

FCC OET BULLETIN 65 SUPPLEMENT C CLASS II PERMISSIVE CHANGE IC RSS-102 ISSUE 3

SAR EVALUATION REPORT

FOR 802.11g WLAN PCI-E Mini Card (Tested inside of HP Tablet PC, HSTNN-I77C & HSTNN-W75C)

MODEL: BCM94312HMG

FCC ID: QDS-BRCM1030

REPORT NUMBER: 09U12957-2A

ISSUE DATE: December 11, 2009

Prepared for

BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	December 4, 2009	Initial Issue	
А	December 11, 2009	Additional SAR test with Tablet PC, HSTNN- W75C	Sunny Shih

Page 2 of 28

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	6
4	1.	MEASURING INSTRUMENT CALIBRATION	6
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EC	QUIPMENT UNDER TEST	8
6.	SY	STEM SPECIFICATIONS	9
7.	СС	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	0
8.	LIC	QUID PARAMETERS CHECK1	1
8	8.1.	LIQUID CHECK RESULTS FOR 2450 MHZ1	2
9.	SY	STEM PERFORMANCE1	4
g	.1.	SYSTEM CHECK RESULTS FOR D2450V21	4
10.		OUTPUT POWER VERIFICATION1	5
11.		SUMMARY OF TEST RESULTS1	6
1	1.1.	HSTNN-177C SAR TEST RESULTS 1	6
1	1.2.	HSTNN-W75C SAR TEST RESULTS1	7
12.		SAR TEST PLOTS1	8
13.		ATTACHMENTS2	:0
14.		HSTNN-I77C TEST SETUP PHOTO2	:1
15.		HSTNN-W75C TEST SETUP PHOTO2	. 4
16.		HSTNN-I77C HOST DEVICE PHOTO2	27
17.		HSTNN-W75C HOST DEVICE PHOTO2	28

Page 3 of 28

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086
EUT DESCRIPTION:	802.11g WLAN PCI-E Mini Card (Tested inside of HP Tablet PC, HSTNN-I77C & HSTNN-W75C)
MODEL NUMBER:	BCM94312HMG
DEVICE CATEGORY:	Portable
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure
DATE TESTED:	November 30 & December 11, 2009

THE HIGHEST SAR VALUES:

FCC/IC Rule Parts	Frequency Range [MHz]				
15.247 / RSS-102	2400 2492 5	0.754 HSTNN-I77C Tablet - Secondary landscape	1.6		
	2400 – 2483.5	0.908 HSTNN-W75C Tablet - Secondary landscape	1.6		

APPLICABLE STANDARDS:

STANDARD	TEST RESULTS
FCC OET BULLETIN 65 SUPPLEMENT C and the following specific Test Procedures:	t
 KDB 248227 SAR measurement procedures for 802.11a/b/g trans KDB 447498 D01 Mobile Portable RF Exposure v04, supplementa 616217 D03 	
RSS-102 ISSUE 3	Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Seenay Shih

SUNNY SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Page 4 of 28

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 802.11abg Transmitters, KDB 447498 D01 Mobile Portable RF Exposure v04, supplemental to KDB 616217 D03 and IC RSS 102 Issue 3.

And Schedule 2 of Radiocommunications (Electromagnetic Radiation - Human Exposure) Standard 2003 incl Amendment No 1, 2007 and NZS 2772.1:1999 Radiofrequency fields - Maximum exposure levels - 3 kHz to 300 GHz incl Amendment No. 1, 1999.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 5 of 28

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

	Manufashuran	True o (Mandal	Quriel Ne	Cal. Due date		
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Electronic Probe kit	HP	85070C	N/A			N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010
E-Field Probe	SPEAG	EX3DV4	3686	3	23	1010
Data Acquisition Electronics	SPEAG	DAE3 V1	500	9	15	2010
System Validation Dipole	SPEAG	D900V2	108	1	21	2010
System Validation Dipole	SPEAG	D1800V2	294	1	29	2010
System Validation Dipole	SPEAG	D1900V2	5d043	1	29	2010
System Validation Dipole	SPEAG	D2450V2	748	4	14	2010
System Validation Dipole	SPEAG	D5GHzV2	1075	10	3	2012
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010
Power Meter	Giga-tronics	8651A	8651404	1	11	2010
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		
Simulating Liquid	SPAEG	H2450	N/A	Within 24 hrs of first test		rs of first test
Simulating Liquid	SPAEG	M2450	N/A	Withir	ו 24 h	rs of first test
Simulating Liquid	SPAEG	M5800	N/A	Withir	ו 24 h	rs of first test

