

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-GEN AND RSS-210 CERTIFICATION TEST REPORT

FOR

BROADCOM BLUETOOTH MODULE

MODEL NUMBER: BCM92046MD

FCC ID: QDS-BRCM1029 IC #: 4324A-BRCM1029

REPORT NUMBER: 07U11199-1C

ISSUE DATE: AUGUST 28, 2007

PREPARED FOR BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

PREPARED BY COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	August 9, 2007	Initial Issue	Hsin Fu Shih
В	August 10, 2007	Corrected some typos	Hsin Fu Shih
С	August 28, 2007	1. Re-tested TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ	Hsin Fu Shih
		2. Updated test set up photo with new adaptor and USB cable	

Page 2 of 72

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	ТЕ	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	MEASUREMENT UNCERTAINTY	
5.	EQ	QUIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	MAXIMUM OUTPUT POWER	6
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
	5.4.	SOFTWARE AND FIRMWARE	
	5.5.	WORST-CASE CONFIGURATION AND MODE	
	5.6.	DESCRIPTION OF TEST SETUP	
•			
6.		ST AND MEASUREMENT EQUIPMENT	
	ТЕ		10
6. 7.	ТЕ	ST AND MEASUREMENT EQUIPMENT	
6. 7.	TE LII	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS	10
6. 7.	TE LII 7. <i>1</i> .	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS .1. 20 dB BANDWIDTH	
6. 7.	TE LII 7. <i>1</i> . 7.1	ANTENNA PORT CHANNEL TESTS	10 11 11 11 12 19
6. 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS 1. 20 dB BANDWIDTH 2. 99% BANDWIDTH 3. HOPPING FREQUENCY SEPARATION 4. NUMBER OF HOPPING CHANNELS	10 11 11 12 19 10
6. 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS 1. 20 dB BANDWIDTH 2. 99% BANDWIDTH 3. HOPPING FREQUENCY SEPARATION 4. NUMBER OF HOPPING CHANNELS 5. AVERAGE TIME OF OCCUPANCY	10 11 11 12 19 10
6. 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS 1. 20 dB BANDWIDTH 2. 99% BANDWIDTH 3. HOPPING FREQUENCY SEPARATION 4. NUMBER OF HOPPING CHANNELS 5. AVERAGE TIME OF OCCUPANCY 6. PEAK OUTPUT POWER	10 11 11 11 12 19 21 26 33
6. 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1	ANTENNA PORT CHANNEL TESTS	10 11 11 11 12 19 21 26 33 41
6. 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1	ANTENNA PORT CHANNEL TESTS	10 11 11 11 12 19 21 26 33 41
6 . 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	ANTENNA PORT CHANNEL TESTS	10 11 11 11 12 19 21 26 33 41 44
6 . 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS .1 20 dB BANDWIDTH .2 99% BANDWIDTH .3 HOPPING FREQUENCY SEPARATION .4 NUMBER OF HOPPING CHANNELS .5 AVERAGE TIME OF OCCUPANCY .6 PEAK OUTPUT POWER .7 MAXIMUM PERMISSIBLE EXPOSURE .8 CONDUCTED SPURIOUS EMISSIONS <i>RADIATED EMISSIONS</i>	10 11 11 11 12 19 21 26 33 41 44 53
6 . 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS .1 20 dB BANDWIDTH .2 99% BANDWIDTH .3 HOPPING FREQUENCY SEPARATION .4 NUMBER OF HOPPING CHANNELS .5 AVERAGE TIME OF OCCUPANCY .6 PEAK OUTPUT POWER .7 MAXIMUM PERMISSIBLE EXPOSURE .8 CONDUCTED SPURIOUS EMISSIONS .1 TRANSMITTER RADIATED SPURIOUS EMISSIONS	10 11 11 11 12 12 19 21 26 33 41 44 53 53
6 . 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2. 7.2	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS .1 20 dB BANDWIDTH .2 99% BANDWIDTH .3 HOPPING FREQUENCY SEPARATION .4 NUMBER OF HOPPING CHANNELS .5 AVERAGE TIME OF OCCUPANCY .6 PEAK OUTPUT POWER .7 MAXIMUM PERMISSIBLE EXPOSURE .8 CONDUCTED SPURIOUS EMISSIONS <i>RADIATED EMISSIONS</i> .1 TRANSMITTER RADIATED SPURIOUS EMISSIONS .2 TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ .3 RECEIVER ABOVE 1 GHZ	10 11 11 11 12 19 21 26 33 41 41 44 53 53 56 66
6 . 7.	TE LI 7. <i>I</i> . 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2	ST AND MEASUREMENT EQUIPMENT MITS AND RESULTS ANTENNA PORT CHANNEL TESTS .1 20 dB BANDWIDTH .2 99% BANDWIDTH .3 HOPPING FREQUENCY SEPARATION .4 NUMBER OF HOPPING CHANNELS .5 AVERAGE TIME OF OCCUPANCY .6 PEAK OUTPUT POWER .7 MAXIMUM PERMISSIBLE EXPOSURE .8 CONDUCTED SPURIOUS EMISSIONS <i>RADIATED EMISSIONS</i> .1 TRANSMITTER RADIATED SPURIOUS EMISSIONS .2 TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ .3 RECEIVER ABOVE 1 GHZ	10 11 11 11 12 19 21 26 33 41 41 44 53 53 56 66

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	190 MATHILDA	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, USA		
EUT DESCRIPTION:	BROADCOM B	BROADCOM BLUETOOTH MODULE		
MODEL:	BCM92046MD			
SERIAL NUMBER:	1059229	1059229		
DATE TESTED:	July 24 ~ August	July 24 ~ August 3, 2007		
	APPLICABI	JE STANDARDS		
STANDA	ARD	TEST RESULTS		
FCC PART 15 S	UBPART C	NO NON-COMPLIANCE NOTED		
RSS-GEN IS	SSUE 1	NO NON-COMPLIANCE NOTED		
RSS-210 ISSUE	6 ANNEX 8	NO NON-COMPLIANCE NOTED		

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr Shih

HSIN FU SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

own Charg

DEVIN CHANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 72

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN, RSS-210, and RSS-212.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth transceiver 2.1 version with EDR.

The radio module is manufactured by BROADCOM CORPORATION.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

GFSK 2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power	
(MHz)	(dBm)	(mW)	
2402 - 2480	3.69	2.34	

QPSK 2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power	
(MHz)	(dBm)	(mW)	
2402 - 2480	5.15	3.27	

8PSK 2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power	
(MHz)	(dBm)	(mW)	
2402 - 2480	5.47	3.52	

Page 6 of 72

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB antenna, with a maximum gain of 3.36 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Broadcom Blue Tool l version 0.9.9.6.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2441 MHz.

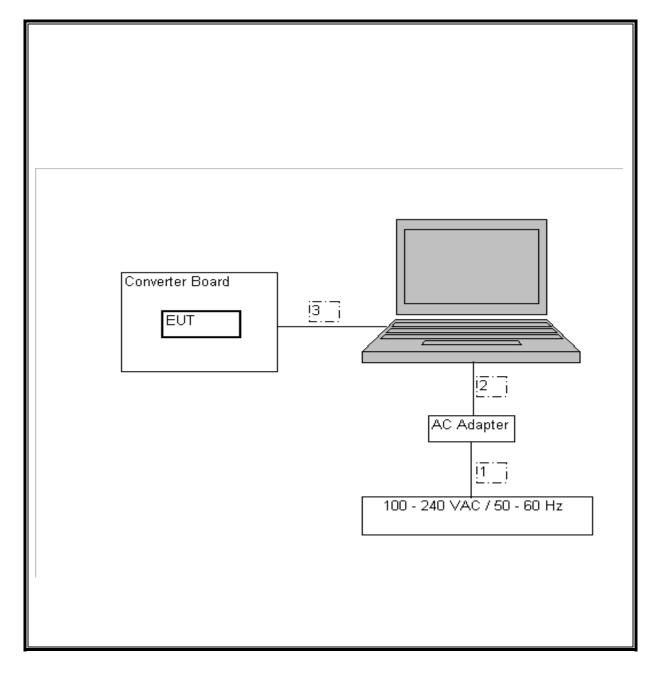
Page 7 of 72

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number							
Laptop PC	Dell	Inspiron 0000	CN-901014-70166-57K-01JT	DOC			
AC Adapter	Dell	PA-1600-06D1	CN-0F9710-71615-56H-5118	DOC			

I/O CABLES


	I/O CABLE LIST						
Cable No.	Port	# of Identical	Connector Type	Cable Type	Cable Length	Remarks	
		Ports					
1	AC	1	US115	Unshielded	1.5m	N/A	
2	DC	1	DC	Unshielded	1.5m	N/A	
3	USB	1	USB	Shielded	1.0m	N/A	

TEST SETUP

The EUT is installed in a host laptop computer during the tests. Test software exercised the radio card.

Page 8 of 72

SETUP DIAGRAM FOR TESTS

Page 9 of 72

6. TEST AND MEASUREMENT EQUIPMENT

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/2007		
Spectrum Analyzer 9KHz ~ 26.5 GHz	Agilent / HP	E4407B	MY41444592	10/6/2007		
RF Filter Section	Agilent / HP	85420E	3705A00256	6/12/2008		
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	6/12/2008		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	4/15/2008		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00561	10/30/2007		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A0022704	8/13/2007		
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	5/9/2008		
4.0 High Pass Filter	Micro Tronics	HPM13351	3	N/A		
2.4 - 2.5 Band Reject Filter	Micro Tronics	N/A	1	N/A		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY43360112	5/7/2008		

Page 10 of 72

7. LIMITS AND RESULTS 7.1. ANTENNA PORT CHANNEL TESTS

7.1.1. 20 dB BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS

No non-compliance noted:

GFSK

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	951.5
Middle	2441	946.8
High	2480	949.5

QPSK

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	1380
Middle	2441	1378
High	2480	1387

8PSK

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	1352
Middle	2441	1356
High	2480	1368

