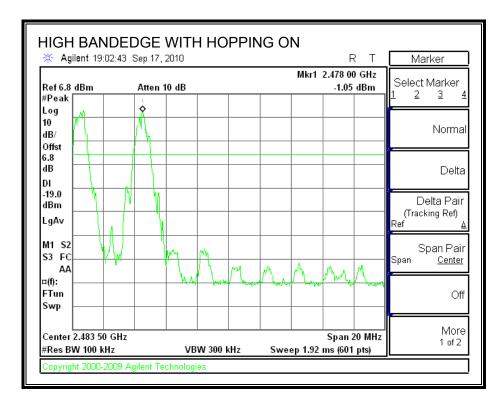

SPURIOUS EMISSIONS, LOW CHANNEL

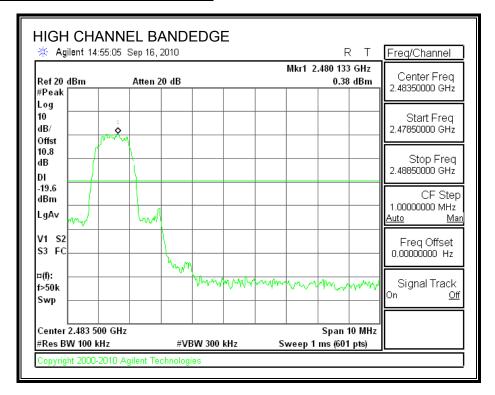


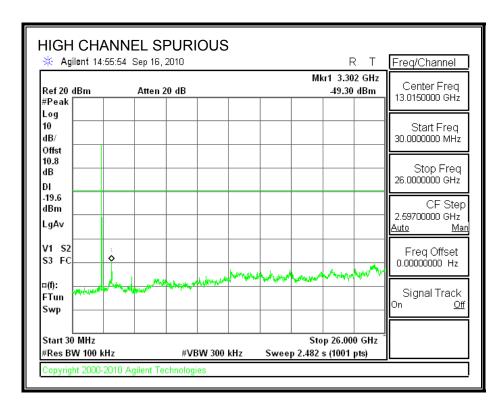
Page 31 of 58


SPURIOUS EMISSIONS, MID CHANNEL




SPURIOUS EMISSIONS, HIGH CHANNEL


SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON



8PSK MODE

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

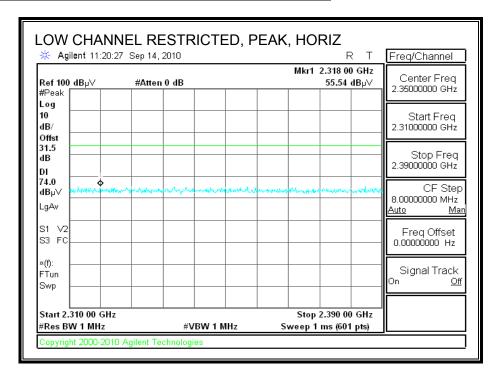
IC RSS-GEN Clause 6 (Receiver)

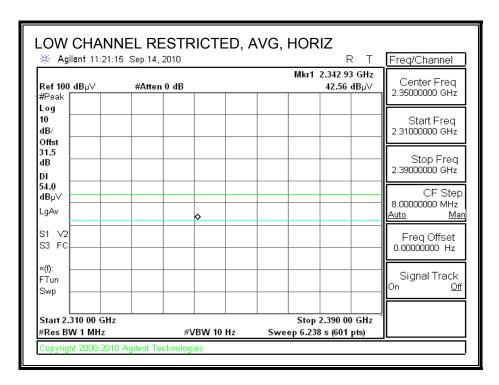
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

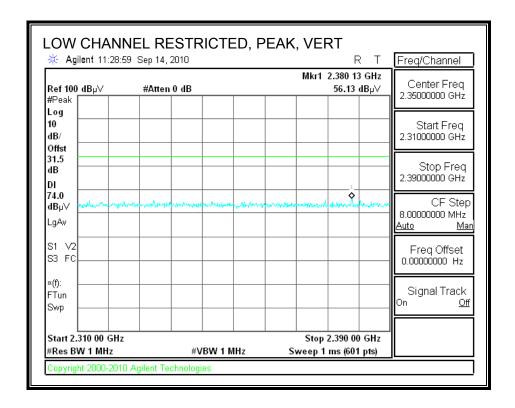
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

