

Elliott Laboratories www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E on the Broadcom Corporation Transmitter Model: BCM943224HMS

> UPN: 4324A-BRCM1041 FCC ID: QDS-BRCM1041

GRANTEE: **Broadcom Corporation** 190 Mathilda Ave. Sunnyvale, CA 94086

TEST SITE(S): **Elliott Laboratories** 41039 Boyce Road. Fremont, CA. 94538-2435 IC Site Registration #: IC 2845B-3, IC 2845B-4, IC 2845B-5

REPORT DATE: March 2, 2009

FINAL TEST DATE:

December 17, December 18, December 22, and December 23, 2008, January 26, January 27, January 29, February 5, February 6, February 10, February 12, February 15, February 23 and February 24, 2009

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R74737 Rev 1 Page 1 of 24

REVISION HISTORY

Rev #	Date	Comments	Modified By
1			

TABLE OF CONTENTS

2 3 5 5
3 5 5
5 5
5
6
7
7 11
11
12
12 12 12 12 12 12 13 13
14
14 14 14
15
15 15 15 16 16 16
• • • • • • • • • • • • • • • • • • • •

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	17
EUT AND CABLE PLACEMENT	17
CONDUCTED EMISSIONS	17
RADIATED EMISSIONS	17
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	20
BANDWIDTH MEASUREMENTS	20
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	21
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	21
FCC 15.407 (A) OUTPUT POWER LIMITS	21
OUTPUT POWER LIMITS –LELAN DEVICES	22
OUTPUT POWER AND SPURIOUS LIMITS –UNII AND LELAN DEVICES	22
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	23
SAMPLE CALCULATIONS - RADIATED EMISSIONS	23
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	24
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	6
EXHIBIT 7: Block Diagram	7
EXHIBIT 8: Schematic Diagrams	8
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Broadcom Corporation model BCM943224HMS pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Broadcom Corporation model BCM943224HMS and therefore apply only to the tested sample. The sample was selected and prepared by Anne Liang of Broadcom Corporation.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Broadcom Corporation model BCM943224HMS complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)		26dB Bandwidth	802.11a 21.9 MHz 802.11n20 19.7 MHz 802.11n40	N/A – limits output power if < 20MHz	N/A
			51.8 MHz		
			802.11a 13.2dBm (0.021W)		
15.407 (a) (1)	A9.2(1)	Output Power	802.11n20 10.5 dBm (0.011W)	17 dBm	Complies
			802.11n40 14.3 dBm (0.027W)		
			802.11a 0.7 dBm/MHz		
15.407 (a) (1)		Power Spectral Density	802.11n20 0.1 dBm/MHz	4 dBm/MHz	Complies
			802.11n40 -1.1 dBm/MHz		
			802.11a 0.7 dBm/MHz		
	A9.2(1) / A9.5 (2)	Peak Spectral Density	802.11n20 0.1 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies
			802.11n40 -1.1 dBm/MHz		
			801.11a 16.7 MHz		
	RSP 100	99% bandwidth	802.11n20 18.2 MHz	Information only	N/A
			802.11n40 36.5 MHz		

Operation in the 5.25 – 5.35 GHz Band

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 - 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(a)(1) and RSS 210 6.2.2 q1 (i)

FCC	RSS	Description Measured Value /		Limit /	Result
Rule Part	Rule Part	Description	Comments	Requirement	(margin)
15.407(a) (2)		26dB Bandwidth	802.11a 26.0 MHz 802.11n20 29.8 MHz 802.11n40 45.8 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a 17.6dBm (0.057W) 802.11n20 18.5dBm (0.072W) 802.11n40 19.5 dBm (0.089W)	24 dBm	Complies
15.407(a) (2))		Power Spectral Density	802.11a 4.8 dBm/MHz	11 dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density	802.11n20 8.0 dBm/MHz 802.11n40 4.2 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies
	RSP 100	99% bandwidth	801.11a 16.9 MHz 802.11n20 18.6 MHz 802.11n40 37.7 MHz	Information only	N/A

Operation in	Operation in the 5.47 – 5.725 GHz Band						
FCC Rule Part	RSS Rule Part	Description	Measured Value /	Limit / Requirement	Result		
15.407(a) (2)		26dB Bandwidth	802.11a 41.8 MHz 802.11n20 41.3 MHz 802.11n40 58.8MHz	N/A – limits output power if < 20MHz	N/A		
15.407(a) (2)	A9.2(2)	Output Power	802.11a 16.5dBm(0.044W) 802.11n20 19.7dBm (0.094W) 802.11n40 21.0 dBm (0.127W)	24 dBm / 250mW (eirp < 30dBm)	Complies		
15.407(a) (2))		Power Spectral Density	802.11a 4.3 dBm/MHz	11 dBm/MHz	Complies		
	A9.2(2) / A9.5(2)	Power Spectral Density	802.11n20 8.1 dBm/MHz 802.11n40 5.9 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies		
	A9.4	Non-operation in 5600 – 5650 MHz sub band	The device operates a does not determine fro for the network.	s a client only. It equency of operation	Complies		
	RSP 100	99% bandwidth	801.11a 16.7 MHz 802.11n20 18.6 MHz 802.11n40 41.1 MHz	Information only	N/A		

General requirements for all UNII bands						
FCC			Massured Value /	Limit /		
Rule Part	Rule Part	Description	Comments	Requirement	Result	
	A9.5a	Modulation	OFDM modulation is used	Digital modulation is required	Complies	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions below 1GHz detected	Refer to Standard	Complies	
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	53.7dBµV/m @ 5150.1MHz (-0.3dB)	Refer to Standard	Complies	
15.407(a)(6)	-	Peak Excursion Ratio	12.9 dB	<13dB	Complies	
	A9.5 (3) Spurious em tested at out channels in band		Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	N/A	
15			Measurements on three channels in each band	in each band	N/A	
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies	
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 10ppm (Operational Description)		Complies	
15.407 (h1)	A9.4	Transmit Power Control	TPC is not required as the device operates at below 500mW eirp	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies	
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R74578	Channel move time < 10s Channel closing transmission time < 260ms	Complies	
	A9.9g	User Manual information	Refer to Exhibit 6 for details		Complies	

FCC Rule	RSS		Measured Value /	Limit /	Result
Part	Rule part	Description	Comments	Requirement	(margin)
1 alt	Kule part		Designments	Requirement	(margin)
15.203	-	RF Connector	Device uses a unique		Complies
			connector type		1
	RSS GEN	Receiver spurious	44.1dBµV/m @	Refer to	
15.109	7.2.3	emissions	2493.6MHz	standard	Complies
	Table 1	cillissions	(-9.9dB)	standaru	
15 207	RSS GEN	AC Conducted	34.8dBµV @ 3.622MHz	Refer to	Complies
13.207	Table 2	Emissions	(-11.2dB)	standard	(-?.?dB)
			Refer to MPE		
15045 (1) (5)			calculations in Exhibit	Refer to OET	
15.247 (b) (5)	RSS 102	RF Exposure	11 RSS 102 declaration	65 FCC Part 1	Complies
15.407 (f)		Requirements	and User Manual	and RSS 102	
			statements	und 1050 102	
			statements.	Statement	
	RSP 100			required	
	RSS GEN	User Manual		required	
	7.1.5			regarding non-	
				interference	
				Statement	
	RSP 100			required	
	RSS GEN	User Manual		regarding	
	7.1.5			detachable	
				antenna	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions Radiated Emissions	30 to 1000 1000 to 40000	$\begin{array}{c} \pm 3.6 \\ \pm 6.0 \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Broadcom Corporation model BCM943224HMS is a WLAN card designed to be installed in laptop computers. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3 VDC.

The sample was received on December 17, 2008 and tested on December 17, December 18, December 22, and December 23, 2008, January 26, January 27, January 29, February 5, February 6, February 10, February 12, February 15, February 23 and February 24, 2009. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Broadcom	BCM943224	WLAN card	106 & 108	QDS-
	HMS			BRCM1041

ANTENNA SYSTEM

The EUT antenna is an 802.11a/b/g/n WLAN antenna, with peak gains for 3.9dBi/2.4GHz, 5.6dBi/5.2GHz, 4.2dBi/5.5GHz and 5.8dBi/5.7GHz.

The antenna connects to the EUT via a U.FL antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Inspiron 630m	Laptop	-	-
Dell	-	External power	-	-
		supply		
Canon	iP2600	Printer	-	-

The following remote support equipment was used during emissions testing.

Manufacturer	Model	Description	Serial Number	FCC ID
Netgear	GS605	Hub	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Dort	Connected	Cable(s)		
Folt	То	Description	Shielded or Unshielded	Length(m)
USB/Laptop	Printer	USB cable	Shielded	1.5
Ethernet/Laptop	Hub	Cat-5	Unshielded	10.0
Adapter card		-	-	-
AC Power	AC Mains	3 wire	Unshielded	2.0

EUT OPERATION

During emissions testing the EUT was continuously transmitting on the desired channel.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on December 17, December 18, December 22, and December 23, 2008, January 26, January 27, January 29, February 5, February 6, February 10, February 12, February 15, February 23 and February 24, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Sito	Registration Numbers		Location
Site	FCC	Canada	
Chamber 3	769238	IC 2845B-3	41039 Boyce Road
Chamber 4	211948	IC 2845B-4	Fremont,
Chamber 5	211948	IC 2845B-5	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS –LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	$250 \text{ mW} (24 \text{ dBm})^1$	11 dBm/MHz
5250 - 5550	1W (30dBm) eirp	
5470 - 5725	$250 \text{ mW} (24 \text{ dBm})^2$	11 dBm/MHz
5470-5725	1W (30dBm) eirp	
5725 5825	1 Watts (30 dBm)	17 dBm/MHz
5725 - 5825	4W eirp	

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS –UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (68.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

¹ If EIRP exceeds 500mW the device must employ TPC

² If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

Engineer: Suhaila Khushzad	,,,			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Feb-09
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	07-Oct-09
Hewlett Packard	Microwave Preamplifier, 1-26,5GHz	8449B	1780	13-Nov-09
Radio Antenna Port (Power and	d Spurious Emissions), 02-Feb-09			
Engineer: skhushzad				
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	<u>Cal Due</u>
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	786	06-Dec-09
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	07-Oct-09
Hewlett Packard	Test Sys (SA40, 9kHz - 40GHz) Purple	84125C	1770	20-Oct-09
03-Feb-09				
Engineer: icaizzi				
Manufacturer	Description	Model #	Asset #	Cal Due
FMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Feb-09
Hewlett Packard	Head (Inc W1-W4, 1742, 1743) Blue	84125C	1620	22-Feb-09
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	07-Oct-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	13-Nov-09
FTS Lindgren	Antenna, Horn, 18-26.5 GHz (Loaner)	3160-09	2144	15-Jan-10
Radio Spurious Emissions, 04	-Feb-09			
Engineer: Suhaila Khushzad				
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	<u>Cal Due</u>
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	07-Oct-09
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	07-Oct-09
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	20-Oct-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	13-Nov-09
Radio Spurious Emissions, 05	-Feb-09			
Engineer: skhushzad				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	22-Feb-09
Radio Antenna Port (Power and	d Spurious Emissions), 06-Feb-09			
Engineer: skhushzad				
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	FSIB7	1630	22-Feb-09
		LOIDI	1000	22 1 05 00
Radiated Emissions, 1000 - 18,	000 MHz, 13-Feb-09			
Engineer: rvarelas				o
Manufacturer	Description	MODEL #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	/86	U6-Dec-09
IVIICTO-I ronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	07-Oct-09
IVIICTO-I FONICS		BRU50704-02	1730	07-Oct-09
Hewlett Packard	Specan 9 KHZ - 40 GHZ, (SA40) Purple	8564E (84125C)	1//1	20-Oct-09
Hewlett Packard	iviicrowave Preamplifier, 1-26.5GHz	8449B	1780	13-INOV-09

Radiated Emissions, 1000 - 18,000 MI	Iz, 17-Dec-08			
Engineer: jcalzzi	Description	Model #	Accet #	
Manufacturer Hewlett Packard	Description SpecAn 9 KHz-26 5 GHz, Non-Program	8563E	284	
FMCO	Antenna Horn 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Micro-Tropics	Band Reject Filter, 2400-2500 MHz	BPM50702-02	1731	02-Dec-09
Hewlett Packard	Microwaye Preamplifier 1-26 5GHz	8449R	1780	13-Nov-09
		04430	1700	131107-03
Radio Antenna Port (Power and Spur	ous Emissions), 18-Dec-08			
Engineer: skhushzad	-			
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	24-Dec-08
EMCO	Antenna, Horn, 1-18 GHz (SA40-Purple)	3115	1779	19-Mar-10
Radio Antenna Port (Power and Spur	ous Emissions). 07-Feb-09			
Engineer: rvarelas	,, · · · · · · · · · · · · · · · · · ·			
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	22-Feb-09
Radio Antenna Port (Power and Spur	ous Emissions). 09-Feb-09			
Engineer: skhushzad				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Feb-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	22-Feb-09
Radio Antenna Port (Power and Spur	ous Emissions), 10-Feb-09			
Engineer: Suhaila Khushzad				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Feb-09
Radio Antenna Port (Power and Spur	ous Emissions), 11-Feb-09			
Engineer: skhushzad				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	20-Oct-09
Radio Antenna Port (Power and Spur	ous Emissions), 17-Feb-09			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	Description	Model #	Accot #	Cal Due
Hewlett Packard	Becchiption			001 000
	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	20-Oct-09
Radio Antenna Port (Power and Spur	SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 18-Feb-09	8564E (84125C)	1771	20-Oct-09
Radio Antenna Port (Power and Spur Engineer: Conrad Chu	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	<u>7771</u>	20-Oct-09
Radio Antenna Port (Power and Spur Engineer: Conrad Chu <u>Manufacturer</u>	SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 18-Feb-09 Description	<u>Model #</u> 8564E (84125C) <u>Model #</u>	<u>Asset #</u> 1771	20-Oct-09
Radio Antenna Port (Power and Spur Engineer: Conrad Chu <u>Manufacturer</u> Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 18-Feb-09 Description SpecAn 9 kHz - 40 GHz, (SA40) Purple	<u>Model #</u> 8564E (84125C) <u>Model #</u> 8564E (84125C)	<u>Asset #</u> 1771 <u>Asset #</u> 1771	20-Oct-09 <u>Cal Due</u> 20-Oct-09
Radio Antenna Port (Power and Spur Engineer: Conrad Chu <u>Manufacturer</u> Hewlett Packard Radio Antenna Port (Power and Spur	SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 18-Feb-09 <u>Description</u> SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 19-Feb-09	<u>Model #</u> 8564E (84125C) <u>Model #</u> 8564E (84125C)	<u>Asset #</u> 1771	20-Oct-09 <u>Cal Due</u> 20-Oct-09
Radio Antenna Port (Power and Spur Engineer: Conrad Chu <u>Manufacturer</u> Hewlett Packard Radio Antenna Port (Power and Spur Engineer: Suhaila Khushzad	SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 18-Feb-09 <u>Description</u> SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 19-Feb-09	<u>Model #</u> 8564E (84125C) <u>Model #</u> 8564E (84125C)	<u>Asset #</u> 1771	20-Oct-09 <u>Cal Due</u> 20-Oct-09
Radio Antenna Port (Power and Spur Engineer: Conrad Chu <u>Manufacturer</u> Hewlett Packard Radio Antenna Port (Power and Spur Engineer: Suhaila Khushzad <u>Manufacturer</u>	SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 18-Feb-09 <u>Description</u> SpecAn 9 kHz - 40 GHz, (SA40) Purple ous Emissions), 19-Feb-09 <u>Description</u>	<u>Model #</u> 8564E (84125C) <u>Model #</u> 8564E (84125C) <u>Model #</u>	<u>Asset #</u> 1771 <u>Asset #</u> 1771 <u>Asset #</u>	20-Oct-09 <u>Cal Due</u> 20-Oct-09 <u>Cal Due</u>

EXHIBIT 2: Test Measurement Data

200 Pages

CE	liott

EMC Test Data

AN DATE	2 company		
Client:	Broadcom	Job Number:	J74037
Model:	BCM943224HMS	T-Log Number:	T74146
		Account Manager:	Eriksen / Washington
Contact:	Anne Liang		Briggs
Emissions Standard(s):	FCC 15.247, FCC 15E, RSS 210, LP0002	Class:	NII
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Broadcom

Model

BCM943224HMS

Date of Last Test: 2/18/2009

2.11n WLAN PCI-E minicard that is designed to enable wireless data transmissions in PCs. Since the top during operation, the EUT was treated as table-top equipment during testing to simulate the end-rating of the EUT is 3.3Vdc from the host.