Page 6 of 28

4.2. MEASUREMENT UNCERTAINTY

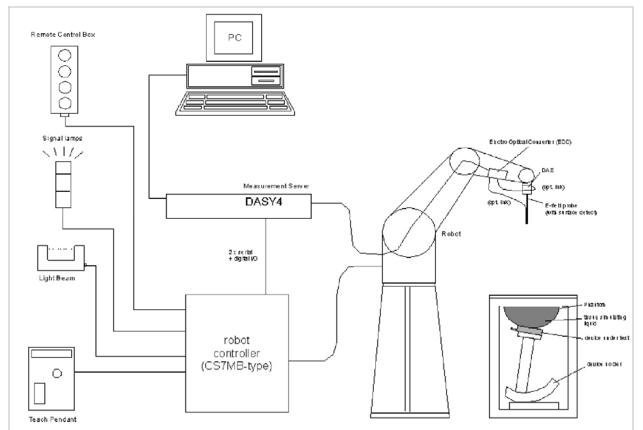
Measurement uncertainty for 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Unc.(±%)	
Uncertainty component	101. (± /0)	FIODE DISL.	Div.		CI (TUG)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table 1. Tol tolerance in influence quaitity 2. N - Nomal 3. R - Rectangular							

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient


Page 7 of 28

5. EQUIPMENT UNDER TEST

802.11g WLAN PCI-E Mini Card (Tested inside of HP Tablet PC, HSTNN-I77C & HSTNN-W75C) Normal operation: Laptop - Lap-held, Tablet - Edge (underarm) & lap-held Antenna tested: Install in Host device Manufactured Model Number HSTNN-I77C Main: 81.EGG15.G12 Aux: 81.EGG15.G13 Yageo TX1: CAN43139WLIN00081 TX2: CAN43139WLIN00082 HSTNN-W75C ☑ Ethertronics Main: 25.90946.001 Aux: 25.90947.001 Refer to Section 11 for antenna-to-user separation distance and Antenna-to-user separation distance: Antenna-to-antenna distance: Refer to antenna specifications Require SAR evaluation for WWAN co-located RF exposure assessment will be addressed in Simultaneous transmission? a separate FCC application filed under WWAN application. Power supplied through laptop computer (host device) Power supply:

Page 8 of 28

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Page 9 of 28

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)										
(% by weight)	4	50	835		915		1900		2450			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride Water: De-ionized, 16 M Ω + resistivity Sugar: 98+% Pure Sucrose HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Page 10 of 28

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
raiget Frequency (Mirz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 11 of 28

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

	f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)
	2450	e'	53.24	Relative Permittivity (ε_r):	53.241	52.7	1.03	± 5
	2450	e"	14.67	Conductivity (o):	2.000	1.95	2.55	± 5
Lic	guid Check							
	•	ature: 24	dea. C: Li	quid temperature: 23 de	a. C			
	ovember 30, 20				5			
	equency		e'	e"				
	00000000.		53.5463	14.6351				
24	05000000.		53.5429	14.6392	<u>)</u>			
24	10000000.		53.5114	14.6604	Ļ			
24	15000000.		53.4813	14.6643	5			
24	20000000.		53.4563	14.6659)			
24	25000000.		53.4197	14.6554	Ļ			
24	30000000.		53.3900	14.6439)			
24	35000000.		53.3491	14.6475	5			
24	40000000.		53.3041	14.6567	,			
24	45000000.		53.2806	14.6612	-			
24	50000000.		53.2414	14.6713	6			
24	55000000.		53.2052	14.6892	-			
24	60000000.		53.1721	14.7034	Ļ			
24	65000000.		53.1487	14.7362				
24	70000000.		53.1321	14.7681				
24	75000000.		53.1139	14.8101				
24	80000000.		53.1252	14.8561				
24	85000000.		53.1288	14.9049)			
24	90000000.		53.1261	14.9544	Ļ			
24	95000000.		53.1275	15.0065	5			
25	00000000.		53.1366	15.0523	5			
Th	e Conductivity	(σ) can	be given a	s:				
σ	= ωε ₀ e″= 2	$\pi f \varepsilon_0 \epsilon$)″					
wł	nere f = targe	et f * 10 ⁶						
	E 0 = 8.854	4 * 10 ⁻¹²						