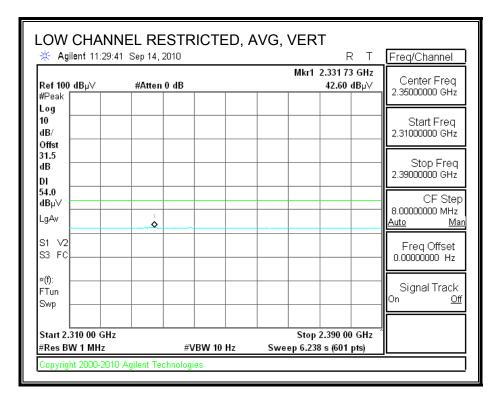
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

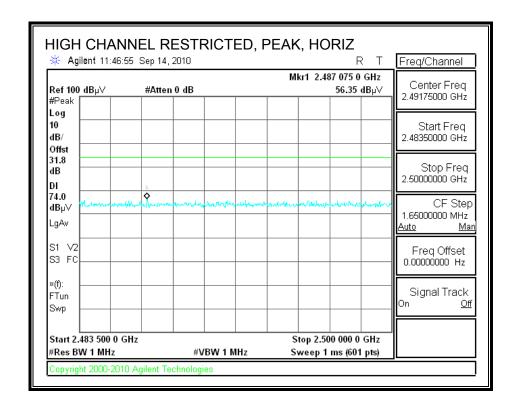

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

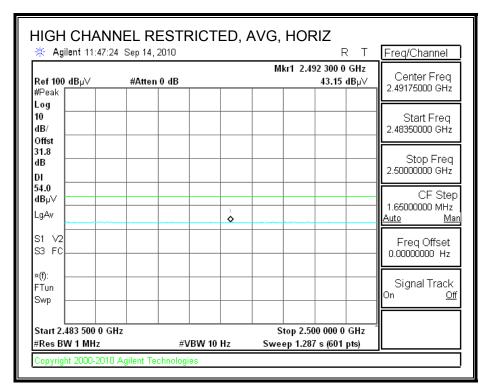

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

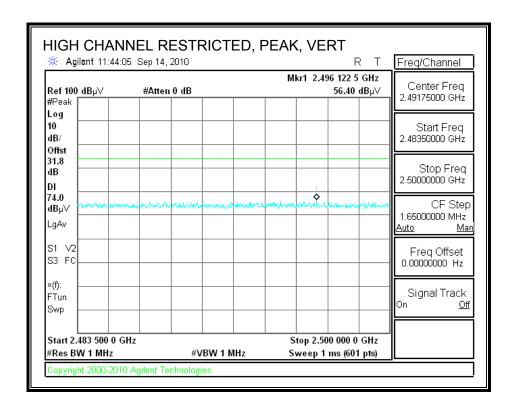
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

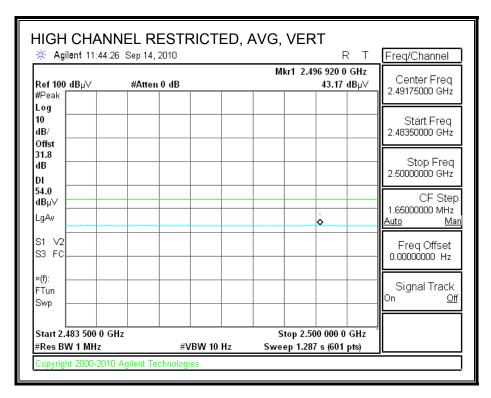

8.1.1. LE MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

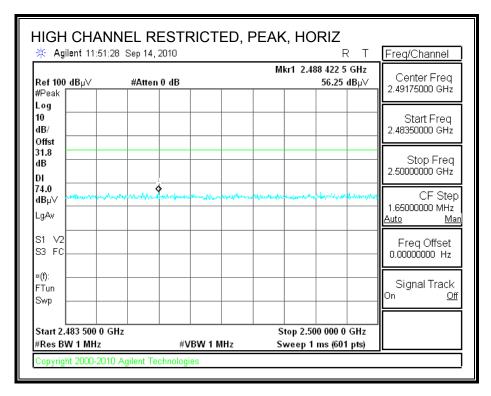
Compliance Certification Services, Fremont 3m Chamber

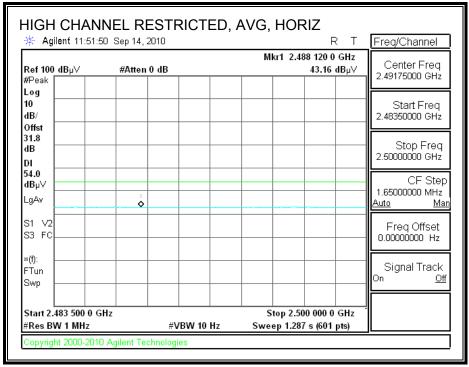
Test Engr: Vien Tran 09/14/10 Date: Project #: 10U13407 Broadcom Company:

EUT Description: Bluetooth Transceiver Module 2.1+EDR EUT M/N: BCM92070MD_REF (Added Low Energy Mode)

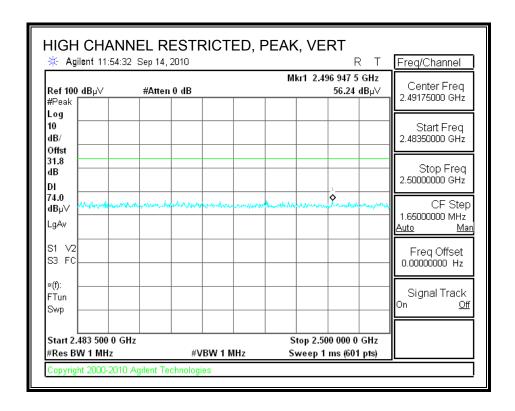
Test Target: FCC B Mode Oper: TX LE Mode

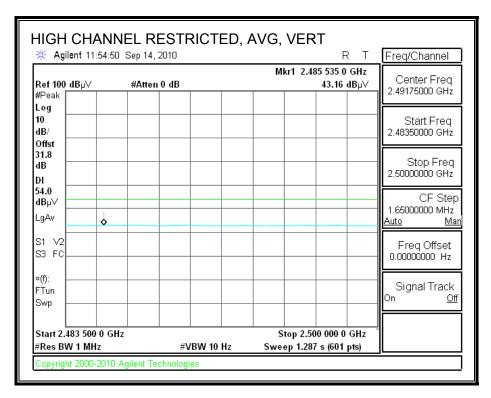
> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr		Corr.			Ant Pol	Det.	Notes
GHz (m) dBuV dB/m	dВ	dВ	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP				
LOW CH	ANNEL,	2402MH	Z										
4.804	3.0	38.0	32.7	5.8	-34.8	0.0	0.0	41.6	74.0	-32.4	H	P	
4.804	3.0	27.5	32.7	5.8	-34.8	0.0	0.0	31.1	54.0	-22.9	H	A	
4.804	3.0	36.8	32.7	5.8	-34.8	0.0	0.0	40.4	74.0	-33.6	V	P	
4.804	3.0	25.4	32.7	5.8	-34.8	0.0	0.0	29.0	54.0	-25.0	V	A	
MID CHA	NNEL, 2	440MHz											
4.880	3.0	38.7	32.7	5.8	-34.8	0.0	0.0	42.4	74.0	-31.6	H	P	
4.880	3.0	26.9	32.7	5.8	-34.8	0.0	0.0	30.6	54.0	-23.4	H	A	
7.320	3.0	35.1	35.5	7.3	-34.1	0.0	0.0	43.7	74.0	-30.3	H	P	
7.320	3.0	22.8	35.5	7.3	-34.1	0.0	0.0	31.5	54.0	-22.5	Н	A	
4.880	3.0	37.4	32.7	5.8	-34.8	0.0	0.0	41.2	74.0	-32.8	V	P	
4.880	3.0	25.6	32.7	5.8	-34.8	0.0	0.0	29.3	54.0	-24.7	V	A	
7.320	3.0	35.2	35.5	7.3	-34.1	0.0	0.0	43.9	74.0	-30.1	V	P	
7.320	3.0	23.1	35.5	7.3	-34.1	0.0	0.0	31.7	54.0	-22.3	V	A	
нісн сн	LANNEL,	2480MH	Z										
4.960	3.0	36.9	32.8	5.9	-34.8	0.0	0.0	40.8	74.0	-33.2	H	P	
4.960	3.0	25.7	32.8	5.9	-34.8	0.0	0.0	29.5	54.0	-24.5	H	A	
7.440	3.0	34.9	35.6	7.3	-34.1	0.0	0.0	43.8	74.0	-30.2	H	P	
7.440	3.0	23.2	35.6	7.3	-34.1	0.0	0.0	32.1	54.0	-21.9	H	A	
4.960	3.0	38.5	32.8	5.9	-34.8	0.0	0.0	42.4	74.0	-31.6	V	P	
4.960	3.0	28.1	32.8	5.9	-34.8	0.0	0.0	32.0	54.0	-22.0	V	A	
7.440	3.0	34.8	35.6	7.3	-34.1	0.0	0.0	43.7	74.0	-30.3	V	P	
7.440	3.0	22.7	35.6	7.3	-34.1	0.0	0.0	31.6	54.0	-22.4	V	A	


Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.