7.1.2. 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

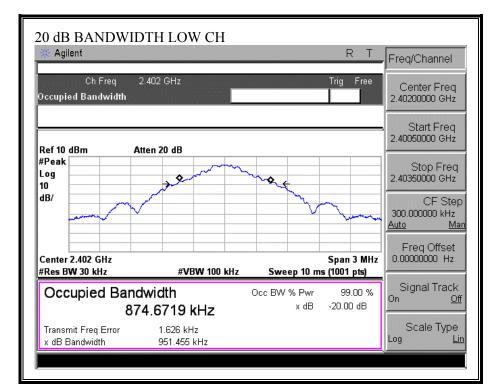
TEST PROCEDURE

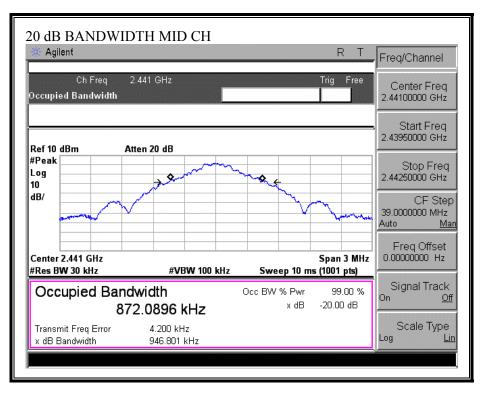
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

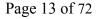
RESULTS

No non-compliance noted:

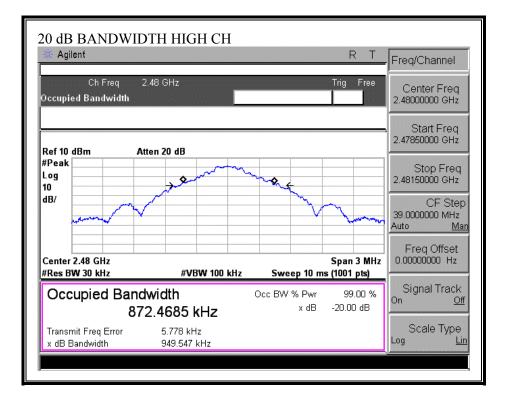
GFSK Mode					
Channel	Frequency	99% Bandwidth			
	(MHz)	(MHz)			
Low	2402	0.8747			
Middle	2441	0.8721			
High	2480	0.8725			

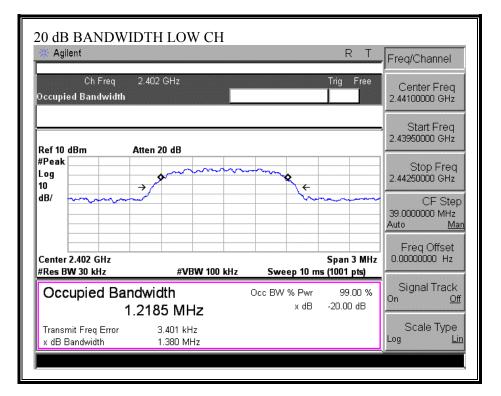

QPSK Mode

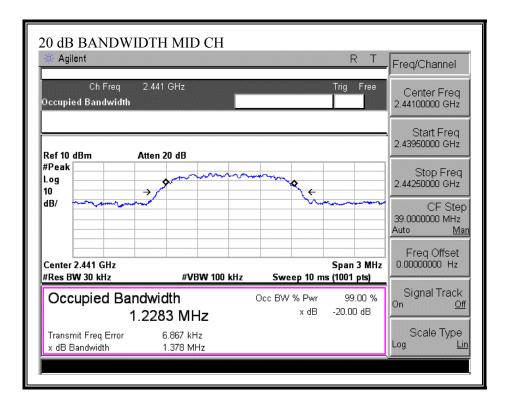

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.2185
Middle	2441	1.2283
High	2480	1.2446

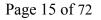

8PSK Mode

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.2202
Middle	2441	1.2302
High	2480	1.2437

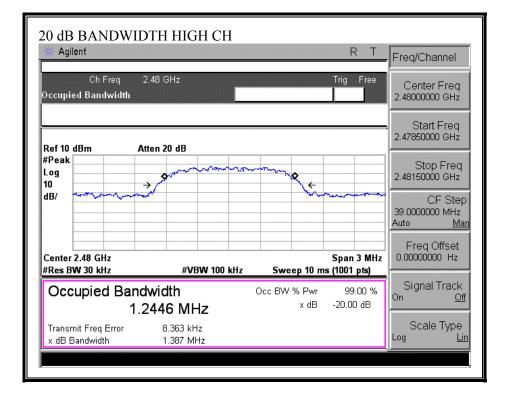

GFSK Mode

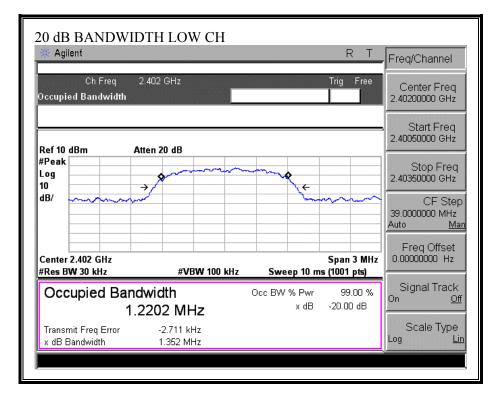


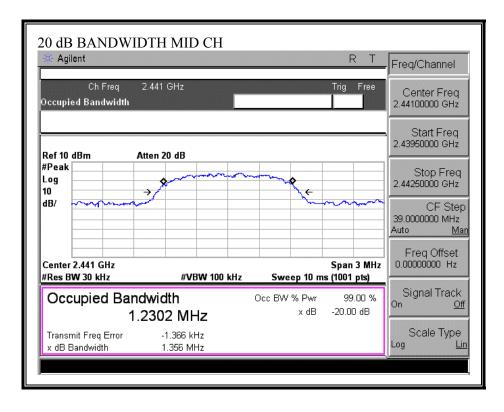

GFSK Mode

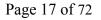


Page 14 of 72

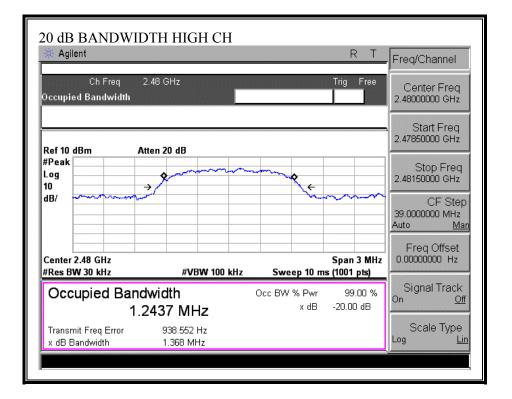

QPSK Mode




QPSK Mode



Page 16 of 72


8PSK Mode

8PSK Mode

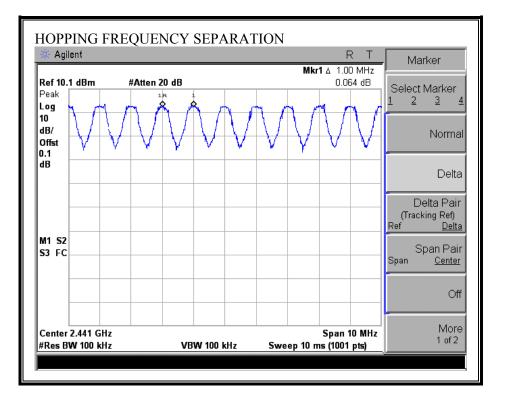
Page 18 of 72

7.1.3. HOPPING FREQUENCY SEPARATION

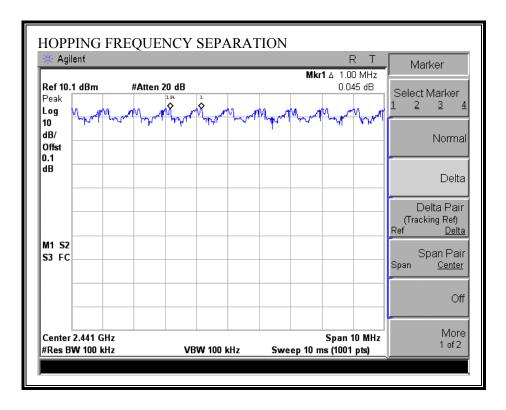
LIMIT

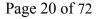
§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS


No non-compliance noted:


Page 19 of 72

<u>GFSK</u>

<u>8PSK</u>

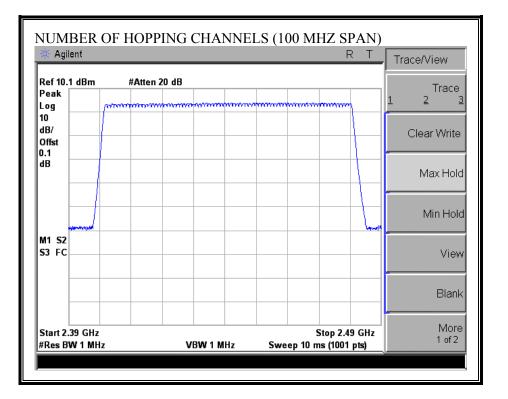
7.1.4. NUMBER OF HOPPING CHANNELS

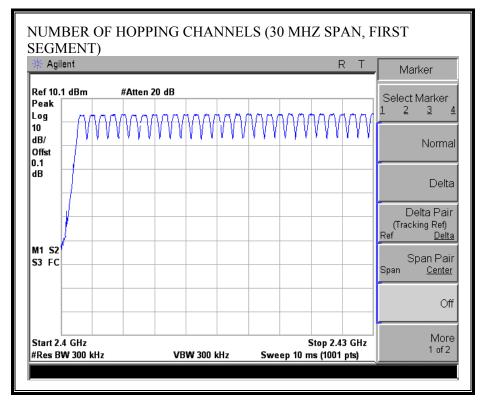
<u>LIMIT</u>

15.247 (a) (1) (iii) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

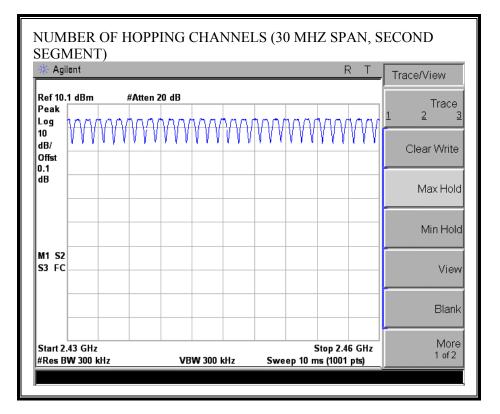
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 1 % of the span. The analyzer is set to Max Hold.

