

EMC Test Report Application for Grant of Equipment Authorization Class II Permissive Change/Reassessment Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E

Model: BCM943224HMS

IC CERTIFICATION #:	4324A-BRCM1041
FCC ID:	QDS-BRCM1041

APPLICANT: Broadcom Corporation 190 Mathilda Ave Sunnyvale, CA 94086

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4

REPORT DATE: December 3, 2010

FINAL TEST DATES:

November 23 and 24, 2010

AUTHORIZED SIGNATORY:

Mark E. Hill

Staff Engineer Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	12/3/2010	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS SUMMARY	6
UNII / LELAN DEVICES	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	11
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	11
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	12
FILTERS/ATTENUATORS	
ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	13
INSTRUMENT CALIBRATION	13
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	17
BANDWIDTH MEASUREMENTS	17
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	18
SPURIOUS EMISSIONS LIMITS –UNITAND LELAN DEVICES	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	2

SCOPE

An electromagnetic emissions test has been performed on the Broadcom Corporation model BCM943224HMS, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Broadcom Corporation model BCM943224HMS complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Broadcom Corporation model BCM943224HMS and therefore apply only to the tested sample. The sample was selected and prepared by Pin Wen of Broadcom Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

As the permissive change involves a new antenna with a higher gain in the 5470-5725 MHz band, only those results applicable are presented below.

UNII / LELAN DEVICES

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	Unchanged from origina	al filing.	N/A
15.407(a) (2)	A9.2(2)	Output Power	Prior to testing, output power was confirmed to be within 0.5dB of original filing. Maximum EIRP does not exceed 1W requirement.		N/A
15.407(a) (2))		Power Spectral Density	Unchanged from origina	al filing	N/A
	A9.2(2) / A9.5 (2)	Power Spectral Density	Unchanged from origina	ar ming.	IN/A
KDB 443999	A9	Non-operation in 5600 – 5650 MHz sub band	Unchanged from the ori	iginal filing.	N/A
Requirements	for all U-NII/L	ELAN bands			-
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	A9.5a	Modulation	Unchanged from original filing.		N/A
15.407(b) (5) / 15.209	A9.3	Spurious Emissions	48.3dBµV/m @ 5460.1MHz	Refer to page 19	Complies (- 5.7dB)
15.407(a)(6)	-	Peak Excursion Ratio	Unchanged from origin	al filing.	N/A
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each hand on the top bottom		N/A
15			Measurements on three channels in each band	and center channels in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Unchanged from original filing.		N/A
15.407 (g)	A9.5 (5)	Frequency Stability	Unchanged from origin		N/A
15.407 (h1)	A9.4	Transmit Power Control	The system is compliant with 802.11h, which allows for a reduction of up to 6dB depending on the link conditions.		Pass
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	As the device does not have radar detection, no testing was performed. Original results are still applicable.		N/A
	A9.9g	User Manual information	Unchanged from origin	al filing.	N/A

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unchanged from origin	al filing.	N/A
15.207	RSS GEN Table 2	AC Conducted Emissions	Unchanged from origin	al filing.	N/A
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	41.0dBµV/m @ 2496.1MHz	Refer to page 18	Complies (-13.0dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11 and RSS 102 declaration	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Unchanged from original filing.		N/A
-	RSP 100 RSS GEN 7.1.5	User Manual	Unchanged from original filing.		N/A
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	Unchanged from original filing.		N/A

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Broadcom Corporation model BCM943224HMS is a WLAN card designed to be installed in laptop computers. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3 VDC.

The sample was received on November 23, 2010 and tested on November 23 and 24, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Broadcom	BCM943224H	802.11ag/Draft		QDS-
	MS	802.11n WLAN		BRCM1041
		PCI-E Mini		4324A-
		Card		BRCM1041

ANTENNA SYSTEM

The EUT antenna connects to the EUT via a U.FL antenna connector, thereby meeting the requirements of FCC 15.203.

The antenna of the original filing had the following gain: 3.9dBi/2.4GHz, 5.6dBi/5.2GHz, 4.2dBi/5.5GHz and 5.8dBi/5.7GHz.

The new antenna has the following gains: 3.8dBi/2.4GHz, 5.6dBi/5.2GHz, 5.7dBi/5.5GHz and 5.7dBi/5.7GHz.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

During testing, the EUT was mounted on a test fixture located outside of the host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Lenovo	4446-38U	Laptop	R8-CAC56 09/08	

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)		
Folt	То	Description	Shielded or Unshielded	Length(m)
Laptop DC Power	AC/DC Adapter	Multiconductor	Shielded	1.5m
AC/DC Adapter	AC Mains	2Wire	Unshielded	1.0

EUT OPERATION

During testing, the EUT was configured to transmit continuously at the desired channel. For 802.11a, testing was performed at 6MB/s, and MCS0 for n20 and n40 operation, as these were the worse case from the original filing.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 4	211948	2845B-4	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

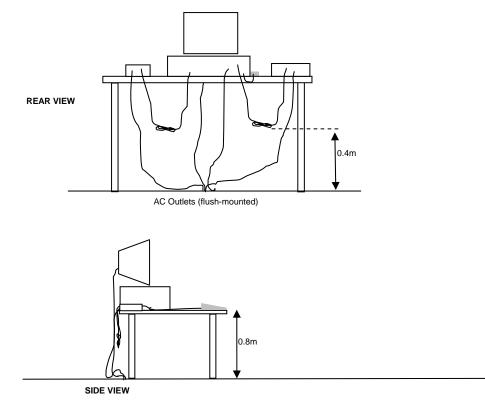
INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