8.1.2. 8PSK MODULATION


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

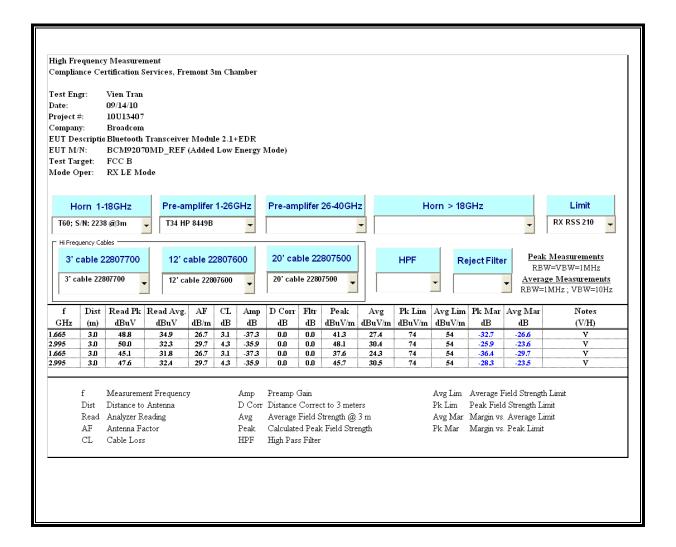
High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Test Engr: Vien Tran 09/14/10 Date: Project #: 10U13407 Broadcom Company:

EUT Description: Bluetooth Transceiver Module 2.1+EDR EUT M/N: BCM92070MD_REF (Added Low Energy Mode)

Test Target: FCC B Mode Oper: TX 8PSK


> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dB	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
LOW CH	IANNEL,	2402MH	z										
4.804	3.0	37.1	32.7	5.8	-34.8	0.0	0.0	40.7	74.0	-33.3	H	P	
4.804	3.0	24.2	32.7	5.8	-34.8	0.0	0.0	27.8	54.0	-26.2	н	A	
4.804	3.0	36.6	32.7	5.8	-34.8	0.0	0.0	40.2	74.0	-33.8	V	P	
4.804	3.0	24.2	32.7	5.8	-34.8	0.0	0.0	27.8	54.0	-26.2	V	A	
MID CHA	NNEL, 2	441MHz											
4.882	3.0	37.4	32.7	5.8	-34.8	0.0	0.0	41.1	74.0	-32.9	H	P	
4.882	3.0	23.9	32.7	5.8	-34.8	0.0	0.0	27.6	54.0	-26.4	H	A	
4.882	3.0	35.8	32.7	5.8	-34.8	0.0	0.0	39.5	74.0	-34.5	V	P	
4.882	3.0	23.9	32.7	5.8	-34.8	0.0	0.0	27.6	54.0	-26.4	V	A	
нісн сі	IANNEL,	2480MH	æ										
4.960	3.0	37.3	32.8	5.9	-34.8	0.0	0.0	41.2	74.0	-32.8	H	P	
4.960	3.0	24.0	32.8	5.9	-34.8	0.0	0.0	27.9	54.0	-26.1	H	A	
4.960	3.0	37.2	32.8	5.9	-34.8	0.0	0.0	41.0	74.0	-33.0	V	P	
4.960	3.0	24.0	32.8	5.9	-34.8	0.0	0.0	27.9	54.0	-26.1	v	A	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2. RECEIVER ABOVE 1 GHz

8.3. WORST-CASE BELOW 1 GHz

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen
Date: 09/21/10
Project #: 10U13407
Company: BroadCom
Test Target: FCC Class B
Mode Oper: Tx worst case

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Pad	Corr.	Limit	Margin	Ant Pol	Det.	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dB	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
VERTICAL								!					
54.841	3.0	52.2	8.1	0.7	28.4	-10.5	0.0	22.1	30.0	-7.9	V	QP	
88.682	3.0	52.1	7.5	0.8	28.3	-10.5	0.0	21.7	30.0	-8.3	V	P	
159.245	3.0	46.7	11.7	1.1	28.3	-10.5	0.0	20.9	30.0	-9.1	V	P	
905.436	3.0	36.3	21.9	2.8	27.8	-10.5	0.0	22.8	37.0	-14.2	V	P	
HORIZON	AL												
130.564	3.0	43.5	13.5	1.1	28.3	-10.5	0.0	19.4	30.0	-10.6	H	P	
156.485	3.0	48.3	12.0	1.1	28.3	-10.5	0.0	22.7	30.0	-7.3	H	QP	
193.807	3.0	47.0	11.6	1.2	28.2	-10.5	0.0	21.1	30.0	-8.9	H	P	
299.771	3.0	41.4	13.4	1.5	28.1	-10.5	0.0	17.7	37.0	-19.3	H	P	
597.383	3.0	37.4	18.4	2.2	27.5	-10.5	0.0	20.0	37.0	-17.0	H	P	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