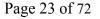

RESULTS

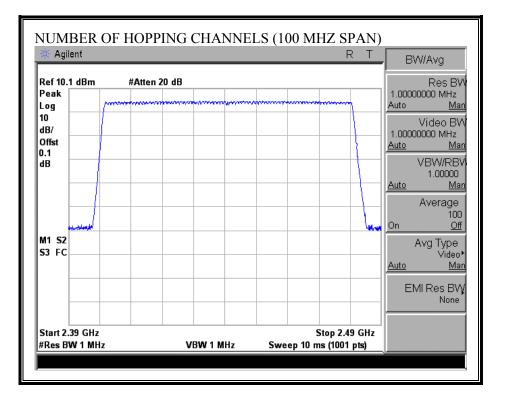

No non-compliance noted:

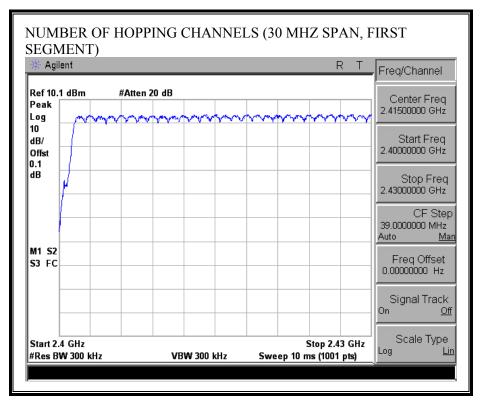
79 Channels observed.

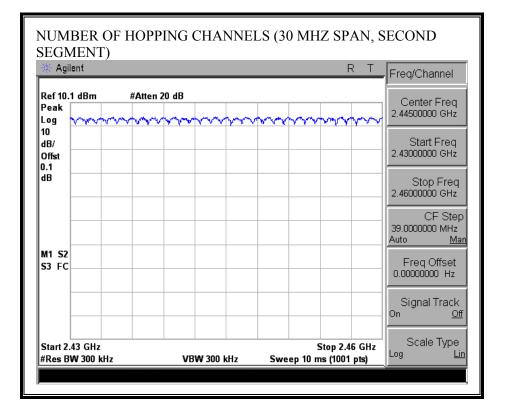
Page 21 of 72

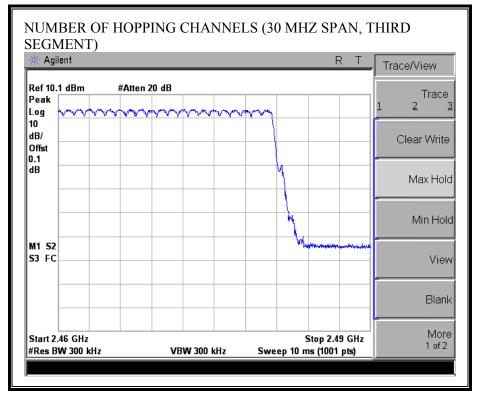

<u>GFSK</u>

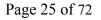



<u>GFSK</u>




<u>8PSK</u>





<u>8PSK</u>

7.1.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

15.247 (a) (1) (iii) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

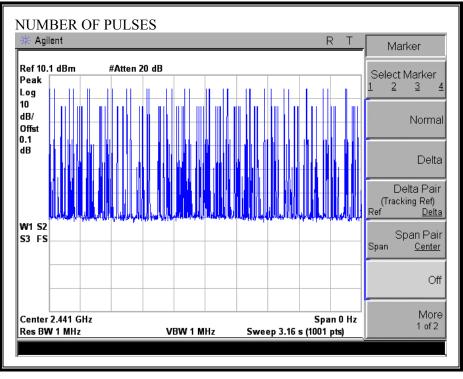
No non-compliance noted:

GFSK

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.37	31	0.115	0.4	0.285
DH3	1.61	17	0.274	0.4	0.126
DH5	2.88	12	0.346	0.4	0.054

8PSK

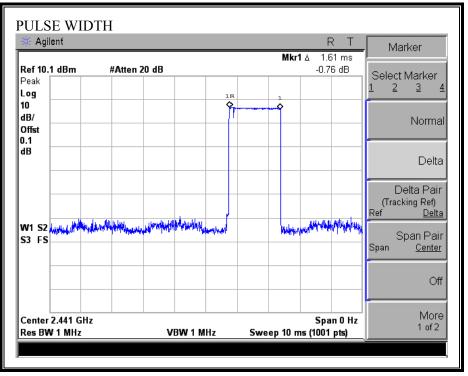
DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.39	32	0.125	0.4	0.275
DH3	1.62	18	0.292	0.4	0.108
DH5	2.86	11	0.315	0.4	0.085

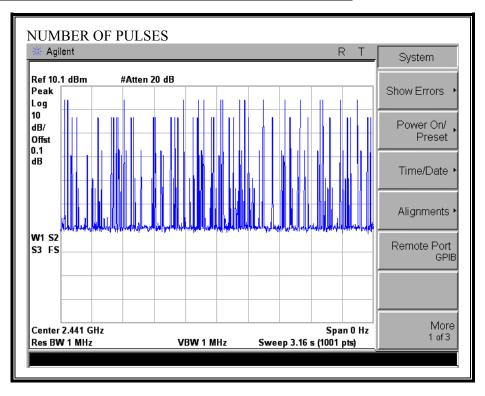

REPORT NO: 07U11199-1C EUT: BROADCOM BLUETOOTH MODULE

GFSK-DH1

PULSE WIDTH

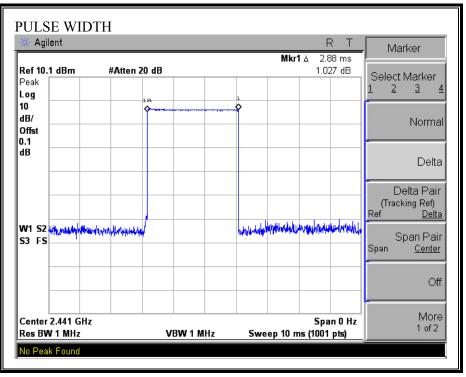
PULSE WIDTH Agilent R Marker Mkr1 ∆ 370 µs Ref 10.1 dBm #Atten 20 dB -0.266 dB Select Marker Peak 2 3 1 Log 10 00 dB/ Normal Offst 0.1 dB Delta Delta Pair (Tracking Ref) Ref <u>Delta</u> utter and a substant W1 S2 wante to Man provident the state of th Vilenis Span Pair S3 FS Span Center Off More Center 2.441 GHz Span 0 Hz 1 of 2 Res BW 1 MHz VBW 1 MHz Sweep 10 ms (1001 pts)

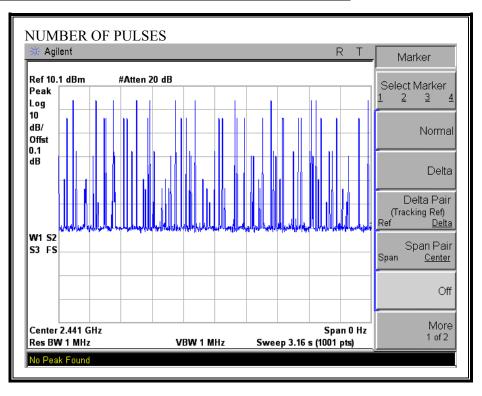

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIODS



<u>GFSK-DH3</u>

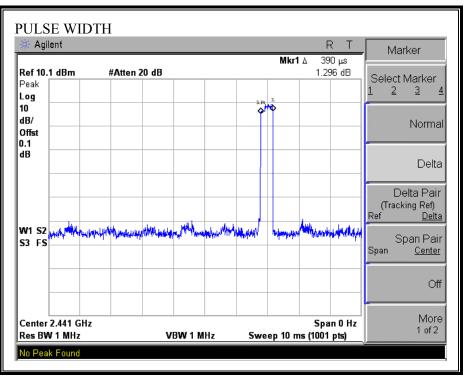
PULSE WIDTH

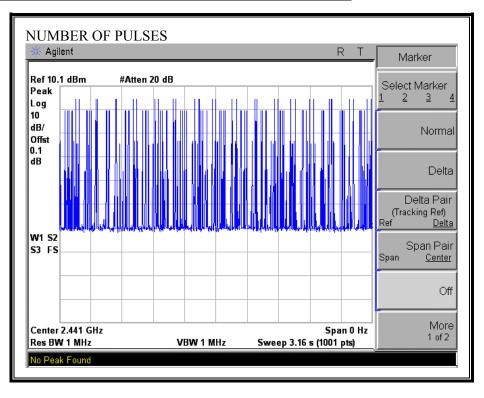

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



<u>GFSK-DH5</u>

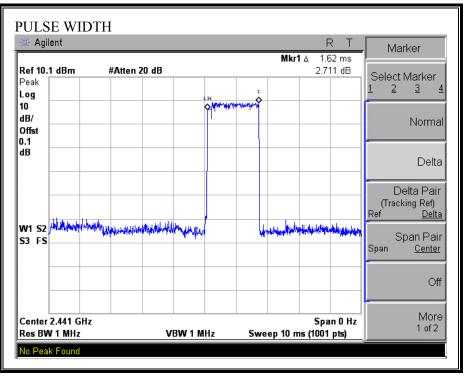
PULSE WIDTH

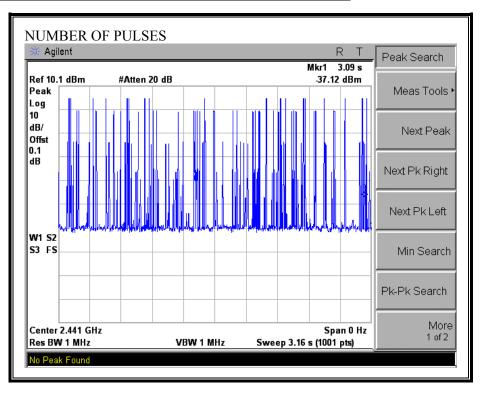

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 29 of 72

<u>8PSK-DH1</u>

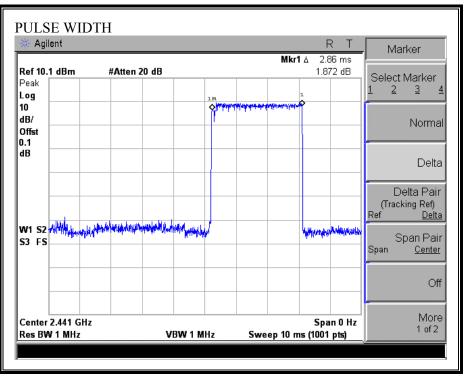
PULSE WIDTH

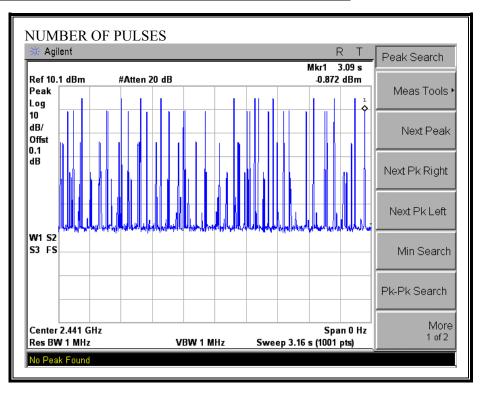

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 30 of 72

<u>8PSK-DH3</u>

PULSE WIDTH


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


Page 31 of 72

<u>8PSK-DH5</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 32 of 72

7.1.6. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (1) (1) For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