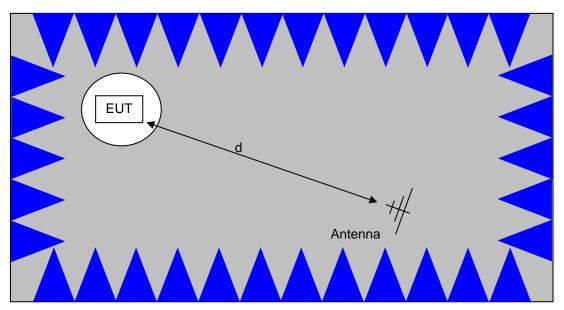
TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

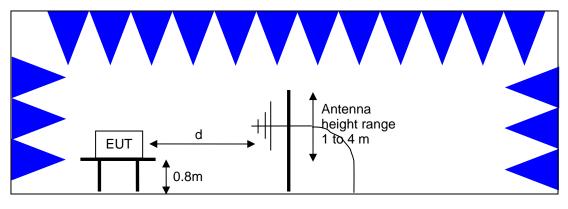

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

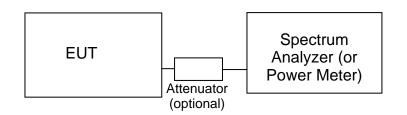
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SPURIOUS EMISSIONS LIMITS –UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (88.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$\begin{array}{rcl} R_c &=& R_r \ + \ F_d \\ and \\ M &=& R_c \ - \ L_S \\ where: \\ R_r &=& Receiver \ Reading \ in \ dBuV/m \\ F_d &=& Distance \ Factor \ in \ dB \\ R_c &=& Corrected \ Reading \ in \ dBuV/m \end{array}$$

- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =
$$1000000 \sqrt{30}$$
 P microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data
--

TX Radiated Spurious	s. 23-Nov-10			
Manufacturer	Description	Model	Asset #	Cal Due
Trend	Isolation Transformer	N-59MG	197	N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	9/3/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	9/3/2011
Radiated Emissions,	1 - 40 GHz, 24-Nov-10			
<u>Manufacturer</u>	Description	Model	<u>Asset #</u>	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	9/3/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	5/4/2011
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	9/3/2011
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/5/2011
Radio Antenna Port,				
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011
	1000 - 18,000 MHz, 24-Nov-10			
<u>Manufacturer</u>	Description	Model	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	6/25/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011

Appendix B Test Data

T81298 23 Pages

6 Ell	iott

EMC Test Data

P11 40-44-	2 company		
Client:	Broadcom	Job Number:	J81286
Model:	BCM943224HMS	T-Log Number:	T81298
		Account Manager:	Eriksen / Washington
Contact:	Pin Wen		
Emissions Standard(s):	FCC 15E, RSS 210, LP0002	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Broadcom

Model

BCM943224HMS

Date of Last Test: 11/30/2010

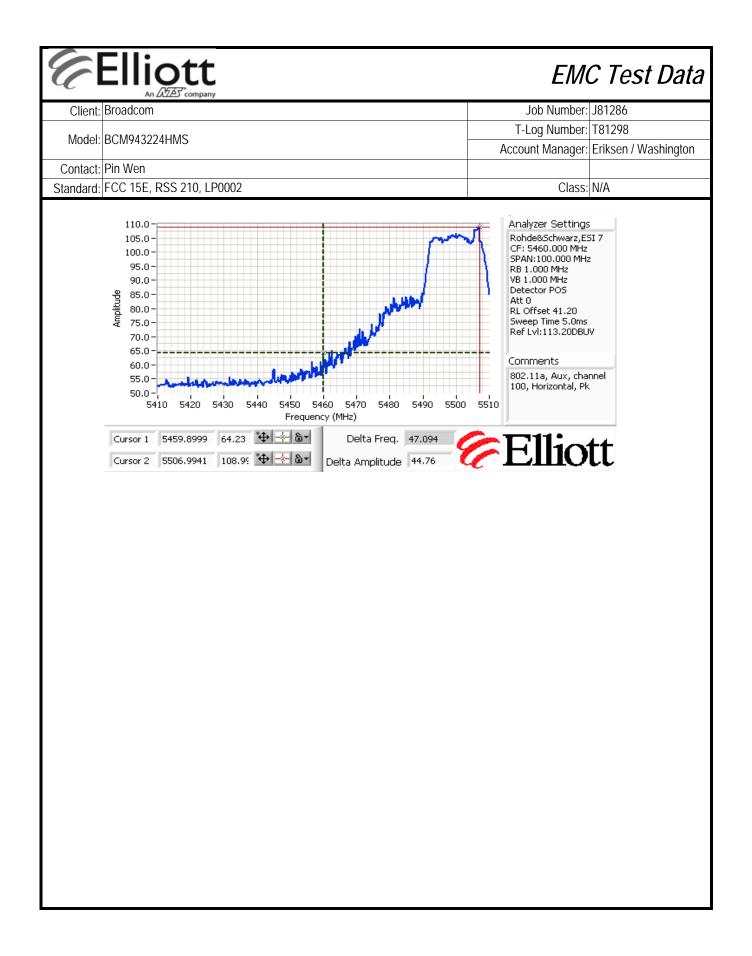
6 18 n / Washington									
n / Washington									
Standard: FCC 15E, RSS 210, LP0002 Class: Radiated Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)									
ct to the									
e measurement e measurement									
rgin									
2496.1MHz (-)dB)									