DATE: SEPTEMBER 30, 2010 IC: 4324A-BRCM1043

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

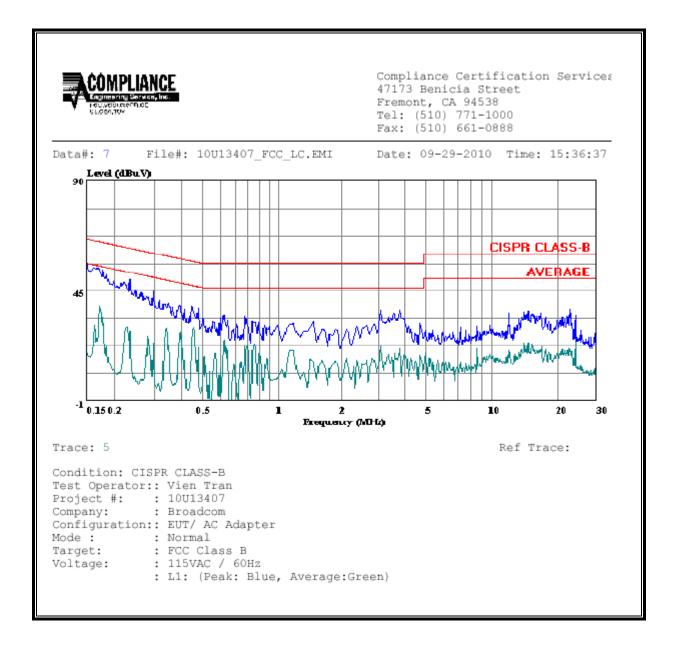
Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

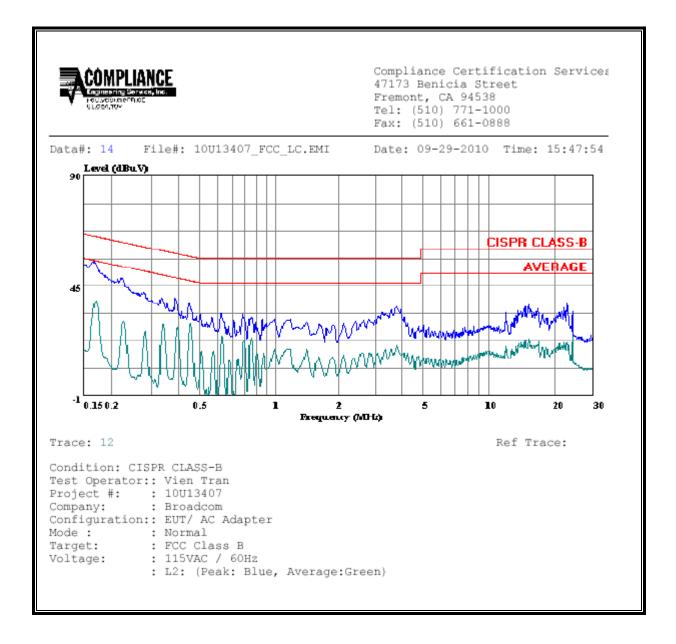
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.		Reading		Closs	Limit	FCC_B	Marg	Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2		
1.69	53.95		38.28	0.00	56.00	46.00	-2.05	-7.72	L1		
3.17	36.40		21.66	0.00	56.00	46.00	-19.60	-24.34	L1		
24.01	34.37		23.37	0.00	60.00	50.00	-25.63	-26.63	L1		
1.69	54.37		37.85	0.00	56.00	46.00	-1.63	-8.15	L2		
3.88	35.46		19.98	0.00	56.00	46.00	-20.54	-26.02	L2		
24.01	37.57		24.35	0.00	60.00	50.00	-22.43	-25.65	L2		
6 Worst l	Data										

LINE 1 RESULTS

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field Magnetic field strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300	6 6 6 6
,	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can part exercise control over their exposure.

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/f		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm².
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	LE	0.20	2.78	1.87	0.01	0.001

DATE: SEPTEMBER 30, 2010

IC: 4324A-BRCM1043