

FCC OET BULLETIN 65 SUPPLEMENT C CLASS II PERMISSIVE CHANGE IC RSS-102 ISSUE 2

SAR EVALUATION REPORT

FOR

Broadcom 802.11g WLAN PCI-E Mini Card (Tested inside of HP Harbour)

MODEL: BCM94312HMG

FCC ID: QDS-BRCM1030 IC: 4324A-BRCM1030

REPORT NUMBER: 08U12023-2C

ISSUE DATE: SEPTEMBER 5, 2008

Prepared for

BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

Revision History

Rev.	Issued date	Revisions	Revised By
	August 14, 2008	Initial issue	
A	August 29, 2008	Update antenna identification Additional information for 8.9 inch LCD platform	Carol Baumann
В	September 2, 2008	Remove N/A and frequency ranges in Section 1 Correct typo	Carol Baumann
	September 5, 2008	Correct model number and exposure category typos	M. Heckrotte

TABLE OF CONTENTS

1	ATT	ESTATION OF TEST RESULTS	4
2	TES	T METHODOLOGY	5
3	FAC	ILITIES AND ACCREDITATION	5
4	CAL	IBRATION AND UNCERTAINTY	5
	4.1	MEASURING INSTRUMENT CALIBRATION	5
5	MEA	ASUREMENT UNCERTAINTY	5
6	TES	T EQUIPMENT LIST	7
7	DEV	/ICE UNDER TEST (DUT) DESCRIPTION	8
8	SYS	TEM DESCRIPTION	9
	8.1	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
9	SIM	ULATLING LIQUID PARAMETERS CHECK	11
	9.1	SIMULATING LIQUID PARAMETER CHECK RESULT	12
10	SYS	TEM PERFORMANCE CHECK	13
	10.1	SYSTEM PERFORMANCE CHECK RESULTS	14
11	PRO	OCEDURE USED TO ESTABLISH TEST SIGNAL	15
12	SAF	R TEST RESULTS	16
	12.1	SAR TEST RESULT FOR THE BAND 2400 – 2483.5 MHZ	16
	12.1.	1 10.2 INCH LCD WITH YAGEO ANTENNA	16
	12.1.2	2 8.9 INCH LCD WITH WNC ANTENNA	16
13	ATT	ACHMENTS	18
14	PHC	DTOS	19

1 ATTESTATION OF TEST RESULTS

COMPANY NAME: BROADCOM CORPORATION

190 MATHILDA PLACE

SUNNYVALE, CA 94086

EUT DESCRIPTION: Broadcom 802.11g WLAN PCI-E Mini Card

(Tested inside of HP Harbour)

MODEL: BCM94312HMG

DEVICE CATEGORY: Portable

EXPOSURE CATEGORY: General Population/Uncontrolled Exposure

DATE TESTED: August 14 and 29, 2008

THE HIGHEST SAR

VALUES: See Table below

FCC / IC	Frequency Range	The Highest	Limit
Rule Parts	[MHz]	SAR Values (1g_mW/g)	(mW/g)
15.247 / RSS-102	2400 – 2483.5	0.02	

APPLICABLE STANDARDS							
STANDARD	TEST RESULTS						
FCC OET BULLETIN 65 SUPPLEMENT C	Pass						
RSS-102 ISSUE 2	Pass						

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Suray Shih

SUNNY SHIH EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

Tested By:

CAROL BAUMANN SAR ENGINEER

COMPLIANCE CERTIFICATION SERVICES

Carol Baumana

2 TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters May 2007 and IC RSS 102 Issue 2: NOVERMBER 2005.

3 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4 CALIBRATION AND UNCERTAINTY

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5 MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

Uncertainty component	Uncertainty component Tol. (±%)		Div.	Ci (1g)	Ci (10g)	Std. Unc.(±%)		
Oncertainty component	101. (± /6)	Dist.	DIV.	Ci (ig)	Ci (lug)	Ui (1g)	Ui(10g)	
Measurement System								
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80	
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92	
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92	
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58	
Linearity	4.70	R	1.732	1	1	2.71	2.71	
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58	
Readout Electronics	1.00	N	1	1	1	1.00	1.00	
Response Time	0.80	R	1.732	1	1	0.46	0.46	
Integration Time	2.60	R	1.732	1	1	1.50	1.50	
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92	
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00	
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23	
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67	
Extrapolation, interpolation, and integration algorithms for								
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25	
Test sample Related								
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10	
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60	
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89	
Phantom and Tissue Parameters								
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31	
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24	
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70	
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41	
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62	
Combined Standard Uncertainty			RSS			11.44	10.49	
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98	