§15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 3.36 dBi, therefore the limit is 21 dBm (0.125 watts).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

Page 33 of 72

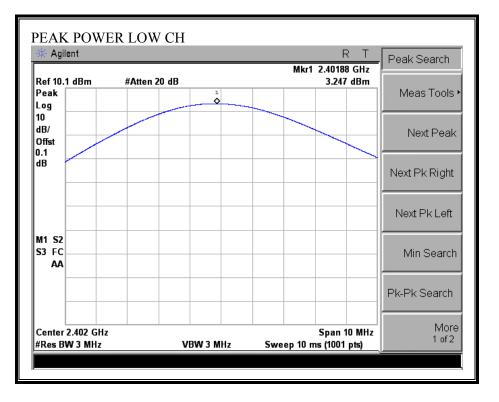
RESULTS

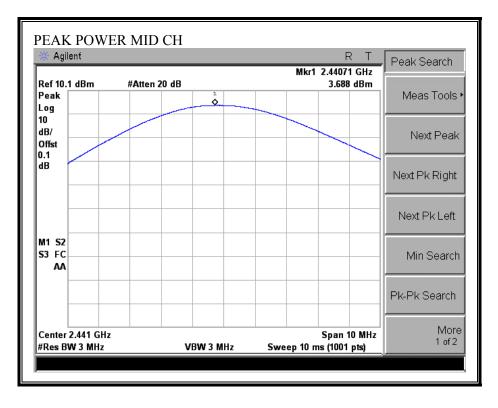
No non-compliance noted:

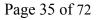
GFSK

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2402	3.25	21	-17.75
Middle	2441	3.69	21	-17.31
High	2480	3.58	21	-17.42

QPSK

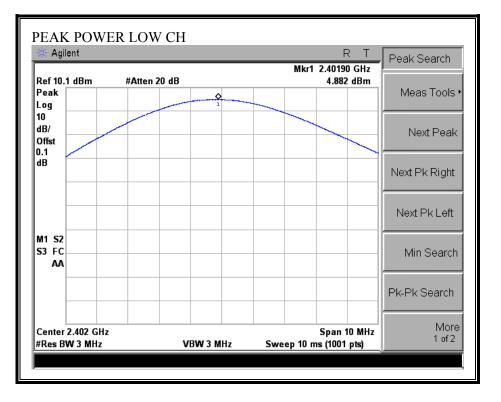

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2402	4.88	21	-16.12
Middle	2441	5.15	21	-15.85
High	2480	4.86	21	-16.14

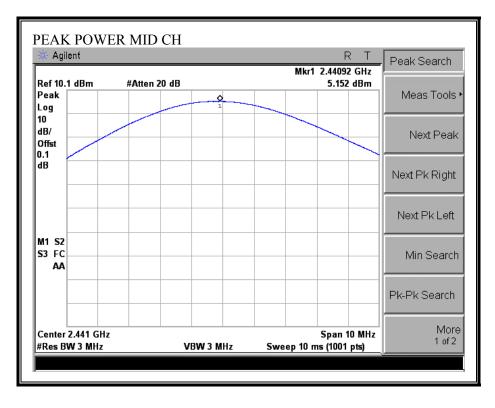

8PSK

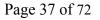

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2402	5.21	21	-15.79
Middle	2441	5.47	21	-15.53
High	2480	5.18	21	-15.82

Page 34 of 72

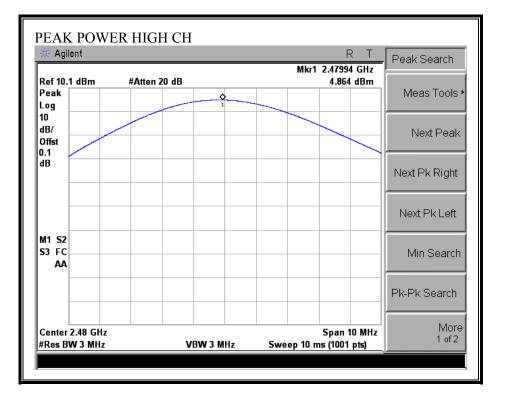
Peak Output Power for GFSK

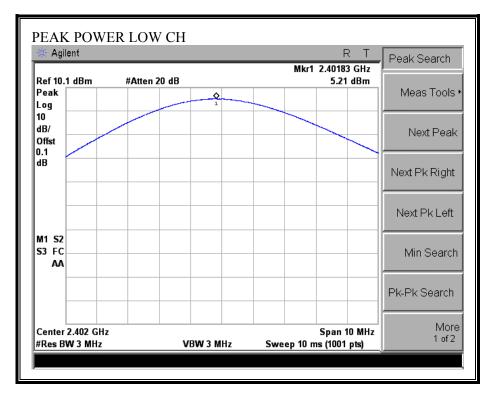


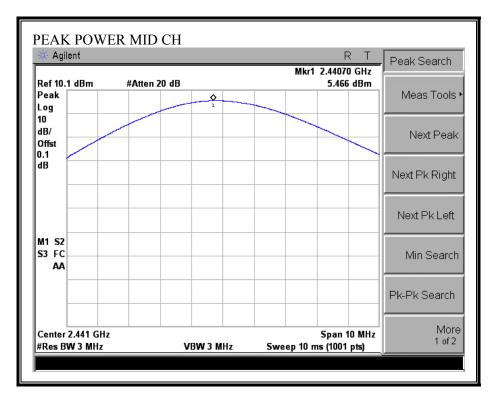

Peak Output Power for GFSK



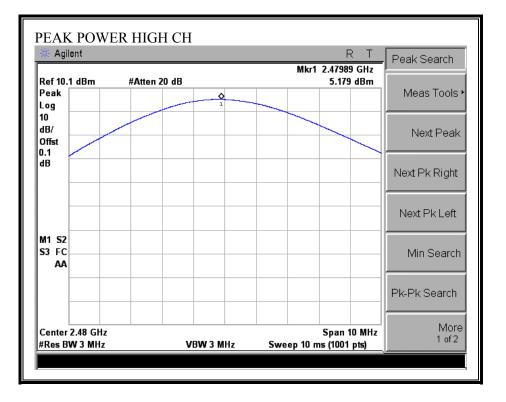
Page 36 of 72


Peak Output Power for QPSK




Peak Output Power for QPSK

Page 38 of 72


Peak Output Power for 8PSK

Peak Output Power for 8PSK

Page 40 of 72

7.1.7. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100.000		0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 41 of 72

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(P(dBm) / 10)} and G(numeric) = 10^{(G(dBm) / 10)}$

yields

 $d = 0.282 * 10^{(P+G)} / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 42 of 72

LIMITS

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

GESK

MPE	Output	Antenna	Power
Distance	Power	Gain	Density
(cm)	(dBm)	(dBi)	(mW/cm^2)
20.0	3.69	3.36	0.001

8PSK

MPE	Output	Antenna	Power
Distance	Power	Gain	Density
(cm)	(dBm)	(dBi)	(mW/cm^2)
20.0	5.47	3.36	0.002

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

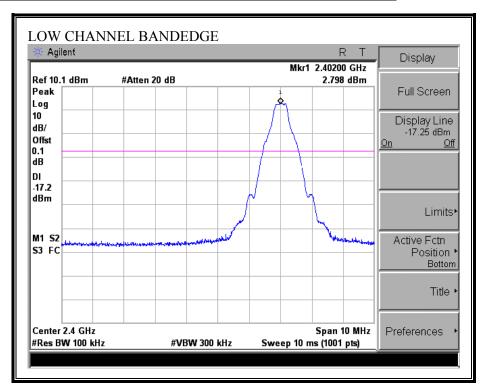
7.1.8. CONDUCTED SPURIOUS EMISSIONS

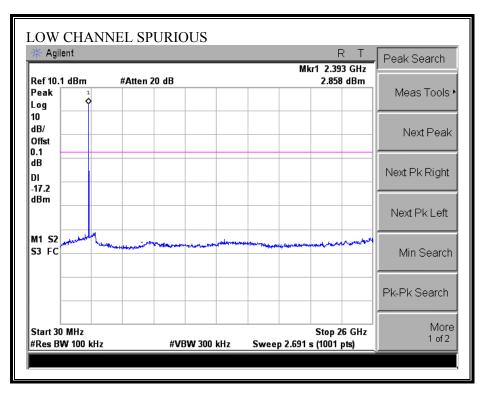
LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

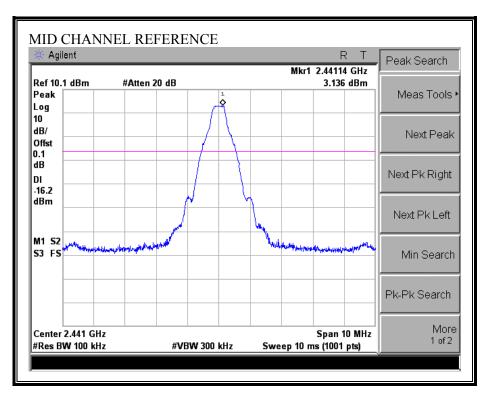
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