Client	Broadcom	Job Number:	J74037
Model	BCM943224HMS	T-Log Number:	T74146
		Account Manger:	Eriksen / Washington
Contact:	Anne Liang		
Emissions Standard(s):	FCC 15.247, FCC 15E, RSS 210, LP0002	Class:	NII
Immunity Standard(s):	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions.

General Description

The EUT is an 802.11ag/Draft 802.11n WLAN PCI-E minicard that is designed to enable wireless data transmissions in PCs. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the enduser environment. The electrical rating of the EUT is 3.3Vdc from the host.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Broadcom	BCM943224HMS	802.11ag/Draft 802.11n	-	QDS-BRCM1041
		WLAN PCI-E Minicard		

EUT Antenna (Intentional Radiators Only)

The EUT antenna is an 802.11a/b/g/n WLAN antenna, with peak gains for 3.9dBi/2.4GHz and 5.8dBi/5GHz.

The antenna connects to the EUT via a U.FL antenna connector, thereby meeting the requirements of FCC 15.203.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

Modification History

			-
Mod. #	Test	Date	Modification
1			No modifications were made to the EUT during testing.
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliott EMC Test Data									
An DOTE	Company								
Client:	Broadcom	Job Number:	J/403/						
		Account Manger:	LUY NUMBEL: 174140						
Contact:	Anne Liang	Account Manger.	LINGCH	Washington					
Emissions Standard(s):	FCC 15.247, FCC 15E, RS	SS 210, LP0002	Class:	NII					
Immunity Standard(s):	-		Environment:	: -					
	Te	st Configuration	า #1						
	The following inform	mation was collected during	g the test session(s).						
	-		-						
	L	ocal Support Equipme	ent						
Manufacturer	Model	Description	Serial Number		FCC ID				
Dell	Inspiron	Laptop	-		-				
	D								
	Re	emote Support Equipm	ient		50015				
Manufacturer	Model	Description	Serial Number		FCC ID				
-	-	-	-		-				
		Cabling and Ports							
Port	Connected To		Cable(s)						
i ort	oonnoolou ro	Description	Shielded or Unshield	led	Length(m)				
Adapter card	-	-	-		-				
AC Power	AC Mains	3 wire	Unshielded		2.0				
			- .						
	EUT Ope	eration During Emissio	ons lests						
During emissions testing	the EUT was continuously	transmitting on the desired of	channel.						

EMC Test Data

Client:	Broadcom	Job Number:	J74037
Model	DCM042224LINE	T-Log Number:	T74146
wouer.	DCIVI943224FIIVIS	Account Manager:	Eriksen / Washington
Contact:	Anne Liang		
Standard:	FCC 15.247, FCC 15E, RSS 210, LP0002	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Band Edge Field Strength

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

> Config. Used: -Config Change: -

Host Unit Voltage 120V/60Hz

Date of Test: Refer to individual run Test Engineer: Refer to individual run Test Location: Refer to individual run

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing. Any remote support equipment was located approximately 30 meters from the EUT with all I/O connections running beneath the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	15 - 25 °C
	Rel. Humidity:	35 - 65 %

Summary of Results

Run #	Mode	Channel	Chain/ Antenna	Power Setting	Test Performed	Limit	Result / Margin
1 802.11a (SISO)		#36 5180MHz	Main	-	Restricted Band Edge at 5150 MHz	15.209	47.3dBµV/m @ 5150.1MHz (-6.7dB)
		#36 5180MHz	Aux	-	Restricted Band Edge at 5150 MHz	15.209	66.3dBµV/m @ 5149.1MHz (-7.7dB)
		#56 5280 MHz	Main	-	Restricted Band Edge at 5250 MHz	LP0002 (Taiwan Only)	43.8dBµV/m @ 5250.1MHz (-10.2dB)
	802.11a (SISO)	#60 5300MHz	Main	-	Restricted Band Edge at 5350 MHz 15.209		46.6dBµV/m @ 5350.1MHz (-7.4dB)
		#64 5320MHz	Main	-	Restricted Band Edge at 5350 MHz	15.209	52.3dBµV/m @ 5350.1MHz (-1.7dB)
		#100 5500MHz Main	Main	-	Restricted Band Edge at 5460 MHz	15.209	68.5dBµV/m @ 5458.3MHz (-5.6dB)
			Wann	-	Band Edge 5460 - 5470 MHz	15E	72.5dBµV/m @ 5466.1MHz (-15.8dB)

Elliott <i>EMC Test Data</i>									
Client:	Broadcom			Job Number: J74037					
Madalı	DCM042224					T-Log Number: T74146			
woder:	DCIVI943224	ILINI2				Account Manager: Eriksen / Washingtor			
Contact:	Anne Liang								
Standard:	FCC 15.247	, FCC 15E, I	RSS 210, LPG	0002		Class:	Class: N/A		
	L								
Run #	Mode	Channel	Chain/ Antenna	Power Setting	Test Performed	Limit	Result / Margin		
		#36 5180MHz	Main + Aux	-	Restricted Band Edge at 5150 MHz	15.209	44.4dBµV/m @ 5150.1MHz (-9.7dB)		
		#56 5280 MHz	Main + Aux	-	Restricted Band Edge at 5250 MHz	LP0002 (Taiwan Only)	44.5dBµV/m @ 5250.1MHz (-9.5dB)		
2 2((N		#60 5300MHz	Main + Aux	-	Restricted Band Edge at 5350 MHz	15.209	46.1dBµV/m @ 5350.3MHz (-7.9dB)		
	(MIMO)	#64 5320MHz	Main + Aux	-	Restricted Band Edge at 15.209 5350 MHz		73.5dBµV/m @ 5350.1MHz (-0.5dB)		
		#100 5500MHz	Main + Aux	-	Restricted Band Edge at 5460 MHz	15.209	49.6dBµV/m @ 5460.1MHz (-4.4dB)		
				-	Band Edge 5460 - 5470 MHz	15E	54.2dBµV/m @ 5470.1MHz (-14.2dB)		
CDD 3 40MH (MIMC		#38 5190MHz	Main + Aux	-	Restricted Band Edge at 5150 MHz	15.209	53.7dBµV/m @ 5150.1MHz (-0.3dB)		
		#54 5270MHz Main + Aux		-	Restricted Band Edge at 5150 MHz	15.209	45.6dBµV/m @ 5139.3MHz (-8.4dB)		
	CDD	#54 5270MHz	Main + Aux	-	Restricted Band Edge at 5350 MHz 15.209		53.8dBµV/m @ 5352.5MHz (-0.3dB)		
	40MHz (MIMO)	#62 5310 MHz	Main + Aux	-	Restricted Band Edge at 5250 MHz	LP0002 (Taiwan Only)	41.2dBµV/m @ 5249.8MHz (-12.8dB)		
		#62 5310MHz	Main + Aux	-	Restricted Band Edge at 5350 MHz	15.209	51.7dBµV/m @ 5350.1MHz (-2.3dB)		
		#102 5510MHz	Main + Aux	-	Restricted Band Edge at 5460 MHz	15.209	52.6dBµV/m @ 5460.1MHz (-1.4dB)		
				-	Band Edge 5460 - 5470 MHz	15E	61.4dBµV/m @ 5470.1MHz (-7.0dB)		

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data										
Client:	An ZA Broadcom	Company	Job Number: J74037							
							T-Log Number: T74146			
Modei:	BCM943224	HMS				1	Acco	Account Manager: Eriksen / Washington		
Contact:	Anne Liang									
Standard:	FCC 15.247	, FCC 15E, R	2SS 210, LPC	0002				Class: N/A		
Run #1, Band Edge Radiated Spurious Emissions, 802.11a SISO Mode										
C	Date of Test:	1/30/2009			Tes	st Engineer:	Rafael Vare	las		
Te	st Location:	FT Chamber	#4		- · - .	Comments:	None			
Run #1a: C	hannel 36 (5	5180MHz), 80)2.11a SISO	, 5150MHz H	3and Edge					
Fundament	al Sianal Fie	ald Strenath								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
Main Port										
5179.359	104.8	V	-	-	Pk	187	1.0	RB = VB = 1	IMHz	
5179.359	93.6	V	-	-	Avg	187	1.0	RB = 1MHz,	, VB = 10Hz	
5180.962	108.4	h	-	-	Pk	223	1.4	RB = VB = 1	IMHz	
5180.561	96.9	h	-	-	Avg	223	1.4	RB = 1MHz	, VB = 10Hz	
AUX Port										
5179.960	105.7	V	-	-	Pk	187	1.0	RB = VB = 1	IMHz	
5180.962	93.7	V	-	-	Avg	187	1.0	$RB = 1MHz_{r}$, VB = 10Hz	
5181.563	106.7	h	-		Pk	224	1.4	RB = VB = 1	IMHz	
5180.561	95.6	h	-	-	Avg	224	1.4	RB = 1MHz	, VB = 10Hz	
5 <u>150 MHz</u> B	and Edge S	ignal Radiat	ted Field Str	rength						
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
Main Port										
5150.100	47.3	h	54.0	-6.7	Avg	223	1.4	RB = 1MHz	, VB = 10Hz	
5150.100	44.3	V	54.0	-9.7	Avg	187	1.0	RB = 1MHz	, VB = 10Hz	
5149.098	63.9	h	74.0	-10.1	Pk	223	1.4	RB = VB = 1	IMHz	
5150.100	61.9	V	74.0	-12.1	Pk	187	1.0	RB = VB = 1	IMHz	
AUX Port										
5149.098	66.3	h	74.0	-7.7	Pk	224	1.4	RB = VB = 1	IMHz	
5150.100	45.0	h	54.0	-9.0	Avg	224	1.4	RB = 1MHz	, VB = 10Hz	
5150.100	43.4	V	54.0	-10.6	Avg	187	1.0	RB = 1MHz	, VB = 10Hz	
5149.499	63.2	V	74.0	-10.8	Pk	187	1.0	RB = VB = 1	IMHz	
	Et aluanad		1.0							
Note 1:	Field strengt	h measureu a	at 3m							

C	Ellic	Dtt AS [*] company						EM	C Test Data
Client:	Broadcom							Job Number:	J74037
Madal	0040000						T-	Log Number:	T74146
Wodel:	BCINI943224	HIVIS				-	Account Manager: Eriksen / Washingto		Eriksen / Washington
Contact:	Anne Liang								
Standard:	FCC 15.247,	FCC 15E, F	RSS 210, LPC	0002				Class:	N/A
Run #2e: C	hannel 100 ((5500MHz), (CDD 20MHz	MIMO, 546	0MHz & 5470I	MHz Band E	dges		
Fundament	al Signal Fie	d Strength					5		
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5499.178	107.6	V	-	-	Pk	265	1.4	RB = VB = 1	1MHz
5499.178	97.2	V	-	-	Avg	265	1.4	RB = 1MHz	, VB = 10Hz
5497.775	111.3	h	-	-	Pk	220	1.4	$RB = VB = \hat{A}$	1MHz
5500.581	101.3	h	-	-	Avg	220	1.4	RB = 1MHz	, VB = 10Hz
5350-5460 l	MHz Restrict	ed Band Ed	<i>ge Signal R</i>	adiated Fie	ld Strength				
Frequency	Level	Pol	FCCT	5.209	Detector	Azimuth	Height	Comments	
MHZ	dBµV/m	v/n	Limit	Margin	PK/QP/Avg	degrees	meters		
5460.100	49.6	n	54.0	-4.4	AVg	220	1.4	RB = IMHZ	VB = 10HZ
5459.499 E4EE 401	47.4 4F.F	V	54.U	-0.0	AVy	200	1.4	RB = IWHZ	VB = IUHZ
5455.091 E4E0.000	00.0	n 	74.0	-8.5	PK Dk	220	1.4	RB = VB =	
5459.098	00.4	V	74.0	-0.0	PK	200	1.4	KD = VD =	
5460 - 5470	MHz Rand I	dae Radiat	od Fiold Stra	nath					
Frequency	l evel	Pol	15	F	Detector	Azimuth	Height	Comments	
MH7	dBuV/m	v/h	l imit	Margin	Pk/OP/Avg	dearees	meters	Comments	
5470 120	ubμv/m 54.2	h	68.3	-14 2	Avn	220	14	RB = 1MHz	VB = 10Hz
5469,719	73.5	h	88.3	-14.8	Pk	220	1.4	RB = VB = 1	1MHz
5469.519	49.9	V	68.3	-18.4	Ava	265	1.4	RB = 1MHz	. VB = 10Hz
5469.118	69.8	V	88.3	-18.5	Pk	265	1.4	RB = VB = 1	1MHz
110	1.0							Analyze	er Settings
100 90 80 91 90 90 90 90 90	1.0 - 1.0 - 1.0 - 1.0 -				~~~	n	mm	Rohde8 CF: 546 SPAN:1 RB 1.00 VB 10 H Detecto Att 0 RL Offs Sweep Ref Lvl	85chwarz,ESI 7 50.000 MHz 00.000 MHz 00 MHz tz or POS set 40.20 Time 25.0s :112.20DBUV
50 40	1.0- 1.0- 5410 54	20 5430	5440 54	50 5460 requency (5470 548 MHz)	o 5490	5500 55	Comme 5500 M BE @ 5 10 Main +	ents Hz 460 MHz Aux
Curso	Cursor 1 5460.1001 49.60 💠 😽 🗟 🔹 Delta Freq. 40.481 🌈							F	light
Curso	r 2 5500.5	811 101.	29 💠 🔸	b ▼ De	elta Amplitud	le 51.70	U	ان ا	шOll