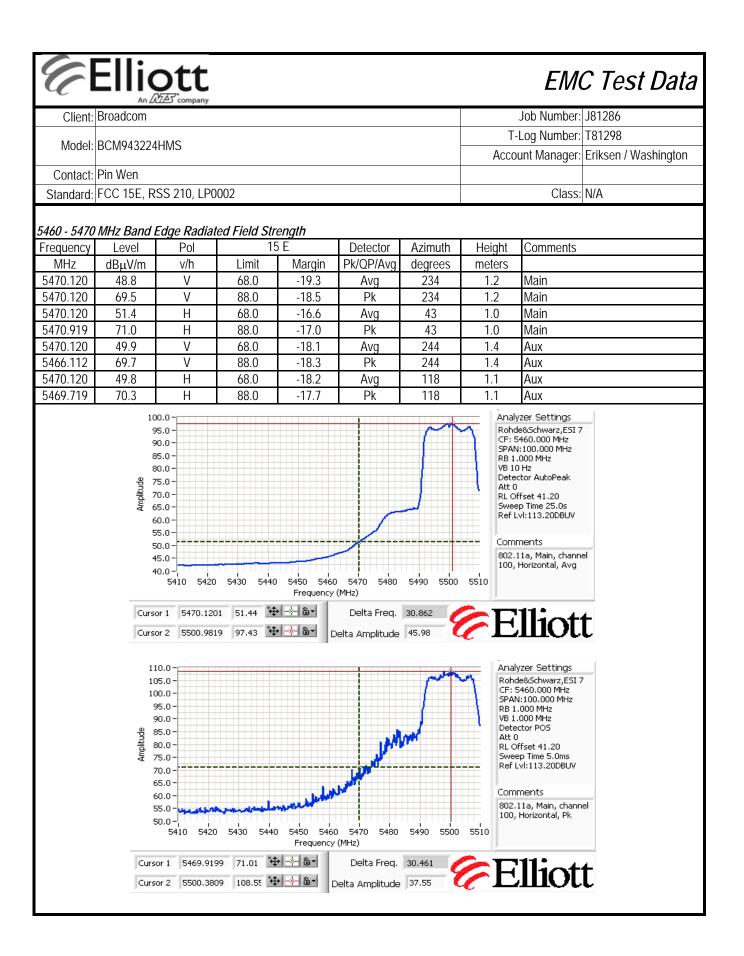
Client:	Broadcom	,				Job Number:	J81286		
Madal				Ţ.	Log Number:	T81298			
woder:	BCM943224	HIVIS			Ассо	unt Manager:	Eriksen / Washingto		
	Pin Wen								
Standard:	FCC 15E, RS	SS 210, LI	P0002					Class:	-
un #1: Ra	adiated Emis	sions, 100	00 - 18000 M	Hz (Receive	e mod e, 5580	MHz, main+	⊦aux)		
	Frequency Range Test Distance Lim				Limit D	istance	Extrapolat	ion Factor	
	1	000-1000	0		3		}		.0
	1(000-1800	0		1	3	3	-9	9.5
Run #	1:1000 - 180	00 MHz							
	0.0								
8	0.0-								
7	0.0-								
Ê.									
1 2 6	0.0-								
5	0.0-			•					
) jitude (•	1		•	بر ٹر ہے	ann	. 1
jtud	0.0- 0.0-	/นี้เป็ เ	M A.L.	دسيا ال	all an and a state	م بين بين من المان ا منابع المان الم	, where	m	mul
-		M	MahAda	plander	1.1.1% 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	م الم الم الم الم الم الم الم الم الم ال	ىرىگىنىر	and the second	mul
3	0.0- VIWK 0.0-	Mh	MuhAu	philipping	ut for a start by a for the	And the second	مريكرسو ا	4 /1+1 	mu
3	0.0- 0.0- 0.0-	Mh	MuhAda	philippine .	afferen after and any the	net all the second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· 10000	
3	0.0- VIWK 0.0-	M	Mihhia	philippine.	Frequency	инг)		10000	18000
2	0.0- 0.0- 0.0- 1000	M.	Muhhu	philater our	Frequency	и (MHz)		10000	18000
3 2 aximized	0.0 - 0.0 - 1000 Radiated Em			h.			 Height		18000
3 2 aximized	0.0- 0.0- 0.0- 1000	issions Pol v/h	RSS GEN	hold a long model of the second secon	Frequency Detector	(MHz)	Height meters	10000	18000
aximized requency MHz	0.0 - 0.0 - 1000 Radiated Em	Pol		1	Detector	Azimuth	u u		
3 2 aximized requency MHz 496.100 492.700	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5	Pol v/h H H	Limit 54.0 74.0	Margin -13.0 -15.5	Detector Pk/QP/Avg AVG PK	Azimuth degrees 267 267	meters 1.3 1.3	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5 39.1	Pol v/h H H V	Limit 54.0 74.0 54.0	Margin -13.0 -15.5 -14.9	Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 267 267 258	meters 1.3 1.3 1.6	Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 - 0.0 - 1000 Radiated Em Level dBμV/m 41.0 58.5 39.1 53.8	Pol V/h H H V V	Limit 54.0 74.0 54.0 74.0	Margin -13.0 -15.5 -14.9 -20.2	Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 267 267 258 258	meters 1.3 1.3 1.6 1.6	Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 - 0.0 - 1000 Radiated Em Level dBμV/m 41.0 58.5 39.1 53.8 36.9	Pol V/h H V V V V	Limit 54.0 74.0 54.0 74.0 54.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1	Detector Pk/QP/Avg AVG PK AVG PK AVG	Azimuth degrees 267 267 258 258 258 24	meters 1.3 1.3 1.6 1.6 1.6 1.0	Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3	0.0 - 0.0 - 1000 Radiated Em Level dBμV/m 41.0 58.5 39.1 53.8 36.9 49.8	Pol V/h H V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2	Detector Pk/QP/Avg AVG PK AVG PK AVG PK	Azimuth degrees 267 267 258 258 258 24 24	meters 1.3 1.3 1.6 1.6 1.0 1.0	Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
3 2 2 2 3 2 2 3 2 2 3 2 3 2 2 3 2 3 2 3	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0	Pol v/h H V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 267 267 258 258 258 24 24 24 24 276	meters 1.3 1.6 1.6 1.0 1.0 1.0	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
3 2 2 2 2 3 2 2 3 2 2 3 2 3 2 3 3 3 3 3	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0 40.2	Pol v/h H V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0 -33.8	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 267 258 258 258 24 24 24 276 276	meters 1.3 1.6 1.6 1.0 1.0 1.0 1.0	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
3 2 2 2 2 3 2 2 3 2 2 3 2 3 2 3 3 2 2 3 2 3 3 3 2 3 3 3 3 2 3	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0 40.2 25.2	Pol v/h H V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0 -33.8 -28.8	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG	Azimuth degrees 267 258 258 258 24 24 24 276 276 276 261	meters 1.3 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.10	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
3 2 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 3 2 3	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0 40.2 25.2 36.2	Pol v/h H V V V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0 -33.8 -28.8 -37.8	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 267 258 258 24 24 24 276 276 276 261 261	meters 1.3 1.6 1.6 1.0 1.0 1.0 1.0 1.1 1.1	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
3 2 2 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3	0.0 - 0.0 - 1000 Radiated Em Level dBμV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0 40.2 25.2 36.2 26.2	Pol v/h H V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0 -33.8 -28.8 -37.8 -27.8	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	Azimuth degrees 267 258 258 24 24 24 24 276 276 261 261 351	meters 1.3 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.10	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
3 2 2 2 2 3 3 2 2 3 2 3 2 3 2 3 3 3 2 3	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0 40.2 25.2 36.2 26.2 37.7	Pol v/h H V V V V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0 -33.8 -28.8 -37.8	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 267 258 258 24 24 24 276 276 276 261 261	meters 1.3 1.6 1.6 1.0 1.0 1.0 1.0 1.1 1.1	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
3 2 2 2 3 2 3 2 2 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 5 9 6 0 9 8 9 0 9 8 9 0 9 8 9 0 0 0 9 8 9 0 0 9 8 9 0 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 0 0 9 8 9 8	0.0 - 0.0 - 1000 Radiated Em Level dBμV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0 40.2 25.2 36.2 26.2	Pol v/h H V V V V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0 -33.8 -28.8 -37.8 -27.8 -36.3	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 267 258 258 24 24 24 276 276 276 261 261 351 351	meters 1.3 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
aximized requency	0.0 - 0.0 - 1000 Radiated Em Level dBµV/m 41.0 58.5 39.1 53.8 36.9 49.8 29.0 40.2 25.2 36.2 26.2 37.7 31.8	Pol V/h H V V V V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -13.0 -15.5 -14.9 -20.2 -17.1 -24.2 -25.0 -33.8 -28.8 -37.8 -27.8 -36.3 -22.2	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	Azimuth degrees 267 258 258 258 24 24 24 276 276 261 261 351 351 351 221	meters 1.3 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk

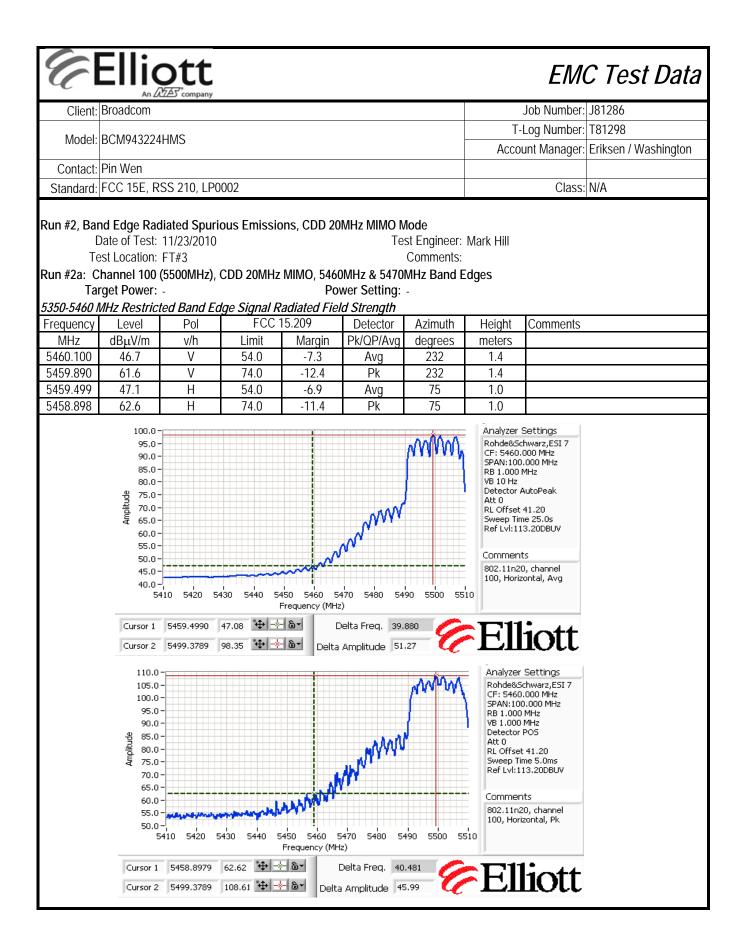
Client: Broadcom Job Number: J81286 T-Log Number: T81298 Model: BCM943224HMS Account Manager: Eriksen / Washington Contact: Pin Wen Standard: FCC 15E, RSS 210, LP0002 Class: N/A RSS 210 and FCC 15.407 (UNII) Band Edge Field Strength Test Specific Details The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Config. Used: -Date of Test: Refer to individual run Test Engineer: Refer to individual run Config Change: -Host Unit Voltage 120V/60Hz Test Location: Refer to individual run General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. Any remote support equipment was located approximately 30 meters from the EUT with all I/O connections running beneath the groundplane. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 15 - 25 °C Rel. Humidity: 35 - 65 % Summary of Results Chain/ Power Mode Test Performed Channel Limit Result / Margin Antenna Setting Restricted Band Edge at 45.6dBµV/m @ 15.209 5460.1MHz (-8.4dB) 802.11a #100 5460 MHz Main (SISO) 5500MHz Band Edge 5460 - 5470 51.4dBµV/m @ 15E 5470.1MHz (-16.6dB) MHz Restricted Band Edge at 47.1dBµV/m@ CDD 15.209 _ #100 5460 MHz 5459.5MHz (-6.9dB) 20MHz Main + Aux 5500MHz Band Edge 5460 - 5470 55.6dBµV/m @ (MIMO) 15E MHz 5469.7MHz (-12.4dB) Restricted Band Edge at 48.3dBµV/m @ CDD 15.209 5460 MHz 5460.1MHz (-5.7dB) #102 40MHz Main + Aux Band Edge 5460 - 5470 5510MHz 56.5dBµV/m @ (MIMO) 15E 5470.12MHz (-11.5dB)