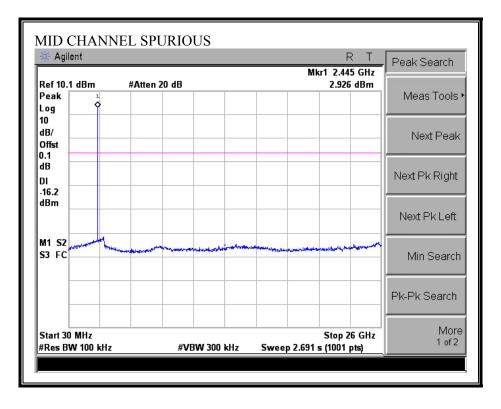

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS

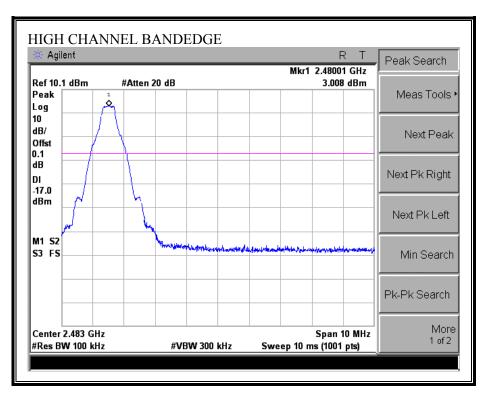
No non-compliance noted:

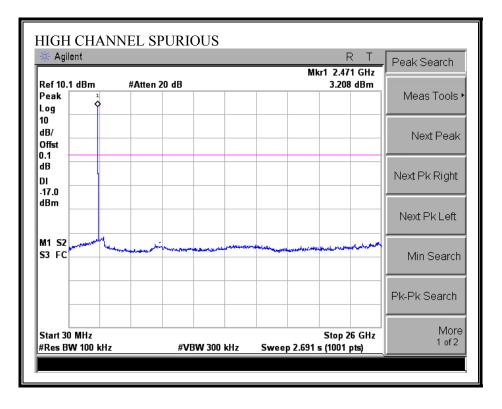
Page 44 of 72


CONDUCTED SPURIOUS EMISSIONS, LOW CHANNEL for GFSK Mode

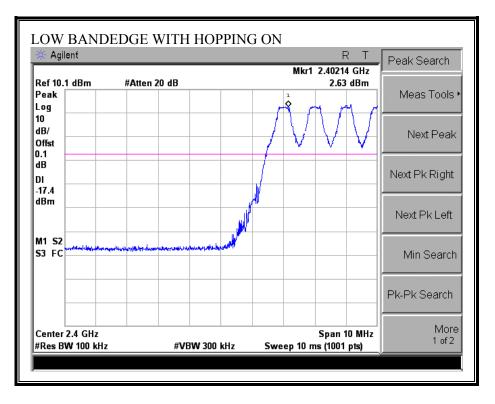


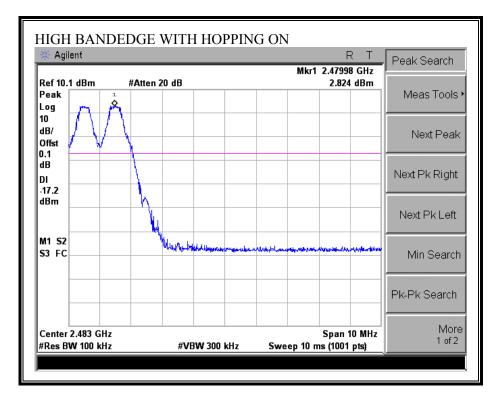
Page 45 of 72

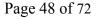

CONDUCTED SPURIOUS EMISSIONS, MID CHANNEL for GFSK Mode

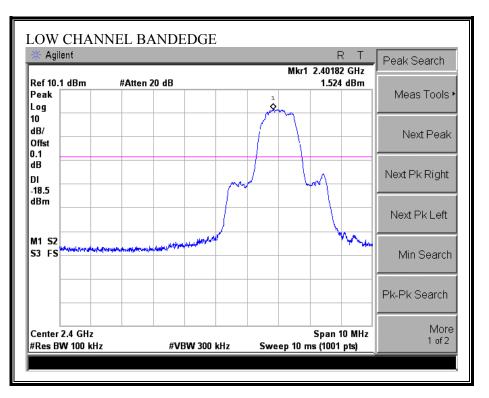


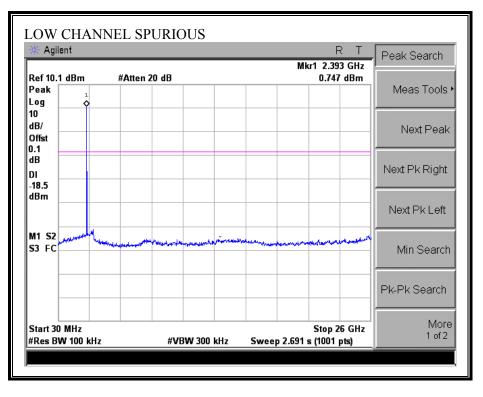


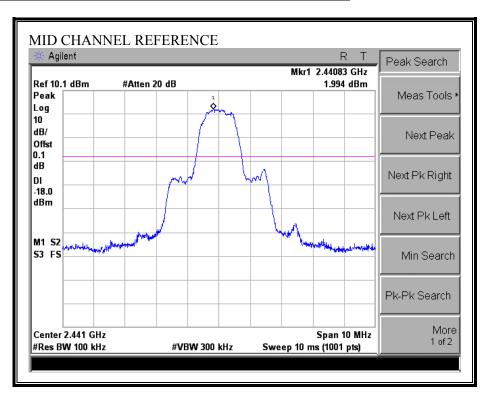

CONDUCTED SPURIOUS EMISSIONS, HIGH CHANNEL for GFSK Mode

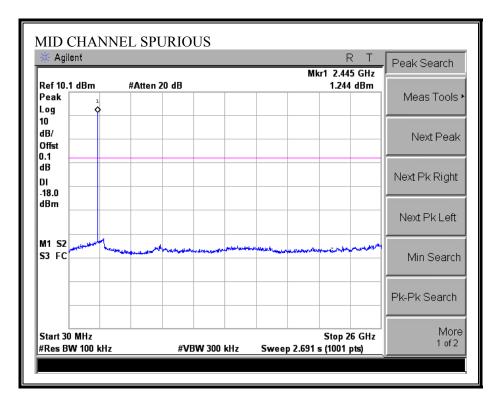


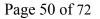



CONDUCTED SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON for GFSK Mode

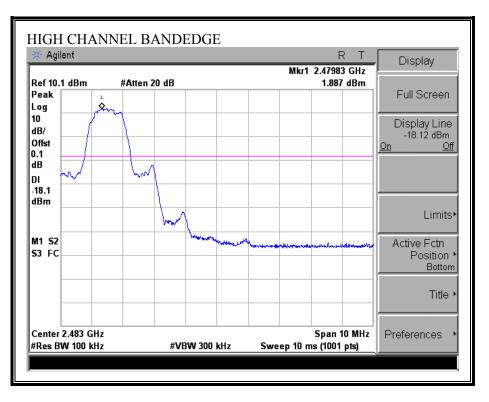


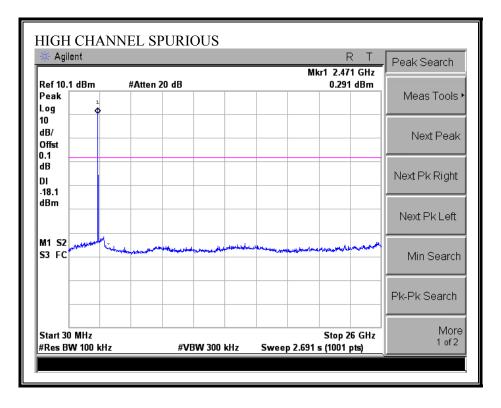

CONDUCTED SPURIOUS EMISSIONS, LOW CHANNEL for 8PSK Mode

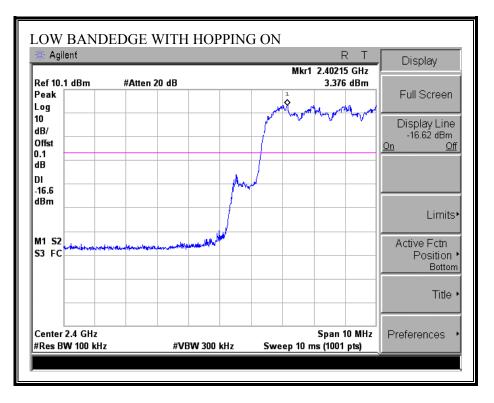


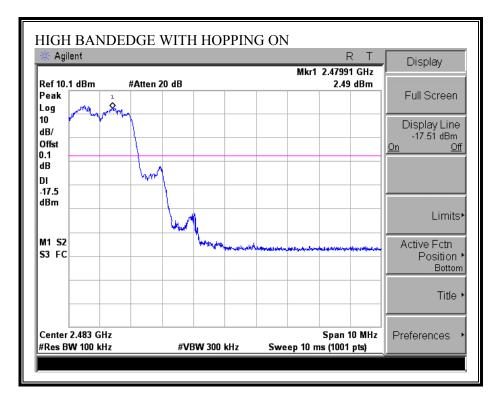


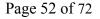
Page 49 of 72


CONDUCTED SPURIOUS EMISSIONS, MID CHANNEL for 8PSK




CONDUCTED SPURIOUS EMISSIONS, HIGH CHANNEL for 8PSK Mode





CONDUCTED SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON for 8PSK Mode

RADIATED EMISSIONS 7.2.