C	Ellic	ott						EM	C Test Data	
Client: Broadcom								Job Number: J74037		
Model	BCM0/322/	нмс					T-Log Number: T74146		T74146	
Mouel.	DCIVI743224						Αссоι	unt Manager:	Eriksen / Washington	
Contact:	Anne Liang	500 455 F								
Standard:	FCC 15.247	, FCC 15E, ዞ	RSS 210, LP	0002				Class:	N/A	
120.	0							Analyze	r Settings	
110.	n-						Anna A	Rohde& CE: 546(5chwarz,ESI 7 1.000 MHz	
110						(**	1.11	SPAN:10	0.000 MHz	
100.	100.0-							VB 1.000) MHz	
පු 90.	90.0-							Detector Att 0	POS	
	0-				, M	M.		RL Offse	t 40.20	
₹ 80.	0-							Ref Lvl:1	12.20DBUV	
70.	0-				N					
60.	n-			MANY				Comme	nts	
		, was a start	~~~~					5500 MH BE @ 54	lz 60 MHz	
50.	0-1 1 5410 542	0 5430	5440 545	0 5460	5470 5480	1 5490	5500 551(Main + A	Aux	
	JHIO JHZ	0 3430	Frid Sto	equency (M	9470 9400 Hz)	5 5450	5500 551			
Cursor Cursor Run #3, Ba [T(Run #3a; C	1 5455.69 2 5497.77 nd Edge Rac Date of Test: est Location:	914 65.51 754 111.3 liated Spurio 1/31/2009 FT Chamber 5190MHz) C		Delt	Delta Freq a Amplitud MHz MIMO N Te	. 42.084 e 45.83 Mode st Engineer: Comments:	Rafael Vare None	EI.	liott	
Fundament	tal Signal Fie	eld Strength				·ge				
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5193.387	100.0	V	-	-	Pk A	200	1.0	KB = VB = 2	IMHZ	
5193.788	88.9	V	-	-	Avg	200	1.0	KB = 1MHz	, VB = 10Hz	
5186.573	103.7	h	-	-	PK	223	1./	RB = VB =	IMHZ	
5186.773 92.7 h - Avg 223 1.7 RB = 1MHz, VB = 10Hz Date of Test: 2/6/2009 Test Engineer: Suhaila Khushzad Test Engineer: Suhaila Khushzad Test Location: FT Chamber #3 Comments: None										
5150 MHz E	Band Edge S	ignal Radiat	ted Field Str	ength	1		1	1.		
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5150.100	53.7	h	54.0	-0.3	Avg	232	1.7			
5149.900	72.9	h	74.0	-1.1	Pk	232	1.7			
Noto 1	Field strongt	h measured	at 2m							
	nielu strengt	n measuleù	at SIII							

EMC Test Data

Client:	Broadcom	Job Number:	J74037
Model	BCM943224HMS T-Log Nun Anne Liang Account Mana	T-Log Number:	T74146
wouer.	DCI//94322411///S	Account Manager:	Eriksen / Washington
Contact:	Anne Liang		
Standard:	FCC 15.247, FCC 15E, RSS 210, LP0002	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/30/2009 Test Engineer: Suhaila Khushzad Test Location: Chamber # 4

Config. Used: Refer to individual runs Config Change: Refer to individual runs Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing. Any remote support equipment was located approximately 30 meters from the EUT with all I/O connections running beneath the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	15 - 25 °C
	Rel. Humidity:	35 - 65 %

Summary of Results

Run #	Mode	Channel	Chain/ Antenna	Power Setting	Test Performed	Limit	Result / Margin
		#36 5180MHz	Main	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	44.6dBµV/m @ 2494.6MHz (-9.4dB)
1	802.11a	#44 5220MHz	Main	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	43.8dBµV/m @ 2494.7MHz (-10.2dB)
1	SISO	#44 5220MHz	Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	43.8dBµV/m @ 2494.7MHz (-10.2dB)
		#48 5240MHz	Main	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	42.5dBµV/m @ 2494.7MHz (-11.5dB)
		#36 5180MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	42.4dBµV/m @ 2494.7MHz (-11.6dB)
2	CDD 20MHz	#44 5220MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	42.4dBµV/m @ 2493.0MHz (-11.6dB)
		#48 5240MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	41.8dBµV/m @ 5431.4MHz (-12.2dB)
3	CDD	#38 5190MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	42.6dBµV/m @ 2496.7MHz (-11.4dB)
5	40MHz	#46 5230MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	40.1dBµV/m @ 5440.3MHz (-13.9dB)
1							

Elliott EMC Test Data Client: Broadcom Job Number: J74037 T-Log Number: T74146 Model: BCM943224HMS Account Manager: Eriksen / Washington Contact: Anne Liang Standard: FCC 15.247, FCC 15E, RSS 210, LP0002 Class: N/A Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Note, preliminary evaluation showed no emissions above 18 GHz. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band - 802.11a SISO Mode Run #1a: Channel 36 (5180 MHz), 802.11a SISO Spurious Radiated Emissions - Main Antenna (antenna with highest emissions at 5220 MHz) 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2494.640 -9.4 AVG 44.6 V 54.0 176 1.5 RB 1 MHz; VB: 10 Hz V 2498.800 61.4 74.0 -12.6 РΚ 176 1.5 RB 1 MHz; VB: 1 MHz 5424.030 41.0 Н 54.0 -13.0 AVG 239 1.5 RB 1 MHz; VB: 10 Hz 5423.950 52.7 Н 74.0 -21.3 ΡK 239 1.5 RB 1 MHz; VB: 1 MHz 15539.720 42.1 Η 54.0 -11.9 AVG 79 1.0 RB 1 MHz; VB: 10 Hz -17.4 79 RB 1 MHz; VB: 1 MHz 15538.920 56.6 Н 74.0 ΡK 1.0 Channel @ 5180 MHz, Main Antenna 140.0 120.0 Amplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0 - l 10000 18000 1000 Frequency (MHz) For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -Note 1: 27dBm/MHz (~68dBuV/m)

Model.	Broadcom							Job Number	J74037
Modal	Dioducom				T·	Log Number:	T74146		
mouel.	BCM943224	HMS					Ассо	unt Manager:	Eriksen / Washington
Contact:	Anne Liang								-
Standard:	FCC 15.247	, FCC 15E, F	RSS 210, LP	0002				Class:	N/A
Run #2, Rac Run #2a: Cl Spurious R Froquency	diated Spuri hannel 36 (5 Padiated Emi	ous Emissio 180 MHz), 8 <u>ssions</u> Pol	ons, 30 - 40, 02.11n20 MI	000 MH. Op Hz CDD	eration in the	2 5150-5250	MHz Band	- 802.11n20 M	/Hz CDD Mode
MHz	dBuV/m	v/h	l imit	Margin	Pk/OP/Avg	degrees	meters	COMMENIS	
2494.660	42.4	V	54.0	-11.6	AVG	208	1.4	RB 1 MHz; \	/B: 10 Hz
2499.550	58.6	V	74.0	-15.4	PK	208	1.4	RB 1 MHz; \	/B: 1 MHz
5425.690	37.3	H	54.0	-16.7	AVG	164	2.2	RB 1 MHz; \	/B: 10 Hz
5413.610	48.5	H	/4.0	-25.5	PK	164	2.2	RB 1 MHZ; \	/B: 1 MHz
Amplitude (dBuV/m)	100.0 - 80.0 - 60.0 - 40.0 - wh. 20.0 - 1000	n i Mili what	Andrea A		Frequency			· 10000	18000

Model:	Broadcom							Job Number:	J74037
	BCM943224	HMS					T-	Log Number:	T74146
	0010743224						Acco	unt Manager:	Eriksen / Washingto
Contact:	Anne Liang							0	21/2
Standard:	FCC 15.247	, FCC 15E, F	RSS 210, LP	0002				Class:	N/A
un #30: Ci Sourious R	nannei 46 (5 Padiated Emi	230 MHZ), 8 ssions	02. I IN40 IVII	HZ CDD					
-requency	l evel	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto	
5440.260	40.1	Н	54.0	-13.9	AVG	259	1.0	RB 1 MHz; V	/B: 10 Hz
5441.810	51.7	Н	74.0	-22.3	PK	259	1.0	RB 1 MHz;	/B: 1 MHz
2494.650	37.6	V	54.0	-16.4	AVG	248	1.0	RB 1 MHz; V	/B: 10 Hz
2499.670	53.7	V	74.0	-20.3	PK	248	1.0	RB 1 MHz; V	/B: 1 MHz
Åm	40.0 - Win 20.0 - J 1000		- U Marana Al '	 ,, _,,,,,	Frequency	(MHz)	[100000	

EMC Test Data

Client:	Broadcom	Job Number:	J74037
Model	PCM042224HMS	T-Log Number:	T74146
wouer.	DCW174322411WI3	Account Manager:	Eriksen / Washington
Contact:	Anne Liang		
Standard:	FCC 15.247, FCC 15E, RSS 210, LP0002	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: -Config Change: -

Host Unit Voltage 120V/60Hz

Date of Test: Refer to individual run Test Engineer: Refer to individual run Test Location: Refer to individual run

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing. Any remote support equipment was located approximately 30 meters from the EUT with all I/O connections running beneath the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	18.7 °C
	Rel. Humidity:	34 %

Summary of Results

Run #	Mode	Channel	Chain/ Antenna	Power Setting	Test Performed	Limit	Result / Margin
		#52	Δ		Radiated Emissions,	FCC 15.209 / 15 E /	48.6dBµV/m @
		5260MHz	Aux		1 - 40 GHz	LP0002 / RSS 210	15782.2MHz (-5.4dB)
		#56	A	1	Radiated Emissions,		43.9dBµV/m @
		5280MHz	Aux		1 - 40 GHz	LPUUUZ	2496.8MHz (-10.1dB)
			Main	1	Radiated Emissions,	FCC 15.209 / 15 E /	42.4dBµV/m @
		#60	Main		1 - 40 GHz	LP0002 / RSS 210	2494.6MHz (-11.6dB)
		5300MHz	Aux		Radiated Emissions,	FCC 15.209 / 15 E /	48.0dBµV/m @
			Aux		1 - 40 GHz	LP0002 / RSS 210	15901.7MHz (-6.0dB)
1	802.11a	#64	Διιν		Radiated Emissions,	FCC 15.209 / 15 E /	43.1dBµV/m @
I	SISO	5320MHz	Aux		1 - 40 GHz	LP0002 / RSS 210	15955.9MHz (-10.9dB)
		#100	Main		Radiated Emissions,	FCC 15.209 / 15 E /	50.8dBµV/m@
		5500MHz	IVIAIIT	-	1 - 40 GHz	LP0002 / RSS 210	11100.0MHz (-3.2dB)
			Main		Radiated Emissions,	FCC 15.209 / 15 E /	44.5dBµV/m @
		#120	IVIAIIT	-	1 - 40 GHz	LP0002 / RSS 210	11199.8MHz (-9.5dB)
		5600MHz	Διιχ		Radiated Emissions,	FCC 15.209 / 15 E /	42.4dBµV/m @
			Aux	-	1 - 40 GHz	LP0002 / RSS 210	2494.3MHz (-11.6dB)
		#140	Main		Radiated Emissions,	FCC 15.209 / 15 E /	47.7dBµV/m@
		5700MHz	IVIAILI	-	1 - 40 GHz	LP0002 / RSS 210	11100.2MHz (-6.3dB)

) TAT [*] company				EMO	C Test Data
3roadcom					Job Number:	J74037
					T-Log Number:	T74146
30101943224	HIVIS				Account Manager:	Eriksen / Washington
Anne Liang						
-CC 15.247	, FCC 15E, F	RSS 210, LPC)002		Class:	N/A
of Result	s Continu	ed				
Mode	Channel	Chain/ Antenna	Power Setting	Test Performed	Limit	Result / Margin
	#52 5260MHz	Main + Aux	_	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	47.8dBµV/m @ 15780.4MHz (-6.2dB)
	#56 5280MHz	Main + Aux	_	Radiated Emissions, 1 - 40 GHz	LP0002	42.8dBµV/m @ 2497.0MHz (-11.2dB)
	#60 5300MHz	Main + Aux	_	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 211	43.5dBµV/m @ 15906.7MHz (-10.5dB)
CDD 20MHz	#64 5320MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 212	41.2dBµV/m @ 15960.0MHz (-12.8dB)
	#100 5500MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 213	46.5dBµV/m @ 11000.6MHz (-7.5dB)
	#120 5600MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	49.1dBµV/m @ 11200.2MHz (-4.9dB)
	#140 5700MHz	Main + Aux	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	64.0dBµV/m @ 17100.9MHz (-4.3dB)
	#54 5270MHz	Main + Aux	_	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	52.8dBµV/m @ 5422.0MHz (-1.2dB)
ļ	#62 5310MHz	Main + Aux	_	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 212	44.9dBµV/m @ 2493.5MHz (-9.1dB)
CDD 40MHz	#102 5510MHz	Main + Aux	_ _	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 213	44.9dBµV/m @ 2493.5MHz (-9.1dB)
ſ	#118 5590MHz	Main + Aux	_	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	46.6dBµV/m @ 11180.3MHz (-7.4dB)
	#134 5670MHz	Main + Aux	_	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E / LP0002 / RSS 210	45.2dBµV/m @ 11361.2MHz (-8.8dB)
	CDD 20MHz CDD 20MHz	Mode Channel CC 15.247, FCC 15E, F Of Results Continue Mode Channel #52 5260MHz #56 5280MHz #60 5300MHz 20MHz #64 5320MHz #100 5500MHz #120 5600MHz #140 5700MHz #62 5310MHz #62 5310MHz #118 5590MHz #118 5590MHz #134 5670MHz #134	Mode Channel Chain/ Antenna CC 15.247, FCC 15E, RSS 210, LPO Of Results Continued Mode Channel Chain/ Antenna #52 Main + Aux 5260MHz Main + Aux #56 Salomera 20MHz #60 5300MHz Main + Aux #100 Main + Aux #120 Main + Aux #120 Main + Aux #140 Main + Aux #520MHz Main + Aux #500MHz Main + Aux #510 Main + Aux #520MHz Main + Aux #500MHz Main + Aux	An AZAS* company roadcom CM943224HMS nne Liang CC 15.247, FCC 15E, RSS 210, LP0002 DF Results Continued Mode Channel Chain/ Antenna Power Setting #52 Main + Aux - 5260MHz Main + Aux - #56 5280MHz Main + Aux - #60 5300MHz Main + Aux - 20MHz #64 Main + Aux - #100 Main + Aux - - #100 Main + Aux - - #120 Main + Aux - - #120 Main + Aux - - #140 5700MHz Main + Aux - #140 5700MHz Main + Aux - #140 5310MHz Main + Aux - #140 5510MHz Main + Aux - #54 5210MHz Main + Aux - 462 5310MHz Main + Aux	Toadcom CM943224HMS nne Liang CC 15.247, FCC 15E, RSS 210, LP0002 Of Results Continued Mode Channel Chain/ Antenna Power Setting Test Performed #52 Main + Aux - Radiated Emissions, 1 - 40 GHz #56 Main + Aux - Radiated Emissions, 1 - 40 GHz #60 Main + Aux - Radiated Emissions, 1 - 40 GHz 20MHz #64 Main + Aux - Radiated Emissions, 1 - 40 GHz 20MHz #64 Main + Aux - Radiated Emissions, 1 - 40 GHz 20MHz #100 Main + Aux - Radiated Emissions, 1 - 40 GHz 20MHz #100 Main + Aux - Radiated Emissions, 1 - 40 GHz #100 Main + Aux - Radiated Emissions, 1 - 40 GHz #120 Main + Aux - Radiated Emissions, 1 - 40 GHz #62 Main + Aux - Radiated Emissions, 1 - 40 GHz #62 Main + Aux - Radiated Emissions, 1	An AZZA* company Job Number: roadcom Job Number: CM943224HMS T-Log Number: Account Manager: Account Manager: nne Liang C15.247, FCC 15E, RSS 210, LP0002 Class: of Results Continued Power Setting Test Performed Limit #52 Main + Aux - 1 - 40 GHz LP0002 / RSS 210 #56 5280MHz Main + Aux - 1 - 40 GHz LP0002 / RSS 211 #60 Main + Aux - 1 - 40 GHz LP0002 / RSS 211 EC 15.209 / 15 E / 20MHz #64 Main + Aux - 1 - 40 GHz LP0002 / RSS 211 #64 Main + Aux - 1 - 40 GHz LP0002 / RSS 212 #100 20MHz 5320MHz Main + Aux - 1 - 40 GHz LP0002 / RSS 212 #100 Main + Aux - 1 - 40 GHz LP0002 / RSS 212 #100 Main + Aux - 1 - 40 GHz LP0002 / RSS 210 #110 Main + Aux - Radiated Emissions, FCC 15.209 / 15 E /