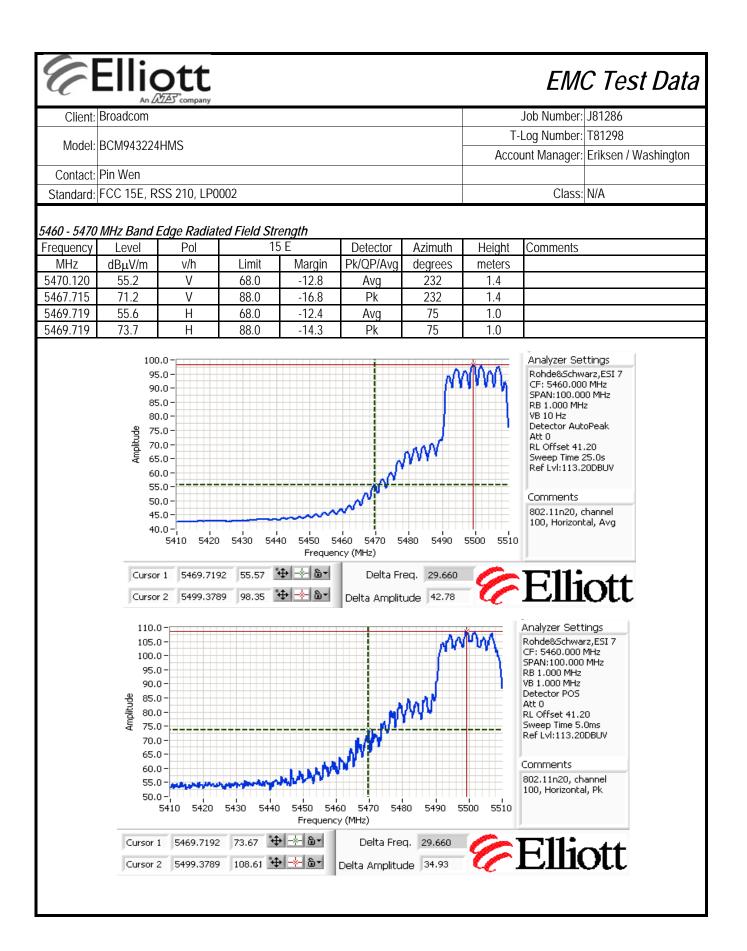
MHz

Run #

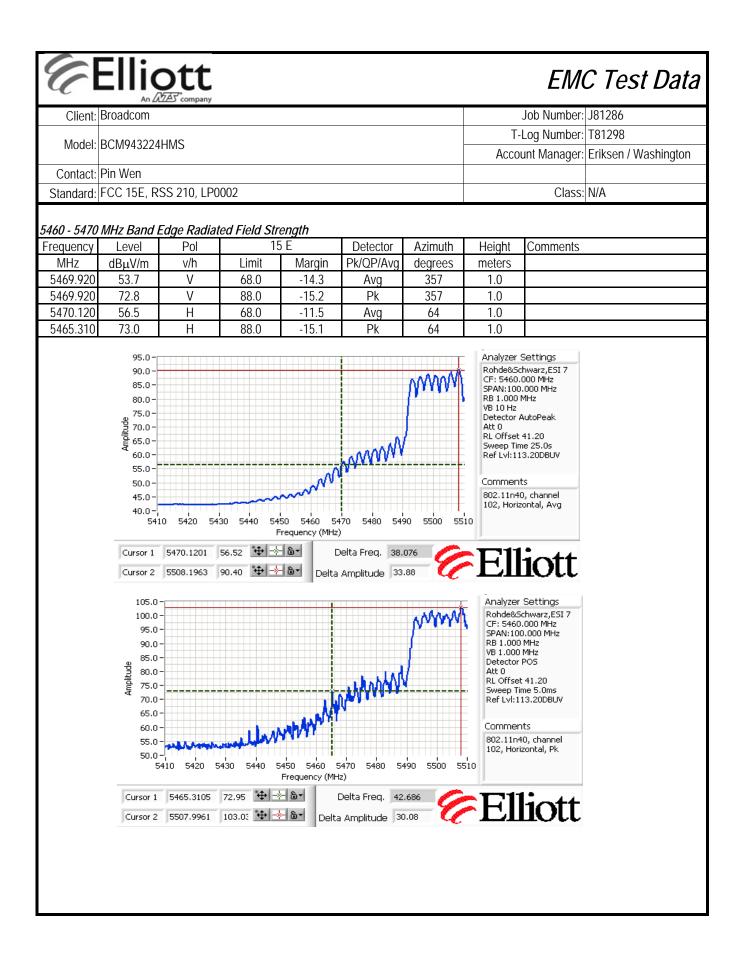

1


2


3


EMC Test Data

C		Dtt Mar [*] company						EM	C Test Data
Client:	Broadcom							Job Number:	J81286
	DOM 0 4000 4				T-	Log Number:	T81298		
Model:	BCM943224	HMS							Eriksen / Washington
Contact:	Pin Wen								
Standard:	FCC 15E, R	SS 210, LP0	002					Class:	N/A
Modificati	ons Made	During T	esting						
No modificat	ions were ma	ade to the El	JT during tes	sting					
Deviation No deviation				f the standar	rd.				
E Te Run #1a: C Tar	Date of Test: Est Location: hannel 100 (get Power:	11/23/2010 FT#3 (5500MHz) , 8	802.11a SIS(D, 5460MHz Pov	& 5470MHz wer Setting:	•			
5350-5460 N	1				1				
Frequency	Level	Pol	FCC 1		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters	Main	
5460.100 5459.098	44.1 59.5	V	54.0 74.0	-10.0 -14.5	Avg Pk	234 234	1.2 1.2	Main	
5460.100	45.6	H	74.0 54.0	-14.5	Avg	43	1.2	Main	
5457.896	43.0 63.5	H	54.0 74.0	-0.4 -10.5	Pk	43	1.0	Main	
5460.100	44.4	V	54.0	-9.6	Avg	244	1.0	Aux	
5459.499	62.4	V	74.0	-11.6	Pk	244	1.4	Aux	
5460.100	44.4	H	54.0	-9.6	Avg	118	1.1	Aux	