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

REPORT NO: 07U11199-1C EUT: BROADCOM BLUETOOTH MODULE

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 54 of 72

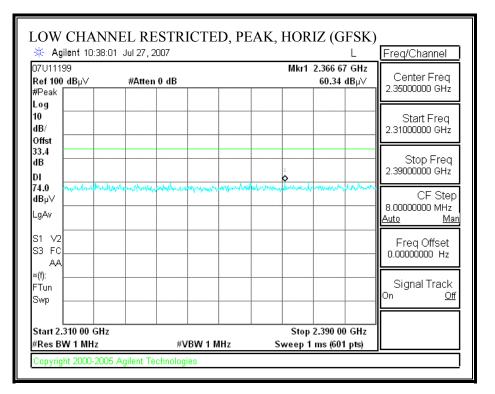
TEST PROCEDURE

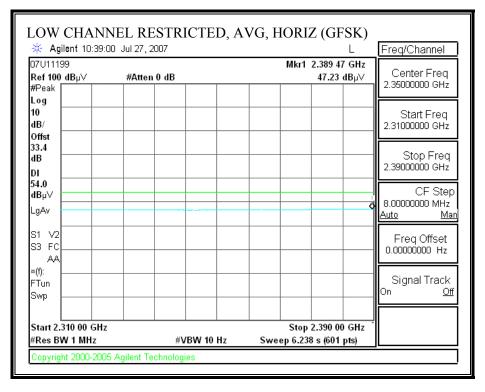
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

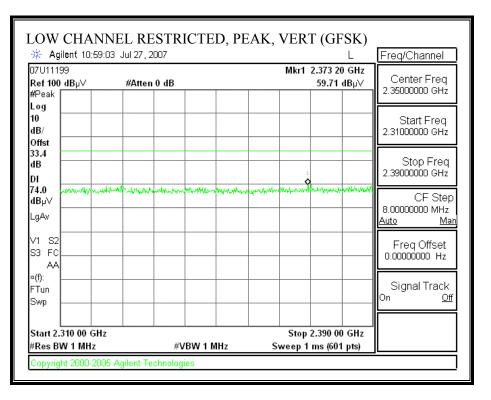
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

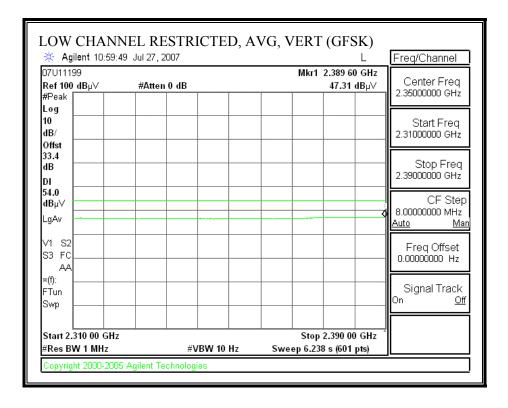

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

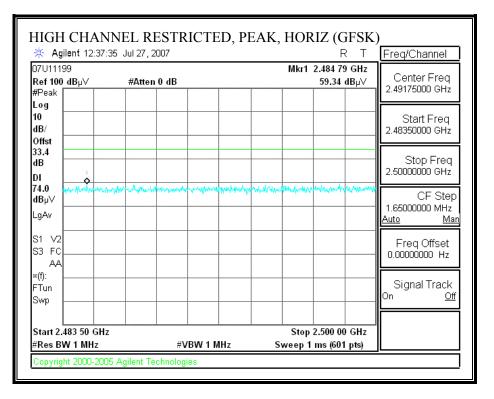

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

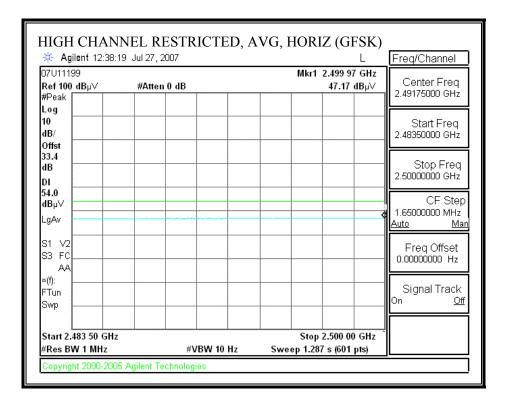
Page 55 of 72

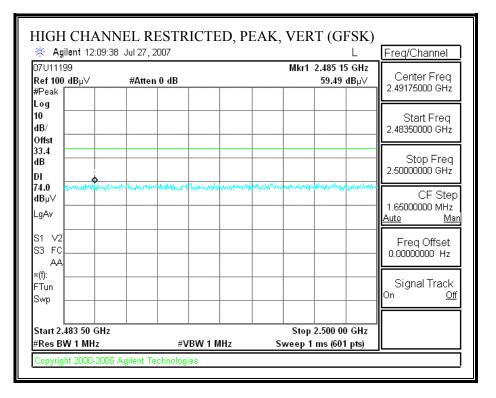
7.2.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

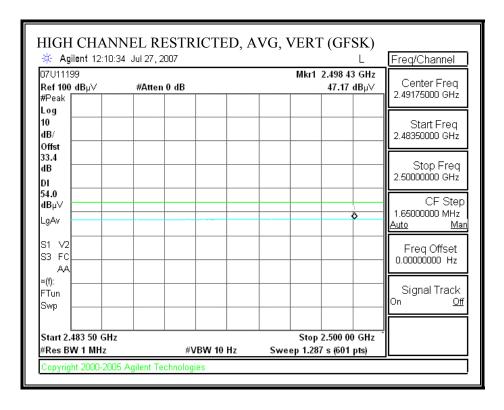

RESTRICTED BANDEDGE (LOW CHANNEL GFSK, HORIZONTAL)



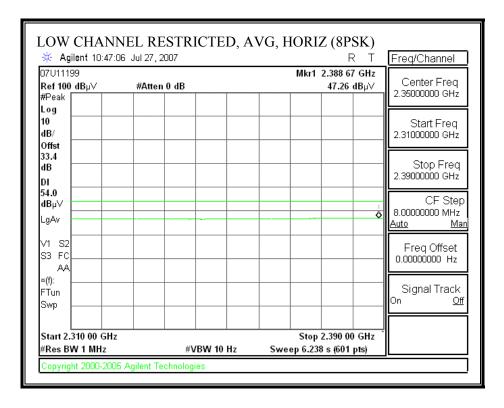

Page 56 of 72


RESTRICTED BANDEDGE (LOW CHANNEL GFSK, VERTICAL)



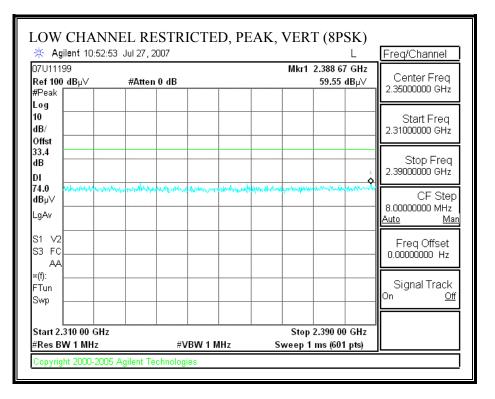

RESTRICTED BANDEDGE (HIGH CHANNEL GFSK, HORIZONTAL)

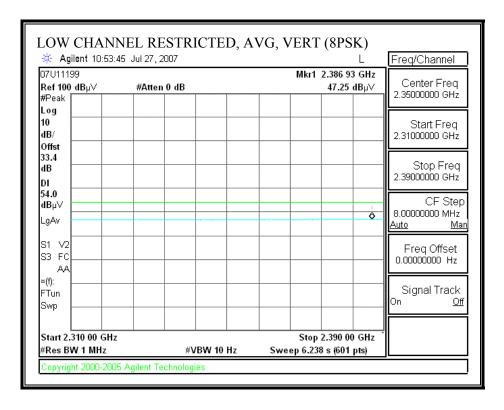
RESTRICTED BANDEDGE (HIGH CHANNEL GFSK, VERTICAL)


HARMONICS AND SPURIOUS EMISSIONS

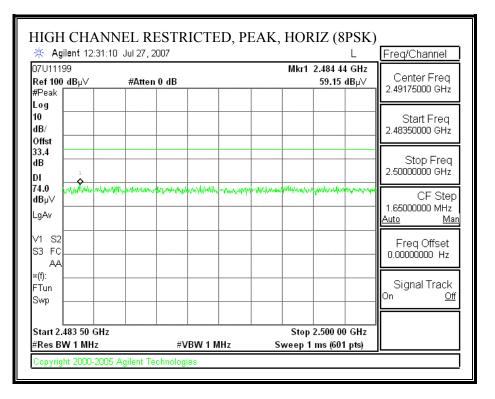
	~	Frequency													
Complia	nce Ce	rtification S	Services, Fr	emont	5m Ch	amber									
Company	y:	Broadcom													
Project #	•	07U11199													
Date:		7/27/2007													
		Can Ming Ch Laptop with H													
Vlode:	auon.	TX, GFSK	501												
fest Equ	ipmen	<u>t:</u>													
Ho	orn 1-	18GHz	Pre-ar	nplifer	1-26	GHz	Pre-am	plifer	26-40GH	z	н	orn > 18	GHz		Limit
T73; S	/N: 671	7 @3m	T145 A	Agilent 3	3008A0	05(🖵				-				•	FCC 15.209 🗸
Hi Frequ	Jency Ca	bles													
2	2 foot	cable	3	foot o	able		12	foot c	able		HPF	Re	ject Filte		<u>k Measurements</u> W=VBW=1MHz
			1				A-5m C	hambe	er			R	001		nge Measurements
						•			•						=1MHz ; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
ow Ch .789	3.0	43.2	30.2	33.3	6.9	-34.8	0.0	0.0	48.4	35.5	74	54	-25.6	-18.5	v
.234	3.0	43.2	31.1	34.9	8.4	-34.5	0.0	0.0	53.1	39.8	74	54 54	-20.9	-16.2	v
.817	3.0	44.3	31.7	33.3	6.9	-34.8	0.0	0.0	49.6	37.0	74	54	-24.4	-17.0	Н
.219 Iid Ch	3.0	43.6	30,9	34.9	8.4	-34.7	0.0	0.0	52.2	39.5	74	54	-21.8	-14.5	Н
.872	3.0	43.8	30.5	33.4	6.9	-34.9	0.0	0.0	49.2	35.9	74	54	-24.8	- 18.1	v
467	3.0	42.6	29.4	35.1	8.5	-34.6	0.0	0.0	51.5	38.3	74	54	-22.5	-15.7	<u>v</u>
.885 524	3.0 3.0	42.6 43.1	29.8 30.8	33.4 35.1	6.9 8.5	-34.9 -34.6	0.0 0.0	0.0 0.0	48.0 52.1	35.2 39.8	74 74	54 54	-26.0 -21.9	-18.8 -14.2	H H
igh Ch					· · ·			0.0				~7		-1-7-0	
963	3.0	43.3	29.8	33.4	7.0	-34.9	0.0	0.0	48.8	35.3	74	54	-25.2	-18.7	<u>v</u>
.438 .958	3.0 3.0	42.8 43.0	29.7 29.7	35.1 33.4	8.5 7.0	-34.6 -34.9	0.0 0.0	0.0 0.0	51.7 48.6	38.5 35.3	74 74	54 54	-22.3 -25.4	-15.5 -18.7	V н
	3.0 3.0	44.1	30.7	35.1	8.5	-34.6	0.0	0.0	53.0	39.6	74	54 54	-23,4	-16.7	H
7 .441 Rev. 4.12.7		Measureme			8.5	-34.0 Amp	Preamp (t to 3 mete		<u> 74</u>			ield Strengt	Annonen en