Page 12 of 28

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

f (MHz))		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)
		e'	53.51	Relative Permittivity (ε_r):	53.507	52.7	1.53	± 5
2450	ĺ	e"	14.08	Conductivity (o):	1.919	1.95	-1.57	± 5
Liquid Checl	ĸ							
Ambient tem	pera	ature: 24	deg. C; Li	quid temperature: 23 de	g. C			
December 1	1, 20	009 01:2	3 PM		-			
Frequency			e'	e"				
240000000).		54.8027	14.4145	5			
240500000)_		54.8006	14.3566	6			
241000000).		54.7617	14.3248	3			
2415000000).		54.6737	14.2716	6			
242000000).		54.5516	14.2051				
2425000000).		54.4031	14.1515	5			
243000000)_		54.2131	14.0876	6			
2435000000).		54.0223	14.0460)			
244000000)_		53.8439	14.0363	3			
2445000000)_		53.6785	14.0533	3			
245000000)_		53.5071	14.0829				
2455000000)_		53.3542	14.1315	5			
246000000).		53.2617	14.2012	2			
2465000000).		53.2256	14.2660)			
247000000).		53.2368	14.3539)			
2475000000).		53.2858	14.4462	2			
248000000).		53.3892	14.5400)			
2485000000).		53.5390	14.6465	5			
249000000).		53.6938	14.7585	5			
249500000).		53.8646	14.8689)			
250000000).		54.0202	14.9321				
The conduct	tivity	(σ) can	be given a	s:				
$\sigma = \omega \varepsilon_0 e^{\prime\prime}$	= 2	$\pi f \varepsilon_0 \epsilon$	e"					
where $f = t$	arge	tf*10 ⁶						
ε ₀ = 8	3.854	4 * 10 ⁻¹²						

Page 13 of 28

9. SYSTEM PERFORMANCE

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV4-SN: 3686 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5mm
- The dipole input power (forward power) were 100 mW (5GHz) and 250 mW (2.4GHz) ±3%
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG. Certificate no: D2450V2-748 April 14, 2008

f (MHz)	Head	Tissue	Body Tissue		
	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	
2450			49.5	23.3	

9.1. SYSTEM CHECK RESULTS FOR D2450V2

System Validation Dipole: D2450V2 SN: 748

Date: November 30, 2009

Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

Medium	CW Signal (MHz)	Forward power	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Body	2450	250	1g SAR:	52.6	49.5	6.26	±10
Войу	2450	250	10g SAR:	24.1	23.3	3.43	ΞĪŪ

Date: November 30, 2009

Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

Medium	CW Signal (MHz)	Forward power	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Body	2450	100	1g SAR:	53.3	49.5	7.68	±10
Body	2450 100	10g SAR:	24.6	23.3	5.58	ΞĪŪ	

10. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, wl_tools, which enable a user to control the frequency and output power of the module.

RF Conducted Output Power Measurement Results:

Please refer to Broadcom's Operational Description document for Average Power information (confidential exhibit) as documented in 11/30/2007 original filing.

Before SAR evaluation, CCS has verified the RF conducted average powers which is in a agreement with previous reported average output power.

Page 15 of 28

11. SUMMARY OF TEST RESULTS

11.1. HSTNN-I77C SAR TEST RESULTS

1) Laptop - Lap-held (with the display open at 90° to the keyboard)

Note: WLAN main and aux antennas are more than 20 cm from phantom for laptop mode, SAR test is not required.

2) Tablet - Lap-held (2.3 cm from Main/Aux antennas-to-user)

Mode	Channel	f (MHz)	Antonno	Results (mW/g)	
wode		I (IM⊡∠)	Antenna	1g-SAR	10g-SAR
802.11b	6	2437	Main	0.086	0.046
802.11g	6	2437	Aux	0.075	0.040

3) Tablet - Primary Landscape

Note: WLAN main and aux antennas are more than 20 cm from phantom for laptop mode, SAR test is not required.

4) Tablet - Secondary Landscape (0.4 cm from Main/Aux antennas-to-user)

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
Mode			Antenna	1g-SAR	10g-SAR
802.11b	6	2437	Main	0.754	0.315
802.11g	6	2437	Aux	0.477	0.222

5) Tablet - Primary Portrait (8.8 cm from Aux antenna-to-user)

Mada	Channel	f (MHz)	Antenna	Results (mW/g)	
Mode	Channel		Antenna	1g-SAR	10g-SAR
802.11g	6	2437	Aux	0.197	0.076

6) Tablet– Secondary Portrait (9.0 cm from Main antenna-to-user)

Mada	Channel	f (MHz)	Antenna	Results (mW/g)	
Mode	Channel		Antenna	1g-SAR	10g-SAR
802.11b	6	2437	Main	0.096	0.042

Notes:

- 1. 802.11b doesn't operate for Aux antenna. Thus, 802.11g is performed for Aux antenna instead.
- 2. The modes with highest output power channel were chosen for the testing.