5459.899	64.2	H	74.0	-9.8	Pk	118	1.1	Aux	
	100.0 - 95.0 - 90.0 - 85.0 - 80.0 - 75.0 - 75.0 - 60.0 - 55.0 - 55.0 - 55.0 - 40.0 - 5410		F	requency (MH	z)	5490 5500	Rohc CF: S SPAN RB 1 VB 11 Dete Att 0 RL 0 Swee Ref 1 Swee Ref 1 00, 5510	ctor AutoPeak ffset 41.20 p Time 25.0s vl:113.20DBUV ments 11a, Main, char Horizontal, Avg	nnel
_	<u> </u>				a Amplitude	51.80	7E		tt



Client:	Broadcom	Job Number:	J81286
Madel DC	BCM943224HMS	T-Log Number:	T81298
wouer.	DCW1943224FIWI3	Account Manager:	Eriksen / Washington
Contact:	Pin Wen		
Standard:	FCC 15E, RSS 210, LP0002	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

© Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 11/23/2010 Test Engineer: Rafael Varelas Test Location: FT Ch#3 Config. Used: -Config Change: -Host Unit Voltage 120V/60Hz

General Test Configuration

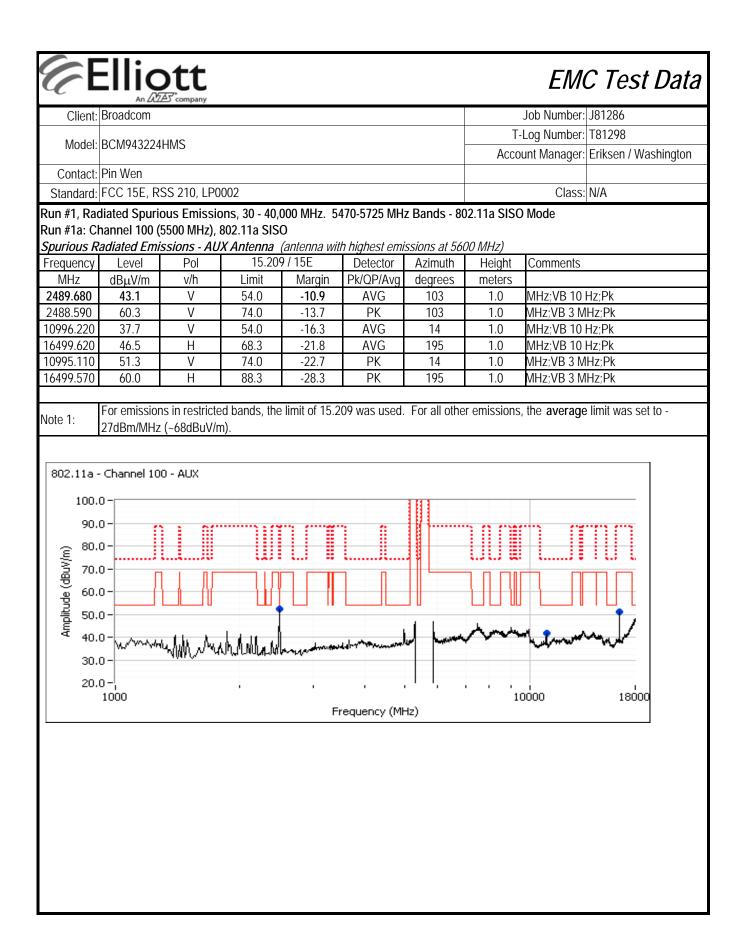
The EUT was located on the turntable for radiated spurious emissions testing. Any remote support equipment was located approximately 30 meters from the EUT with all I/O connections running beneath the groundplane. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