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard. Note, preliminary evaluation showed no emissions above 18 GHz.

(CE	Ellic	ott						EMC Test Data
Client:	Broadcom	2) company						Job Number: J74037
Madal	DOM042224						T-	Log Number: T74146
Wodel:	BCM943224	HIVIS					Acco	unt Manager: Eriksen / Washington
Contact:	Anne Liang							
Standard:	FCC 15.247	, FCC 15E, F	RSS 210, LP	0002				Class: N/A
[Te T€ Run #1c: Cl	Date of Test: st Engineer: est Location: hannel 60 (5	2/2/2009 Suhaila Khu Chamber # 3 300 MHz), 80	shzad 3 02.11a SISO					
Spurious R	adiated Emi	SSIONS - IVIAI Pol	15 200	9/15F	Detector	Λzimuth	Hoight	Comments
MH7	dBuV/m	v/h	l imit	Margin	Pk/OP/Ava	degrees	meters	
2494.630	42.4	V	54.0	-11.6	AVG	237	1.3	RB 1 MHz; VB: 10 Hz
2498.000	59.1	V	74.0	-14.9	PK	237	1.3	RB 1 MHz; VB: 1 MHz
10598.990	41.8	V	68.3	-26.5	AVG	240	1.1	RB 1 MHz; VB: 10 Hz
10598.050	55.1	V	88.3	-33.2	PK	240	1.1	RB 1 MHz; VB: 1 MHz
15806.410	31.2	V	54.0	-22.8	AVG	90	1.0	RB 1 MHz; VB: 10 Hz
15810.110	42.9	V	74.0	-31.1	PK	90	1.0	RB 1 MHz; VB: 1 MHz
5433.880	41.2	Н	54.0	-12.8	AVG	164	1.6	RB 1 MHz; VB: 10 Hz
Amplitude (dBuV/m)	nnel @ 5300 140.0 - 120.0 - 100.0 - 80.0 - 40.0 - 40.0 - 1000		ntenna		Frequenc	y (MHz)	· ·	

(7 E	Ellic	Ott MAX*company						EMO	C Test D	ata
Client:	Broadcom							Job Number:	J74037	
							T-	Log Number:	T74146	
Model:	BCM9432	24HMS					Acco	unt Manager:	Eriksen / Washin	aton
Contact:	: Anne Lian	D					 I			<u>J'</u>
Standard:	FCC 15.2	<u></u>	RSS 210, LP	0002			 I	Class:	N/A	
0101100										
Run #3, Rae Run #3a: C <i>S<u>purious R</u></i>	diated Spu hannel 54 Ra <u>diated Ei</u>	ırious Emissio (5270 MHz), 8 mi <u>ssions - Ma</u>	ons, 30 - 40,0 02.11n40 Mi <i>in<u> & Aux An</u></i>	000 MH. Ope MO ate <u>nnas</u>	eration in the	5250-5350	& 5470-572	5 MHz Band	- 802.11n40 MHz	CDD
Frequency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5422.000	52.8	H	54.0	-1.2	AVG	190	1.7	RB 1 MHz; \	VB: 10 Hz	
15812.860	50.2	Н	54.0	-3.8	AVG	11	1.1	RB 1 MHz; \	VB: 10 Hz	
5418.920	66.0	Н	74.0	-8.0	PK	190	1.7	RB 1 MHz; \	VB: 1 MHz	
2493.470	42.3	V	54.0	-11.7	AVG	32	1.9	RB 1 MHz; \	VB: 10 Hz	
15807.540	60.6	Н	74.0	-13.4	PK	11	1.1	RB 1 MHz; \	VB: 1 MHz	
2499.410	56.7	V	74.0	-17.3	PK	32	1.9	RB 1 MHz; \	VB: 1 MHz	
ude (dBuV/m)	140.0 - 120.0 - 100.0 - 80.0 -	<u> </u>								

40.0

20.0-¦ 1000

.

Frequency (MHz)

18000

. 10000

Elliott	EMC Test Data
Client: Broadcom	loh Number: 174037
	T-Log Number: T74146
Model: BCM943224HMS	Account Manager: Eriksen / Washington
Contact: Anne Liang	
Standard: FCC 15.247, FCC 15E, RSS 210, LP0002	Class: NII
Radiated Emissio (Elliott Laboratories Fremont Facility, Ser	ONS ni-Anechoic Chamber)
Test Specific Details	
Objective: The objective of this test session is to perform final qual specification listed above.	lification testing of the EUT with respect to the
Date of Test: 2/11/2009 & 2/12/09Config. LTest Engineer: Vishal Narayan/R. VarelasConfig ChaTest Location: Chamber #5Host Unit Vo	Jsed: 1 ange: None Itage 120V/60Hz
General Test Configuration The EUT and any local support equipment were located on the turntable for rac	diated emissions testing.
The test distance and extrapolation factor (if applicable) are detailed under each	ch run description.
Note, preliminary testing indicates that the emissions were maximized by orie antenna. Maximized testing indicated that the emissions were maximized by antenna, <u>and</u> manipulation of the EUT's interface cables.	ntation of the EUT and elevation of the measurement orientation of the EUT, elevation of the measurement
Ambient Conditions: Temperature: 20 °C	
Rel. Humidity: 41 %	

Ellic)tt			EMC Test Data
Client: Broadcom			J	ob Number: J74037
			T-L	.og Number: T74146
Model: BCIM943224	HMS		Accou	nt Manager: Eriksen / Washington
Contact: Anne Liang			+	
Standard: FCC 15.247	, FCC 15E, RSS 210, LP0002			Class: NII
Summary of Result	c		<u></u>	
Summary of Result	5			
Run #	Test Performed	Limit	Result	Margin
1a Rx at 5220MHz, Aux	RE, 1000 - 18,000 MHz,	RSS 210 P0002	Pass	43.9dBµV/m @ 2493.5MHz
only	Maximized Emissions	NJJ 210, LI 0002	1 033	(-10.1dB)
1b Rx at 5220MHz, Aux	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	42.4dBµV/m @ 2494.6MHz
and Main	Maximized Emissions		1 400	(-11.6dB)
1c Rx at 5220MHz,	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	43.8dBµV/m @ 2494.2MHz
Main only	Maximized Emissions			(-10.2dB)
2a Rx at 5300MHz, Aux	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	44.1dBµV/m @ 2493.6MHz
only	Maximized Emissions			(-9.9dB)
2b Rx at 5300MHz, Aux	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	41.8dBµV/m @ 2494.6MHz
and Main	Maximized Emissions			(-12.2dB)
2c Rx at 5300MHz,	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	41.4dBµV/m @ 2493.4MHz
Main only	Maximized Emissions			(-12.6dB)
3a Rx at 5600MHz, Aux	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	43.8dBµV/m @ 2493.9MHz
only	Maximized Emissions			(-10.2dB)
3b Rx at 5600MHz, Aux	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	41.6dBµV/m @ 2494./MHz
and Main	Maximized Emissions		1 400	(-12.4dB)
3c Rx at 5600MHz,	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	42.6dBµV/m @ 2493.5MHz
Main only	Maximized Emissions			(-11.4dB)
4 Rx at 5230MHz,	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	41.6dBµV/m @ 2497.2MHz
Aux and Main	Maximized Emissions			(-12.4dB)
5 Rx at 5310MHz,	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	41.7dBµV/m @ 2498.8MHz
Aux and Main	Maximized Emissions			(-12.3dB)
6 Rx at 5590MHz,	RE, 1000 - 18,000 MHz,	RSS 210, LP0002	Pass	43.0dBµV/m @ 2498.9MHz
Aux and Main	Maximized Emissions			(-11.0dB)

