MAXIMUM PERMISSIBLE EXPOSURE 10.

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Limits for Occupational/Controlled Exposures						
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300 5	6 6 6 8		
(B) Limits	for General Populati	on/Uncontrolled Exp	posure			
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30		

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tion to the state of the here the exposure also apply in situations when an individual is transient through a location where occu-tion to the state of the here the exposure also apply in situations.

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 72 of 79

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

S = E ^ 2 / 3770

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

d = 0.282 * 10 ^ ((P + G) / 20) /
$$\sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm²

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P + G)} / 10) / (d^2)$

Page 73 of 79

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

(MPE distance equals 20 cm)

Mode	Band	MPE	Output	Antenna	FCC Power
		Distance	Power	Gain	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)
GFSK	2.4 GHz	20.0	-1.90	3.15	0.000265
8PSK	2.4 GHz	20.0	0.70	3.15	0.000482

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 74 of 79

CO-LOCATED MPE CALCULATIONS

For multiple colocated transmitters operating simultaneously the total power density can be calculated by summing the Power * Gain product (in linear units) of each transmitter.

yields

 $d = 0.282 * \sqrt{((P1 * G1) + (P2 * G2) + ... + (Pn * Pn)) / S)}$ where d = distance in cmPx = Power of transmitter x in mWGx = Numeric gain of antenna x $S = Power Density in mW/cm^{2}$

In the table below, Power and Gain are entered in units of dBm and dBi respectively, then converted to their linear forms for the purpose of the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

(MPE distance equals 20 cm)

Transmitter	Output	Antenna	Radiated	MPE	FCC Power
	Power	Gain	EIRP	Distance	Density
	(dBm)	(dBi)	(dBm)	(cm)	(mW/cm^2)
Bluetooth	0.70	3.15			
UWB			-17.40		
Combined				20.0	0.000486

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.