Notesfor table

1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

Measurement uncertainty for 3 GHz – 6 GHz

Uncontainty commonant	Tal (±0/)	Probe	Div.	C: (4 m)	C: (40m)	Std. Unc.(±%)		
Uncertainty component	Tol. (±%)	Dist.	DIV.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)	
Measurement System								
Probe Calibration	4.80	N	1	1	1	4.80	4.80	
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92	
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92	
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58	
Linearity	4.70	R	1.732	1	1	2.71	2.71	
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58	
Readout Electronics	1.00	N	1	1	1	1.00	1.00	
Response Time	0.80	R	1.732	1	1	0.46	0.46	
Integration Time	2.60	R	1.732	1	1	1.50	1.50	
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73	
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73	
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23	
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67	
Extrapolation, interpolation, and integration algorithms for								
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25	
Test sample Related								
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10	
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60	
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89	
Phantom and Tissue Parameters								
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31	
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24	
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70	
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41	
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62	
Combined Standard Uncertainty			RSS			11.66	10.73	
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46	

Notesfor table

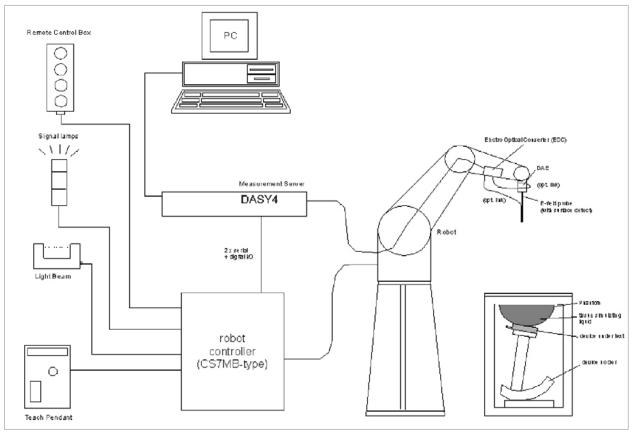
1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient


TEST EQUIPMENT LIST

Name of Equipment	Manufacturer	Type/Model	Serial Number		Cal.	Due date
Name of Equipment	Wallulacturer	i ype/iviodei	Seriai Nulliber	MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Electronic Probe kit	HP	85070C	N/A			N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	14	2008
E-Field Probe	SPEAG	EX3DV3	3531	4	23	2009
Thermometer	ERTCO	639-1S	1718	8	30	2008
Data Acquisition Electronics	SPEAG	DAE3 V1	500	11	16	2008
System Validation Dipole	SPEAG	D2450V2	748	4	14	2009
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009
Signal Generator	R&S	SMP 04	DE34210	2	16	2009
Power Meter	Giga-tronics	8651A	8651404	1	11	2010
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A
Simulating Liquid	CCS	M2450	N/A	Withi	n 24 h	rs of first test
Simulating Liquid	SPEAG	M5200-5800	N/A	Withi	n 24 h	rs of first test

DEVICE UNDER TEST (DUT) DESCRIPTION 7

Broadcom 802.11g WLAN PCI-E Mini Card (Tested inside of HP Harbour)					
Normal operation:	Lap-held only				
	Note: SAR test with display open at 90° to the keyboard				
Host device:	HP Harbour				
	With 10.2 inch and 8.9 inch LCD				
Antenna tested:	Yageo				
	Part Number: Tx1 LCD Antenna: 6036B0044401				
	Tx2 LCD Antenna: 6036B0044501				
	Wistron Neweb Corp. (WNC)				
	Part Number: Main Antenna: 6036B0044201				
	Aux Antenna: 6036B0044301				
Power supply:	Power supplied through laptop computer (host device)				

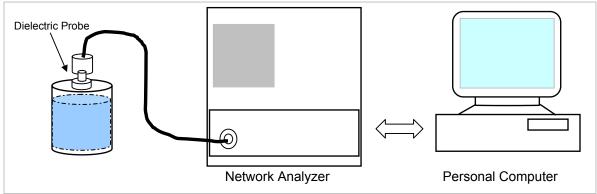
8 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

8.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.


Ingredients		Frequency (MHz)								
(% by weight)	4	50	83		· 9′			00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

9 SIMULATLING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Во	dy
ranger i requericy (ivii iz)	ϵ_{r}	σ (S/m)	ϵ_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

9.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity = 40% Measured by: Carol Baumann

Simulating Liquid					Parameters	Measured	Target	Deviation (%)	Limit (%)	
f (MHz)	Temp. (°C)	Depth (cm)			Talameters	Mcasurcu	raiget	Deviation (70)	Littile (70)	
2450	24	15	e'	51.9278	Relative Permittivity (ε_r):	51.9278	52.7	-1.47	± 5	
2430			e"	14.4686	Conductivity (σ):	1.97202	1.95	1.13	± 5	