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Broadcom							Job Number:	J74037
							T-	Log Number:	T74146
Model:	BCM943224	HMS					Ассо	unt Manager:	Eriksen / Washingt
Contact:	Anne Liang								
Standard:	FCC 15.247	, FCC 15E	, RSS 210, L	.P0002				Class:	NII
ontinuatic	on of Run #1								
MAIN									
	0								
00.	0-								
70.	0-								
Ê									
3 60.	0-								
<u> </u>	o-			1					
1 9						1			1
- 표				-0	د ال		and the second		- K.
1 <u>11</u> 111 111 111 111 111 111 111 111 11	0-	WALL.	1 .1.		and March 19	فجدبانه ويعتق الروا		1. A.A.	NY4
110 40. W 30.	o- o-WMW	WWWW	hunder	W. Barnana	whenter	and the second second		and the second	N MANN
과 백 40. 북 30.	0- 0-WMW	handhalle	Innaha	H. Jananana	when the head we	and the second second		he way	WW WWW
관 역 40. 30. 20.	0- 0- 0- 1000	MANA	uhan ala	Hannan .	what it has the	aglyre ywrad		1000	
관 역 40. 30. 20.	0- 0- 0- 1000	han half	Unnala	Wagnamen	Frequency (MHz)		10000	18000
관 선 40. 북 30. 20.	0- 0- 0- 1000	lwh hyfr	Unada.	Naganan	Frequency (MHz)		10000	18000
30. 20.			Unoralla.	N Jananan	Frequency (MHz)		10000	18000
20.	0	ngs captur	ed during p	re-scan - Au	Frequency (MHz)	Height	10000	18000
reliminary MHz	0 - WWWW 0 - 1000 peak readir Level dBuV/m	ngs captur Pol v/h	red during p RSS GEN	re-scan - Au	Frequency (ux antenna Detector Pk/QP/Ava	MHz)	Height	10000	18000
reliminary MHz 240, 30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	0	ngs captur Pol V/h	ed during p RSS GEN Limit 54.0	re-scan - Au	Frequency (ux antenna Detector Pk/QP/Avg Peak	MHz) Azimuth degrees 35	Height meters 1.9	Comments	18000
reliminary MHz 240. 20. 20. 2497.830 1977.410	0	ngs captur Pol V/h V	ed during p RSS GEN Limit 54.0 54.0	re-scan - Au I \ LP0002 Margin 0.7 -8.4	Frequency (ux antenna Detector Pk/QP/Avg Peak Peak	Azimuth degrees 35 121	Height meters 1.9 1.6	Comments	18000
reliminary MHz 2497.830	0	ngs captur Pol V/h V	ed during p RSS GEN Limit 54.0 54.0	re-scan - Au N LP0002 Margin 0.7 -8.4	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak	Azimuth degrees 35 121	Height meters 1.9 1.6	Comments	18000
reliminary MHz 2497.830 40, 30, 20, 20, 2497.830 4977.410	0	ngs captur Pol V/h V V	ed during p RSS GEN Limit 54.0 54.0	re-scan - Au N LP0002 Margin 0.7 -8.4	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak	Azimuth degrees 35 121	Height meters 1.9 1.6	Comments	18000
reliminary MHz 2497.830 4977.410	o – WWWW o – WWWW 1000 peak readir Level dBµV/m 54.7 45.6	ngs captur Pol V/h V V	red during p RSS GEN Limit 54.0 54.0	re-scan - Au N LP0002 Margin 0.7 -8.4 re-scan - Au	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak UX and Main a Detector	Azimuth degrees 35 121	Height meters 1.9 1.6	Comments	18000
reliminary MHz 2497.830 4977.410 reliminary	o – W o – W 1000 peak readir Level dBµV/m 54.7 45.6 peak readir Level dBµV/m	ngs captur Pol V/h V V ngs captur Pol V/h	ed during p RSS GEN Limit 54.0 54.0 ed during p RSS GEN Limit	re-scan - Au N LP0002 Margin 0.7 -8.4 re-scan - Au N LP0002 Margin	Frequency (Jx antenna Detector Pk/QP/Avg Peak Peak Jx and Main a Detector Pk/OP/Avg	Azimuth degrees 35 121 antenna Azimuth degrees	Height meters 1.9 1.6 Height meters	Comments Comments	18000
reliminary MHz 2497.830 4977.410 reliminary requency MHz 2494.610	0	ngs captur Pol v/h V V ngs captur Pol v/h V	ed during p RSS GEN Limit 54.0 54.0 ed during p RSS GEN Limit 54.0	re-scan - Au N LP0002 Margin 0.7 -8.4 re-scan - Au N LP0002 Margin -11.6	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak UX and Main a Detector Pk/QP/Avg AVG	Azimuth degrees 35 121 Azimuth degrees 213	Height meters 1.9 1.6 Height meters 1.6	Comments Comments	18000
reliminary 7requency 4977.410 7requency MHz 2497.830 4977.410 7requency MHz 2494.610 2499.840	0	ngs captur Pol V/h V ngs captur Pol V/h V V	ed during p RSS GEN Limit 54.0 54.0 RSS GEN Limit 54.0 74.0	re-scan - Au N LP0002 Margin 0.7 -8.4 re-scan - Au N LP0002 Margin -11.6 -15.3	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak Detector Pk/QP/Avg AVG PK	Azimuth degrees 35 121 antenna Azimuth degrees 213 213	Height meters 1.9 1.6 Height meters 1.6 1.6	Comments Comments AUX + MAIN AUX + MAIN	N N
reliminary MHz 2497.830 4977.410 reliminary 7requency MHz 2497.610 2499.840 4987.300	0 - 0 - 1000 2 peak readir Level dBμV/m 54.7 45.6 2 peak readir Level dBμV/m 42.4 58.7 34.4	ngs captur Pol V/h V N Scaptur Pol V/h V V V V H	ed during p RSS GEN Limit 54.0 54.0 ed during p RSS GEN Limit 54.0 74.0 54.0	re-scan - Au N LP0002 Margin 0.7 -8.4 re-scan - Au N LP0002 Margin -11.6 -15.3 -19.6	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak UX and Main a Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 35 121 antenna Azimuth degrees 213 213 105	Height meters 1.9 1.6 Height meters 1.6 1.6 1.7	Comments Comments AUX + MAIN AUX + MAIN AUX + MAIN	N N
reliminary MHz 2497.830 4977.410 requency MHz 2497.830 4977.410 reliminary 4977.410 4977.410 4977.410	0 - 0 - 1000 0 - 1000	ngs captur Pol v/h V V ngs captur Pol v/h V V V V H H H	ed during p RSS GEN Limit 54.0 54.0 red during p RSS GEN Limit 54.0 74.0 74.0 74.0 74.0	re-scan - Au LP0002 Margin 0.7 -8.4 re-scan - Au LP0002 Margin -11.6 -15.3 -19.6 -23.0	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak UX and Main a Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 35 121 Azimuth degrees 213 213 105 105	Height meters 1.9 1.6 Height meters 1.6 1.6 1.7 1.7	Comments Comments AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN	N N N
Image: square	0	ngs captur Pol V/h V N S S Captur Pol V/h V V V V V H H H	ed during p RSS GEN Limit 54.0 54.0 RSS GEN Limit 54.0 74.0 74.0 74.0	re-scan - Au N LP0002 Margin 0.7 -8.4 re-scan - Au N LP0002 Margin -11.6 -15.3 -19.6 -23.0	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 35 121 Azimuth degrees 213 213 105 105	Height meters 1.9 1.6 Height meters 1.6 1.6 1.6 1.7 1.7	Comments Comments AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN	N N N N
Image 40, 30, 20, reliminary Frequency MHz 2497.830 4977.410 reliminary Frequency MHz 2497.830 4977.410 Preliminary Grequency MHz 2494.610 2499.840 4987.300 4976.690 reliminary Frequency Frequency MHz 2499.840 2976.690	0 - 1000 0 - 1000 $peak readir Level dB\mu V/m54.745.6peak readir Level dB\mu V/m42.458.734.451.0peak readir$	ngs captur Pol V/h V V N S S Captur Pol V/h V V H H H	ed during p RSS GEN Limit 54.0 54.0 6 RSS GEN Limit 54.0 74.0 74.0 74.0 74.0 74.0 74.0	re-scan - Au N LP0002 Margin 0.7 -8.4 re-scan - Au N LP0002 Margin -11.6 -15.3 -19.6 -23.0 re-scan - Ma L LP0002	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak Detector Pk/QP/Avg AVG PK AVG PK AVG PK ain antenna	Azimuth degrees 35 121 Azimuth degrees 213 213 105 105 < only do to Azimuth	Height meters 1.9 1.6 Height meters 1.6 1.6 1.7 1.7 this one if all	Comments Comments AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN	N N N N N N N N N N N N N N N N N N N
reliminary Trequency MHz 2497.830 4977.410 reliminary Trequency MHz 2494.610 2499.840 4987.300 4977.410 4987.300 4987.300 4987.300 4977.410 4987.300 4987.300 4987.300 4987.300 4987.300 4987.300 4987.300 4987.300 4987.300 4987.300 4976.690 508 508 508 508 508 508 508 50	0 – 0 – 1000	ngs captur Pol V/h V V ngs captur Pol V/h V V H H H ngs captur Pol V/h	ed during p RSS GEN Limit 54.0 54.0 ed during p RSS GEN Limit 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 7	re-scan - Au I \ LP0002 Margin 0.7 -8.4 re-scan - Au V LP0002 Margin -11.6 -15.3 -19.6 -23.0 re-scan - Ma V LP0002 Margin	Frequency (UX antenna Detector Pk/QP/Avg Peak Peak Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 35 121 Azimuth degrees 213 213 105 105 < only do to Azimuth degrees	Height meters 1.9 1.6 Height meters 1.6 1.6 1.7 1.7 this one if au Height meters	Comments Comments AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN AUX + MAIN	N N N N N N N N N N N N N N N N N N N

EMC Test Data

Client:	Broadcom							Job Number: J74037
							T-	Log Number: T74146
Model:	BCM943224	HMS					Ассо	unt Manager: Eriksen / Washington
Contact [.]	Anne Liano							
Standard	FCC 15 247	FCC 15F	RSS 210 1	P0002				Class: NII
Continuatio	n of Pun #1	, 1 00 10E	, 1100 210, 2	1 0002				
Continuatio								
Maximized	average and	l peak read	dinas - wors	t-case ante	nna combina	tion		
Frequency	Level	Pol	RSS GEN	I \ LP0002	Detector	Azimuth	Heiaht	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2493.490	43.9	V	54.0	-10.1	AVG	48	1.8	AUX
2494.230	43.8	V	54.0	-10.2	AVG	84	1.0	MAIN
2494.610	42.4	V	54.0	-11.6	AVG	213	1.6	AUX + MAIN
2498.770	60.2	V	74.0	-13.8	PK	48	1.8	AUX
2499.550	59.9	V	74.0	-14.1	PK	84	1.0	MAIN
2499.840	58.7	V	74.0	-15.3	PK	213	1.6	AUX + MAIN
17698.350	37.8	Н	54.0	-16.2	AVG	229	1.4	AUX
4976.560	35.8	V	54.0	-18.2	AVG	123	1.6	AUX
4987.300	34.4	Н	54.0	-19.6	AVG	105	1.7	AUX + MAIN
4977.800	53.2	V	74.0	-20.8	PK	123	1.6	AUX
4976.690	51.0	Н	74.0	-23.0	PK	105	1.7	AUX + MAIN
17697.200	49.4	Н	74.0	-24.6	PK	229	1.4	AUX

Client	Broadcom							Job Number:	J74037
							T-	Log Number:	T74146
Model:	BCM943224	HMS					Ассо	unt Manager:	Eriksen / Washington
Contact:	Anne Liang								
Standard:	FCC 15.247	, FCC 15E	, RSS 210, L	P0002				Class:	NII
Continuatio	on of Run #2	<u>)</u>							
Proliminor	, nook roodin	ac contur	od during n	ra agan A	wantanna				
Frequency	l evel	Pol	RSS GEN		Detector	Azimuth	Height	Comments	
MHz	dBuV/m	v/h	Limit	Margin	Pk/OP/Ava	degrees	meters	Comments	
2499.360	53.4	V	54.0	-0.6	Peak	27	1.6		
reliminary	ı peak readir	ngs captur	ed during p	re-scan - Ai	ux and Main a	antenna			
Frequency	Level	Pol	RSS GEN	LP0002	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2490.810	50.9	V	54.0	-3.1	Peak	262	1.6		
4976.490	42.1	V	54.0	-11.9	Peak	315	1.6		
Preliminary	v peak readir	nas captur	ed durina p	re-scan - M	ain antenna	< onlv do i	this one if al	ux results are	worse then main + aux
Frequency	Level	Pol	RSS GEN	I\LP0002	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2489.900	50.3	V	54.0	-3.7	Peak	210	1.0		
2489.900 4992.690	50.3 42.8	V H	54.0 54.0	-3.7 -11.2	Peak Peak	210 318	1.0 2.0		
2489.900 4992.690	50.3 42.8	V H	54.0 54.0	-3.7 -11.2	Peak Peak	210 318	1.0 2.0		
2489.900 4992.690 Maximized	50.3 42.8 average and	V H I peak read	54.0 54.0 dings - wors	-3.7 -11.2 t-case ante	Peak Peak nna combina	210 318 tion	1.0 2.0		
2489.900 4992.690 Maximized Frequency	50.3 42.8 average and Level	V H I peak read Pol	54.0 54.0 dings - wors RSS GEN	-3.7 -11.2 t-case ante	Peak Peak nna combina Detector	210 318 tion Azimuth	1.0 2.0 Height	Comments	
2489.900 4992.690 Maximized Frequency MHz	50.3 42.8 average and Level dBµV/m	V H I peak read Pol V/h	54.0 54.0 dings - wors RSS GEN Limit	-3.7 -11.2 t-case ante \\LP0002 Margin	Peak Peak nna combina Detector Pk/QP/Avg	210 318 tion Azimuth degrees	1.0 2.0 Height meters	Comments	
2489.900 4992.690 /aximized Frequency MHz 2493.550	50.3 42.8 average and Level dBµV/m 44.1	V H Pol v/h V	54.0 54.0 dings - wors RSS GEN Limit 54.0	-3.7 -11.2 t-case ante \\LP0002 Margin -9.9	Peak Peak nna combina Detector Pk/QP/Avg AVG	210 318 tion Azimuth degrees 26	1.0 2.0 Height meters 1.6	Comments	
2489.900 4992.690 /aximized Frequency MHz 2493.550 2494.610	50.3 42.8 average and Level dBµV/m 44.1 41.8	V H Pol v/h V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0	-3.7 -11.2 t-case ante \LP0002 Margin -9.9 -12.2	Peak Peak nna combina Detector Pk/QP/Avg AVG AVG	210 318 tion Azimuth degrees 26 262	1.0 2.0 Height meters 1.6 1.6	Comments AUX AUX + MAIN	J
2489.900 4992.690 faximized Frequency MHz 2493.550 2494.610 2493.390	50.3 42.8 average and Level dBμV/m 44.1 41.8 41.4	V H Pol v/h V V V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0	-3.7 -11.2 t-case ante \LP0002 Margin -9.9 -12.2 -12.6	Peak Peak nna combina Detector Pk/QP/Avg AVG AVG AVG	210 318 tion Azimuth degrees 26 262 200	1.0 2.0 Height meters 1.6 1.6 1.0	Comments AUX AUX + MAIN MAIN	N
2489.900 4992.690 Maximized Frequency MHz 2493.550 2494.610 2493.390 2498.190	50.3 42.8 average and Level dBμV/m 44.1 41.8 41.4 60.5	V H Pol v/h V V V V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0 54.0 74.0	-3.7 -11.2 t-case ante \\LP0002 Margin -9.9 -12.2 -12.6 -13.5	Peak Peak Detector Pk/QP/Avg AVG AVG AVG AVG PK	210 318 tion Azimuth degrees 26 262 260 200 26	1.0 2.0 Height meters 1.6 1.6 1.0 1.6	Comments AUX AUX + MAIN MAIN AUX	١
2489.900 4992.690 Aaximized Frequency MHz 2493.550 2494.610 2493.390 2498.190 2498.120	50.3 42.8 average and Level dBμV/m 44.1 41.8 41.4 60.5 58.0	V H Pol V/h V V V V V V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0 54.0 74.0 74.0	-3.7 -11.2 t-case ante \LP0002 Margin -9.9 -12.2 -12.6 -13.5 -16.0	Peak Peak Detector Pk/QP/Avg AVG AVG AVG AVG PK PK	210 318 tion Azimuth degrees 26 262 200 26 262 262	1.0 2.0 Height meters 1.6 1.6 1.0 1.6 1.6	Comments AUX AUX + MAIN MAIN AUX AUX + MAIN	J
2489.900 4992.690 /aximized Frequency MHz 2493.550 2494.610 2493.390 2498.120 2498.120 2498.010	50.3 42.8 average and dBμV/m 44.1 41.8 41.4 60.5 58.0 57.8	V H Pol V/h V V V V V V V V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0 74.0 74.0 74.0	-3.7 -11.2 t-case ante \LP0002 Margin -9.9 -12.2 -12.6 -13.5 -16.0 -16.2	Peak Peak Detector Pk/QP/Avg AVG AVG AVG AVG PK PK PK	210 318 Azimuth degrees 26 262 200 26 262 200 26 262 200	1.0 2.0 Height meters 1.6 1.6 1.0 1.6 1.6 1.6 1.0	Comments AUX AUX + MAIN MAIN AUX AUX + MAIN MAIN	N N
2489.900 4992.690 Aaximized Frequency MHz 2493.550 2494.610 2493.390 2498.190 2498.120 2498.010 4987.200	50.3 42.8 average and Level dBμV/m 44.1 41.8 41.4 60.5 58.0 57.8 34.4 20.5	V H Pol V/h V V V V V V V V V V V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0 74.0 74.0 74.0 54.0 54.0	-3.7 -11.2 t-case ante \LP0002 Margin -9.9 -12.2 -12.6 -13.5 -16.0 -16.2 -19.6	Peak Peak Detector Pk/QP/Avg AVG AVG AVG PK PK PK AVG	210 318 Azimuth degrees 26 262 200 26 262 200 26 262 200 300	1.0 2.0 Height meters 1.6 1.6 1.0 1.6 1.6 1.0 1.9	Comments AUX AUX + MAIN MAIN AUX AUX + MAIN MAIN MAIN	N N
2489.900 4992.690 Aaximized Frequency MHz 2493.550 2494.610 2493.390 2498.190 2498.120 2498.010 4987.200 4976.270	50.3 42.8 average and Level dBμV/m 44.1 41.8 41.4 60.5 58.0 57.8 34.4 33.5 54.2	V H Pol V/h V V V V V V V V V V V V V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 74.0 74.0 74.0 74.0 54.0 54.0 54.0	-3.7 -11.2 t-case ante \LP0002 Margin -9.9 -12.2 -12.6 -13.5 -16.0 -16.2 -19.6 -20.5	Peak Peak Detector Pk/QP/Avg AVG AVG AVG PK PK PK AVG AVG AVG	210 318 Azimuth degrees 26 262 200 26 262 262 262 200 300 300 316	1.0 2.0 Height meters 1.6 1.6 1.6 1.6 1.6 1.6 1.0 1.9 1.6	Comments AUX AUX + MAIN MAIN AUX + MAIN MAIN MAIN AUX + MAIN AUX + MAIN	N N
2489.900 4992.690 Frequency MHz 2493.550 2494.610 2493.390 2498.120 2498.120 2498.010 4987.200 4976.270 4976.470	50.3 42.8 average and Level dBμV/m 44.1 41.8 41.4 60.5 58.0 57.8 34.4 33.5 51.3 51.3	V H Pol V/h V V V V V V V V V V V V V V V V V V	54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0 74.0 74.0 74.0 54.0 54.0 54.0 54.0 74.0	-3.7 -11.2 t-case ante L LP0002 Margin -9.9 -12.2 -12.6 -13.5 -16.0 -16.2 -19.6 -20.5 -22.7	Peak Peak Detector Pk/QP/Avg AVG AVG AVG PK PK PK AVG AVG AVG AVG PK	210 318 Azimuth degrees 26 262 200 26 262 200 300 316 316 200	1.0 2.0 Height meters 1.6 1.6 1.6 1.6 1.6 1.0 1.6 1.0 1.9 1.6 1.6	Comments AUX AUX + MAIN MAIN AUX + MAIN MAIN MAIN AUX + MAIN AUX + MAIN	J J J