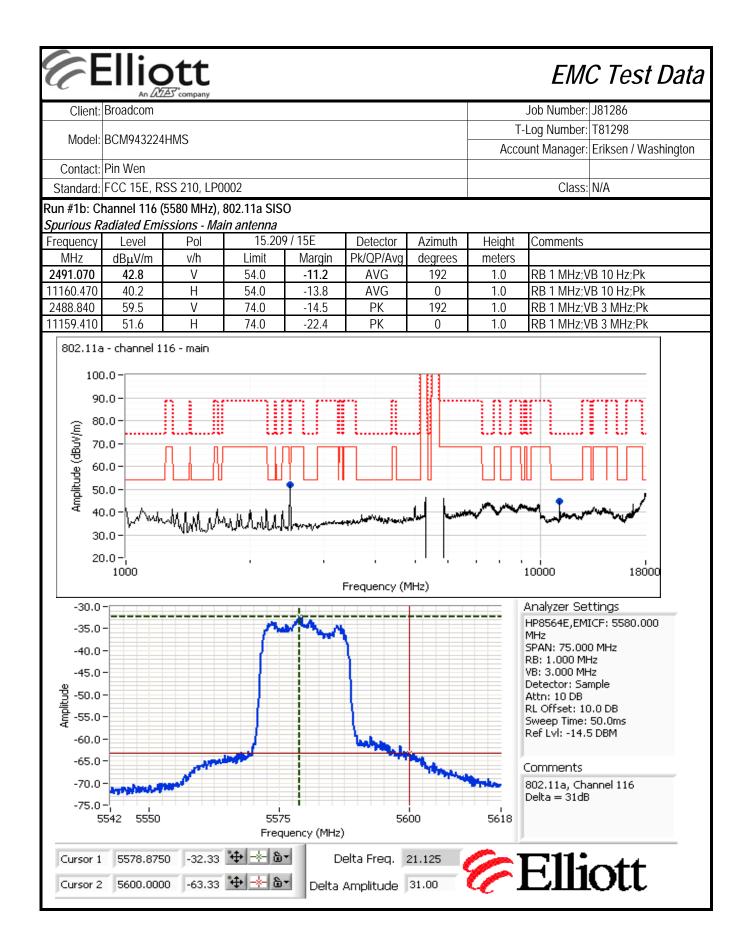
Ambient Conditions:

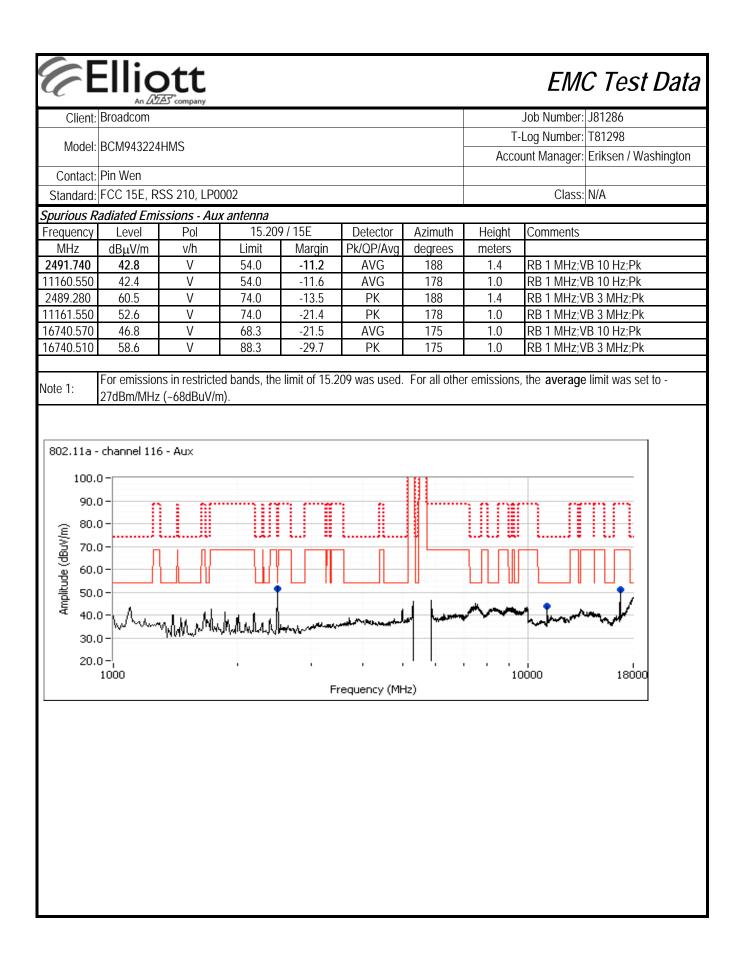
Temperature: Rel. Humidity:

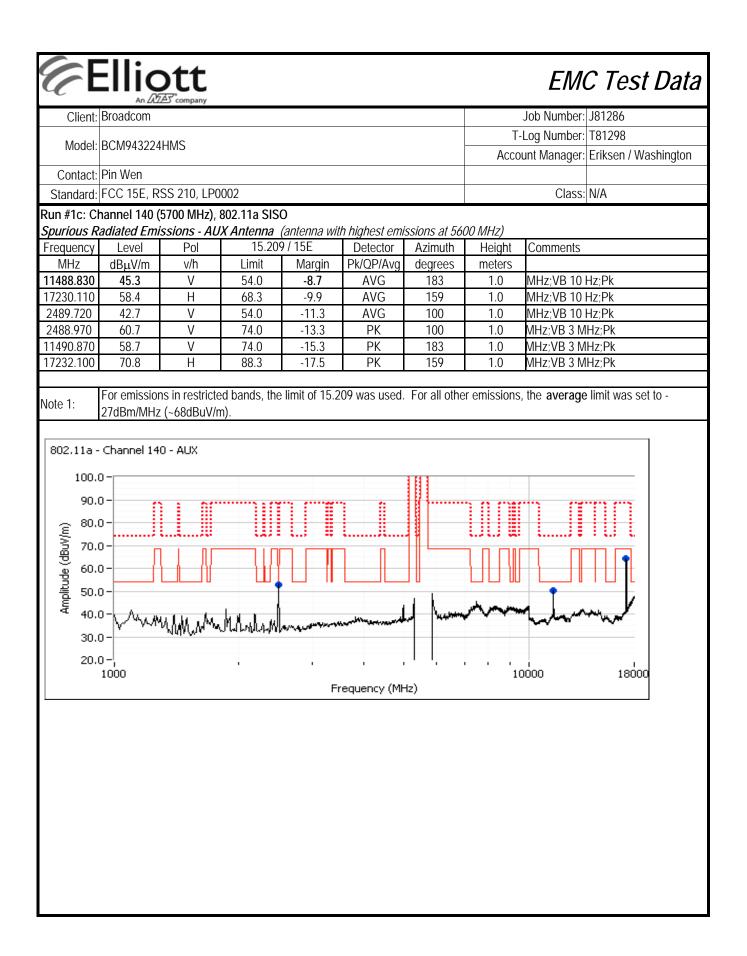
18.7 °C 34 %

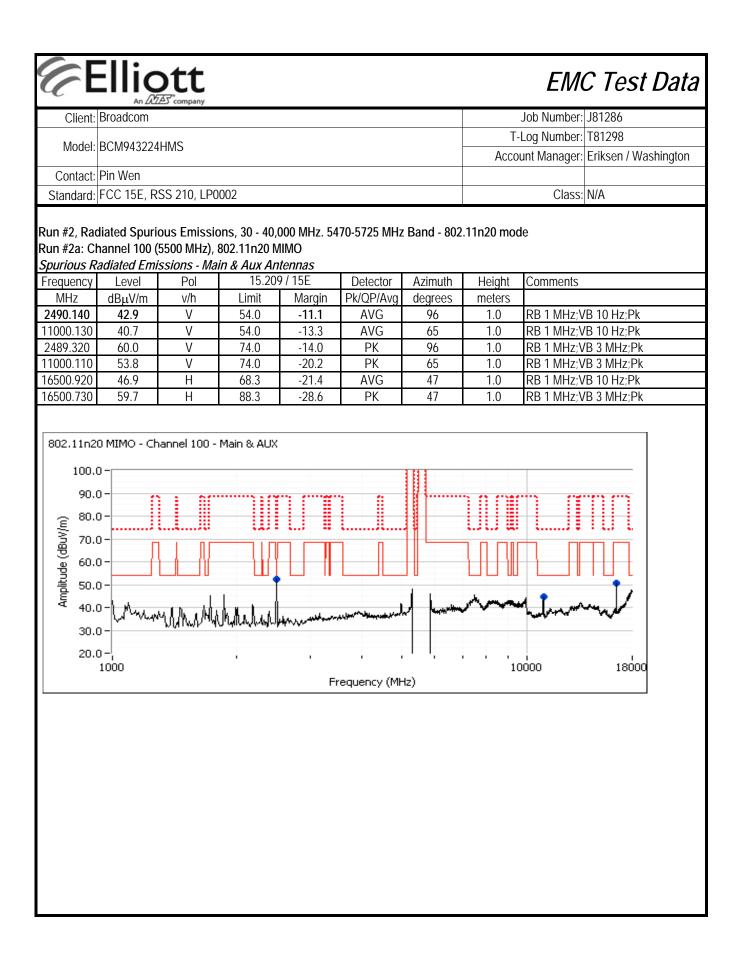
EILIOTT EMC Test Data							
Client	Broadcom					Job Number:	J81286
	D 01 40 4000	411140		T-Log Number:	T81298		
Model	BCM94322	4HMS		Account Manager:	Eriksen / Washington		
Contact	Pin Wen						
Standard	FCC 15E, F	RSS 210, LPC	002			Class:	N/A
Summary	y of Resul	ts					
Run #	Mode	Channel	Chain/ Antenna	Power Setting	Test Performed	Limit	Result / Margin
		#100 5500MHz	Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	43.1dBµV/m @ 2489.7MHz (-10.9dB)
1	802.11	#116	Main	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	42.8dBµV/m @ 2491.1MHz (-11.2dB)
1	SISO	5580MHz	Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	42.8dBµV/m @ 2491.7MHz (-11.2dB)
		#140 5700MHz	Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	45.3dBµV/m @ 11488.8MHz (-8.7dB)
		#100 5500MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 213	42.9dBµV/m @ 2490.1MHz (-11.1dB)
2	CDD 20MHz	#116 5580MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	43.4dBµV/m @ 2490.4MHz (-10.6dB)
		#140 5700MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	46.1dBµV/m @ 11400.4MHz (-7.9dB)
	#102 5510MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 213	43.2dBµV/m @ 2490.5MHz (-10.8dB)	
3	CDD 40MHz	#110 5550MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	42.6dBµV/m @ 2493.2MHz (-11.4dB)
		#134 5670MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	43.1dBµV/m @ 11333.3MHz (-10.9dB


Note: No significant signals were observed between 18-40GHz when scanned at 20cm.


Modifications Made During Testing No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.


Note: No emissions were observed below 1 GHz or above 18GHz