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C

August 14, 2008 08:40 AM

-	-1	- 11
Frequency	e'	e"
2400000000.	52.2155	14.1077
2405000000.	52.0882	14.2399
2410000000.	52.1243	14.1185
2415000000.	52.0983	14.1209
2420000000.	52.0587	14.2794
2425000000.	52.0107	14.2491
2430000000.	52.0947	14.2481
2435000000.	51.9606	14.2564
2440000000.	51.9768	14.3527
2445000000.	51.8680	14.3744
2450000000.	51.9278	14.4686
2455000000.	51.8702	14.3880
2460000000.	51.9699	14.3706
2465000000.	51.8818	14.4662
2470000000.	51.9217	14.4608
2475000000.	51.8803	14.5536
2480000000.	51.8388	14.5022
2485000000.	51.7974	14.5764
2490000000.	51.7872	14.6101
2495000000.	51.7122	14.5994
2500000000.	51.7488	14.5459

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_{\theta} e'' = 2 \pi f \varepsilon_{\theta} e''$$

where
$$f = target f * 10^6$$

 $\epsilon_0 = 8.854 * 10^{-12}$

10 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

450 to 2450 MHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

5 GHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MHz)	Head Tissue		Body Tissue			
	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}	SAR _{Peak}	
5000	72.9	20.7	68.1	19.2	260.3	
5100	74.6	21.1	78.8	19.6	272.3	
5200	76.5	21.6	71.8	20.1	284.7	
5500	83.3	23.4	79.1	22.0	326.3	
5800	78.0	21.9	74.1	20.5	324.7	

Note: All SAR values normalized to 1 W forward power.

REPORT NO: 08U12023-2C DATE: September 5, 2008 FCC ID: QDS-BRCM1030

10.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 748

The dipole input power (forward power): 250 mW

Results

Date: August 14, 2008

Ambient Temperature = 25°C; Relative humidity = 40%

Measured by: Carol Baumann

Body Simulating Liquid		SAR (mW/g)	Normalize	Target	Deviation	Lim it	
f (MHz)	Temp.(°C)	Depth (cm)	SAR (III W /g)	d	Target	(%)	(%)
2450	24	15	1 g	51.7	51.2	0.98	± 10
2430	4	13	10g	24.3	23.7	2.53	± 10

11 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, wl_tools, which enable a user to control the frequency and output power of the module.

The cable assembly insertion loss of 20.3 dB (including attenuator and connectors) was entered as an offset in the power meter to allow for direct reading of power.

RF Conducted Output Power Measurement Results:

See Broadcom's Operational Description document for Average Power information.

12 SAR TEST RESULTS

12.1 SAR TEST RESULT FOR THE BAND 2400 - 2483.5 MHZ

12.1.1 10.2 INCH LCD WITH YAGEO ANTENNA

Distance between antenna and body is equivalent for 10.2 inch and 8.9 inch LCD's. Difference is only the size of the LCD display. Please refer to Host Device photos.

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11b	6	2437 (M)	Main	0.020	1.6
002.110	6	2437 (M)	Aux	0.007	1.6
802.11g	6	2437 (M)	Main	0.019	1.6
502.11g	6	2437 (M)	Aux	0.005	1.6

Notes:

- 1) The modes with highest output power channel were chosen for the testing.
- 2) Test configuration: Lapheld with display open at 90° to the keyboard.
- 3) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

12.1.2 10.2 AND 8.9 INCH LCD'S WITH WNC ANTENNA

WNC antennas were tested inside 10.2 inch and 8.9 inch LCD platforms. SAR levels were below measurement system.

The Highest SAR Plot & Data for 2.4 GHz Band

Date/Time: 8/14/2008 11:48:53 AM

Test Laboratory: Compliance Certification Services

Lapheld Position Main Antenna

DUT: HP; Type: Harbour; Serial: N/A

Communication System: 802.11bg; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg Probe: EX3DV3 SN3531; ConvF(7.91, 7.91, 7.91); Calibrated: 4/23/2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 11/16/2007
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

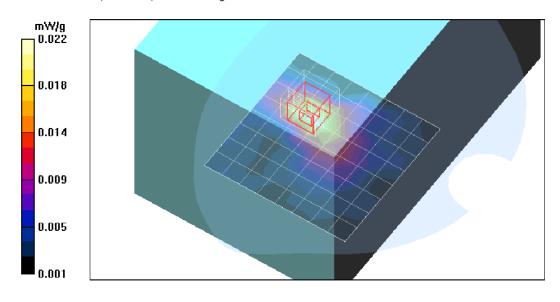
802.11b M-ch Main Antenna/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.022 mW/g

802.11b M-ch Main Antenna/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=3mm


Reference Value = 2.02 V/m; Power Drift = -0.263 dB

Peak SAR (extrapolated) = 0.036 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.011 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.025 mW/g

13 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	2
2	SAR Test Plots for 2.4 GHz Band	4
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6

REPORT NO: 08U12023-2C DATE: September 5, 2008 FCC ID: QDS-BRCM1030

14 PHOTOS

Setup Photo with Main Antenna

Setup Photo with Aux Antenna

REPORT NO: 08U12023-2C DATE: September 5, 2008 FCC ID: QDS-BRCM1030

WiFi Module

REPORT NO: 08U12023-2C DATE: September 5, 2008 FCC ID: QDS-BRCM1030

Host Device

End of Report