Cliant	Broadcom	Company						Joh Numbor	17/1027
Client	DIUducuili						т	JOD NUITIDEL.	J74037
Model:	BCM943224	HMS					I-Log Number: 174146		1/4140
							Account Manager: Eriksen / Washing		Eriksen / Washingtoi
Contact:	Anne Liang								
Standard:	FCC 15.247	, FCC 15E	, RSS 210, L	P0002				Class:	NII
ontinuatio	on of Run #3	3							
				_	_				
reliminary -	peak readir	ngs captur	ed during p	re-scan - Au	ix antenna				
-requency	Level	Pol	RSS GEN	\LP0002	Detector	Azimuth	Height	Comments	
MHZ	dBµV/m	v/h	Limit	Margin	PK/QP/Avg	degrees	meters		
2498.750	54.0	V	54.0	0.0	Реак	51	1.0		
roliminan	unak raadir	nas contur	od during p		iv and Main a	ntonna			
		igs capiul Dol	RSS CEN	10-30011 - AU	Detector	Δzimuth	Height	Commonts	
MH7		v/h	Limit	Margin	$Pk/OP/\Delta v/a$	dearees	meters	COMMENIS	
2500 270	ubμv/m 51.1	V	54 0	-2.9	Peak	190	1.6		
<u>4996 930</u>	43.1	V	54.0	-10.9	Peak	306	1.0		
		-		ro coop M	ain antonna	only do t	his ∩n∆ if a	uv rasults ara	worse then main + a
Preliminary	[,] peak readir	nas captur	ea aurina bi	e-scan - wa		$\sim - 0 0 0 0 0 0$	111.3 0115 11 01	A = C = C = C = C = C = C = C = C = C =	
Preliminary Frequency	peak readir	ngs captur Pol	RSS GEN	LP0002	Detector	Azimuth	Height	Comments	
Preliminary Frequency MHz	deak readir Level dBuV/m	ngs captur Pol v/h	RSS GEN Limit	LP0002 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
Preliminary Frequency MHz 2500.270	r peak readir Level dBµV/m 52.0	ngs captur Pol v/h V	RSS GEN Limit 54.0	LP0002 Margin -2.0	Detector Pk/QP/Avg Peak	Azimuth degrees 199	Height meters 1.0	Comments	
Preliminary Frequency MHz 2500.270 4987.500	r peak readir Level dBμV/m 52.0 41.8	ngs captur Pol V/h V H	RSS GEN Limit 54.0 54.0	Argin -2.0 -12.2	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 199 269	Height Meters 1.0 1.1	Comments	
Preliminary Frequency MHz 2500.270 4987.500	Level dBμV/m 52.0 41.8	ngs captur Pol V/h V H	RSS GEN Limit 54.0 54.0	LP0002 Margin -2.0 -12.2	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 199 269	Height Meters 1.0 1.1	Comments	
Preliminary Frequency MHz 2500.270 4987.500 Maximized	peak readir Level dBμV/m 52.0 41.8 average and	ngs captur Pol V/h V H	RSS GEN Limit 54.0 54.0	LP0002 Margin -2.0 -12.2 t-case ante	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 199 269	Height Meters 1.0 1.1	Comments	
Preliminary Frequency MHz 2500.270 4987.500 Maximized Frequency	peak readir Level dBµV/m 52.0 41.8 average and Level	ngs captur Pol V/h V H I peak read Pol	RSS GEN Limit 54.0 54.0 dings - wors RSS GEN	LP0002 Margin -2.0 -12.2 t-case ante LP0002	Detector Pk/QP/Avg Peak Peak nna combina Detector	Azimuth degrees 199 269 tion Azimuth	Height meters 1.0 1.1 Height	Comments	
Preliminary Frequency MHz 2500.270 4987.500 Maximized Frequency MHz	peak readir Level dBµV/m 52.0 41.8 average and Level dBµV/m	ngs captur Pol V/h H I peak read Pol v/h	RSS GEN Limit 54.0 54.0 dings - wors RSS GEN Limit	Argin -2.0 -12.2 -12.2 t-case ante \LP0002 Margin	Detector Pk/QP/Avg Peak Peak nna combina Detector Pk/QP/Avg	Azimuth degrees 199 269 tion Azimuth degrees	Height Meters 1.0 1.1 Height Meters	Comments	
Preliminary Frequency MHz 2500.270 4987.500 Maximized Frequency MHz 2493.880	peak readir Level dBµV/m 52.0 41.8 average and Level dBµV/m 43.8	ngs captur Pol V/h V H I peak read Pol V/h V	RSS GEN Limit 54.0 54.0 dings - wors RSS GEN Limit 54.0	LP0002 Margin -2.0 -12.2 t-case ante \LP0002 Margin -10.2	Detector Pk/QP/Avg Peak Peak nna combina Detector Pk/QP/Avg AVG	Azimuth degrees 199 269 tion Azimuth degrees 27	Height meters 1.0 1.1 Height meters 1.5	Comments Comments	
Preliminary Frequency MHz 2500.270 4987.500 Asximized Frequency MHz 2493.880 2493.460	peak readir Level dBµV/m 52.0 41.8 average and Level dBµV/m 43.8 42.6	ngs captur Pol V/h V H I peak read Pol V/h V V	RSS GEN Limit 54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0	Argin -2.0 -12.2 t-case ante \LP0002 Margin -10.2 -11.4	Detector Pk/QP/Avg Peak Peak nna combina Detector Pk/QP/Avg AVG AVG	Azimuth degrees 199 269 tion Azimuth degrees 27 199	Height meters 1.0 1.1 Height meters 1.5 1.0	Comments Comments AUX MAIN	
Preliminary Frequency MHz 2500.270 4987.500 Maximized Frequency MHz 2493.880 2493.460 2494.680	peak readir Level dBμV/m 52.0 41.8 average and Level dBμV/m 43.8 42.6 41.6	ngs captur Pol V/h V H I peak read Pol V/h V V V	ea during p RSS GEN Limit 54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0	LP0002 Margin -2.0 -12.2 t-case ante \LP0002 Margin -10.2 -11.4 -12.4	Detector Pk/QP/Avg Peak Peak nna combina Detector Pk/QP/Avg AVG AVG AVG	Azimuth degrees 199 269 tion Azimuth degrees 27 199 209	Height meters 1.0 1.1 Height meters 1.5 1.0 1.6	Comments Comments AUX MAIN AUX + MAIN	
Preliminary Frequency MHz 2500.270 4987.500 Aaximized Frequency MHz 2493.880 2493.460 2494.680 2498.100	peak readir Level dBµV/m 52.0 41.8 average and Level dBµV/m 43.8 42.6 41.6 60.3	ngs captur Pol V/h V H I peak read Pol V/h V V V V V	ed during p RSS GEN Limit 54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	LP0002 Margin -2.0 -12.2 t-case ante \LP0002 Margin -10.2 -11.4 -12.4 -13.7	Detector Pk/QP/Avg Peak Peak Detector Pk/QP/Avg AVG AVG AVG PK	Azimuth degrees 199 269 tion Azimuth degrees 27 199 209 27	Height Meters 1.0 1.1 Height Meters 1.5 1.0 1.6 1.5	Comments Comments AUX MAIN AUX + MAIN AUX	Verse men man + at
Preliminary Frequency MHz 2500.270 4987.500 Maximized Frequency MHz 2493.880 2493.460 2494.680 2498.100 2498.100	r peak readir Level dBµV/m 52.0 41.8 average and Level dBµV/m 43.8 42.6 41.6 60.3 58.8	ngs captur Pol V/h V H I peak read Pol V/h V V V V V V V	ed during p RSS GEN Limit 54.0 54.0 dings - wors RSS GEN Limit 54.0 54.0 54.0 SS GEN Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0	LP0002 Margin -2.0 -12.2 t-case ante \LP0002 Margin -10.2 -11.4 -12.4 -13.7 -15.2	Detector Pk/QP/Avg Peak Peak Detector Pk/QP/Avg AVG AVG AVG AVG PK PK	Azimuth degrees 199 269 tion Azimuth degrees 27 199 209 27 199	Height Meters 1.0 1.1 Height Meters 1.5 1.0 1.6 1.5 1.0 1.6 1.5 1.0	Comments Comments AUX MAIN AUX + MAIN AUX MAIN	Verse men man + a
Preliminary Frequency MHz 2500.270 4987.500 Maximized Frequency MHz 2493.880 2493.460 2494.680 2498.100 2489.810 2499.340	r peak readir Level dBµV/m 52.0 41.8 average and Level dBµV/m 43.8 42.6 41.6 60.3 58.8 58.1	ngs captur Pol V/h V H I peak read Pol V/h V V V V V V V V V	Background Backgro	LP0002 Margin -2.0 -12.2 t-case ante \LP0002 Margin -10.2 -11.4 -12.2 -11.4 -12.7 -15.2 -15.9	Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg AVG AVG AVG AVG PK PK PK	Azimuth degrees 199 269 tion Azimuth degrees 27 199 209 27 199 209 27 199 209 27 199	Height meters 1.0 1.1 Height meters 1.5 1.0 1.6 1.5 1.0 1.6	Comments Comments AUX MAIN AUX + MAIN AUX MAIN AUX + MAIN AUX + MAIN	
Preliminary Frequency MHz 2500.270 4987.500 Maximized Frequency MHz 2493.880 2493.460 2494.680 2494.680 2498.100 2499.340 4987.180	r peak readir Level dBµV/m 52.0 41.8 average and Level dBµV/m 43.8 42.6 41.6 60.3 58.8 58.1 34.2	ngs captur Pol V/h V H I peak read Pol V/h V V V V V V V V V V V V	Background Backgro	LP0002 Margin -2.0 -12.2 t-case ante \LP0002 Margin -10.2 -11.4 -12.2 -11.4 -12.7 -15.2 -15.9 -19.8	Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg AVG AVG AVG PK PK PK PK AVG	Azimuth degrees 199 269 tion Azimuth degrees 27 199 209 27 199 209 27 199 209 312	Height meters 1.0 1.1 Height meters 1.5 1.0 1.6 1.5 1.0 1.6 1.6 1.6	Comments Comments AUX MAIN AUX + MAIN AUX MAIN AUX + MAIN AUX + MAIN AUX + MAIN	

	Broadcom							Job Number:	J74037
-lahoM	BCM943224	HMS					T·	Log Number:	T74146
model.	DOI(1743224	1100					Acco	unt Manager:	Eriksen / Washingto
Contact:	Anne Liang								
Standard:	FCC 15.247	, FCC 15E	, RSS 210, L	.P0002				Class:	NII
un #4: Pr	eliminary Ra	diated En	nissions, 10	00 - 18000 N	IHz (Receive	mode, 5230) MHz)		
02.11h 40i			nao	Tost D	istanco	Limit D	istanco	Extrapolat	ion Eactor
	- ГІЄ 1		nge n	Test D	2				
	1	0000-1800	0		3 1		3	-9	.5
	<u> </u>		•						
eliminary	ı peak readir	igs captur	ed during p	re-scan - Au	ux and Main a	antenna		•	
requency	Level	Pol	RSS GEN	LP0002	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
498.650	54.2	V	54.0	0.2	Peak	249	1.3		
000.310	42.8	V	54.0	-11.2	Peak	321	1.6		
avimizod	averane and	neak rea	dinas						
requency		Pol	RSS GEN	\ P0002	Detector	Azimuth	Heinht	Comments	
MHz	dBuV/m	v/h		Margin	Pk/OP/Avg	dearees	meters	Comments	
497.160	41.6	V	54.0	-12.4	AVG	249	1.3	RB 1 MHz; \	/B: 10 Hz
2499.330	59.5	V	74.0	-14.5	PK	249	1.3	RB 1 MHz; \	/B: 1 MHz
1998.810	32.8	V	54.0	-21.2	AVG	321	1.6	RB 1 MHz; \	/B: 10 Hz
999.160	49.4	V	74.0	-24.6	PK	321	1.6	RB 1 MHz; \	/B: 1 MHz
80 70 50 40 (m//m) 50 40	.0 - .0 - .0 - .0 - .0 - .0 - .0 -	Muly			harden Martagara	and from the second	, , ,	10000	18000

	Broadcom					Job Number:	J74037		
Model:	BCM943224	HMS					Ţ.	Log Number:	T74146
							Ассо	unt Manager:	Eriksen / Washingto
Contact:	Anne Liang							Class	NIII
Standard:	FUU 15.247	, FUU 15E	, RSS 210, L	PUUU2		mada E210		CIASS:	INII
(UI) #5: PI (02 11n 40)	ештипату ка МН7	diated En	lissions, iu	JU - 18000 IV	IHZ (Receive	mode, 53 IC	IVIHZ)		
02.111.40	Free	puency Ra	nae	Test D	istance	l imit D	istance	Extrapolat	ion Factor
	1	000-1000))	10012	3	2	3	0	.0
	1	0000-1800	0		1		3	-9	.5
<u>reliminary</u>	/ peak readin	igs captur	ed during p	re-scan - Au	ux and Main a	antenna			
requency		P01	KSS GEN	I \ LP0002 Margin	Detector	Azimuth	Height	Comments	
1VIHZ	αΒμV/M 54.2	v/n		iviargin	PK/QP/AVg		1 2		
5000 210	<u></u> <u></u> <u></u>	V \/	54.0 54.0	 _11 0	Peak	200	1.3	1	
3000.210	43.0	v	54.0	-11.0	TCak	177	1.0		
<i>l</i> aximized	average and	peak rea	dings						
Frequency	Level	Pol	RSS GEN	I\LP0002	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2498.780	41.7	V	54.0	-12.3	AVG	207	1.3	RB 1 MHz; \	/B: 10 Hz
2498.610	59.5	V	74.0	-14.5	PK	207	1.3	RB 1 MHz; \	/B: 1 MHz
4998.740	33.5	V	54.0	-20.5	AVG	178	1.6	RB 1 MHz; \	/B: 10 Hz
4999.240	50.3	V	74.0	-23.7	PK	178	1.6	RB 1 MHz; \	/B: 1 MHz
80.0 70.0	0 - 0 - 0 -			1		•			
ш, 60,1 ар) эрллиф 40,1 30,1 20,1		why.	mal	Jummer	man and the second		· ·	10000	18000