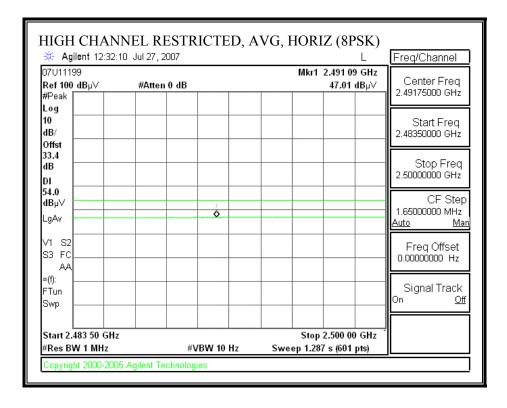
Page 60 of 72


RESTRICTED BANDEDGE (LOW CHANNEL 8PSK, HORIZONTAL)

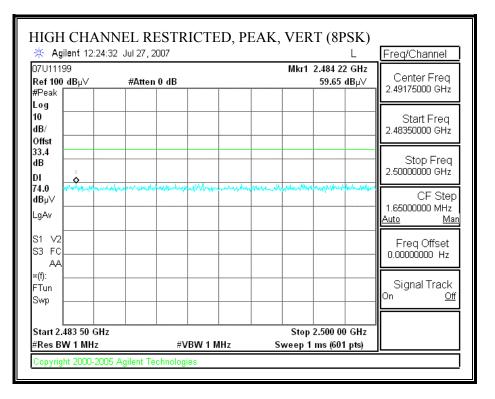


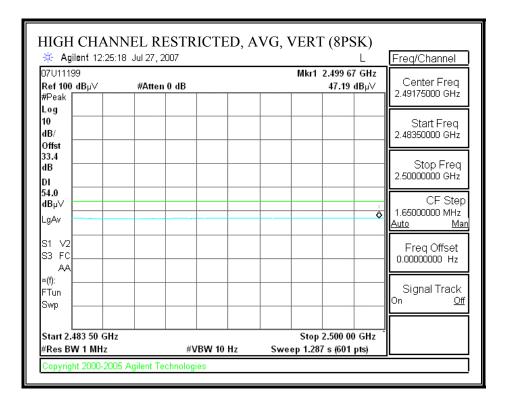
Page 61 of 72


RESTRICTED BANDEDGE (LOW CHANNEL 8PSK, VERTICAL)



Page 62 of 72


RESTRICTED BANDEDGE (HIGH CHANNEL 8PSK, HORIZONTAL)



Page 63 of 72

RESTRICTED BANDEDGE (HIGH CHANNEL 8PSK, VERTICAL)

Page 64 of 72

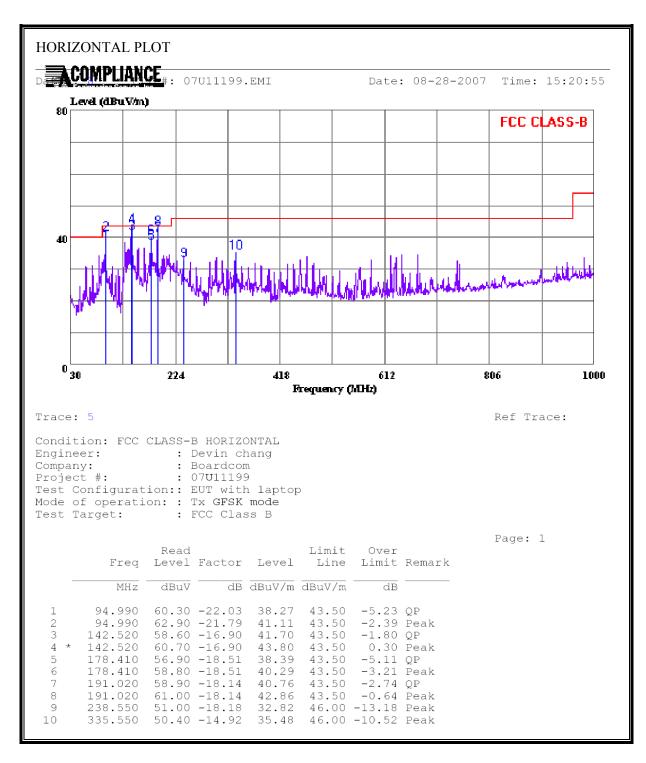
HARMONICS AND SPURIOUS EMISSIONS

ompan; roject #	÷ #:	Broadcom 07U11199													
ate: est En:		7/27/2007 Can Ming Cl	hung												
onfigui	ation:	Laptop with													
ode: T	ransmi	TX, 8PSK													
est Equ	uipmen	t:													
		_					_								
H	orn 1-	18GHz	Pre-ar	nplifer	1-260	GHZ	Pre-am	plifer	26-40GH	z	н	orn > 18(GHz		Limit
173; S	/N: 6717	7 @3m	▼ T145 A	Agilent 3	3008A0	05(🖵				-				-	FCC 15.209
Hi Frea	uency Cal	oles													,
	2 foot			foot d	able		12	foot c	able		HPF		ject Filte	. Peak	Measurements
	21000	capie		10010	able						nee	Re	ject Filte	RB1	W=VBW=1MHz
			•			•	Gordor	n 20313	\$4001 🗸			▼ R_	001		ge Measurements
							I							KBW=	IMHz ; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
v Ch 12	3.0	44.3	31.1	33.3	6.9	-34.8	0.0	0.0	49.6	36.4	74	54	-24.4	-17.6	v
02	3.0	44.3	31.1	34.9	8.4	-34.0	0.0	0.0	49.0 53.9	30.4 40.6	74	54 54	-24.4 -20.1	-17.0	v
06	3.0	45.0	32.8	33.3	69	-34.8	0.0	0.0	50.3	38.1	74	54	-23.7	-15.9	Н
:10 d Ch	3.0	44.7	31.3	34.9	8.4	-34.7	0.0	0.0	53.3	39.9	74	54	- 20.7	-14.1	Н
a c.n. 82	3.0	44.8	31.7	33.4	6.9	-349	0.0	0.0	50.3	37.1	74	54	-23.7	-16.9	v
26	3.0	43.8	30.9	35.0	8.4	-34.7	0.0	0.0	52.5	39.6	74	54	- 21.5	-14.4	v
77	3.0 3.0	43.6	30.4 30.9	33.4	6.9	-34.9	0.0 0.0	0.0 0.0	49.0	35.8	74	54 54	-25.0	-18.2	<u>H</u> H
23 zh Ch	3.0	44.D	30.9	35.0	8.4	-34.7	40	ື້ມມ	52.8	39.7	74	54	-21.2	-143	H
59	3.0	43.4	31.1	33.4	7.0	-349	0.0	0.0	48.9	36.7	74	54	- 25.1	-17.3	v
43	3.0	44.3	29.9	35.1	8.5	-34.6	0.0	0.0	53.2	38.7	74	54	-20.8	-15.3	<u>v</u>
957 35	3.0 3.0	43.3 43.6	30.0 30.9	33.4 35.1	7.0 8.5	-34.9 -34.6	0.0 0.0	0.0 0.0	48.8 52.5	35.6 39.7	74 74	54 54	-25.2 -21.5	-18.4 -14.3	<u>н</u> Н
									A						
. 5.1.6															
	f	Measurem	ent Frequency	у		Amp	Preamp	Gain				Avg Lim	Average F	ield Strength	ı Limit
	Dist	Distance to	Antenna			D Corr	Distance	Corre	ct to 3 mete	ers		Pk Lim	Peak Field	l Strength Li	mit
	Read	Analyzer R	eading			Avg	Average	Field S	Strength @	3 m		Avg Mar	Margin vs	Average Li	mit
	AF	Antenna Fa				Peak	~	1 15 1	k Field Stre			TH 3.6	3.6	Peak Limit	

Page 65 of 72

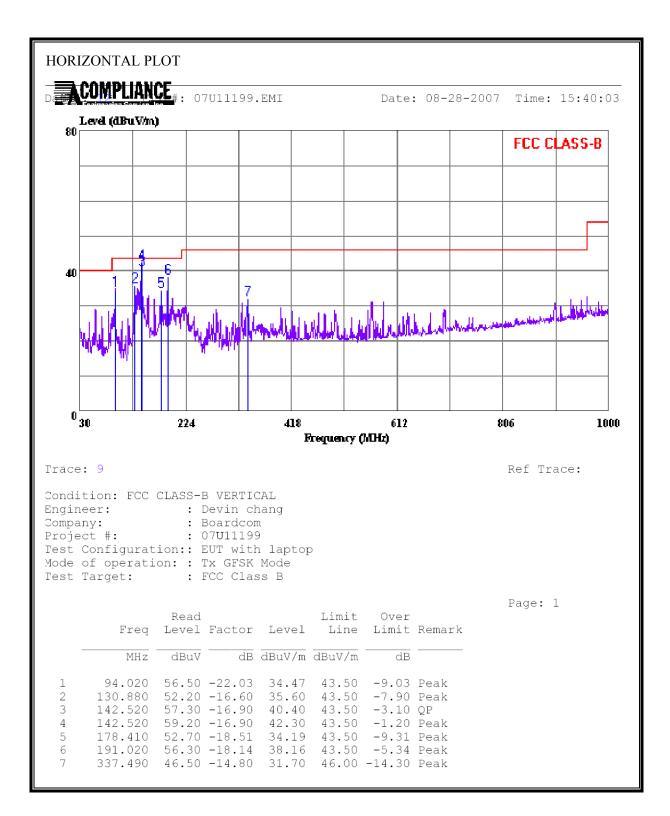
7.2.3. RECEIVER ABOVE 1 GHz

RESULTS


No non-compliance noted:

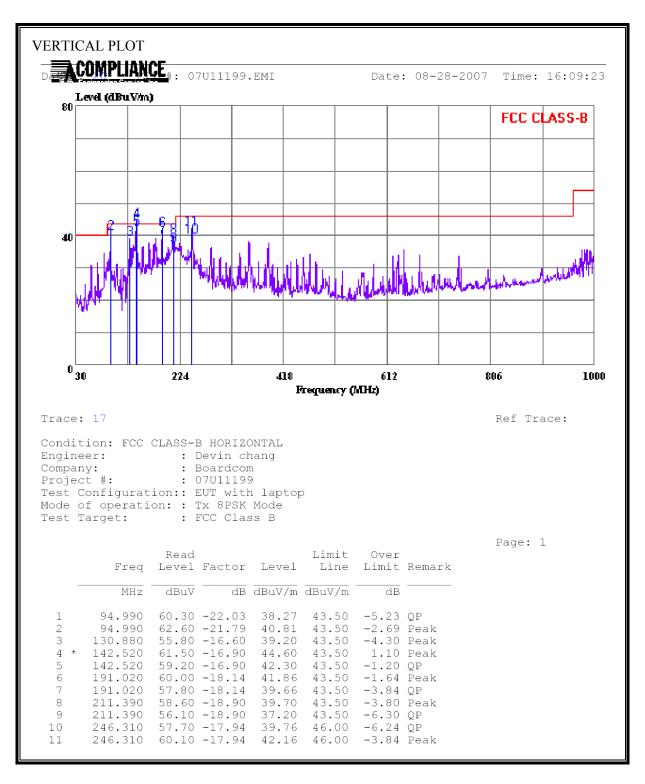
Complia	~		7 Measurem Services, Fr		5m Ch	amber									
Compan	ıy:	Broadcom													
Project	#:	07U11199													
Date:	_	7/27/2007													
		Can Ming Cl Laptop with													
Vlode:	lation.	RX, Mid Ch	201												
fest Eq	uipmen	it:													
		40.011-	Draw		4.06	<u></u>	Dra an		06.40.01			orn > 18	cu-		Limit
н	orn 1-	18GHz	Pre-al	mplifer	1-20	GHZ	Pre-am	piirer	26-40GH	2	н	om > 18	GHZ		
T73; S	5/N: 671	7 @3m	▼ T145 #	Agilent	3008A0	05(🖵				-				-	RX RSS 210 🖕
I I Hi Frea							I								
Hi Freq	juency Ca	Dies													
	2 foot	cable	3	3 foot o	able		12	footo	able		HPF	R	eject Filte		<u>k Measurements</u> W=VBW=1MHz
			-			_	A-5m C	hamh	or i					A	ow=vBw=iMHz age Measurements
			•			•	A-JIII C	namp	•			-			=1MHz; VBW=10Hz
1							,					,		_	,
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
GHz	(111)														
GHz Alid Ch		10.0													
GHz fid Ch .276	3.0	48.8	32.4 30.0	24.8	3.4	-35.9	0.0	0.0	41.0	24.6	74	54 54	-33.0	-29.4 20.1	v v
GHz Aid Ch .276 .593		48.8 47.9 42.1	32.4 30.9 28.6	24.8 25.9 32.9	3.4 3.8 6.5	-35.9 -35.7 -34.8	0.0 0.0 0.0	۵۵ ۵0 ۵0	41.0 41.9 46.7	24.6 24.9 33.2	74 74 74	54 54 54	-33.0 -32.1 -27.3	-29.4 -29.1 -20.8	v v v v
GHz Aid Ch 276 593 387 264	3.0 3.0 3.0 3.0 3.0	47.9 42.1 45.1	30.9 28.6 30.8	25.9 32.9 24.8	3.8 6.5 3.3	-35.7 -34.8 -36.0	0.0 0.0 0.0	0.0 0.0 0.0	41.9 46.7 37.3	24.9 33.2 23.0	74 74 74	54 54 54	-32.1 -27.3 -36.7	-29.1 -20.8 -31.0	V V H
GHz 4id Ch 276 593 387 264 666	3.0 3.0 3.0 3.0 3.0 3.0	47.9 42.1 45.1 46.0	30.9 28.6 30.8 30.9	25.9 32.9 24.8 26.2	3.8 6.5 3.3 3.9	-35.7 -34.8 -36.0 -35.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	41.9 46.7 37.3 40.4	24.9 33.2 23.0 25.3	74 74 74 74 74	54 54 54 54	-32.1 -27.3 -36.7 -33.6	-29.1 -20.8 -31.0 -28.7	V V H H
GHz Aid Ch .276 .593 .387 .264 .666	3.0 3.0 3.0 3.0 3.0	47.9 42.1 45.1	30.9 28.6 30.8	25.9 32.9 24.8	3.8 6.5 3.3	-35.7 -34.8 -36.0	0.0 0.0 0.0	0.0 0.0 0.0	41.9 46.7 37.3	24.9 33.2 23.0	74 74 74	54 54 54	-32.1 -27.3 -36.7	-29.1 -20.8 -31.0	V V H
	3.0 3.0 3.0 3.0 3.0 3.0 3.0 7 7	47.9 42.1 45.1 46.0 42.2 Measureme	30.9 28.6 30.8 30.9 28.8 ent Frequenc	259 329 248 262 33.7	3.8 6.5 3.3 3.9	-35.7 -34.8 -36.0 -35.6 -34.9 Amp	0.0 0.0 0.0 0.0 0.0 Preamp 0	0.0 0.0 0.0 0.0 0.0 0.0	41.9 46.7 37.3 40.4 48.8	24.9 33.2 23.0 25.3 35.4	74 74 74 74 74	54 54 54 54 54 54	-32.1 -27.3 -36.7 -33.6 -25.2	-29.1 -20.8 -31.0 -28.7 -18.6	V V H H H
GHz 4id Ch 276 593 387 264 666 5098	3.0 3.0 3.0 3.0 3.0 3.0 7 7 f Dist	47.9 42.1 45.1 46.0 42.2 Measurem Distance to	30.9 28.6 30.8 30.9 28.8 ent Frequency Antenna	259 329 248 262 33.7	3.8 6.5 3.3 3.9	-35.7 -34.8 -36.0 -35.6 -34.9 Amp D Corr	0.0 0.0 0.0 0.0 0.0 Preamp 0 Distance	00 00 00 00 00 Gain Corre	41.9 46.7 37.3 40.4 48.8	24.9 33.2 23.0 25.3 35.4	74 74 74 74 74	54 54 54 54 54 54 Avg Lim Pk Lim	-32.1 -27.3 -36.7 -33.6 -25.2 Average : Peak Fiel	-29.1 -20.8 -31.0 -28.7 -18.6 Field Strengt	V V H H H
GHz 4id Ch 276 593 387 264 666 5098	30 30 30 30 30 30 30 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	47.9 42.1 45.1 46.0 42.2 Measureme Distance to Analyzer R	30.9 28.6 30.8 30.9 28.8 ent Frequence Antenna eading	259 329 248 262 33.7	3.8 6.5 3.3 3.9	-35.7 -34.8 -36.0 -35.6 -34.9 Amp D Corr Avg	0.0 0.0 0.0 0.0 0.0 Preamp 0 Distance Average	0.0 0.0 0.0 0.0 Gain Corre Field S	41.9 46.7 37.3 40.4 48.8 ct to 3 met	24.9 33.2 23.0 25.3 35.4 ers 3 m	74 74 74 74 74	54 54 54 54 54 8 8 8 9 8 9 8 9 8 10 9 8 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	-32.1 -27.3 -36.7 -33.6 -25.2 Average : Peak Fiel Margin vs	-29.1 -20.8 -31.0 -28.7 -18.6 Field Strengt d Strength L s. Average L	V H H H H
GHz 4id Ch 276 593 387 264 666 5098	3.0 3.0 3.0 3.0 3.0 3.0 7 7 f Dist	47.9 42.1 45.1 46.0 42.2 Measurem Distance to	30.9 28.6 30.8 30.9 28.8 ent Frequenc Antenna eading actor	259 329 248 262 33.7	3.8 6.5 3.3 3.9	-35.7 -34.8 -36.0 -35.6 -34.9 Amp D Corr	0.0 0.0 0.0 0.0 0.0 Preamp 0 Distance Average	00 00 00 00 Gain Corre Field S	41.9 46.7 37.3 40.4 48.8 ct to 3 met Strength @ c Field Stree	24.9 33.2 23.0 25.3 35.4 ers 3 m	74 74 74 74 74	54 54 54 54 54 8 8 8 9 8 9 8 9 8 10 9 8 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	-32.1 -27.3 -36.7 -33.6 -25.2 Average : Peak Fiel Margin vs	-29.1 -20.8 -31.0 -28.7 -18.6 Field Strengt	V H H H H

Page 66 of 72


7.2.4. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

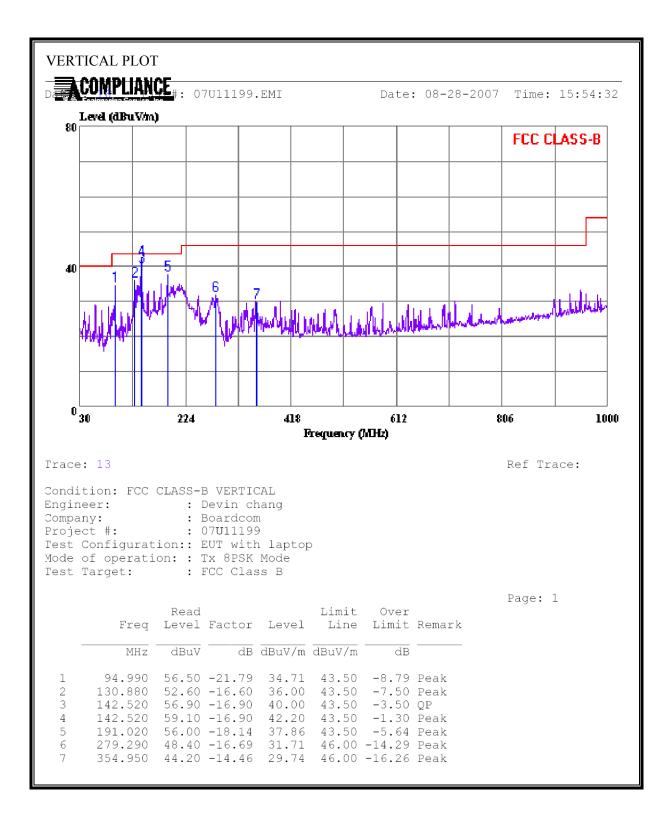
SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL) GFSK Mode

Page 67 of 72


REPORT NO: 07U11199-1C EUT: BROADCOM BLUETOOTH MODULE

Page 68 of 72

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)


GFSK Mode

Page 69 of 72

REPORT NO: 07U11199-1C EUT: BROADCOM BLUETOOTH MODULE

8PSF Mode

Page 70 of 72