11.2. HSTNN-W75C SAR TEST RESULTS

1) Laptop - Lap-held (with the display open at 90° to the keyboard)

Note: WLAN main and aux antennas are more than 20 cm from phantom for laptop mode, SAR test is not required.

2) Tablet - Lap-held (2.8 cm from Main/Aux antennas-to-user)

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
wode		T (IMF12)	Antenna	1g-SAR	10g-SAR
802.11b	6	2437	Main	0.068	0.039
802.11g	6	2437	Aux	0.048	0.028

3) Tablet - Primary Landscape

Note: WLAN main and aux antennas are more than 20 cm from phantom for laptop mode, SAR test is not required.

4) Tablet - Secondary Landscape (0.4 cm from Main/Aux antennas-to-user)

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
Mode	Channel		Antenna	1g-SAR	10g-SAR
802.11b	6	2437	Main	0.553	0.256
	1	2412	Aux	0.797	0.322
802.11g	6	2437	Aux	0.908	0.378
	11	2462	Aux	0.461	0.190

5) Tablet - Primary Portrait (8.9 cm from Main antenna-to-user)

Mada	Channel	f (MHz)	Antonno	Results (mW/g)	
Mode	Channel		Antenna	1g-SAR	10g-SAR
802.11g	6	2437	Main	0.067	0.029

6) Tablet – Secondary Portrait (8.8 cm from Aux antenna-to-user)

Mada	Channel	f (MHz)	Antonno	Results (mW/g)	
Mode	Channel		Antenna	1g-SAR	10g-SAR
802.11g	6	2437	Aux	0.060	0.025

Notes:

- 1. 802.11b doesn't operate for Aux antenna. Thus, 802.11g is performed for Aux antenna instead.
- 2. The modes with highest output power channel were chosen for the testing.

12. SAR TEST PLOTS

WORST-CASE SAR PLOT - HSTNN-177C

Date/Time: 11/30/2009 7:46:49 PM

Test Laboratory: Compliance Certification Services

HSTNN-I77C Tablet - Lapheld

DUT: HP; Type: NA; Serial: NA

Communication System: 802.11bg; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.99 mho/m; ϵ_r = 53.3; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

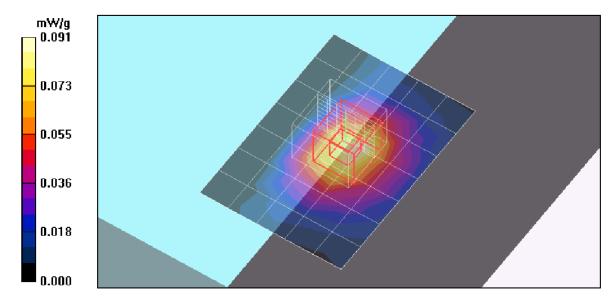
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b_Main Ant/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.091 mW/g

802.11b Main Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference $\overline{Value} = 6.85 \text{ V/m}$; Power Drift = 0.354 dB Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.086 mW/g; SAR(10 g) = 0.046 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.107 mW/g

Page 18 of 28

WORST-CASE SAR PLOT - HSTNN-W75C

Date/Time: 12/11/2009 5:44:47 PM

Test Laboratory: Compliance Certification Services

HSTNN-W75C Tablet - Lapheld

DUT: HP; Type: NA; Serial: NA

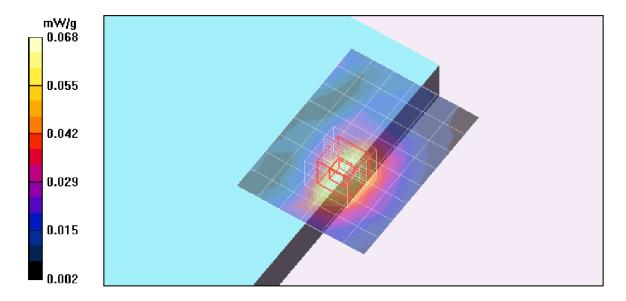
Communication System: 802.11bg; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.9 mho/m; ϵ_r = 54; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b_Main Ant/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.068 mW/g

802.11b_Main Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 6.53 V/m; Power Drift = 0.069 dB Peak SAR (extrapolated) = 0.122 W/kg SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.039 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.083 mW/g

Page 19 of 28

13. ATTACHMENTS

<u>No.</u>	<u>Contents</u>	No. of page (s)
1	System Validation Plots	4
2-1	SAR Test Plots for HSTNN-I77C	7
2-2	SAR Test Plots for HSTNN-W75C	9
3	Certificate of E-Field Probe - EX3DV4 SN 3686	10
4	Certificate of System Validation Dipole D2450V2	6

Page 20 of 28