	Broadcom							Job Number:	J74037
Model	BCM943224	HMS					T·	Log Number:	T74146
wouci.	DOM743224	TIMO					Ассо	unt Manager:	Eriksen / Washingto
Contact:	Anne Liang								
Standard:	FCC 15.247	, FCC 15E	, RSS 210, L	.P0002				Class:	NII
un #6: Pr	eliminary Ra	diated En	nissions, 10	00 - 18000 N	IHz (Receive	mode, 5590) MHz)		
2.11n 40	VHz Fro			Toot D	latanaa	Limit D	latanaa	Extranalat	ion Fostor
	FIEC	<u>uency Ra</u>	nge n	Test D				Extrapolat	On Factor
	1	000-1000	0		3 1		2	_0	5
	<u> </u>	0000-1000		1	1		,	-7	
eliminary	v peak readin	igs captui	ed during p	re-scan - Au	ux and Main a	antenna			
requency	Level	Pol	RSS GEN	I\LP0002	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
<u>2500.120</u>	54.2	V	54.0	0.2	Peak	212	1.9		
1997.610	43.3	Н	54.0	-10.7	Peak	13	1.0		
avimizod	avorado and	noak roa	dinas						
requency	l evel	Pol	RSS GEN	I \ I P0002	Detector	Azimuth	Heiaht	Comments	
MHz	dBuV/m	v/h	Limit	Margin	Pk/OP/Ava	dearees	meters	Comments	
2498.870	43.0	V	54.0	-11.0	AVG	212	1.9	RB 1 MHz; \	/B: 10 Hz
2499.980	61.1	V	74.0	-12.9	PK	212	1.9	RB 1 MHz; \	/B: 1 MHz
1996.410	32.6	Н	54.0	-21.4	AVG	73	1.0	RB 1 MHz; \	/B: 10 Hz
1998.370	49.8	Н	74.0	-24.2	PK	73	1.0	RB 1 MHz; \	/B: 1 MHz
80. 70.	0 - 0 - 0 -					1	~~~~~		

EMC Test Data

PETIT	2 company		
Client:	Broadcom	Job Number:	J74037
Model:	BCM943224HMS	T-Log Number:	T74077
		Account Manager:	Dean Eriksen
Contact:	Anne Liang		-
Emissions Standard(s):	FCC 15.247 & 15.205	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Broadcom

Model

BCM943224HMS

Date of Last Test: 3/9/2009

Elliott EMC Test Data Job Number: J74037 Client: Broadcom T-Log Number: T74077 Model: BCM943224HMS Account Manager: Dean Eriksen Contact: Anne Liang Standard: FCC 15.247 & 15.205 Class: N/A **RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 1 Date of Test: 2/9&10/2009 Test Engineer: Suhaila Khushzad Config Change: None Test Location: Fremont Chamber #3 & Fremont EUT Voltage: 120V/60Hz General Test Configuration When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20 °C Rel. Humidity: 45 % Summary of Results Run # Test Performed Limit Pass / Fail Result / Margin Power, 5150 - 5250MHz 15.407(a) (1), (2) 13.2dBm (0.02W) 1 Pass Power, 5250 - 5350MHz 17.6dBm (0.06W) 1 15.407(a) (1), (2) Pass Power, 5470 - 5725MHz 15.407(a) (1), (2) 16.5dBm (0.04W) 1 Pass

1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	0.7 dBm/MHz
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	4.8 dBm/MHz
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	4.3 dBm/MHz
1	26dB BW, 5150-5250 MHz	15.407	-	23.1 MHz
1	26dB BW, 5250-5350 MHz	15.407	-	45.8 MHz
1	26dB BW, 5470-5725 MHz	15.407	-	42.3 MHz
1	99% Bandwidth	RSS 210	-	17.0 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.8 dBm
2	Antenna Conducted	15 407(b)	Docc	All emissions below the
J	Out of Band Spurious	10.407(D)	Pd55	-27dBm/MHz limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Job Number: J74037 Client: Broadcom T-Log Number: T74077 Model: BCM943224HMS Account Manager: Dean Eriksen Contact: Anne Liang Standard: FCC 15.247 & 15.205 Class: N/A Run #1: Bandwidth, Output Power and Power spectral Density Antenna Gain (dBi): 5.6 Output Power¹ dBm $PSD^2 dBm/MHz$ Software Bandwidth Power Frequency Result Setting (Watts) **99**%⁴ Measured FCC Limit RSS Limit³ (MHz) 26dB Measured Limit Power for 5150-5250 MHz Band 16.6 13.2 17.0 0.021 4.0 5180 22.8 0.6 4.4 Pass 5220 -23.1 16.6 13.2 17.0 0.021 0.7 4.0 4.4 Pass 5240 21.9 12.9 17.0 0.019 0.2 4.0 4.4 16.7 Pass Power for 5250-5350 MHz Band 16.9 17.1 24.0 0.051 5260 45.8 4.7 11.0 11.0 Pass -5300 -44.0 16.9 17.6 24.0 0.057 4.8 11.0 11.0 Pass 5320 14.1 0.026 26.0 16.7 24.0 1.0 11.0 11.0 Pass -Antenna Gain (dBi): 4.2 Power for 5470-5725 MHz Band Software Output Power¹ dBm Power PSD² dBm/MHz Bandwidth Frequency Result (Watts) Setting **99**%⁴ Measured FCC Limit RSS Limit³ (MHz) 26dB Measured Limit 5500 41.8 16.7 15.6 24.0 0.036 3.1 11.0 11.0 Pass 5600 41.8 24.0 11.0 11.0 -16.8 16.4 0.043 3.9 Pass 5700 42.3 17.0 16.5 24.0 0.044 4.3 11.0 11.0 Pass -RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the ESI analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power Note 1: integration over 40MHz. Measured using the same analyzer settings used for output power. Note 2: For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average Note 3: PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB. 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB Note 4:

C	Elliott	EMO	C Test Data
Client:	Broadcom	Job Number:	J74037
Model	RCM0/322/HMS	T-Log Number:	T74077
Model.		Account Manager:	Dean Eriksen
Contact:	Anne Liang	Class	N1/A
Standard:	FCC 15.247 & 15.205	Class:	IN/A
Run #3: Ou	t Of Band Spurious Emissions - Antenna Conducted		
	Maximum Antenna Gain: 5.6 dBi for 51 Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots ^{Note 1} : -32.6 dBm/MHz	50 - 5350 MHz	
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conc consideration the maximum antenna gain (limit = -27dBm - antenna g more than 50MHz from the bands and that are close to the limit are n known at these frequencies.	ducted measurements is adjuste gain). Radiated field strength me nade to determine compliance a	d to take into easurements for signals s the antenna gain is not
Note 2:	All spurious signals below 1GHz are measured during digital device r	adiated emissions test.	
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to If the device is for outdoor use then the -27dBm eirn limit also applies	a limit of -1/dBm EIRP	
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the lin	nit of 15.209.	
Out	Plots Showing Out-Of-Band Emissions (F of Band Spurious Emissions 802.11a Legacy, 5180 MHz	RBW=VBW=1MHz)	
	10.0 -		
	0.0-		
	-10.0 -		
(mai	-20.0 -		
9 0	-30.0 -		
plitu	-40.0 -		
Ā	-50.0 -		A
	-60.0 - mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	المتياري والمناجية المراجب والمساحد	
	-70.0-		
	30 100 1000 Frequency (MH	z)	40000

EMC Test Data

 Client:
 Broadcom
 Job Number:
 J74037

 Model:
 BCM943224HMS
 T-Log Number:
 T4077

 Account Manager:
 Dean Eriksen

 Contact:
 Anne Liang
 Client:
 Dean Eriksen

 Standard:
 FCC 15.247 & 15.205
 N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1

Config Change: None

EUT Voltage: 120V/60Hz

Date of Test: 2/9/2009 13:06 Test Engineer: Rafael Varelas Test Location: Fremont Chamber #3

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:	Temperature:	18.9 °C		
	Rel. Humidity:	35 %		

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin	
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	10.5dBm (11.3mW)	
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	18.5dBm (71.5mW)	
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	19.7dBm (94mW)	
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	0.1dBm/MHz	
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	8.0dBm/MHz	
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	8.1dBm/MHz	
1	26dB Bandwidth	15.407	-	19.7 MHz	
1	99% Bandwidth	RSS 210	-	18.6 MHz	
2	Peak Excursion Envelope	15.407(a) (6)		Max PE: 12.3dB	
3	Antenna Conducted - Out of Band	15 /07/b)	Dace	All emissions below the	
	Spurious	13.407(D)	r d55	-27dBm/MHz limit	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Client: Broadcom Job Number: J74037 T-Log Number: T74077 Model: BCM943224HMS Account Manager: Dean Eriksen Contact: Anne Liang Standard: FCC 15.247 & 15.205 Class: N/A Run #1: Bandwidth, Output Power and Power spectral Density For 5150-5350 MHz bands Chain 1 Chain 2 Chain 3 Coherent Effective⁵ Antenna Gain (dBi): 5.6 5.6 yes 8.6 Max Power Pass or Fail Software 26dB BW Measured Output Power¹ dBm Total Frequency Limit (dBm) Setting (MHz) (W) (MHz) Chain 1 Chain 2 Chain 3 mW dBm 5180 19.9 9.3 6.2 7.1 9.7 14.4 PASS -5220 19.7 6.3 7.2 9.5 9.8 14.3 0.011 PASS -8.3 5240 19.8 6.6 11.3 10.5 14.4 PASS -5260 42.3 13.9 14.6 53.4 17.3 21.4 PASS -15.1 0.072 PASS 5300 43.4 16.0 71.5 18.5 21.4 -29.8 5320 12.8 13.6 42.1 16.2 21.4 PASS -**99**%⁴ PSD² dBm/MHz Total Total PSD Limit Frequency Pass or Fail BW Power (MHz) Chain 1 Chain 2 Chain 3 mW/MHz dBm/MHz FCC RSS 210³ 5180 18.2 9.7 -3.0 -3.2 -0.1 PASS 1.0 1.4 1.4 PASS 5220 -3.1 -2.7 18.2 9.8 1.0 0.1 1.4 1.4 5240 PASS 18.2 10.5 -3.7 -3.1 0.9 -0.3 1.4 1.4 5260 18.2 3.5 PASS 17.3 3.3 4.4 6.4 8.4 11.0 PASS 5300 18.6 18.5 4.6 5.3 6.3 8.0 8.4 11.0 5320 18.1 16.2 2.2 2.5 3.4 5.3 8.4 11.0 PASS

Elliott EMC Test Data											
Client:	Broadcom					Job Number: J74037					
Madalı	DCM042224						T-	Log Number:	T74077		
woder:	DCIVI943224	ILINI2					Αссоι	Account Manager:		Dean Eriksen	
Contact:	Anne Liang										
Standard:	FCC 15.247	& 15.205					Class: N/A				
For 5470-57	25 MHz ban	d		-	-	-	_	-			
	Chain 1 Chain 2 Chain 3 Coherent					Effective ⁵					
	Antenna	a Gain (dBi):	4.2	4.2		yes	7.2				
	Ceffusier				1	т	. 1 . 1		Max Davias		
Frequency	Software	(MH2) 2008 BM	Measure	d Output Po	wer'dBm	Total		Limit (dBm)	Max Power	Pass or Fail	
(MHz)	Setting	(11 12)	Chain 1	Chain 2	Chain 3	mW	dBm	21 /	(VV)	DASS	
5600	-	41.3	15.5	10.7		93.6	10.0	21.4	0 094	PASS	
5700	-	45.9	16.6	16.8		93.3	19.7	21.4	0.071	PASS	
Frequency	99 % ⁴	Total	Р	SD ² dBm/MH	Ηz	Tota	I PSD	Limit		Dass or Fail	
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass of Fall	
5500	18.3	18.6	3.6	3.5		4.5	6.5	8.4	11.0	PASS	
5600	18.6	19.7	4.8	5.3		6.4	8.1	8.4	11.0	PASS	
5700	18.5	19.7	4.5	5.2		6.1	7.8	8.4	11.0	PASS	
Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the ESI analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 40 MHz Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.											

Run #2: Peak Excursion Measurement

Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	sion(dB) Freq		Peak Excursion(dB)		Peak Excursion(dB)	
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	12.4	13.0	5260	11.7	13.0	5500	11.8	13.0
5220	11.9	13.0	5300	11.8	13.0	5600	12.3	13.0
5240	12.2	13.0	5320	12.0	13.0	5700	11.7	13.0

Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

C	EII	iott			EMC Te.	st Data	
Client	t: Broadcom			Job Number: J74037			
Mode	I: BCM94322	4HMS	T-	T-Log Number: T74077			
Contact	t. Anne Liang			Acco			
Standard	I. FCC 15.247	7 & 15.205			Class: N/A		
Run #3· 0	out Of Band 9	Sourious Emissions - Anto	enna Conducted				
MIMO Dev single chair	ices: Antenr n.	a gain used is the effective	gain calculated in the pov	ver section of this data	sheet. The plots were	obtained on a	
		Maximum Antenna Gain: Spurious Limit: Limit Used On Plots ^{Note 1} :	5.6 dBi -27 dBm/MHz eirp -32.6 dBm/MHz	1			
Power Sett	ing Per Chair	1					
#1	#2	#3	Frequency (MHz)	Limit	Result		
-	-		5180	-27dBm	Pass		
-	-		5220	-27dBm	Pass		
-	-		5240	-27dBm	Pass		
-	-		5260	-27dBm	Pass		
-	-		5300	-27dBm	Pass		
-	-		5320	-27dBm	Pass		
Taiwan Re	duced Powe	r	5000	07 10			
-	-		5280	-2/dBm	Pass		
-	-		5300	-2/dBm	Pass		
-	-		5320	-270Bm	Pass		
Note 1:	The -27dBn consideration more than 5 known at th	n/MHz limit is an eirp limit. on the maximum antenna ga 50MHz from the bands and ese frequencies.	The limit for antenna port ain (limit = -27dBm - anter that are close to the limit a	conducted measureme ina gain). Radiated fiel are made to determine	nts is adjusted to take d strength measureme compliance as the ante	into nts for signals enna gain is not	
Note 2:	All spurious	signals below 1GHz are m	easured during digital dev	ice radiated emissions	test.		
Note 3:	Signals with	III IUVIHZ OF the 5.725 or 5	.825 Band edge are subje	ct to a limit of -1/dBm	LIKP		
Note 4:	Signals that	t fall in the restricted hands	of 15 205 are subject to the	plies in the 5150 - 5250 The limit of 15 209	JIVIAZ DANO.		

EMC Test Data

Client:	Broadcom	Job Number:	J74037
Model	PCM042224HMS	T-Log Number:	T74077
wouer.	BCIVI943224HIVIS	Account Manager:	Dean Eriksen
Contact:	Anne Liang		
Standard:	FCC 15.247 & 15.205	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

© Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Config Change: None

EUT Voltage: 120V/60Hz

Date of Test: 2/9/2009 & 2/18/09 Test Engineer: rvarelas & Suhaila Test Location: Fremont Chamber #3

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected

Temperature: Rel. Humidity: 18.9 °C 35 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	14.3 dBm (0.027W)
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	19.5 dBm (0.032 W)
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	21.0 dBm (0.127 W)
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	-1.1 dBm/MHz
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	4.2 dBm/MHz
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	5.9 dBm/MHz
1	26dB Bandwidth	15.407	-	40 MHz
1	99% Bandwidth	RSS 210	-	41.1 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.9 dB
2	Antenna Conducted - Out of Band	15 /07/b)	Dace	All emissions below the
5	Spurious	15.407(D)	г d55	-27dBm/MHz limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client: Broadcom							Job Number: J74037			
Model: BCM943224HMS							T-Log Number: T74077			
							Account Manager: Dean Eriksen			
Contact:	Anne Liang									
Standard:	FCC 15.24/	& 15.205						Class:	N/A	
Run #1: Bai 5150-5350 N	ndwidth, Ou //Hz hands	tput Power a	and Power s	pectral Den	sity					
								_		
I			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵			
I	Antenna	a Gain (dBi):	5.6	5.6		Yes	8.6			
Frequency	Software	26dB BW	Measure	d Outnut Po	ver ¹ dRm	Тс	ntal		Max Power	
(MH7)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	m\\/	d Rm	Limit (dBm)	(W)	Pass or Fa
5190	-	51.8	8.3	9.0		14.7	11.7	14.4		PASS
5230	-	75.7	11.1	11.4		26.7	14.3	14.4	0.027	PASS
5270	-	95.0	16.0	17.0		89.3	19.5	21.4	0.000	PASS
5310	-	45.8	12.7	13.1		38.9	15.9	21.4	0.089	PASS
						1		1		
Frequency	99 % ⁴	Total	Р	SD ² dBm/Mł	Ηz	Tota	PSD	Li	nit Dass or	Pass or Fa
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 433 011 4
5190	36.5	11.7	-6.7	-69		0.4	20	1/	1 /	DACC
			÷	0.7		0	-3.0	1.4	1.4	PASS
5230	36.4	14.3	-4.3	-4.0		0.8	-3.0	1.4	1.4	PASS
5230 5270	36.4 37.7	14.3 19.5	-4.3 1.0	-4.0 1.5		0.8	-3.0 -1.1 4.2	1.4 1.4 8.4	1.4 1.4 11.0	PASS PASS PASS
5230 5270 5310	36.4 37.7 36.4	14.3 19.5 15.9	-4.3 1.0 -3.8	-4.0 1.5 -3.3		0.8 2.7 0.9	-1.1 4.2 -0.6	1.4 1.4 8.4 8.4	1.4 1.4 11.0 11.0	PASS PASS PASS PASS
5230 5270 5310	36.4 37.7 36.4	14.3 19.5 15.9	-4.3 1.0 -3.8	-4.0 1.5 -3.3		0.8 2.7 0.9	-1.1 4.2 -0.6	1.4 1.4 8.4 8.4	1.4 1.4 11.0 11.0	PASS PASS PASS PASS
5230 5270 5310 5470-5725 M	36.4 37.7 36.4 //Hz bands	14.3 19.5 15.9	-4.3 1.0 -3.8	-4.0 1.5 -3.3		0.8 2.7 0.9	-1.1 4.2 -0.6	1.4 1.4 8.4 8.4	1.4 1.4 11.0 11.0	PASS PASS PASS PASS
5230 5270 5310 5470-5725 M	36.4 37.7 36.4 /Hz bands	14.3 19.5 15.9	-4.3 1.0 -3.8	-4.0 1.5 -3.3	Chain 3	0.8 2.7 0.9	-3.6 -1.1 4.2 -0.6	1.4 1.4 8.4 8.4	1.4 1.4 11.0 11.0	PASS PASS PASS PASS
5230 5270 5310 5470-5725 M	36.4 37.7 36.4 //Hz bands	14.3 19.5 15.9	-4.3 1.0 -3.8 Chain 1 4.2	-4.0 1.5 -3.3 Chain 2 4.2	Chain 3	0.8 2.7 0.9 Coherent Yes	-3.8 -1.1 4.2 -0.6 Effective ⁵ 7.2	1.4 1.4 8.4 8.4	1.4 1.4 11.0 11.0	PASS PASS PASS PASS
5230 5270 5310 5470-5725 M	36.4 37.7 36.4 /Hz bands Antenna	14.3 19.5 15.9	-4.3 1.0 -3.8 Chain 1 4.2	-4.0 1.5 -3.3 Chain 2 4.2	Chain 3	0.8 2.7 0.9 Coherent Yes	-3.8 -1.1 4.2 -0.6 Effective ⁵ 7.2	1.4 1.4 8.4 8.4	1.4 1.4 11.0 11.0	PASS PASS PASS PASS
5230 5270 5310 5470-5725 M	36.4 37.7 36.4 //Hz bands Antenna Software	14.3 19.5 15.9 a Gain (dBi): 26dB BW	-4.3 1.0 -3.8 Chain 1 4.2 Measure	-4.0 1.5 -3.3 Chain 2 4.2 d Output Poy	Chain 3	0.8 2.7 0.9 Coherent Yes	-3.8 -1.1 4.2 -0.6 Effective ⁵ 7.2	1.4 1.4 8.4 8.4	1.4 1.0 11.0 11.0	PASS PASS PASS PASS
5230 5270 5310 5470-5725 M Frequency (MHz)	36.4 37.7 36.4 MHz bands Antenna Software Setting	14.3 19.5 15.9 a Gain (dBi): 26dB BW (MHz)	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1	-4.0 1.5 -3.3 Chain 2 4.2 d Output Por Chain 2	Chain 3 wer ¹ dBm Chain 3	0.8 2.7 0.9 Coherent Yes	-3.6 -1.1 4.2 -0.6 Effective ⁵ 7.2	1.4 1.4 8.4 8.4	1.4 1.0 11.0 Max Power (W)	PASS PASS PASS PASS
5230 5270 5310 5470-5725 M Frequency (MHz) 5510	36.4 37.7 36.4 /Hz bands /Hz bands Software Software Setting	14.3 19.5 15.9 a Gain (dBi): 26dB BW (MHz) 58.8	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1 13.2	-4.0 1.5 -3.3 Chain 2 4.2 d Output Pow Chain 2 13.3	Chain 3 wer ¹ dBm Chain 3	0.8 2.7 0.9 Coherent Yes To mW 42.3	-3.6 -1.1 4.2 -0.6 Effective ⁵ 7.2 otal dBm 16.3	1.4 1.4 8.4 8.4 Limit (dBm) 22.8	1.4 1.0 11.0 Max Power (W)	PASS PASS PASS PASS PASS PASS
5230 5270 5310 5470-5725 M Frequency (MHz) 5510 5590	36.4 37.7 36.4 //Hz bands //Hz bands Software Setting - -	14.3 19.5 15.9 a Gain (dBi): 26dB BW (MHz) 58.8 97.3	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1 13.2 18.1	-4.0 1.5 -3.3 Chain 2 4.2 d Output Pov <u>Chain 2</u> 13.3 17.9	Chain 3 wer ¹ dBm Chain 3	0.8 2.7 0.9 Coherent Yes To mW 42.3 126.7	-1.1 4.2 -0.6 Effective ⁵ 7.2 otal dBm 16.3 21.0	Limit (dBm)	1.4 1.4 11.0 11.0 Max Power (W) 0.127	PASS PASS PASS PASS PASS PASS PASS
5230 5270 5310 5470-5725 M Frequency (MHz) 5510 5590 5670	36.4 37.7 36.4 //Hz bands //Hz bands Software Setting - - -	14.3 19.5 15.9 26dB BW (MHz) 58.8 97.3 98.8	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1 13.2 18.1 17.5	-4.0 1.5 -3.3 Chain 2 4.2 d Output Por Chain 2 13.3 17.9 18.4	Chain 3 wer ¹ dBm Chain 3	0.8 2.7 0.9 Coherent Yes To mW 42.3 126.7 125.4	-3.8 -1.1 4.2 -0.6 Effective ⁵ 7.2 otal dBm 16.3 21.0 21.0	Limit (dBm) 22.8 22.8 22.8	1.4 1.0 11.0 Max Power (W) 0.127	PASS PASS PASS PASS PASS PASS PASS PASS
5230 5270 5310 5470-5725 M Frequency (MHz) 5510 5590 5670	36.4 37.7 36.4 //Hz bands //Hz bands Software Setting - - -	14.3 19.5 15.9 a Gain (dBi): 26dB BW (MHz) 58.8 97.3 98.8	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1 13.2 18.1 17.5	-4.0 1.5 -3.3 Chain 2 4.2 d Output Pov Chain 2 13.3 17.9 18.4	Chain 3 wer ¹ dBm Chain 3	0.8 2.7 0.9 Coherent Yes To mW 42.3 126.7 125.4	-1.1 4.2 -0.6 Effective ⁵ 7.2 otal dBm 16.3 21.0 21.0	Limit (dBm) 22.8 22.8 22.8	1.4 1.4 11.0 11.0 Max Power (W) 0.127	PASS PASS PASS PASS PASS PASS PASS PASS
5230 5270 5310 5470-5725 M Frequency (MHz) 5510 5590 5670 Frequency	36.4 37.7 36.4 //Hz bands Antenna Software Setting - - - - 99% ⁴	14.3 19.5 15.9 26dB BW (MHz) 58.8 97.3 98.8 Total	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1 13.2 18.1 17.5 P	-4.0 1.5 -3.3 Chain 2 4.2 d Output Pow Chain 2 13.3 17.9 18.4 SD ² dBm/Mł	Chain 3 wer ¹ dBm Chain 3	0.8 2.7 0.9 Coherent Yes To mW 42.3 126.7 125.4	-3.8 -1.1 4.2 -0.6 Effective ⁵ 7.2 otal dBm 16.3 21.0 21.0 21.0	Limit (dBm) 22.8 22.8 22.8 22.8	1.4 1.4 11.0 11.0 Max Power (W) 0.127 mit	PASS PASS PASS PASS PASS PASS PASS PASS
5230 5270 5310 5470-5725 M Frequency (MHz) 5510 5590 5670 Frequency (MHz)	36.4 37.7 36.4 /Hz bands Antenna Software Setting - - - - 99% ⁴ BW	14.3 19.5 15.9 a Gain (dBi): 26dB BW (MHz) 58.8 97.3 98.8 70tal Power	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1 13.2 18.1 17.5 P Chain 1	-4.0 1.5 -3.3 Chain 2 4.2 d Output Por Chain 2 13.3 17.9 18.4 SD ² dBm/MH Chain 2	Chain 3 Wer ¹ dBm Chain 3	0.8 2.7 0.9 Coherent Yes To mW 42.3 126.7 125.4 Tota mW/MHz	-3.6 -1.1 4.2 -0.6 Effective ⁵ 7.2 otal dBm 16.3 21.0 21.0 PSD dBm/MHz	Limit (dBm) 22.8 22.8 22.8 22.8 Lin FCC	1.4 1.4 11.0 11.0 Max Power (W) 0.127 mit <u>RSS 210³</u>	PASS PASS PASS PASS PASS PASS PASS PASS
5230 5270 5310 5470-5725 M 5470-5725 M 5510 5590 5670 Frequency (MHz) 5510	36.4 37.7 36.4 //Hz bands //Hz bands ////////////////////////////////////	14.3 19.5 15.9 a Gain (dBi): 26dB BW (MHz) 58.8 97.3 98.8 77.3 98.8 Total Power 16.3	-4.3 1.0 -3.8 Chain 1 4.2 Measure Chain 1 13.2 18.1 17.5 P Chain 1 -3.0	-4.0 1.5 -3.3 Chain 2 4.2 d Output Pov <u>Chain 2</u> 13.3 17.9 18.4 SD ² dBm/MH <u>Chain 2</u> -2.5	Chain 3 wer ¹ dBm Chain 3 Hz Chain 3	0.8 2.7 0.9 Coherent Yes To MW 42.3 126.7 125.4 Tota mW/MHz 1.1	-3.8 -1.1 4.2 -0.6 Effective ⁵ 7.2 otal dBm 16.3 21.0 21.0 21.0 PSD dBm/MHz 0.3 5.7	Limit (dBm) 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.	1.4 1.4 1.0 11.0 11.0 0.127 mit <u>RSS 210³</u> 11.0	PASS PASS PASS PASS PASS PASS PASS PASS

CElliott					EMC Test Data		
Client:	Client: Broadcom				ob Number:	J74037	
					og Number:	T74077	
Model: BCM943224HMS					nt Manager:	Dean Eriksen	
Contact:	Anne Liang	9					
Standard: FCC 15.247 & 15.205					Class: N/A		
Run #3: Ou	ut Of Band	Spurious Emissions - Ant	enna Conducted				
	Limit	Maximum Antenna Gain: Spurious Limit: Used On Plots ^{Note 1} :	5.6 dBi -27.0 dBm/MHz eir -32.6 dBm/MHz -12.6 dBm/MHz	p Average Limit (RB=1MHz Peak Limit (RB=VB=1MH	;, VB=10Hz) z)		
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.						
Note 2:	All spurious signals below TGHZ are measured during digital device radiated emissions test.						
Note 4:	I signals within Towinz of the 5.725 of 5.625 data each at Subject to a III at 01 - 1700111 ETKP						
Note 4:	If the device is for outdoor use then the -270Bm end infinitialso applies in the 5150 - 5250 MHz band.						
Power Setti #1	ng Per Chai #2	n #3	Frequency (MHz)	Limit	Re	sult	
-	-		5190	-32.6dBm	Pa	ISS	
-	-		5230	-32.6dBm	Pa	ISS	
-	-		5270	-32.6dBm	Pa	ISS	
-	-		5310	-32.6dBm	Pa	ISS	
-	-		5510	-32.6dBm	Pa	ISS	
-	-		5590	-32.6dBm	Pa	ISS	
-	-		5670	-32.60BM	Pa	ISS	

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Broadcom Corporation Model BCM943224HMSConstruction

EXHIBIT 6: Operator's Manual for Broadcom Corporation Model BCM943224HMS

EXHIBIT 7: Block Diagram of Broadcom Corporation Model BCM943224HMS

EXHIBIT 8: Schematic Diagrams for Broadcom Corporation Model BCM943224HMS

EXHIBIT 9: Theory of Operation for Broadcom Corporation Model BCM943224HMS

EXHIBIT 10: RF Exposure Information